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Abstract

I describe steps toward “deep lexical ac-
quisition” based on naive theories, moti-
vated by modern results of developmental
psychology. I argue that today’s machine
learning paradigm is inappropriate to take
these steps. Instead we must develop com-
putational accounts of naive theory repre-
sentations, mechanisms of theory acquisi-
tion, and the mapping of naive theories to
lexicalizable concepts. This will enable
our theories to describe the flexibility of
the human conceptual apparatus.

1 Where We Are Now

The present Machine Learning Paradigm
Much of computational linguistics has converged

onto a machine learning paradigm that provides us
soothing clarity. The machine learning approach de-
fines a problem as a mapping problem – map some
acoustic stream onto a list of word tokens, map a list
of word tokens onto a parse tree, map a parse tree
onto a set of semantic roles or “logical form”, map
each word in a tree onto its best sense, and so on.
We then develop a learning algorithm to accomplish
the desired mapping. Multiple groups describe how
well their algorithm maps various test sets given var-
ious training sets, and describe a “result” to improve
upon. The clarity provided by this paradigm is so
soothing, one gets the sense we can turn a crank,
and indeed, in many cases, progress has been made
proceeding precisely along these lines.

Turning the crank on deep lexical acquisition,
however, we might feel something is missing. What
is it? Underlying any model of deep lexical acquisi-
tion is a theory of thehuman conceptual apparatus.
Unlike our handle on acoustic streams, word lists,
and parse trees, our handle on a suitable “output”
for the space of word meanings is remarkably poor.
Somehow, via experience (of some kind or another),
children acquire a mapping from a space of vocabu-
lary items to a space of lexicalizable concepts – the
lexicon; our task as modelers is to figure out how
this mapping can occur. Many models for the space
of lexicalizable concepts exist: concepts are points
in Rn, concepts are Jackendoff’s lexical concep-
tual structures, concepts are FrameNet’s frame ele-
ments, concepts are Schankian script activators, con-
cepts are distributions over syntactic frames, con-
cepts are grounded in sensorimotor statistics, or all
of the above. Almost everyone nowadays reports
how their algorithm accomplished some mapping to
one or more of these models of concepts. They have
to, because today’s de facto idea of what constitutes
a “result” according the machine learning paradigm
today is to do exactly this.

The Golden Oldies formed our concept models
Our models of conceptual spaces didnot origi-

nate from computational linguists following the ma-
chine learning paradigm. They were proposed from
linguists, psychologists and philosophers back in
earlier eras - what we will call Golden Oldies –
when the idea of a “result” was somewhat differ-
ent. There are too many to recall: Quine (1960)
argued that the linguist watching the natives utter-
ing Gavagai! in the context of a rabbit would nec-
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essarily require far more constraints than met the
eye. Brown (1957) showed that children used syn-
tactic cues to disambiguate between possible mean-
ings; Landau and Gleitman (1985) followed on these
insights, showing just how deep it could be, that
even blind children could learnlook andsee, basing
their mapping on syntactic constraints. Chomsky’s
(1965) notion of “deep structure” – proposed to ac-
count for commonplace syntactic phenomena – mo-
tivated many insights explored in Gruber (1965)’s
thesis, Fillmore (1968)’s classical thematic roles,
and Jackendoff (1983)’s Lexical conceptual struc-
tures. Hale and Keyser and many linguists labored
under the MIT Lexicon project in the 1980s to deter-
mine the fundamental features of the lexicon; many
of these hard-earned observations appear in Levin
(1993). Schank (1972)’s Conceptual dependency
theory, Minsky (1975)’s Frames were proposed for
the broader goals of capturing commonsense knowl-
edge. Quillian’s (1968) and Miller et al (1990)’s
WordNet were not intended for models of lexical ac-
quisition or databases to be used in computational
linguistics but as models of human semantic mem-
ory. Many other Golden Oldies exist, and our debt
to them is quite large. Ask what motivates our col-
lection of subcategorization statistics or what drives
the quest for semantic roles, and the roots are found
in the science questions of the Golden Oldies.

The present Myopic Learning Paradigm
It would have been extremely myopic to take any

one of these classical results and accuse their authors
of not demonstrating a learning algorithm, not evalu-
ating them on large corpora, and not getting together
in workshops to share the results on test sets. The
standard for what constituted a result back then con-
sisted of none of these things, because today’s ma-
chine learning paradigm was just not present then.
The questions were:

• Question (1): What is a lexicalizable concept?

• Question (2): How can a word-concept map-
ping be learned from evidence?

But for reasons that no one really talks about,
somehow, the standard of what constitutes a result
changed from some balance of Question (1) and (2)
to a machine learning paradigm essentially focused

on Question (2). The dependency between Ques-
tion (1) and (2) is quite well-understood, but do we
have an adequate answer to (1)? We tell ourselves:
We’ve gotta build better parsers, speech recognizers,
search engines, machine translation systems, so...
let’s take shortcuts on Question (1) so as to make
progress on Question (2). For many, that shortcut
consists of semantic role labels and learning from
frame distributions. These shortcuts don’t answer
Question (1), unfortunately.

2 Where We Need to Go

While the Golden Oldies were used as the founda-
tions of today’s lexical acquisition, psychology be-
gan to sing a new tune, still balancing Questions (1)
and (2).

Children have naive theories
Developmental psychology after the Golden

Oldies has shown just how deep our “deep lexical
acquisition” theories have to be. On this view, word
meanings are couched in changingnaive theoriesof
how the world works. The model of the child is that
the child possesses a naive theoryT ∗ changing state
from T1 to T2, and that there is a space of concepts
accessible fromT1 that substantively different from
the space of concepts accessible fromT2. A learner
undergoesradical conceptual change. Developmen-
tal psychology has not been explicit about the pre-
cise form ofT ∗, nor have they characterized howT ∗

relates to lexicalizable concepts. But their contribu-
tions inform us about the fundamental ingredients
of concepts (Question (1)) and inform us what deep
lexical acquisition must consist of (Question (2)).

A few examples must suffice in place of a review
(c.f. Gopnik and Meltzoff (1997)). Keil (1989)’s
transformation studies illustrate theory change in the
domain of biology. First, children are shown a pic-
ture of a skunk; then, are told a story – that the an-
imal received either (A) surgery or (B) a shot in in-
fancy – and then are shown a picture of a raccoon.
Young preschool children judge that the animal is
a raccoon, as if they base their judgements on su-
perficial features. Children between 7 and 9 (T2)
on the other hand, judge that the raccoon-looking
figure in (A) is still a skunk. Adults (T3) judge
that the raccoon-looking figure in both conditions is
still a skunk. Apparently, preschoolers’ theoryT1
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lacks the belief that an animal’s kind is determined
at birth, but this becomes part of the adult’sT3.

Similarly, preschool children atT1 have concept
of deathinvolving a belief in a continued existence
in an alternate location (like sleep); When asked
whether dead people dream, eat, defecate, and move,
4 to 6 year olds will say that dead people do all of
these, except move (Slaughter et al, 2001). Missing
in T1 are the causes of death (a total breakdown of
bodily functions) and that death is an irreversible, in-
evitable end. Between 4 and 6, children become su-
perficially aware of the general function of various
body parts (e.g “You need a heart to live”). Other
phenomena serve the same point: the child atT1
thinks unclemeans friendly middle-aged man, and
at T2 thinks it means parent’s brother. The child at
T1 thinks islandmeans a beachy territory and atT2
thinks it means body of land surrounded by water
(Keil 1989). And, “theory of mind” concepts/words
such asbelief, desire, wonder, pretend (Wellman
and Bartsch 1995, Leslie 2000) are similarly situ-
ated.

How “theory-like” T1 and T2 are is subject to
considerable debate (diSessa 1993, Leslie 2000).
disessa (1993) describes a large number of causal
“p-prims” that are highly context specific and con-
siderably larger in number than what Carey (1985)
describes; these are shown to apply to everyday
physical phenomena – “force as mover”, “vaccu-
ums impel”, “overcoming”, “springiness”, “bigger
means lower pitch (or slower)”, to name a few. Each
of these have a FrameNet-like causal syntax, of
some unknown mapping to vocabulary items. Sim-
ilarly, Rozenblit and Keil (2003) show that non-
expert adults have a remarkably superficial notion
of how common mechanisms work – such as how a
helicopter changes from hovering to forward flight.
Theories may be suspiciously weak.

Students have alternative frameworks

Educational psychologists have characterizedT ∗

by asking a different, more practical question: why
is it difficult for science students to learn certain sci-
entific concepts (weight, density, force, heat, . . .)
when they come to class? The broad insight is this:
students come to class not as blank slates but with
alternativepre-conceptions that must be understood.
Data on their pre-conceptions yields clues as to con-

tents ofT ∗, well before they walk into science class.
Again, a few examples illustrate the point.

Many studies on physics misconceptions have ob-
served deeply held views on the motion of pro-
jectiles (McCloskey 1983, Halloun and Hestenes
1985). Ask students to predict what happens when
a projectile is thrown upward at an angle, and their
answers will typically be consistent with one of (a-c)

These answers are consistent with an “impetus” the-
ory of motion, where an object’s motion is exclu-
sively dominated by whatever “impetus” the thrower
provides it. Medieval scientists such as Buridan
also held similar beliefs; Newtonian mechanics, of
course, shows that the answer is a parabola. disessa
(1993) report a wider array of these types of physics
misconceptions in a theoretical framework.

Likewise, ask students for their knowledge of how
their eyeswork, and they reveal an “extramission”
belief: something somehow shoots out from the eye
and reaches the objects (Winer et al 2002); they also
say that eye is the sole organ in the body responsi-
ble for vision. Plato and da Vinci shared these same
beliefs. Systematic catalogues of these sorts of ob-
servations have been compiled for just about every
domain – e.g. megaphones create sounds, heat is a
substance, eggs are not alive, the moon and sun are
the same size, and so forth (AAAS 1993).

3 What Steps We Must Take

Consider this fascinating phenomena from the Best
of Today and the comfort of the grammar-generates-
sentence relation will be replaced by queasiness: the
termstheory, concept, andchangeare most unclear,
as many developmental psychologists freely admit.
But computational linguists may contribute signifi-
cantly to rendering new clarity: If the Golden Oldies
drove the efforts on today’s shallow lexical acquisi-
tion, the Best of Today’s Psychology may drive the
results of tomorrow’s progress in deep lexical acqui-
sition.
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Figure 1:(a) The Model of Concepts from the Golden Oldies: used in the present Machine Learning Paradigm; (b) The Universal
Theory Model of Concepts: necessary for deep lexical acquisition

The new framework: Universal Theory
We have much progress to make: We cande-

scribenaive theories precisely; we candescribehow
theory acquisition occurs; we candescribethe map
from naive theories to a set of lexicalizable concepts.
We candescribehow vocabulary acquisition occurs.
Figure 1(a) shows the Golden Oldies model of con-
cepts that we must abandon: a Vocabulary Acquisi-
tion Device receives a fixed hypothesis space of pos-
sible concepts completely determined by a fixed set
of primitives; Figure 1(b) shows theUniversal The-
ory Model of Conceptsthat we must take steps to-
wards: ATheory Acquisition Device(TAD) outputs
a stateT ∗ that describes a learners’s naive theory; A
Concept GeneratorG mapsT ∗ to a set of lexical-
izable conceptsG(T ∗). A Vocabulary Acquisition
Device(VAD) usesG(T ∗) to learn a lexicon. The
theory of the TAD states isUniversal Theory(UT);
a UT metalanguage enables an abstract characteriza-
tion of possible theories– each possible theory de-
scribes a system of kinds, attributes, relations, part-
whole relations, and causal mechanisms. Within this
Universal Theory Model of Concepts, we can begin
to answer the following core questions:

1. what is the initial state of the TAD?
2. what are possible final states of the TAD?
3. how can the TAD change state?
4. how can the TAD useT ∗ to parse experience?
5. how does the concept generatorG mapT ∗ onto

a set of lexicalizable conceptsG(T ∗)?
6. how can the VAD useG(T ∗)?

We have made progress on these core questions
Many of these questions have been addressed al-

ready in computational models where a candidate

UT metalanguage and theoryT ∗ is latent. diSessa
(1993) catalogs sets of p-prims in naive physics.
Atran (1995) describes a theory of family struc-
ture. Gopnik et al (2004) uses Bayesian networks to
model preschooler’s causal reasoning aboutblickets.
McClelland and Rogers (2004) describe connection-
ist models of some of Carey (1985)’s classic results.

In my own work, I have been situating the ele-
ments of the Universal Theory Model of Concepts in
a microgenesis study, where adult subjects undergo
a T1 to T2 transition (Niyogi 2005). The transition
can be understood with a minimal UT metalanguage
needed to characterize a set of possible theories:T ∗

is characterized by a interrelated sets of kinds, at-
tributes, relations, and causal laws.T1 andT2 are
described in that UT metalanguage, and the simplest
concept generatorG is described that mechanically
mapsT1 and T2 onto G(T1) and G(T2). Sub-
jects undergo theory change in a Blocksworld uni-
verse (see Figure 2(a)) while learning 3 verbs (gorp,
pilk, seb) that refer to the causal mechanisms gov-
erning the universe. Subjects interact with a set of
29 blocks, some of which activate other blocks on
contact. On activation, subjects are shown a transi-
tive verb frame (“Z isgorpingL, “U is sebbingF”,
“D is pilking Y”) in a Word Cue Area. Unbeknownst
to subjects, each block belongs to 1 of 4 kinds (A, B,
C or D) and 3 activation mechanisms exist between
them: lawab: As activateBs, lawc’: Cs activateCs,
andlawd: Ds activateDs; each of the 3 verbs refers
to one the 3 mechanisms. Subjects are probed for
the naming conditions on each of the 3 verbs.

Subjects’ responses indicate that their TAD state
changes fromT ∗ = T1 (there is 1 kind of block
governed by 1 causal mechanismlawq) to T ∗ = T2
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(a) (b)

Figure 2:(a) Subjects try to learn the laws and word meanings in a “Causal Blocksworld” computer application by dragging and
dropping blocks onto each other. Cues to the meaning of 3 verbs (gorp, pilk andseb) are given in a Word Cue Area. Shown is how
two kinds of subjects –T2 Subjects andT1 Subjects – clustered the blocks; the clusters for the kindsA, B, C andD (boxed) are
clear forT2 Subjects but no such differentiation is apparent forT1 subjects; (b) WhenT ∗ = T1, all 3 verbs can only be mapped
to a single concept inG(T1) = {Q} (dashed arrows); WhenT ∗ = T2, gorp, pilk andsebcan be mapped to 3newconceptsAB, C′

andD in G(T2) (solid arrows).

(there are 4 kinds of blocks governed by 3 distinct
causal mechanisms,lawab, lawc’ and lawd). But
this is not true for all subjects: some remain “T1
subjects” while others move onto become “T2 sub-
jects”. Critically, whenT ∗ = T1, the verbs can only
be mapped to a single concept inG(T1) = {Q};
WhenT ∗ = T2, the verbs can be mapped to 3 dis-
tinct concepts inG(T2) = {AB, C′, D} (See Figure
2(b)). OnceT ∗ = T2, subjects can “parse” the ac-
tivation and infer the hidden kind and causal mech-
anism involved. Critically, subjects cannot learn to
distinguish the 3 verbs untilT ∗ = T2, when the
3 new concepts emerge inG(T ∗). Thengorp, pilk
andjeb may be mapped onto those 3 new concepts.
These verbs are thus theory-laden in the same way
asdeath, uncleandisland.

This UT architecture concretelydissolves the
Puzzle of Concept Acquisition (Laurence and Mar-
golis 2002): how can a person ever acquire a “new”
concept, when a fixed set of primitives exhaustively
span the space of possible concepts? Taking the
viewpoint of the learner’s VAD at a specific moment
in time with aspecificT ∗, it has access tojust those
concepts inG(T ∗) – acquisition of a new concept
is possible ifT ∗ changes. Taking the viewpoint of
the learner’sspeciesacross all possible times, the
species has access to theunion of G(T ∗) over all
possible TAD states – thus a “new” concept for the
species is impossible. Which viewpoint one takes is
a matter of perspective. Critically, the Golden Oldies
model of concepts does not expose the TAD state re-

vealed in the UT model of concepts (Fig. 1a,b).
Universal Theory and the Linguistic Analogy

Computational linguists can progress on these
questions, because naive theories are like gram-
mars. Just as a grammar generates a set of possible
sentences, a theoryT ∗ generates a set of possible
worlds. Just as the space of possible grammars is re-
stricted, so is the space of possible theories. Just as
learning a grammar consists of picking a point from
a space of possible grammars, learning a theory con-
sists of picking a point from the space of possible
theories. The task of writing a naive theory is like
writing a grammar. The task of characterizing the
space of possible theories requires a theory meta-
language just as characterizing the space of possible
grammars requires a grammar metalanguage.

Moreover, research into naive theories does not
proceedseparatelyfrom the program of research in
grammar. The two programs are bridged by the con-
cept generatorG: T ∗ generatesG(T ∗), a set of lexi-
calizable concepts. An adequate account ofG would
generate concepts present in a particular language,
for every language, and for every possibleT ∗.

Miller et al (1990) distinguish between a con-
structive and a differential lexicon. In adifferential
theory of the lexicon, meanings can be represented
by any symbols that enable a theorist to distinguish
among them; In aconstructive theoryof the lexi-
con, the representation should “contain sufficient in-
formation to support an accurate construction of the
concept (by either a person or a machine)”.
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The conceptual analyst who desires to produce a
constructivetheory of the lexicon has four kinds of
accounts to provide: (see Niyogi 2005)

• an explanatory account of the space of possible
theories, for all persons P

• an explanatory account of the space of possi-
ble concepts, for all persons P, for all possible
theories

• a descriptive account of a specific theoryT ∗

held by a representative person P (e.g. of a 3-
year old or of a 10-year old)

• a descriptive account of a specific lexiconL
held by a representative person P (e.g. a 3-
year old Chinese speaker, 3-year old English
speaker, 10-year old Chinese speaker, 10-year
old Chinese speaker)

We may envision a “theory-based lexicon” that
would capture thetwo key state variables in Figure
1(b), the two descriptive accounts above: (1)T ∗ for
an idealized human; (2) a set of vocabulary items
mapped to points inG(T ∗). Very limited instances
of a theory-based lexicon can be constructed already
for subjects at the end of the experiment – such a
theory-based lexicon has (1)T2 in the UT metalan-
guage; (2) the mapping inL to G(T2): gorp = AB,
pilk = C′, seb= D. This constructivetheory-based
lexicon would be in stark contrast todifferentiallex-
icons such as WordNet and FrameNet.
Grounding language in perception is insufficient

Many have proposed deep lexical acquisition by
“grounding language in perception” (Siskind 1996,
Regier 1996, Roy and Pentland 2002, Yu and Bal-
lard 2004), constructing systems that can learn to ut-
ter, e.g. red, banana, hit and triangle in contexts
where there are, e.g., three triangles hitting red ba-
nanas. Such systems also propose a space of possi-
ble concepts exhausted by afixedset of primitives,
as in the Golden Oldies model. The initial state of
the TAD (T ∗(t = 0)) can explicitly incorporate all
these attributes and relations (contact, luminance,
. . .); but then, the TAD canfurther change state
to yield new kinds, attributes, relations, and causal
mechanisms not present in the initial state, but mo-
tivated by the data (see Gopnik and Meltzoff 1997).
As such, vague appeal to grounding is insufficient;
associative processes that may work onred, hit, ba-

nana, eye, threeare extremely challenging to gen-
eralize tocolor, kind, wonder, pilk, seb, telescope,
maybeand uninventedgrooblesthat cannot be per-
ceived. Again, developmental psychology provides
some insight on what theoretical innovations would
be required for a suitable interface to sensorimotor
apparatus (c.f. Mandler 2004).
Commonsense AI gives UT foundations

Primitives well beyond the sensory apparatus
have been developed to describe physical systems
qualitatively (Regier 1975, Forbus 1984). They
show us some of the possibilities of whatT ∗ and
candidate UT metalanguages may look like (quan-
tity spaces, kinds, attributes, relations, part-whole
relations, and causal mechanisms that interrelate
these sets). Regier (1975)’s description of atoi-
let appears particularly close to Rozenblit and Keil
(2003)’shelicopter. Later qualitative AI frameworks
of Forbus (1984) and Kuipers (1994) may be ap-
plied to McCloskey (1982)’s intuitive physics and
disessa’s (1993) p-prims. Except for the work of
Hobbs, Pustejovsky and their colleagues, few have
mapped commonsense theories onto the lexicon.
Similar domain-general elements of naive math and
causality are present in the workds of Hobbs et al
(1987), Kennedy and McNally (2002)’s degree rep-
resentations for gradable predicates, Talmy (1988)’s
force dynamics, and the quantity spaces of Kuipers
(1994) and Forbus (1984). These disparate frame-
works provide foundational elements for a UT met-
alanguage.
Shortcuts on UT foundations will not work

We must resist the urge to take shortcuts on
these foundations. Simply creating slots for foun-
dational phenomena will impede progress. Puste-
jovsky (1995)’s observations for co-composition
have clearly illustrated how much flexibility our in-
terpretation systems must have, e.g. inHe enjoyed
the beer/movie. But specifying the telic role ofbeer
andmovieto bedrink andwatch does not consti-
tute an adequate theory – we require constraints that
relate to the state space of the human conceptual ap-
paratus. Pustejovsky (1995)’s telic, formal, constitu-
tive, agentive roles may be mapped ontoT ∗’s char-
acterization of artifacts, materials, and so on. We
require nothing less than absolute conceptual trans-
parency.
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We must bridge UT to analogy
Lakoff and Johnson (1980) and subsequent cog-

nitive linguistics work have catalogued a stunning
level of metaphoric usage of language. Lexical ex-
tension of items such asilluminate in, e.g. Analo-
gies illuminate us on theory acquisitionare couched
in terms of conceptual metaphors such as “ideas are
light”. Significant steps have been taken to model
analogical mapping (c.f. Falkenhainer et al 1989,
Bailey et al 1997) and conceptual blending (Faucon-
nier and Turner 1998). These processes may moti-
vate TAD state changes. In most cases, the the un-
derlying predicates in the source and target domains
are ad hocly constructed; a natural source of these
predicates may be the sets internal toT ∗ (kinds, at-
tributes, relations, causal mechanisms); similarity
between domains may be determined by the struc-
tural properties of the UT metalanguage andG. If
T ∗ incorporates the common causal mechanisms be-
hind ideas and light transmission, for example, then
one may strive for a shorter lexicon where the vo-
cabulary itemilluminatehappens to be used in both
domains with “one” core entry. An adequate theory
of this process would obviously reduce the number
of so called “senses” in word sense disambiguation.

4 What We Assumed Wrong

Modern computational linguistics appears to have
made a set of assumptions that deserve reanalysis,
given the availability of other options.

Assumption: A fixed alphabet of meaning com-
ponents exists, and we know what it is

A key assumption dating to the Golden Oldies is
that the meaning of a sentence is adequately cap-
tured by a “logical form” (LF) characterized by a
fixed alphabetof meaning components (e.g. the-
matic roles, lexical semantic primitives, conceptual
dependency primitives). Today’s computational lin-
guistics program uses this assumption to demon-
strate systems that answer “who did what to whom,
where, why,. . .” questions, given sentences like:

John saw the man with the telescope.
John hit the man with the umbrella.

Is the computational linguist is expected to be sat-
isfied when systems can answerWho saw the man
with the telescope?or Who did John hit with the um-
brella? This year’s CoNLL Shared Task, mapping

sentences onto semantic roles, assumes the above.
But try these: Does John have eyes? Were they ever
open when he was looking through the telescope?
Could John know whether the man was wearing un-
derwear? Did the umbrella move? Did John move?
Did the man feel anything when he was hit? Was
John alive? Was the man alive? Why would John
need a telescope to see the man, when he has eyes?
Why would John use an umbrella when his hands
would do? Something is missing in these systems.

We should be more accountable. Developmen-
tal psychology showed that theory change and con-
ceptual change is possible, proving this assumption
is wrong: the alphabet behind sentence meaning
is a varying set of lexicalizable conceptsG(T ∗).
Missing in today’s systems attaching AGENT (or
FrameNet’s Perceiverpassive, or Impactor) toJohn
and INSTRUMENT toumbrellaandtelescopeisT ∗,
and a mapping of the lexical items toG(T ∗). What
T ∗ must contain, in some as yet unknown form, is
a T of physics described by McCloskey and disessa
(1993), a T of vision studied by Landau and Gleit-
man (1985) and Winer et al (2002), a T of body
studied by Carey (1985), a T of materials and arti-
facts studied by Hobbs et al (1987) and Pustejovsky
(1995). ThisT ∗, when mapped viaG, forms the al-
phabet of the above 2 sentences.
Assumption: The machine learning paradigm
can treat deep lexical acquisition.

If we reject the assumption that there is some
“meaning” of a sentence spanned by a set of mean-
ing primitives, the soothing clarity of the machine
learning paradigm is no longer available. We cannot
map parse trees onto sentence meanings. The pos-
sibility of “Putting Meaning in Your Trees” (Palmer
2004) completely disappears. We may still use the
machine learning paradigm to parse, disambiguate
and recognize speech. But these results are of lit-
tle use to model theory, concept and lexical acquisi-
tion, because there is no output representation where
a suitable training set could be collected. The human
conceptual apparatus is not that simple: the VAD re-
quiresG(T ∗) (which changes, asT ∗ changes), and
for thatwe need explanatory accounts of UT and G,
and must recognize the diverse ways the TAD may
change state.
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Assumption: Paths from shallow to deep lexical
acquisition exist

The Golden Oldies Models of concepts (Figure
1a) and the Universal Theory models of concepts
(Figure 1b) areincommensurable. The path from
the shallow to the deep cannot be declared to exist
by fiat. Wishful thinking is inappropriate, because
one architecture is more powerful than the other: the
Golden Oldies model did not expose the TAD state
space. Instead, lexical semantics results obtained
under the Golden Oldies model require translation
into the UT model: the privileged position syntactic
positions that motivated thematic roles and lexical
semantics primitives, the bi-partite event structure
revealed through adverbial modification, and so on.
This translation is mediated inG, and will not yield
a notational variant of what we started with.

Assumption: Verb classes determine meanings
We must distinguish between a representation of

verb meaningsdetermined bythe distribution of
subcategorization frames andcued bythese frames.
Landau and Gleitman (1990) showed that verb’s par-
ticipation in some frames but not others arecues
that a child uses to constrain verb meaning. Levin
and Rappaport-Hovav (1998) explicitly distinguish
structural and idiosyncraticcomponents of mean-
ing. But neither claim that verb classes or statistical
distributions of subcategorization framesdetermine
verb meaning. Yet VerbNet maps verbs to predicates
in precisely this way: (Kingsbury et al 2002).

cure, rob, . . .: Verbs of Inalienable Possession
cause(Agent,E) location(start(E),Theme,Source)
marry, divorce, . . .: Verbs of Social Interaction
social interaction(. . .)

The distinction betweencure and rob, or between
marry anddivorce is not astonishing to the English
speaker. Causal mechanisms behind disease, pos-
session, and the marital practices that were labeled
idiosyncraticby the lexical semanticist must be cap-
tured inT ∗.

Assumption: Language is separate from general
systems of knowledge and belief

This “defining” assumption helped for the Golden
Oldies, but innovations in developmental psychol-
ogy motivate dropping this assumption. The bridge
is provided by the concept generatorG: it maps a
naive theoryT ∗ (general systems of knowledge and

belief) toG(T ∗), used by the VAD (language).

Assumption: Real-world knowledge is Bad
The absence of the soothing clarity of the machine

learning paradigm and presence of real world knowl-
edge inT ∗ brings forth 2 associations:

Early Schank/Cyc = Much Knowledge = UT research = Bad
Statistics = Little Knowledge = shallow semantics = Good

The associations lead to the inference that Universal
Theory research will suffer a similar fate as the 70s
Schankian program and the Cyc program (Schank
1972, Lenat and Guha 1990). However, this infer-
ence is incorrect. The 70s Schankian program and
Cyc efforts did not carefully consider the constraints
of syntactic phenomena or developmental psychol-
ogy. Schank and his colleagues stimulated research
in qualitative physics and explanation-based learn-
ing that addressed many of these deficiencies, but
there is much work to be done to bridge today’s ef-
forts in deep lexical acquisition to this.

Assumption: Others will provide us the answers
Lexical semanticists now rely on cognitive expla-

nations far more heavily than ever before. Jack-
endoff (2002) concludes: “someone has to study
all these subtle frameworks of meaning - so why
not linguists?” Levin and Rappaport-Hovav (2003),
addressing denominal verbs such asmop and but-
ter, now freely point to “general cognitive prin-
ciples” rather than situate knowledge in the lexi-
con. Rather than consume lexical semantics of the
Golden Oldies, we can draw upon our toolbox to
again answer Question (1): “what is a lexicalizable
concept?”

5 We Must Change Our Concepts

Stop working with models of concepts from the
Golden Oldies. Start questioning whether results
under the machine learning paradigm are reallyre-
sults. Change your concept of aresult. Learn how
children do theory, concept and vocabulary acqui-
sition. Expose the fundamental ingredients of con-
cepts. Change your concept ofdeep. Change your
concept ofcomputational linguistics. Radical con-
ceptual change is possible. Write some new songs,
and sing some new tunes. We can have some Great
Golden Oldies of Tomorrow.
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