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Abstract

This paper evaluates a series of freely
available, state-of-the-art parsers on a
standard benchmark as well as with
respect to a set of data relevant for
measuring text cohesion. We outline
advantages and disadvantages of exist-
ing technologies and make recommen-
dations. Our performance report uses
traditional measures based on a gold
standard as well as novel dimensions
for parsing evaluation. To our knowl-
edge this is the first attempt to eval-
uate parsers accross genres and grade
levels for the implementation in learn-
ing technology.

1 Introduction

The task of syntactic parsing is valuable to
most natural language understanding applica-
tions, e.g., anaphora resolution, machine trans-
lation, or question answering. Syntactic parsing
in its most general definition may be viewed as
discovering the underlying syntactic structure of
a sentence. The specificities include the types
of elements and relations that are retrieved by
the parsing process and the way in which they
are represented. For example, Treebank-style
parsers retrieve a bracketed form that encodes
a hierarchical organization (tree) of smaller el-
ements (called phrases), while Grammatical-
Relations(GR)-style parsers explicitly output re-
lations together with elements involved in the
relation (subj(John,walk)).

The present paper presents an evaluation of
parsers for the Coh-Metrix project (Graesser et
al., 2004) at the Institute for Intelligent Systems
of the University of Memphis. Coh-Metrix is a
text-processing tool that provides new methods
of automatically assessing text cohesion, read-
ability, and difficulty. In its present form, v1.1,
few cohesion measures are based on syntactic
information, but its next incarnation, v2.0, will
depend more heavily on hierarchical syntactic
information. We are developing these measures.
Thus, our current goal is to provide the most
reliable parser output available for them, while
still being able to process larger texts in real
time. The usual trade-off between accuracy and
speed has to be taken into account.

In the first part of the evaluation, we adopt
a constituent-based approach for evaluation, as
the output parses are all derived in one way or
another from the same data and generate simi-
lar, bracketed output. The major goal is to con-
sistently evaluate the freely available state-of-
the-art parsers on a standard data set and across
genre on corpora typical for learning technology
environments. We report parsers’ competitive-
ness along an array of dimensions including per-
formance, robustness, tagging facility, stability,
and length of input they can handle.

Next, we briefly address particular types of
misparses and mistags in their relation to mea-
sures planned for Coh-Metrix 2.0 and assumed
to be typical for learning technology applica-
tions. Coh-Metrix 2.0 measures that centrally
rely on good parses include:
causal and intentional cohesion, for which the
main verb and its subject must be identified;
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anaphora resolution, for which the syntactic re-
lations of pronoun and referent must be identi-
fied;
temporal cohesion, for which the main verb and
its tense/aspect must be identified.

These measures require complex algorithms
operating on the cleanest possible sentence
parse, as a faulty parse will lead to a cascad-
ing error effect.

1.1 Parser Types

While the purpose of this work is not to propose
a taxonomy of all available parsers, we consider
it necessary to offer a brief overview of the var-
ious parser dimensions. Parsers can be classi-
fied according to their general approach (hand-
built-grammar-based versus statistical), the way
rules in parses are built (selective vs. genera-
tive), the parsing algorithm they use (LR, chart
parser, etc.), type of grammar (unification-based
grammars, context-free grammars, lexicalized
context-free grammars, etc.), the representation
of the output (bracketed, list of relations, etc.),
and the type of output itself (phrases vs gram-
matical relations). Of particular interest to our
work are Treebank-style parsers, i.e., parsers
producing an output conforming to the Penn
Treebank (PTB) annotation guidelines. The
PTB project defined a tag set and bracketed
form to represent syntactic trees that became a
standard for parsers developed/trained on PTB.
It also produced a treebank, a collection of hand-
annotated texts with syntactic information.

Given the large number of dimensions along
which parsers can be distinguished, an evalua-
tion framework that would provide both parser-
specific (to understand the strength of differ-
ent technologies) and parser-independent (to be
able to compare different parsers) performance
figures is desirable and commonly used in the
literature.

1.2 General Parser Evaluation Methods

Evaluation methods can be broadly divided
into non-corpus- and corpus-based methods
with the latter subdivided into unannotated
and annotated corpus-based methods (Carroll
et al., 1999). The non-corpus method sim-

ply lists linguistic constructions covered by the
parser/grammar. It is well-suited for hand-
built grammars because during the construction
phase the covered cases can be recorded. How-
ever, it has problems with capturing complex-
ities occuring from the interaction of covered
cases.

The most widely used corpus-based eval-
uation methods are: (1) the constituent-
based (phrase structure) method, and (2) the
dependency/GR-based method. The former has
its roots in the Grammar Evaluation Interest
Group (GEIG) scheme (Grishman et al., 1992)
developed to compare parsers with different un-
derlying grammatical formalisms. It promoted
the use of phrase-structure bracketed informa-
tion and defined Precision, Recall, and Cross-
ing Brackets measures. The GEIG measures
were extended later to constituent information
(bracketing information plus label) and have
since become the standard for reporting auto-
mated syntactic parsing performance. Among
the advantages of constituent-based evaluation
are generality (less parser specificity) and fine
grain size of the measures. On the other hand,
the measures of the method are weaker than ex-
act sentence measures (full identity), and it is
not clear if they properly measure how well a
parser identifies the true structure of a sentence.
Many phrase boundary mismatches spawn from
differences between parsers/grammars and cor-
pus annotation schemes (Lin, 1995). Usually,
treebanks are constructed with respect to infor-
mal guidelines. Annotators often interpret them
differently leading to a large number of different
structural configurations.

There are two major approaches to evaluate
parsers using the constituent-based method. On
the one hand, there is the expert-only approach
in which an expert looks at the output of a
parser, counts errors, and reports different mea-
sures. We use a variant of this approach for
the directed parser evaluation (see next section).
Using a gold standard, on the other hand, is a
method that can be automated to a higher de-
gree. It replaces the counting part of the former
method with a software system that compares
the output of the parser to the gold standard,
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highly accurate data, manually parsed − or au-
tomatically parsed and manually corrected − by
human experts. The latter approach is more
useful for scaling up evaluations to large collec-
tions of data while the expert-only approach is
more flexible, allowing for evaluation of parsers
from new perspectives and with a view to spe-
cial applications, e.g., in learning technology en-
vironments.

In the first part of this work we use the gold
standard approach for parser evaluation. The
evaluation is done from two different points of
view. First, we offer a uniform evaluation for the
parsers on section 23 from the Wall Street Jour-
nal (WSJ) section of PTB, the community norm
for reporting parser performance. The goal of
this first evaluation is to offer a good estimation
of the parsers when evaluated in identical en-
vironments (same configuration parameters for
the evaluator software). We also observe the fol-
lowing features which are extremely important
for using the parsers in large-scale text process-
ing and to embed them as components in larger
systems.
Self-tagging: whether or not the parser does tag-
ging itself. It is advantageous to take in raw text
since it eliminates the need for extra modules.
Performance: if the performance is in the mid
and upper 80th percentiles.
Long sentences: the ability of the parser to han-
dle sentences longer than 40 words.
Robustness: relates to the property of a parser
to handle any type of input sentence and return
a reasonable output for it and not an empty line
or some other useless output.

Second, we evaluate the parsers on narrative
and expository texts to study their performance
across the two genres. This second evaluation
step will provide additional important results
for learning technology projects. We use evalb
(http://nlp.cs.nyu.edu/evalb/) to evaluate the
bracketing performance of the output of a parser
against a gold standard. The software evaluator
reports numerous measures of which we only re-
port the two most important: labelled precision
(LR), labelled recall (LR) which are discussed in
more detail below.

1.3 Directed Parser Evaluation Method

For the third step of this evaluation we looked
for specific problems that will affect Coh-Metrix
2.0, and presumably learning technology appli-
cations in general, with a view to amending
them by postprocessing the parser output. The
following four classes of problems in a sentence’s
parse were distinguished:
None: The parse is generally correct, unambigu-
ous, poses no problem for Coh-Metrix 2.0.
One: There was one minor problem, e.g., a mis-
labeled terminal or a wrong scope of an adver-
bial or prepositional phrase (wrong attachment
site) that did not affect the overall parse of the
sentence, which is therefore still usable for Coh-
Metrix 2.0 measures.
Two: There were two or three problems of the
type one, or a problem with the tree structure
that affected the overall parse of the sentence,
but not in a fatal manner, e.g., a wrong phrase
boundary, or a mislabelled higher constituent.
Three: There were two or more problems of the
type two, or two or more of the type one as
well as one or more of the type two, or another
fundamental problem that made the parse of the
sentence completely useless, unintelligible, e.g.,
an omitted sentence or a sentence split into two,
because a sentence boundary was misidentified.

2 Evaluated Parsers

2.1 Apple Pie

Apple Pie (AP) (Sekine and Grishman, 1995)
extracts a grammar from PTB v.2 in which S
and NP are the only true non-terminals (the
others are included into the right-hand side of
S and NP rules). The rules extracted from the
PTB have S or NP on the left-hand side and a
flat structure on the right-hand side, for instance
S → NP VBX JJ. Each such rule has the most
common structure in the PTB associated with
it, and if the parser uses the rule it will gener-
ate its corresponding structure. The parser is
a chart parser and factors grammar rules with
common prefixes to reduce the number of active
nodes. Although the underlying model of the
parser is simple, it can’t handle sentences over
40 words due to the large variety of linguistic
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constructs in the PTB.

2.2 Charniak’s Parser

Charniak presents a parser (CP) based on prob-
abilities gathered from the WSJ part of the PTB
(Charniak, 1997). It extracts the grammar and
probabilities and with a standard context-free
chart-parsing mechanism generates a set of pos-
sible parses for each sentence retaining the one
with the highest probability (probabilities are
not computed for all possible parses). The prob-
abilities of an entire tree are computed bottom-
up. In (Charniak, 2000), he proposes a gen-
erative model based on a Markov-grammar. It
uses a standard bottom-up, best-first probabilis-
tic parser to first generate possible parses before
ranking them with a probabilistic model.

2.3 Collins’s (Bikel’s) Parser

Collins’s statistical parser (CBP; (Collins,
1997)), improved by Bikel (Bikel, 2004), is based
on the probabilities between head-words in parse
trees. It explicitly represents the parse proba-
bilities in terms of basic syntactic relationships
of these lexical heads. Collins defines a map-
ping from parse trees to sets of dependencies,
on which he defines his statistical model. A
set of rules defines a head-child for each node
in the tree. The lexical head of the head-
child of each node becomes the lexical head of
the parent node. Associated with each node is
a set of dependencies derived in the following
way. For each non-head child, a dependency is
added to the set where the dependency is identi-
fied by a triplet consisting of the non-head-child
non-terminal, the parent non-terminal, and the
head-child non-terminal. The parser is a CYK-
style dynamic programming chart parser.

2.4 Stanford Parser

The Stanford Parser (SP) is an unlexical-
ized parser that rivals state-of-the-art lexical-
ized ones (Klein and Manning, 2003). It
uses a context-free grammar with state splits.
The parsing algorithm is simpler, the grammar
smaller and fewer parameters are needed for the
estimation. It uses a CKY chart parser which
exhaustively generates all possible parses for a

sentence before it selects the highest probabil-
ity tree. Here we used the default lexicalized
version.

3 Experiments and Results

3.1 Text Corpus

We performed experiments on three data sets.
First, we chose the norm for large scale parser
evaluation, the 2416 sentences of WSJ section
23. Since parsers have different parameters that
can be tuned leading to (slightly) different re-
sults we first report performance values on the
standard data set and then use same parameter
settings on the second data set for more reliable
comparison.

The second experiment is on a set of three nar-
rative and four expository texts. The gold stan-
dard for this second data set was built manually
by the authors starting from CP’s as well as SP’s
output on those texts. The four texts used ini-
tially are two expository and two narrative texts
of reasonable length for detailed evaluation:
The Effects of Heat (SRA Real Science Grade 2
Elementary Science): expository; 52 sentences,
392 words: 7.53 words/sentence;
The Needs of Plants (McGraw-Hill Science):
expository; 46 sentences, 458 words: 9.96
words/sentence;
Orlando (Addison Wesley Phonics Take-Home
Reader Grade 2): narrative; 65 sentences, 446
words: 6.86 words/sentence;
Moving (McGraw-Hill Reading - TerraNova Test
Preparation and Practice - Teachers Edition
Grade 3): narrative, 33 sentences, 433 words:
13.12 words/sentence.

An additional set of three texts was cho-
sen from the Touchstone Applied Science As-
sociates, Inc., (TASA) corpus with an average
sentence length of 13.06 (overall TASA average)
or higher.
Barron17: expository; DRP=75.14 (college
grade); 13 sentences, 288 words: 22.15
words/sentence;
Betty03: narrative; DRP=56.92 (5th grade); 14
sentences, 255 words: 18.21 words/sentence;
Olga91: expository; DRP=74.22 (college grade);
12 sentences, 311 words: 25.92 words/sentence.
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We also tested all four parsers for speed on a
corpus of four texts chosen randomly from the
Metametrix corpus of school text books, across
high and low grade levels and across narrative
and science texts (see Section 3.2.2).
G4: 4th grade narrative text, 1,500 sentences,
18,835 words: 12.56 words/sentence;
G6: 6th grade science text, 1,500 sentences,
18,237 words: 12.16 words/sentence;
G11: 11th grade narrative text, 1,558 sentences,
18,583 words: 11.93 words/sentence;
G12: 12th grade science text, 1,520 sentences,
25,098 words: 16.51 words/sentence.

3.2 General Parser Evaluation Results

3.2.1 Accuracy

The parameters file we used for evalb was
the standard one that comes with the package.
Some parsers are not robust, meaning that for
some input they do not output anything, leading
to empty lines that are not handled by the evalu-
ator. Those parses had to be “aligned” with the
gold standard files so that empty lines are elim-
inated from the output file together with their
peers in the corresponding gold standard files.

In Table 1 we report the performance values
on Section 23 of WSJ. Table 2 shows the results
for our own corpus. The table gives the average
values of two test runs, one against the SP-based
gold standard, the other against the CP-based
gold standard, to counterbalance the bias of the
standards. Note that CP and SP possibly still
score high because of this bias. However, CBP
is clearly a contender despite the bias, while AP
is not.1 The reported metrics are Labelled Pre-
cision (LP) and Labelled Recall (LR). Let us de-
note by a the number of correct phrases in the
output from a parser for a sentence, by b the
number of incorrect phrases in the output and
by c the number of phrases in the gold standard
for the same sentence. LP is defined as a/(a+b)
and LR is defined as a/c. A summary of the
other dimensions of the evaluation is offered in
Table 3. A stability dimension is not reported

1AP’s performance is reported for sentences < 40
words in length, 2,250 out of 2,416. SP is also not ro-
bust enough and the performance reported is only on
2,094 out of 2,416 sentences in section 23 of WSJ.

because we were not able to find a bullet-proof
parser so far, but we must recognize that some
parsers are significantly more stable than oth-
ers, namely CP and CBP. In terms of resources
needed, the parsers are comparable, except for
AP which uses less memory and processing time.
The LP/LR of AP is significantly lower, partly
due to its outputting partial trees for longer sen-
tences. Overall, CP offers the best performance.

Note in Table 1 that CP’s tagging accuracy is
worst among the three top parsers but still de-
livers best overall parsing results. This means
that its parsing-only performance is slighstly
better than the numbers in the table indicate.
The numbers actually represent the tagging and
parsing accuracy of the tested parsing systems.
Nevertheless, this is what we would most likely
want to know since one would prefer to input
raw text as opposed to tagged text. If more
finely grained comparisons of only the parsing
aspects of the parsers are required, perfect tags
extracted from PTB must be provided to mea-
sure performance.

Table 4 shows average measures for each of
the parsers on the PTB and seven expository
and narrative texts in the second column and
for expository and narrative in the fourth col-
umn. The third and fifth columns contain stan-
dard deviations for the previous columns, re-
spectively. Here too, CP shows the best result.

3.2.2 Speed
All parsers ran on the same Linux Debian ma-

chine: P4 at 3.4GHz with 1.0GB of RAM.2 AP’s
and SP’s high speeds can be explained to a large
degree by their skipping longer sentences, the
very ones that lead to the longer times for the
other two candidates. Taking this into account,
SP is clearly the fastest, but the large range of
processing times need to be heeded.

3.3 Directed Parser Evaluation Results

This section reports the results of expert rating
of texts for specific problems (see Section 1.3).
The best results are produced by CP with an av-
erage of 88.69% output useable for Coh-Metrix
2.0 (Table 6). CP also produces good output

2Some of the parsers also run under Windows.
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Table 1: Accuracy of Parsers.

Parser Performance(LP/LR/Tagging - %)

WSJ 23 Expository Narrative

Applie Pie 43.71/44.29/90.26 41.63/42.70 42.84/43.84
Charniak’s 84.35/88.28/92.58 91.91/93.94 93.74/96.18

Collins/Bikel’s 84.97/87.30/93.24 82.08/85.35 67.75/85.19
Stanford 84.41/87.00/95.05 75.38/85.12 62.65/87.56

Table 2: Performance of parsers on the narrative and expository text (average against CP-based
and SP-based gold standard).

File Performance (LR/LP - %)

AP CP CBP SP

Heat 48.25/47.59 91.96/93.77 92.47/94.14 92.44/91.85
Plants 41.85/45.89 85.34/88.02 78.24/88.45 81.00/85.62

Orlando 45.82/49.03 85.83/91.88 65.87/93.97 57.75/90.72
Moving 37.77/41.45 88.93/92.74 53.94/91.68 76.56/84.97

Barron17 43.22/42.95 89.74/91.32 80.49/89.32 87.22/86.31
Betty03 46.53/44.67 90.77/90.74 87.95/85.21 74.53/80.91
Olga91 32.29/32.69 77.65/80.04 61.61/75.43 61.65/70.60

Table 3: Evaluation of Parsers with Respect to the Criteria Listed at the Top of Each Column.

Parser Self-tagging Performance Long-sentences Robustness

AP Yes No No No
CP Yes Yes Yes Yes

CBP Yes Yes Yes Yes
SP Yes Yes No No

Table 4: Average Performance of Parsers.

Parser Ave. (LR/LP - %) S.D. (%) Ave. on S.D. on
Exp+Nar (LR/LP - %) Exp+Nar (%)

AP 42.73/43.61 1.04/0.82 42.24/43.46 5.59/5.41
CP 90.00/92.80 4.98/4.07 87.17/89.79 4.85/4.66

CBP 78.27/85.95 9.22/1.17 74.36/88.31 14.24/6.51
SP 74.14/86.56 10.93/1.28 75.88/84.42 12.66/7.11
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Table 5: Parser Speed in Seconds.

G4 G6 G11 G12
#sent 619 3336 4976 2215

AP 144 89 144 242
CP 647 499 784 1406

CBP 485 1947 1418 1126
SP 449 391 724 651

Ave. 431 732 768 856

most consistently at a standard deviation over
the seven texts of 8.86%. The other three candi-
dates are clearly trailing behing, namely by be-
tween 5% (SP) and 11% (AP). The distribution
of severe problems is comparable for all parsers.

Table 6: Average Performance of Parsers over
all Texts (Directed Evaluation).

Ave. (%) S.D. (%)
AP 77.31 15.00
CP 88.69 8.86

CBP 79.82 18.94
SP 83.43 11.42

As expected, longer sentences are more prob-
lematic for all parsers, as can be seen in Ta-
ble 7. No significant trends in performance dif-
ferences with respect to genre difference, narra-
tive (Orlando, Moving, Betty03) vs. expository
texts (Heat, Plants, Barron17, Olga91), were de-
tected (cf. also speed results in Table 5). But
we assume that the difference in average sen-
tence length obscures any genre differences in
our small sample.

The most common non-fatal problems (type
one) involved the well-documented adjunct at-
tachment site issue, in particular for preposi-
tional phrases ((Abney et al., 1999), (Brill and
Resnik, 1994), (Collins and Brooks, 1995)) as
well as adjectival phrases (Table 8)3. Similar
misattachment issues for adjuncts are encoun-
tered with adverbial phrases, but they were rare

3PP = wrong attachment site for a prepositional
phrase; ADV = wrong attachment site for an adverbial
phrase; cNP = misparsed complex noun phrase; &X =
wrong coordination

Table 7: Correlation of Average Performance
per Text for all Parsers and Average Sentence
Length (Directed Evaluation).

Text perf. (%) length (#words)
Heat 92.31 7.54

Plants 90.76 9.96
Orlando 93.46 6.86
Moving 90.91 13.12

Barron17 76.92 22.15
Betty03 71.43 18.21
Olga91 60.42 25.92

in our corpus.
Another common problem are deverbal nouns

and denominal verbs, as well as -ing/VBG
forms. They share surface forms leading to am-
biguous part of speech assignments. For many
Coh-Metrix 2.0 measures, most obviously tem-
poral cohesion, it is necessary to be able to dis-
tinguish gerunds from gerundives and deverbal
adjectives and deverbal nouns.

Table 8: Specific Problems by Parser.
PP ADV cNP &X

AP 13 10 8 9
CP 15 1 2 7

CBP 10 0 0 13
SP 22 6 3 4

Sum 60 17 13 33

Problems with NP misidentification are par-
ticularly detrimental in view of the impor-
tant role of NPs in Coh-Metrix 2.0 mea-
sures. This pertains in particular to the mistag-
ging/misparsing of complex NPs and the coor-
dination of NPs. Parses with fatal problems
are expected to produce useless results for algo-
rithms operating with them. Wrong coordina-
tion is another notorious problem of parsers (cf.
(Cremers, 1993), (Grootveld, 1994)). In our cor-
pus we found 33 instances of miscoordination,
of which 23 involved NPs. Postprocessing ap-
proaches that address these issues are currently
under investigation.
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4 Conclusion

The paper presented the evaluation of freely
available, Treebank-style, parsers. We offered
a uniform evaluation for four parsers: Apple
Pie, Charniak’s, Collins/Bikel’s, and the Stan-
ford parser. A novelty of this work is the evalua-
tion of the parsers along new dimensions such as
stability and robustness and across genre, in par-
ticular narrative and expository. For the latter
part we developed a gold standard for narrative
and expository texts from the TASA corpus. No
significant effect, not already captured by vari-
ation in sentence length, could be found here.
Another novelty is the evaluation of the parsers
with respect to particular error types that are
anticipated to be problematic for a given use of
the resulting parses. The reader is invited to
have a closer look at the figures our tables pro-
vide. We lack the space in the present paper to
discuss them in more detail. Overall, Charniak’s
parser emerged as the most succesful candidate
of a parser to be integrated where learning tech-
nology requires syntactic information from real
text in real time.
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