
Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 9–16,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Feature Engineering and Post-Processing for Temporal Expression
Recognition Using Conditional Random Fields

Sisay Fissaha Adafre Maarten de Rijke
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
sfissaha,mdr@science.uva.nl

Abstract

We present the results of feature engineer-
ing and post-processing experiments con-
ducted on a temporal expression recogni-
tion task. The former explores the use of
different kinds of tagging schemes and of
exploiting a list of core temporal expres-
sions during training. The latter is con-
cerned with the use of this list for post-
processing the output of a system based on
conditional random fields.

We find that the incorporation of knowl-
edge sources both for training and post-
processing improves recall, while the use
of extended tagging schemes may help
to offset the (mildly) negative impact on
precision. Each of these approaches ad-
dresses a different aspect of the over-
all recognition performance. Taken sep-
arately, the impact on the overall perfor-
mance is low, but by combining the ap-
proaches we achieve both high precision
and high recall scores.

1 Introduction

Temporal expressions (timexes) are natural language
phrases that refer directly to time points or intervals.
They not only convey temporal information on their
own but also serve as anchors for locating events re-
ferred to in a text. Timex recognition is a named
entity recognition (NER) task to which a variety of
natural language processing and machine learning
techniques have been applied. As with other NER

tasks, timex recognition is naturally viewed as a se-
quence labeling task, easily lending itself to ma-
chine learning techniques such as conditional ran-
dom fields (CRFs) (Lafferty et al., 2001).

A preliminary experiment showed that, using
CRFs, a respectable recognition performance can
easily be achieved with a straightforward baseline
system that is based on a simple tagging scheme and
requires very little tuning, yielding F-scores around
0.78 (exact match) or even 0.90 (partial match).
Interestingly, these high scores are mainly due to
high or even very high precision scores, while recall
leaves much to be improved.

The main focus of this paper is on boosting re-
call while maintaining precision at an acceptable
(i.e., high) level. We report on two types of ex-
periments aimed at achieving this goal. One type
concerns feature engineering and the other concerns
post-processing the output of a machine learner.
While we do exploit the special nature of timexes,
for portability reasons we avoid using task-specific
and richer linguistic features (POS, chunks, etc.). In-
stead, we focus on features and techniques that can
readily be applied to other NER tasks.

Specifically, our feature engineering experiments
have two facets. The first concerns identification of
a set of simple features that results in high general-
ization ability (accuracy). Here, particular emphasis
will be placed on the use of a list of core timexes as
a feature. The assumption is that the performance of
data-driven approaches for timex recognition can be
improved by taking into account the peculiar prop-
erties of timexes. Timexes exhibit various patterns,
ranging from regular patterns that can easily be cap-
tured using simple regular expressions to complex
linguistic forms (phrases). While timexes are real-

9

ized in different phrase types, the core lexical items
of timexes are restricted. This suggests that a list
of core timexes can easily be compiled and used in
machine learning-based timex recognition. One ap-
proach of integrating such a list is using them to gen-
erate features, but the availability of such a list also
opens up other possibilities in feature design that we
present in later sections.

The second aspect concerns the tagging scheme.
As in most NER experiments, the task of recogniz-
ing timexes is reduced to tagging. Commonly used
tagging schemes are Inside-Outside (IO) and Begin-
Continue-End-Unique-Negative (BCEUN) (Borth-
wick et al., 1998). The IO tagging scheme, which we
use as a baseline, assigns the tag I to a token if it is
part of a timex and O otherwise. The richer BCEUN
scheme assigns the five tags B, C, E, U, and N to to-
kens depending on whether the token is single-token
timex (U), a non-timex (N), appears at the beginning
(B), at the end (E) or inside a timex boundary (C). In
this paper, we compare the IO, BCEUN and an ex-
tended form of the BCEUN tagging scheme. The
extended scheme adds two tags, PRE and POST, to
the BCEUN scheme, which correspond to tokens ap-
pearing to the left and to the right of a timex.

In contrast, our post-processing experiments in-
vestigate the application of the list of core timexes
for filtering the output of a machine learner. The in-
corporation into the recognition process of explicit
knowledge in the form of a list for post-processing
requires a carefully designed strategy to ensure that
the important properties of the trained model are
kept intact as much as possible while at the same-
time improving overall results. We present an ap-
proach for using a list for post-processing that ex-
ploits the knowledge embodied in the trained model.

The paper is organized as follows. In Section 2
we provide background material, both on the timex
extraction task (§2.1) and on the machine learning
techniques on which we build in this paper, condi-
tional random fields (§2.2). Our ideas on engineer-
ing feature sets and tagging schemes are presented
in Section 3, while we describe our method for ex-
ploiting the explicit knowledge contained in a list in
Section 4. In Section 5, we describe the experimen-
tal setup and present the results of our experiments.
Related work is briefly reviewed in Section 6, and
we conclude in Section 7.

2 Background

2.1 Task Description

In recent years, temporal aspects of information ac-
cess have received increasing amounts of attention,
especially as it relates to news documents. In addi-
tion to factual content, news documents have a tem-
poral context, reporting events that happened, are
happening, or will happen in relation to the publi-
cation date. Temporal documentretrieval concerns
the inclusion of both the document publication date
and the in-text temporal expressions in the retrieval
model (Kalczynski and Chou, 2005). The task in
which we are interested in this paper is identifying
the latter type of expressions, i.e.,extractionof tem-
poral expressions. TERN, the Temporal Expression
Recognition and Normalization Evaluation, is orga-
nized under the auspices of the Automatic Content
Extraction program (ACE,http://www.nist.
gov/speech/tests/ace/). The TERN evalu-
ation provides specific guidelines for the identifica-
tion and normalization of timexes, as well as tagged
corpora for training and testing and evaluation soft-
ware. These guidelines and resources were used for
the experiments described below.

The TERN evaluation consisted of two distinct
tasks: recognition and normalization. Timex recog-
nition involves correctly detecting and delimiting
timexes in text. Normalization involves assigning
recognized timexes a fully qualified temporal value.
Our focus in this paper is on the recognition task;
it is defined, for human annotators, in the TIDES
TIMEX2 annotation guidelines (Ferro et al., 2004).
The recognition task is performed with respect to
corpora of transcribed broadcast news speech and
news wire texts from ACE 2002, ACE 2003, and
ACE 2004, marked up in SGML format and, for
the training set, hand-annotated for TIMEX2s. An
official scorer that evaluates the recognition perfor-
mance is provided as part of the TERN evaluation. It
computes precision, recall, and F-measure both for
TIMEX2 tags (i.e., foroverlapwith a gold standard
TIMEX2 element) and forextentof TIMEX2 ele-
ments (i.e., exact match of entire timexes).

2.2 Conditional Random Fields

We view the recognition of timexes task as a se-
quence labeling task in which each token in the text

10

is classified as being either a timex or not. One ma-
chine learning technique that has recently been in-
troduced to tackle the problem of labeling and seg-
menting sequence data is conditional random fields
(CRFs, (Lafferty et al., 2001)). CRFs are conditional
probability distributions that take the form of ex-
ponential models. The special case of linear chain
CRFs, which takes the following form, has been
widely used for sequence labeling tasks:

P (y | x) =

1
Z (x)

exp

(∑
t=1

∑
k

λkfk (t, yt−1, yt, x)

)
,

where Z (x) is the normalization factor,X =
{x1, . . . , xn} is the observation sequence,Y =
{y1, . . . , yT } is the label sequences,fk andλk are
the feature functions and their weights respectively.
An important property of these models is that proba-
bilities are computed based on a set of feature func-
tions, i.e.,fk (usually binary valued), which are de-
fined on both the observationX and label sequences
Y . These feature functions describe different aspect
of the data and may overlap, providing a flexible way
of describing the task.

CRFs have been shown to perform well in a
number of natural language processing applications,
such as POS tagging (Lafferty et al., 2001), shallow
parsing or NP chunking (Sha and Pereira, 2003), and
named entity recognition (McCallum and Li, 2003).
In this paper, CRFs are applied to the recognition of
timexes; in our experiments we used the minorThird
implementation of CRFs (Cohen, 2004).

3 Feature Engineering

The success of applying CRFs depends on the qual-
ity of the set of features used and the tagging scheme
chosen. Below, we discuss these two aspects in
greater detail.

3.1 Feature sets

Our baseline feature set consists of simple lexical
and character features. These features are derived
from a context window of two words (left and right).
Specifically, the features are the lowercase form of
all the tokens in the span, with each token contribut-
ing a separate feature, and the tokens in the left and

right context window constitute another set of fea-
tures. These feature sets capture the lexical con-
tent and context of timexes. Additionally, charac-
ter type pattern features (such as capitalization, digit
sequence) of tokens in the timexes are used to cap-
ture the character patterns exhibited by some of the
tokens in temporal expressions. These features con-
stitute thebasic featureset.

Another important feature is the list of core
timexes. The list is obtained by first extracting the
phrases with -TMP function tags from the PennTree
bank, and taking the words in these phrases (Marcus
et al., 1993). The resulting list is filtered for stop-
words. Among others, the list of core timexes con-
sists of the names of days of the week and months,
temporal units ‘day,’ ‘month,’ ‘year,’ etc. This list
is used to generate binary features. In addition, the
list is used to guide the design of other complex fea-
tures that may involve one or more of token-tag pairs
in the context of the current token. One way of using
the list for this purpose is to generate a feature that
involves bi-grams tokens. In certain cases, informa-
tion extracted from bi-grams, e.g. +Xx 99 (May 20),
can be more informative than information generated
from individual tokens. We refer to these features as
the list feature set.

3.2 Tagging schemes

A second aspect of feature engineering that we
consider in this paper concerns different tagging
schemes. As mentioned previously, the task of rec-
ognizing timexes is reduced to a sequence-labeling
task. We compare three tagging schemes, IO
(our baseline), BCEUN, and BCEUN+PRE&POST.
While the first two are relatively standard, the last
one is an extension of the BCEUN scheme. The
intuition underlying this tagging scheme is that the
most relevant features for timex recognition are ex-
tracted from the immediate context of the timex,
e.g., the word ’During’ in (1) below.

(1) During <TIMEX2>the past week</TIMEX2> ,
the storm has pounded the city.
During-PRE the-B past-C week-E ,-POST the
storm has pounded the city.

Therefore, instead of treating these elements uni-
formly as outside (N), which ignores their relative
importance, we conjecture that it is worthwhile to

11

assign them a special category, like PRE and POST
corresponding to the tokens immediately preceding
and following a timex, and that this leads to im-
proved results.

4 Post-processing Using a List

In this section, we describe the proposed method
for incorporating a list of core lexical timexes for
post-processing the output of a machine learner. As
we will see below, although the baseline system
(with the IO tagging scheme and the basic feature
set) achieves a high accuracy, the recall scores leave
much to be desired. One important problem that we
have identified is that timexes headed by core lexical
items on the list may be missed. This is either due
to the fact that some of these lexical items are se-
mantically ambiguous and appear in a non-temporal
sense, or the training material does not cover the par-
ticular context. In such cases, a reliable list of core
timexes can be used to identify the missing timexes.
For the purposes of this paper, we have created a
list containing mainly headwords of timexes. These
words are calledtrigger wordssince they are good
indicators of the presence of temporal expressions.

How can we use trigger words? Before describ-
ing our method in some detail, we briefly describe
a more naive (and problematic) approach. Observe
that trigger words usually appear in a text along with
their complements or adjuncts. As a result, pick-
ing only these words will usually contribute to token
recall but span precision is likely to drop. Further-
more, there is no principled way of deciding which
one to pick (semantically ambiguous elements will
also be picked). Let’s make this more precise. The
aim is to take into account the knowledge acquired
by the trained model and to search for the next op-
timal sequence of tags, which assigns the missed
timex a non-negative tag. However, searching for
this sequence by taking the whole word sequence
is impractical since the number of possible tag se-
quences (number of all possible paths in a viterbi
search) is very large. But if one limits the search to
a window of sizen (n < 6), sequential search will
be feasible. The method, then, works on the output
of the system. We illustrate the method by using the
example given in (2) below.

(2) The chairman arrived in the city yesterday, and

will leave next week. The press conference will
be held tomorrow afternoon.

Now, assume that (2) is a test instance (a two-
sentence document), and that the system returns the
following best sequence (3). For readability, the tag
N is not shown on the words that are assigned nega-
tive tags in all the examples below.

(3) The chairman arrived in the city yesterday-U ,
and will leave next week . The press conference
will be held tomorrow-B afternoon-E .

According to (3), the system recognizes only ‘yes-
terday’ and ‘tomorrow afternoon’ but misses ‘next
week’. Assuming our list of timexes contains the
word ‘week’, it tells us that there is a missing tem-
poral expression, headed by ‘week.’ The naive
method is to go through the above output sequence
and change the token-tag pair ‘week-N’ to ‘week-
U’. This procedure recognizes the token ‘week’ as a
valid temporal expression, but this is not correct: the
valid temporal expression is ‘next week’.

We now describe a second approach to incorpo-
rating the knowledge contained in a list of core lexi-
cal timexes as a post-processing device. To illustrate
our ideas, take the complete sequence in (3) and ex-
tract the following segment, which is a window of 7
tokens centered at ‘week’.

(4) . . . [will leave next week . The press] . . .

We reclassifythe tokens in (4) assuming the history
contains the token ‘and’ (the token which appears to
the left of this segment in the original sequence) and
the associated parameters. Of course, the best se-
quence will still assign both ‘next’ and ‘week’ the N
tag since the underlying parameters (feature sets and
the associated weights) are the same as the ones in
the system. However, since the word sequence in (4)
is now short (contains only 7 words) we can main-
tain a list of all possible tag sequences for it and per-
form a sequential search for the next best sequence,
which assigns the ‘week’ token a non-negative tag.
Assume the new tag sequence looks as follows:

(5) . . . [will leave next-B week-E . The press] . . .

This tag sequence will then be placed back into the
original sequence resulting in (6):

12

(6) The chairman arrived in the city yesterday-U ,
and will leave next-B week-E . The press con-
ference will be held tomorrow-B afternoon-E .

In this case, all the temporal expressions will be ex-
tracted since the token sequence ‘next week’ is prop-
erly tagged. Of course, the above procedure can also
return other, invalid sequences as in (7):

(7) a. . . . will leave next-B week-C . The press . . .
b. . . . will leave next week-C . The press . . .
c. . . . will leave next week-C .-E The press . . .

The final extraction step will not return any timex
since none of the candidate sequences in (7) contains
a valid tag sequence. The assumption here is that of
all the tag sequences, which assign the token ‘week’
a non-negative tag, those tag sequences which con-
tain the segment ‘next-B week-E’ are likely to re-
ceive a higher weight since the underlying system
is trained to recognize temporal expressions and the
phrase ‘next week’ is a likely temporal expression.

This way, we hypothesize, it is possible to ex-
ploit the knowledge embodied in the trained model.
As pointed out previously, simply going through
the list and picking only head words like ‘week’
will not guarantee that the extracted tokens form a
valid temporal expression. On the other hand, the
above heuristics, which relies on the trained model,
is likely to pick the adjunct ‘next’.

The post-processing method we have just out-
lined boils down to reclassifying a small segment
of a complete sequence using the same parameters
(feature sets and associated weights) as the original
model, and keeping all possible candidate sequences
and searching through them to find a valid sequence.

5 Experimental Evaluation

In this section we provide an experimental assess-
ment of the feature engineering and post-processing
methods introduced in Sections 3 and 4. Specifi-
cally, we want to determine what their impact is on
the precision and recall scores of the baseline sys-
tem, and how they can be combined to boost recall
while keeping precision at an acceptable level.

5.1 Experimental data

The training data consists of 511 files, and the test
data consists of 192 files; these files were made

available in the 2004 Temporal Expression Recog-
nition and Normalization Evaluation. The tempo-
ral expressions in the training files are marked with
XML tags. The minorThird system takes care of
automatically converting from XML format to the
corresponding tagging schemes. A temporal expres-
sion enclosed by<TIMEX2> tags constitutes a span.
The features in the training instances are generated
by looking at the surface forms of the tokens in the
spans and their surrounding contexts.

5.2 Experimental results

Richer feature sets Table 1 lists the results of the
first part of our experiments. Specifically, for every
tagging scheme, there are two sets of features,basic
and list. The results are based on both exact-match
and partial match between the spans in the gold stan-
dard and the spans in the output of the systems, as
explained in Subsection 2.1. In both the exact and
partial match criteria, the addition of the list features
leads to an improvement in recall, and no change or
a decrease in precision.

In sum, the feature addition helps recall more than
it hurts precision, as the F score goes up nearly ev-
erywhere, except for the exact-match/baseline pair.

Tagging schemes In Table 1 we also list the ex-
traction scores for the tagging schemes we con-
sider, IO, BCEUN, and BCEUN+PRE&POST, as
described in Section 3.2.

Let us first look at the impact of the different tag-
ging schemes in combination with the basic feature
set (rows 3, 5, 7). As we go from the baseline
tagging scheme IO to the more complex BCEUN
and BCEUN+PRE&POS, precision increases on
the exact-match criterion but remains almost the
same on the partial match criterion. Recall, on
the other hand, does not show the same trend.
BCEUN has the highest recall values followed by
BCEUN+PRE&POST and finally IO. In general,
IO based tagging seems to perform worse whereas
BCEUN based tagging scores slightly above its ex-
tended tagging scheme BCEUN+PRE&POST.

Next, considering the combination of extend-
ing the feature set and moving to a richer tagging
scheme (rows 4, 6, 8), we have very much the same
pattern. In both the exact match and the partial
match setting, BCEUN tops (or almost tops) the two

13

Exact Match Partial Match
Tagging scheme Features Prec. Rec. F Prec. Rec. F
IO (baseline) basic 0.846 0.723 0.780 0.973 0.832 0.897

basic+ list 0.822 0.736 0.776 0.963 0.862 0.910
BCEUN basic 0.874 0.768 0.817 0.974 0.856 0.911

basic+ list 0.872 0.794 0.831 0.974 0.887 0.928
BCEUN+PRE&POS basic 0.882 0.749 0.810 0.979 0.831 0.899

basic+ list 0.869 0.785 0.825 0.975 0.881 0.925

Table 1: Timex: Results of training on basic and list features, and different tagging schemes. Highest scores
(Precision, Recall, F-measure) are in bold face.

other schemes in both precision and recall.
In sum, the richer tagging schemes function as

precision enhancing devices. The effect is clearly
visible for the exact-match setting, but less so for
partial matching. It is not the case that the learner
trained on the richest tagging scheme outperforms
all learners trained with poorer schemes.

Post-processing Table 2 shows the results of ap-
plying the post-processing method described in
Section 4. One general pattern we observe in
Table 2 is that the addition of the list features
improves precision for IO and BCEUN tagging
scheme and shows a minor reduction in precision
for BCEUN+PRE&POS tagging scheme in both
matching criteria. Similarly, in the presence of
post-processing, the use of a more complex tagging
scheme results in a better precision. On the other
hand, recall shows a different pattern. The addi-
tion of list features improves recall both for BCEUN
and BCEUN+PRE&POS, but hurts recall for the IO
scheme for both matching criteria.

Comparing the results in Table 1 and Table 2,
we see that post-processing is a recall enhancing
device since all the recall values in Table 2 are
higher than the recall values in Table 1. Pre-
cision values in Table 2, on the other hand, are
lower than those of Table 1. Importantly, the
use of a more complex tagging scheme such as
BCEUN+PRE&POS, allows us to minimize the
drop in precision. In general, the best result (on
partial match) in Table 1 is achieved through the
combination of BCEUN and basic&list features
whereas the best result in Table 2 is achieved by
the combination of BCEUN+PRE&POS and basic
&list features. Although both have the same over-

all scores on the exact match criteria, the latter per-
forms better on partial match criteria. This, in turn,
shows that the combination of post-processing, and
BCEUN+PRE&POS achieves better results.

Stepping back We have seen that the extended
tagging scheme and the post-processing methods
improve on different aspects of the overall per-
formance. As mentioned previously, the ex-
tended tagging scheme is both recall and precision-
oriented, while the post-processing method is pri-
marily recall-oriented. Combining these two meth-
ods results in a system which maintains both these
properties and achieves a better overall result. In or-
der to see how these two methods complement each
other it is sufficient to look at the highest scores
for both precision and recall. The extended tagging
scheme with basic features achieves the highest pre-
cision but has relatively low recall. On the other
hand, the simplest form, the IO tagging scheme
and basic features with post-processing, achieves
the highest recall and the lowest precision in par-
tial match. This shows that the IO tagging scheme
with basic features imposes a minimal amount of
constraints, which allows for most of the timexes in
the list to be extracted. Put differently, it does not
discriminate well between the valid vs invalid oc-
currences of timexes from the list in the text. At the
other extreme, the extended tagging scheme with 7
tags imposes strict criteria on the type of words that
constitute a timex, thereby restricting which occur-
rences of the timex in the list count as valid timexes.

In general, although the overall gain in score is
limited, our feature engineering and post-processing
efforts reveal some interesting facts. First, they show
one possible way of using a list for post-processing.

14

Exact Match Partial Match
Tagging scheme Features Prec. Rec. F Prec. Rec. F
IO basic (baseline) 0.846 0.723 0.7800.973 0.832 0.897

basic 0.756 0.780 0.768 0.9020.931 0.916
basic+ list 0.772 0.752 0.762 0.930 0.906 0.918

BCEUN basic 0.827 0.789 0.808 0.945 0.901 0.922
basic+ list 0.847 0.801 0.823 0.958 0.906 0.931

BCEUN+PRE&POS basic 0.863 0.765 0.8110.973 0.863 0.915
basic+ list 0.861 0.804 0.831 0.970 0.906 0.937

Table 2: Timex: Results of applying post-processing on the systems in Table 1. The baseline (from Table 1)
is repeated for ease of reference; it does not use post-processing. Highest scores (Precision, Recall, F-
measure) are in bold face.

This method is especially appropriate for situations
where better recall is important. It offers a means of
controlling the loss in precision (gain in recall) by
allowing a systematic process of recovering missing
expressions that exploits the knowledge already em-
bodied in a probabilistically trained model, thereby
reducing the extent to which we have to make ran-
dom decisions. The method is particularly sensitive
to the criterion (the quality of the list in the current
experiment) used for post-processing.

6 Related Work

A large number of publications deals with extraction
of temporal expressions; the task is often treated as
part of a more involved task combining recognition
and normalization of timexes. As a result, many
timex interpretation systems are a mixture of both
rule-based and machine learning approaches (Mani
and Wilson, 2000). This is partly due to the fact that
timex recognition is more amenable to data-driven
methods whereas normalization is best handled us-
ing primarily rule-based methods. We focused on
machine learning methods for the timex recognition
task only. See (Katz et al., 2005) for an overview of
methods used for addressing the TERN 2004 task.

In many machine learning-based named-entity
recognition tasks dictionaries are used for improving
results. They are commonly used to generate binary
features. Sarawagi and Cohen (2004) showed that
semi-CRFs models for NE recognition perform bet-
ter than conventional CRFs. One advantage of semi-
CRFs models is that the units that will be tagged are
segments which may contain one or more tokens,

rather than single tokens as is done in conventional
CRFs. This in turn allows one to incorporate seg-
ment based-features, e.g., segment length, and also
facilitates integration of external dictionaries since
segments are more likely to match the entries of an
external dictionary than tokens. In this paper, we
stuck to conventional CRFs, which are computation-
ally less expensive, and introduced post-processing
techniques, which takes into account knowledge em-
bodied in the trained model.

Kristjannson et al. (2004) introduced constrained
CRFs (CCRFs), a model which returns an optimal
label sequence that fulfills a set of constraints im-
posed by the user. The model is meant to be used in
an interactive information extraction environment,
in which the system extracts structured information
(fields) from a text and presents it to the user, and
the user makes the necessary correction and submits
it back to the system. These corrections constitute
an additional set of constraints for CCRFs. CCRFs
re-computes the optimal sequence by taking these
constraints into account. The method is shown to
reduce the number of user interactions required in
validating the extracted information. In a very lim-
ited sense our approach is similar to this work. The
list of core lexical timexes that we use represents
the set of constraints on the output of the underly-
ing system. However, our method differs in the way
in which the constraints are implemented. In our
case, we take a segment of the whole sequence that
contains a missing timex, and reclassify the words
in this segment while keeping all possible tag se-
quences sorted based on their weights. We then

15

search for the next optimal sequence that assigns the
missing timex a non-negative tag sequentially. On
the other hand, Kristjannson et al. (2004) take the
whole sequence and recompute an optimal sequence
that satisfies the given constraints. The constraints
are a set of states which the resulting optimal se-
quence should include.

7 Conclusion

In this paper we presented different feature engi-
neering and post-processing approaches for improv-
ing the results of timex recognition task. The first
approach explores the different set of features that
can be used for training a CRF-based timex recog-
nition system. The second investigates the effect of
the different tagging scheme for timex recognition
task. The final approach we considered applies a list
of core timexes for post-processing the output of a
CRF system. Each of these approaches addresses
different aspects of the overall performance. The
use of a list of timexes both during training and for
post-processing resulted in improved recall whereas
the use of a more complex tagging scheme results
in better precision. Their individual overall contri-
bution to the recognition performances is limited or
even negative whereas their combination resulted in
substantial improvements over the baseline.

While we exploited the special nature of timexes,
we did avoid using linguistic features (POS, chunks,
etc.), and we did so for portability reasons. We fo-
cused exclusively on features and techniques that
can readily be applied to other named entity recog-
nition tasks. For instance, the basic and list features
can also be used in NER tasks such as PERSON,
LOCATION, etc. Moreover, the way that we have
used a list of core expressions for post-processing is
also task-independent, and it can easily be applied
for other NER tasks.

Acknowledgments

Sisay Fissaha Adafre was supported by the Nether-
lands Organization for Scientific Research (NWO)
under project number 220-80-001. Maarten de
Rijke was supported by grants from NWO, under
project numbers 365-20-005, 612.069.006, 220-80-
001, 612.000.106, 612.000.207, 612.066.302, 264-
70-050, and 017.001.190.

References

[Borthwick et al.1998]A. Borthwick, J. Sterling,
E. Agichtein, and R. Grishman. 1998. Exploiting
diverse knowledge sources via maximum entropy in
named entity recognition. InWorkshop on Very Large
Corpora, ACL.

[Cohen2004]W. Cohen. 2004. Methods for identifying
names and ontological relations in text using heuris-
tics for inducing regularities from data.http://
minorthird.sourceforge.net .

[Ferro et al.2004]L. Ferro, L. Gerber, I. Mani, and
G. Wilson, 2004. TIDES 2003 Standard for the An-
notation of Temporal Expressions. MITRE, April.

[Kalczynski and Chou2005]P.J. Kalczynski and A. Chou.
2005. Temporal document retrieval model for business
news archives.Information Processing and Manage-
ment, 41:635–650.

[Katz et al.2005]G. Katz, J. Pustejovsky, and F. Schilder,
editors. 2005. Proceedings Dagstuhl Workshop on
Annotating, Extracting, and Reasoning about Time
and Events.

[Kristjannson et al.2004]T. Kristjannson, A. Culotta,
P. Viola, and A. McCallum. 2004. Interactive infor-
mation extraction with constrained conditional random
fields. InNineteenth National Conference on Artificial
Intelligence, AAAI.

[Lafferty et al.2001]J. Lafferty, F. Pereira, and A. McCal-
lum. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
Proceedings of the International Conference on Ma-
chine Learning.

[Mani and Wilson2000]I. Mani and G. Wilson. 2000.
Robust temporal processing of news. InProceedings
of the 38th ACL.

[Marcus et al.1993]M.P. Marcus, B. Santorini, and M.A.
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn treebank.Computational
Linguistics, 19:313–330.

[McCallum and Li2003]A. McCallum and W. Li. 2003.
Early results for Named Entity Recognition with con-
ditional random fields, feature induction and web-
enhanced lexicons. InProceedings of the 7th CoNLL.

[Sarawagi and Cohen2004]S. Sarawagi and W.W. Cohen.
2004. Semi-markov conditional random fields for in-
formation extraction. InNIPs (to appear).

[Sha and Pereira2003]F. Sha and F. Pereira. 2003. Shal-
low parsing with conditional random fields. InPro-
ceedings of Human Language Technology-NAACL.

16

