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Abstract

We show that the intelligent use of one small
piece of contextual information–a document’s
publication date–can improve the performance
of classifiers trained on a text categorization
task. We focus on academic research docu-
ments, where the date of publication undoubt-
edly has an effect on an author’s choice of
words. To exploit this contextual feature, we
propose the technique of temporal feature mod-
ification, which takes various sources of lexi-
cal change into account, including changes in
term frequency, associative strength between
terms and categories, and dynamic categoriza-
tion systems. We present results of classifi-
cation experiments using both full text papers
and abstracts of conference proceedings, show-
ing improved classification accuracy across the
whole collection, with performance increases
of greater than 40% when temporal features
are exploited. The technique is fast, classifier-
independent, and works well even when mak-
ing only a few modifications.

1 Introduction

As they are normally conceived, many tasks relevant to
Computational Linguistics (CL), such as text categoriza-
tion, clustering, and information retrieval, ignore the con-
text in which a document was written, focusing instead on
the lexical content of the document. Numerous improve-
ments have been made in such tasks when context is con-
sidered, for example the hyperlink or citation structure of
a document collection (Cohn and Hofmann, 2001; Getoor
et al., 2001). In this paper, we aim to show that the intel-
ligent use of another dimension of context–a document’s
publication date–can improve the performance of classi-
fiers trained on a text categorization task.

Traditional publications, such as academic papers and
patents, have histories that span centuries. The World

Wide Web is no longer a new frontier; over a decade of its
contents have been archived (Kahle, 2005); Usenet and
other electronic discussion boards have been around for
several decades. These forums continue to increase their
publication rates and show no signs of slowing. A cur-
sory glance at any one of them at two different points in
time can reveal widely varying content.

For a concrete example, we can ask, “What is Compu-
tational Linguistics about?” Some topics, such as ma-
chine translation, lie at the heart of the discipline and
will always be of interest. Others are ephemeral or have
reached theoretical upper bounds on performance. It is
thus more appropriate to ask what CL is about at some
point in time. Consider Table 1, which lists the top five
unigrams that best distinguished the field at different six-
year periods, as derived from the odds ratio measure (see
Section 3.2) over the full text of the ACL proceedings.

1979-84 1985-90 1991-96 1997-02
system phrase discourse word
natural plan tree corpus
language structure algorithm training
knowledge logical unification model
database interpret plan data

Table 1: ACL’s most characteristic terms for four time
periods.

While these changes are interesting in their own right
for an historical linguist, we aim to show that they can
also be exploited for practical purposes. We focus on a
fairly homogeneous set of academic research documents,
where the time of publication undoubtedly has an effect
both on an author’s choice of words and on a field’s defi-
nition of underlying topical categories. A document must
say something novel while building upon what has al-
ready been said. This dynamic generates a landscape
of changing research language, where authors and dis-
ciplines constantly influence and alter the course of one
another.
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1.1 Motivations

Text Categorization (TC) systems are typically used to
classify a stream of documents soon after they are pro-
duced, based upon a set of historical training data. It is
common for some TC applications, such as topic tracking
(see Section 5.2), to downweight older features, or the
feature vectors of entire documents, while placing more
emphasis on features that have recently shown increased
importance through changes in frequency and discrimi-
native ability.

Our task, which we call retrospective categorization,
uses historical data in both the training and test sets. It is
retrospective from the viewpoint of a current user brows-
ing through previous writings that are categorized with
respect to a “modern” interpretation. Our approach is mo-
tivated by three observations concerning lexical change
over time, and our task is to modify features so that a text
classifier can account for all three.

First, lexical changes can take place within a category.
The text collections used in our experiments are from var-
ious conference proceedings of the Association of Com-
puting Machinery, which uses a hierarchical classifica-
tion system consisting of over 500 labels (see Section
2). As was suggested by the example of Table 1, even if
classification labels remain constant over time, the terms
that best characterize them can change to reflect evolv-
ing “meanings”. We can expect that many of the terms
most closely associated with a category like Computa-
tional Linguistics cannot be captured properly without
explicitly addressing their temporal context.

Second, lexical changes can occur between categories.
A term that is significant to one category can suddenly
or gradually become of interest to another category. This
is especially applicable in news corpora (see examples
in Section 3), but also applies to academic research doc-
uments. Terminological “migrations” between topics in
computer science, and across all of science, are common.

Third, any coherent document collection on a par-
ticular topic is sufficiently dynamic that, over time, its
categorization system must be updated to reflect the
changes in the world on which its texts are based. Al-
though Computational Linguistics predates Artificial In-
telligence (Kay, 2003), many now consider the former a
subset of the latter. Within CL, technological and theo-
retical developments have continually altered the labels
ascribed to particular works.

In the ACM’s hierarchical Computing Classification
System (see Section 2.1), several types of transforma-
tions are seen in the updates it received in 1983, 1987,
1991, and 1998.1 In bifurcations, categories can be split
apart. With collapses, categories that were formerly more
fine-grained, but now do not receive much attention, can

1http://acm.org/class/

be combined. Finally, entirely new categories can be in-
serted into the hierarchy.

2 Data

To make our experiments tractable and easily repeatable
for different parameter combinations, we chose to train
and test on two subsets of the ACM corpus. One subset
consists of collections of abstracts from several different
ACM conferences. The other includes the full text col-
lection of documents from one conference.

2.1 The ACM hierarchy

All classifications were performed with respect to the
ACM’s Computing Classification System, 1998 version.
This, the most recent version of the ACM-CCS, is a hi-
erarchic classification scheme that potentially presents a
wide range of hierarchic classification issues. Because
the work reported here is focused on temporal aspects of
text classification, we have adopted a strategy that effec-
tively “flattens” the hierarchy. We interpret a document
which has a primary2 category at a narrow, low level in
the hierarchy (e.g., H.3.3.CLUSTERING) as also classi-
fied at all broader, higher-level categories leading to the
root (H, H.3, H.3.3). With this construction, the most
refined categories will have fewer example documents,
while broader categories will have more.

For each of the corpora considered, a threshold of 50
documents was set to guarantee a sufficient number of in-
stances to train a classifier. Narrower branches of the full
ACM-CCS tree were truncated if they contained insuf-
ficient numbers of examples, and these documents were
associated with their parent nodes. For example, if H.3.3
contained 20 documents and H.3.4 contained 30, these
would be “collapsed” into the H.3 category.

All of our corpora carry publication timestamp infor-
mation involving time scales on the order of one to three
decades. The field of computer science, not surprisingly,
has been especially fortunate in that most of its pub-
lications have been recorded electronically. While ob-
viously skewed relative to scientific and academic pub-
lishing more generally, we nevertheless find significant
“micro-cultural” variation among the different special in-
terest groups.

2.2 SIGIR full text

We have processed the annual proceedings of the Associ-
ation for Computing Machinery’s Special Interest Group
in Information Retrieval (SIGIR) conference from its in-
ception in 1978 to 2002. The collection contains over
1,000 documents, most of which are 6-10 page papers,
though some are keynote addresses and 2-3 page poster

2Many ACM documents also are classified with additional
“other” categories, but these were not used.
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Corpus Vocab size No. docs No. cats
SIGIR 16104 520 17
SIGCHI 4524 1910 20
SIGPLAN 6744 3123 22
DAC 6311 2707 20

Table 2: Corpus features

Unlabeled Expected
Proceedings 18.97% 7.73%
Periodicals 19.08% 11.54%
No. docs 24,567 8,703

Table 3: Missing classification labels in ACM

summaries. Every document is tagged with its year of
publication. Unfortunately, only about half of the SIGIR
documents bear category labels. The majority of these
omissions fall within the 1978-1987 range, leaving us the
remaining 15 years to work with.

2.3 Conference abstracts

We collected nearly 8,000 abstracts from the Special In-
terest Group in Programming Languages (SIGPLAN),
the Special Interest Group in Computer-Human Interac-
tion (SIGCHI) and the Design Automation Conference
(DAC). Characteristics of these collections, and of the SI-
GIR texts, are shown in Table 2.

2.4 Missing labels in ACM

We derive the statistics below from the corpus of all doc-
uments published by the ACM between 1960 and 2003.
The arguments can be applied to any corpus which has
categorized documents, but for which there are classifi-
cation gaps in the record.

The first column of Table 3 shows that nearly one fifth
of all ACM documents, from both conference proceed-
ings and periodicals, do not possess category labels. We
define a document’s label as “expected” when more than
half of the other documents in its publication (one confer-
ence proceeding or one issue of a periodical) are labeled,
and if there are more than ten total. The second column
lists the percentage of documents where we expected a
label but did not find one.

3 Methods

Text categorization (TC) is the problem of assigning doc-
uments to one or more pre-defined categories. As Section
1 demonstrated, the terms which best characterize a cate-
gory can change through time, so it is not unreasonable to
assume that intelligent use of temporal context will prove
useful in TC.

Imagine the example of sorting several decades of
articles from the Los Angeles Times into the cate-
gories ENTERTAINMENT, BUSINESS, SPORTS, POL-
ITICS, and WEATHER. Suppose we come across the
term schwarzenegger in a training document. In the
1970s, during his career as a professional bodybuilder,
Arnold Schwarzenegger’s name would be a strong indica-
tor of a SPORTS document. During his film career in the
1980s-1990s, his name would be most likely to appear in
an ENTERTAINMENT document. After 2003, at the out-
set of his term as California’s governor, the POLITICS
and BUSINESS categories would be the most likely can-
didates. We refer to schwarzenegger as a temporally
perturbed term, because its distribution across categories
varies greatly with time.

Documents containing temporally perturbed terms
hold valuable information, but this is lost in a statistical
analysis based purely on the average distribution of terms
across categories, irrespective of temporal context. This
information can be recovered with a technique we call
temporal feature modification (TFM). We first outline a
formal model for its use.

3.1 A term generator framework

One obvious way to introduce temporal information into
the categorization task is to simply provide the year of
publication as a new lexical feature. Preliminary exper-
iments (not reported here) showed that this method had
virtually no effect on classification performance. When
the date features were “emphasized” with higher frequen-
cies, classification performance declined.

Instead, we proceed from the perspective of a simpli-
fied language generator model (e.g. (Blei et al., 2003)).
We imagine that the first step in the production of a doc-
ument involves an author choosing a category C. Each
term k (word, bigram, phrase, etc.) is accorded a unique
generator G

�
that determines the distribution of k across

categories, and therefore its likelihood to appear in cat-
egory C. The model assumes that all authors share the
same generator for each term, and that the generators do
not change over time. We are particularly interested in
identifying temporally perturbed lexical generators that
violate this assumption.

External events at time t can perturb the generator of k,
causing Pr(C|k � ) to be different relative to the background
Pr(C|k) computed over the entire corpus. If the perturba-
tion is significant, we want to separate the instances of k
at time t from all other instances.

Returning to our earlier example, we would treat
a generic, atemporal occurrence of schwarzeneg-
ger and the pseudo-term “schwarzenegger+2003”
as though they were actually different terms, because they
were produced by two different generators. We hypoth-
esize that separating the analysis of the two can improve
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our estimates of the true Pr(C|k), both in 2003 and in
other years.

3.2 TFM Procedure

The generator model motivates a procedure we outline
below for flagging certain lexemes with explicit temporal
information that distinguish them so as to contrast them
with those generated by the underlying atemporal alter-
natives. This procedure makes use of the (log) odds ratio
for feature selection:�������	��
���������������������	� ��!#"	$&%('*)�",+

) " $-%�'.! " +
�

where p is Pr(k|C), the probability that term k is
present, given category C, and q is Pr(k|!C).

The odds ratio between a term and a category is a mea-
sure of the associated strength of the two, for it measures
the likelihood that a term will occur frequently within a
category and (relatively) infrequently outside. Odds ratio
happens to perform very well in feature selection tests;
see (Mladenic, 1998) for details on its use and variations.
Ultimately, it is an arbitrary choice and could be replaced
by any method that measures term-category strength.

The following pseudocode describes the process of
temporal feature modification:

VOCABULARY ADDITIONS:
for each class C:
for each time (year) t:
PreModList(C,t,L) = OddsRatio(C,t,L)
ModifyList(t) =
DecisionRule(PreModList(C,t,L)
for each term k in ModifyList(t):
Add pseudo-term "k+t" to Vocab

DOCUMENT MODIFICATIONS:
for each document:
t = time (year) of doc
for each term k:
if "k+t" in Vocab:
Replace k with "k+t"

Classify modified document

PreModList(C,t,L) is a list of the top L terms that, by
the odds ratio measure, are highly associated with cate-
gory C at time t. (In our case, time is divided annually,
because this is the finest resolution we have for many
of the documents in our corpus.) We test the hypothe-
sis that these come from a perturbed generator at time t,
as opposed to the atemporal generator G

�
, by comparing

the odds ratios of term-category pairs in a PreModList at
time t with the same pairs across the entire corpus. Terms
which pass this test are added to the final ModifyList(t)
for time t. For the results that we report, DecisionRule is
a simple ratio test with threshold factor f. Suppose f is
2.0: if the odds ratio between C and k is twice as great at
time t as it is atemporally, the decision rule is “passed”.
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Figure 1: Improvement in categorization performance
with TFM, using the best parameter combinations for
each corpus.

The generator G
�

is then considered perturbed at time t
and k is added to ModifyList(t). In the training and test-
ing phases, the documents are modified so that a term k is
replaced with the pseudo-term "k+t" if it passed the ratio
test.

3.3 Text categorization details

The TC parameters held constant in our experiments
are: Stoplist, Porter stemming, and Laplacian smoothing.
Other parameters were varied: four different classifiers,
three unique minimum vocabulary frequencies, unigrams
and bigrams, and four threshold factors f. 10-fold cross
validation was used for parameter selection, and 10% of
the corpus was held out for testing purposes. Both of
these sets were distributed evenly across time.

4 Results

Table 4 shows the parameter combinations, chosen by
ten-fold cross-validation, that exhibited the greatest in-
crease in categorization performance for each corpus.

Using these parameters, Figure 1 shows the improve-
ment in accuracy for different percentages of terms mod-
ified on the test sets. The average accuracies (across
all parameter combinations) when no terms are modified
are less than stellar, ranging from 26.70% (SIGCHI) to
37.50% (SIGPLAN), due to the difficulty of the task (20-
22 similar categories; each document can only belong to
one). Our aim here, however, is simply to show improve-
ment. A baseline of 0.0 in the plot indicates accuracy
without any temporal modifications.

Figure 2 shows the accuracy on an absolute scale when
TFM is applied to the full text SIGIR corpus. Perfor-
mance increased from the atemporal baseline of 28.85%
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Corpus Improvement Classifier n-gram size Vocab frequency min. Ratio threshold f
SIGIR 33.32% Naive Bayes Bigram 2 2.0
SIGCHI 40.82% TF.IDF Bigram 10 1.0
SIGPLAN 18.74% KNN Unigram 10 1.5
DAC 20.69% KNN Unigram 2 1.0

Table 4: Top parameter combinations for TFM by improvement in classification accuracy. Vocab frequency min. is
the minimum number of times a term must appear in the corpus in order to be included.
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Figure 2: Absolute categorization performance with
TFM for the SIGIR full text corpus.

correct to a maximum of 38.46% when only 1.11% of the
terms were modified. The ModifyLists for each category
and year averaged slightly fewer than two terms each.

In most cases, the technique performs best when mak-
ing relatively few modifications: the left sides of each
figure show a rapid performance increase, followed by
a gradual decline as more terms are modified. After re-
quiring the one-time computation of odds ratios in the
training set for each category/year, TFM is very fast and
requires negligible extra storage space. This is important
when computing time is at a premium and enormous cor-
pora such as the ACM full text collection are used. It is
also useful for quickly testing potential enhancements to
the process, some of which are discussed in Section 6.

The results indicate that L in PreModList(C,t,L) need
not exceed single digits, and that performance asymp-
totes as the number of terms modified increases. As this
happens, more infrequent terms are judged to have been
produced by perturbed generators, thus making their true
distributions difficult to compute (for the years in which
they are not modified) due to an insufficient number of
examples.

4.1 General description of results

A quantitative average of all results, using all parameter
combinations, is not very meaningful, so we provide a
qualitative description of the results not shown in Table 4
and Figures 1 and 2. Of the 96 different parameter combi-
nations tested on four different corpora, 83.33% resulted
in overall increases in performance. The greatest increase
peaked at 40.82% improvement over baseline (atempo-
ral) accuracy, while the greatest decrease dropped perfor-
mance by only 8.31%.

5 Related Work

The use of metadata and other complementary (non-
content) information to improve text categorization is an
interesting and well-known problem. The specific use of
temporal information, even if only implicitly, for tasks
closely related to TC has been explored through adaptive
information filtering (AIF) and topic detection and track-
ing (TDT).

5.1 Adaptive Information Filtering

There exists a large body of work on information filter-
ing, which “is concerned with the problem of delivering
useful information to a user while preventing an overload
of irrelevant information” (Lam et al., 1996). Of partic-
ular interest here is adaptive information filtering (AIF),
which handles the problems of concept drift (a gradual
change in the data set a classifier must learn from) and
concept shift (a more radical change).

Klinkenberg and Renz test eight different classifiers on
their abilities to adapt to changing user preferences for
news documents (Klinkenberg and Renz, 1998). They try
different “data management techniques” for the concept
drift scenario, selectively altering the size of the set of
examples (the adaptive window) that a classifier trains on
using a heuristic that accounts for the degree of dissimi-
larity between the current batch of examples and previous
batches. Klinkenberg and Joachims later abandon this ap-
proach because it relies on “complicated heuristics”, and
instead concentrate their analysis on support vector ma-
chines (Klinkenberg and Joachims, 2000).

Stanley uses an innovative approach that eschews the
need for an adaptive window of training examples, and
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instead relies on a voting system for decision trees (Stan-
ley, 2001). The weight of each classifier’s vote (classifi-
cation) is proportional to its record in predicting classi-
fications for previous examples. He notes that this tech-
nique does not rely on decision trees; rather, any combi-
nation of classifiers can be inserted into the system.

The concept drift and shift scenarios used in the pub-
lished literature are often unrealistic and not based upon
actual user data. Topic Detection and Tracking, described
in the following section, must work not with the behavior
of one individual, but with texts that report on real exter-
nal events and are not subject to artificial manipulation.
This multifaceted, unsupervised character of TDT makes
it a more appropriate precursor with which to compare
our work.

5.2 Topic Detection and Tracking

Franz et al. note that Topic Detection and Tracking
(TDT) is fundamentally different from AIF in that the
“adaptive filtering task focuses on performance improve-
ments driven by feedback from real-time human rele-
vance assessments. TDT systems, on the other hand, are
designed to run autonomously without human feedback”
(Franz et al., 2001). Having roots in information retrieval,
text categorization, and information filtering, the initial
TDT studies used broadcast news transcripts and writ-
ten news corpora to accomplish tasks ranging from news
story clustering to boundary segmentation. Of most rel-
evance to the present work is the topic tracking task. In
this task, given a small number (1-4) of training stories
known to be about a particular event, the system must
make a binary decision about whether each story in an
incoming stream is about that event.

Many TDT systems make use of temporal information,
at least implicitly. Some employ a least recently used
(Chen and Ku, 2002) or decay (Allan et al., 2002) func-
tion to restrict the lexicon available to the system at any
given point in time to those terms most likely to be of use
in the topic tracking task.

There are many projects with a foundation in TDT that
go beyond the initial tasks and corpora. For example,
TDT-inspired language modeling techniques have been
used to train a system to make intelligent stock trades
based upon temporal analysis of financial texts (Lavrenko
et al., 2000). Retrospective timeline generation has also
become popular, as exhibited by Google’s Zeitgeist fea-
ture and browsers of TDT news corpora (Swan and Allan,
2000; Swan and Jensen, 2000).

The first five years of TDT research are nicely summa-
rized by Allan (Allan, 2002).

6 Summary and Future Work

In this paper, we have demonstrated a feature modifi-
cation technique that accounts for three kinds of lexi-

cal changes in a set of documents with category labels.
Within a category, the distribution of terms can change
to reflect the changing nature of the category. Terms can
also “migrate” between categories. Finally, the catego-
rization system itself can change, leading to necessary
lexical changes in the categories that do not find them-
selves with altered labels. Temporal feature modification
(TFM) accounts for these changes and improves perfor-
mance on the retrospective categorization task as it is ap-
plied to subsets of the Association for Computing Ma-
chinery’s document collection.

While the results presented in this paper indicate that
TFM can improve classification accuracy, we would like
to demonstrate that its mechanism truly incorporates
changes in the lexical content of categories, such as those
outlined in Section 1.1. A simple baseline comparison
would pit TFM against a procedure in which the corpus
is divided into slices temporally, and a classifier is trained
and tested on each slice individually. Due to changes in
community interest in certain topics, and in the structure
of the hierarchy, some categories are heavily represented
in certain (temporal) parts of the corpus and virtually ab-
sent elsewhere. Thus, the chance of finding every cat-
egory represented in a single year is very low. For our
corpora, this did not even occur once.

The “bare bones” version of TFM presented here is in-
tended as a proof-of-concept. Many of the parameters
and procedures can be set arbitrarily. For initial feature
selection, we used odds ratio because it exhibits good
performance in TC (Mladenic, 1998), but it could be re-
placed by another method such as information gain, mu-
tual information, or simple term/category probabilities.
The ratio test is not a very sophisticated way to choose
which terms should be modified, and presently only de-
tects the surges in the use of a term, while ignoring the
(admittedly rare) declines.

In experiments on a Usenet corpus (not reported here)
that was more balanced in terms of documents per cate-
gory and per year, we found that allowing different terms
to “compete” for modification was more effective than
the egalitarian practice of choosing L terms from each
category/year. There is no reason to believe that each
category/year is equally likely to contribute temporally
perturbed terms.

We would also like to exploit temporal contiguity. The
present implementation treats time slices as independent
entities, which precludes the possibility of discovering
temporal trends in the data. One way to incorporate
trends implicitly is to run a smoothing filter across the
temporally aligned frequencies. Also, we treat each slice
at annual resolution. Initial tests show that aggregat-
ing two or more years into one slice improves perfor-
mance for some corpora, particularly those with tempo-
rally sparse data such as DAC.
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