
Expanding Tree Adjoining Grammar to create Junction Grammar trees

Ronald Millett
BYU Linguistics

RonMillett@byu.edu

Deryle Lonsdale
BYU Linguistics
lonz@byu.edu

Abstract

Junction Grammar (JG) combines junction op-
erators, multiple linked syntax/semantics trees,
and flexible traversal algorithms. The multi-
ple tree and flexible ordering characteristics of
MC-TAG and other TAG extensions are some-
what analogous. This paper proposes that these
similarities can be integrated to form a new
approach, JG-TAG. Relevant aspects of both
theories and the proposed new model are dis-
cussed in turn, and representative examples are
sketched.

1 Introduction

This paper presents an enhanced version of Tree Adjoin-
ing Grammar (TAG) that can create trees based on Junc-
tion Grammar (JG), a linguistic theory that was proposed
in the mid-1960’s. The JG tree structures discussed in this
paper represent syntactic/semantic structures with node
joining operators, multiple linked trees and flexible tree
traversal algorithms that recode the concepts of a sen-
tence into a separate articulation tree. Adding junctions
and multiple linked trees to Multiple Component TAG
(MC-TAG) and other enhancements results in a formal-
ism that can capture more sophisticated sentence rela-
tionships using fewer TAG trees than would otherwise
be required. With the advantages that TAG’s expanded
domain of locality provides, an enhanced TAG-like sys-
tem for JG could also provide an improved platform for
computational linguistic applications of JG.

2 Theoretical background

2.1 Overview of Junction Grammar

Junction Grammar (JG) is a linguistic theory proposed in
the 1960’s (Lytle, 1971; Lytle, 1974; Lytle, 1985; Melby,

1985) that is still being pursued. The theory was devel-
oped as a reaction to early Transformational Grammar
and challenged many of the basic assumptions that TG
was based upon (Lytle, 1979). Early applications of JG
have included machine translation (Gibb, 1970; Billings,
1972; Gessel, 1975; Lytle, 1975; Melby, 1978) includ-
ing the development of a JG transfer language between
source and target languages (Melby, 1974); speech syn-
thesis (Melby, 1976; Millett, 1976); and second language
instruction (Olsen and Tuttle, 1973). More recent ef-
forts have involved PC-based grammar checking (Lytle
and Mathews, 1986), automatic holistic scoring of essays
(Breland and Lytle, 1990), and secondary school English
grammar teaching (Millett and Lytle, 2004).

Junction Grammar challenged the notion that a ba-
sic grammar involves simple concatenation of strings via
phrase structure rewrite rules. A fundamental premise of
Junction Grammar is that JG operators (and their asso-
ciated operands) constitute the basic building blocks of
grammar. A well-defined process specifies operators and
their appropriate application. The basic operator names
and their symbols are: conjunction (&), adjunction (+),
subjunction (�), and interjunction (a combination of ad-
junction and subjunction). Two types of JG trees involv-
ing these operators are discussed in this paper: concept
trees and articulation trees. Nodes in concept trees have
a basic category label (N, V, A or P), predicate/phrase la-
bel (PN, PV, PA, or PP) or sentence/clause label (SN, SV,
SA, or SP).

Figure 1 shows the JG concept tree for a simple sen-
tence involving JG conjunction and adjunction. The for-
mer is used for coordinating conjunctions (e.g. and, or,
but) and the arithmetic operators and their lexicalizations
such as plus (hence &+). JG adjunction joins verbs or
prepositions to their objects and phrases to their subjects.

The JG subjunction operator is perhaps the most flex-
ible of the junction operators. Subjunction is used for
determiners, quantifiers, complements, relative structures

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 163-170.

Figure 1: A binary application of the JG conjunction op-
erator for the sentence Two plus/and two equals four. The
SV node is a (verbal) sentence and the PV node is a (ver-
bal) predicate.

and modifiers. It can also be subdivided into specialized
operators that show the direction of information process-
ing in the sentence. For an illustration, consider the fol-
lowing sentence:

(1) It surprised me that the three children ate the
vegetables that I cooked.

and its associated JG concept tree in Figure 2. The word
three selects three elements of the class children, and the
junction has a single dash to the right in the direction of
the noun class node. The determiner the retrieves a spe-
cific discourse-salient instance of three children. This re-
trieval function is shown by the equal sign to the left of
the junction pointing to the determiner.

Figure 2 illustrates a second basic premise of Junc-
tion Grammar. JG allows for multiple tree structures un-
like other theories that associate all trees structures under
a single root. JG keeps complement structures such as
. . . that the children ate the vegetables . . . in the same
tree structure with the subjunction operator, thus provid-
ing interoperability between sentence and noun. Using
interjunction, JG allows for multiple intersecting trees for
modifiers and relative structures via links, thus avoiding
the need for empty categories and allowing a distinct con-
trast between complements and modifiers.

A third basic premise of JG is that trees can be or-
dered and lexicalized using flexible traversals guided
by language-specific lexical ordering and hiatus (word
deletion) rules. A JG concept tree represents syntac-
tic/semantic information about the utterance that defines
the syntactic and semantic relationships among the ba-
sic word concepts. The “goto” instructions and circled
numbers in Figure 2 show lexical ordering rules that dif-
fer from the default left-to-right depth-first traversal algo-
rithm. The complement clause . . . that the three children
ate the vegetables . . . is co-referent with the pronoun it,
but the traversal of this clause is delayed until after the
main clause is processed. Another ordering of the same

sentence and same tree structure without lexicalizing the
pronoun it, could be That the three children ate the veg-
etables surprised me. The JG tree would not change for
that ordering, except that the pronoun it would be anno-
tated as hiatused (another language-specific lexical rule
in JG) by including parentheses.

The traversal processing for the trees in Figure 2 would
thus be as follows:

1. Start processing at main SV node at top of figure.

2. Process left-to-right order to the subject N node and
output it at the first N node of the rule

�
������� � .

3. Order discontinuously the complement
�

�����
structure by going to ordering point #1, just above
the PV node.

4. Process the PV left-to-right and output surprised me.

5. Now return to the unprocessed nodes in the subject
by going to ordering point #2, by the embedded SV.

6. Order the SV left-to-right and output words . . . that
the three children ate the vegetables that The
relative pronoun that now triggers the processing of
the subordinate SV structure. After going to the
linked node, go to ordering point #3 at the top of
the relative clause SV.

7. Process the relative clause in the default left-to-right
order and output I cooked. The relative pronoun has
already been marked as processed and at this point
the entire tree has been processed.

In fact, the concept tree traversal specified above does
not directly produce an output word string. Instead, fol-
lowing another foundational principle of JG, some con-
cept tree information is recast into an articulation tree.
The flexible traversal described above constructs such a
tree, which encodes prosodic, phonological, and graphi-
cal information necessary for spoken or written language
production. The basic JG operators in an articulation tree
specify and relate breath groups and suprasegmental in-
formation; its nodes are of category H or W (for prosodic
and lexical content respectively). Figure 3 shows concept
and articulation trees for the following sentence:

(2) Which job has Sally declined?

Relevant traversal processing for the concept tree in
Figure 3(a) is as follows, where lexicalization means
mapping content appropriately into the articulation tree:

1. Start processing at the main SV node.

2. The ordering rule attached to the top node checks
below the SV for a lexical entry with a 	�
�����

164

Figure 2: JG subjunction, adjunction and interjunction: a sentence with a relative clause shared across matrix and
dependent clauses (via subjunction and adjunction respectively). Lexical ordering is also specified.

feature attached. Therefore, go to the N node dom-
inating the N node with the Which lexical entry la-
beled with the ordering point #1.

3. Lexicalize Which job and then return back up the
tree go ordering point #2.

4. In Junction Grammar trees the “modalizer” extend-
ing to the left of the PV level is the point where aux-
iliary verbs such as has are lexicalized.

5. Go to ordering point #3 and continue using normal
left-to-right order to finish processing the rest of the
tree that has not yet been visited. Sally declined is
lexicalized.

In combination with the basic junction operators dis-
cussed earlier, the basic JG rules and constraints are able
to describe a wide variety of linguistic structures. Fig-
ure 4 shows a table of possible JG linguistic structures
for a portion of the interjunction general rule template� � ����� � � and �
 ����� �	� � or ��

 ����� ����
 ,
where X varies over N, V, PV, and SV and Y varies over
V and P and Z varies over V, A, P, and N.

This sketch of part of the JG theory focuses on only
two of the four possible levels; consideration of the other
levels is beyond the scope of this paper. It should be

noted that JG parsers and/or generators have been imple-
mented for a wide variety of languages including English,
French, Spanish, German, Portuguese, Russian, Chinese,
and Japanese.

2.2 Overview of TAG

Tree adjoining grammars (TAG) have provided a theo-
retical framework for linguistic description and natural
language processing that has been shown to be superior
to simply using rules of a context free grammar (CFG)
due in large part to the extended context or “domain of
locality” that TAG provides (Abeillé and Rambow, 2000;
XTAG Research Group, 2001). With its lexicalized na-
ture and its detailed syntax/semantics interface, LTAG
(Lexical TAG) facilitates a straightforward representation
of important data such as subcategorization frames for
verb classes used in parsing. Appropriate usage of lexical
entries is formalized by LTAG trees that not only derive a
standard surface level parse tree but also a derivation tree
that represents semantic and thematic role relationships
for the sentence. Enhancements to TAG have included
multicomponent TAG (MC-TAG) that allows for simulta-
neous linked operations on two or more trees into the de-
rived tree to successfully derive parse trees for examples
like “picture-NP extraction”. To address the many com-

165

(a) (b)

Figure 3: Two JG trees for a sentence: the JG concept tree3(a), which is traversed to create the articulation tree 3(b).

binations of orders possible in languages such as German,
a free order TAG (FO-TAG) variation was developed that
did not force a strict left-to-right processing of all nodes
of the derived tree (Becker et al., 1991; Rambow and Lee,
1994) Further enhancements of MC-TAG have included
VMC-TAG that allows for non-simultaneous adjunction
of multiple component trees to better describe free word
order languages (Rambow and Lee, 1994). D-Tree Gram-
mars (DTG) adjusted the basic TAG operations of substi-
tution and adjunction to become subsertion and sister ad-
junction in order to separate complementation and modi-
fication operations and correct inaccuracies in the TAG
derivation tree for topicization and to handle word or-
der for wh- extraction sentences for Kashmiri (Rambow
et al., 1995). In machine translation applications, syn-
chronous TAG (S-TAG) is used to represent linked source
and target language sets of trees that represent required
transfer operations while translating between the two lan-
guages (Harbusch and Poller, 2000).

3 Comparative analysis

The most obvious similarity between JG and TAG is their
use of multiple tree structures. TAG initial and auxiliary
trees can define basic lexical options such as subcatego-
rization frames for verbs along with their allowed auxil-
iary verbs and modifiers. JG represents modifier struc-
tures using subordinate tree structures. However, while
the output of a TAG derivation is a standard tree diagram
for a given sentence plus an associated derivation tree,
the JG trees represent the final syntax/semantic represen-
tation of the sentence. JG applications have created JG
trees by processing a grammar of allowed JG rules plus
language-specific lexical ordering and other algorithms.

Even though the JG interjunction rule pairs give some
expanded domain of locality over single rules, JG has do-
main of locality limitations similar to context free gram-
mars (CFG) and could greatly benefit from the mildly
context sensitive grammar advantages that an LTAG ap-
proach could provide. TAG adjunction constraints and
feature information are similar to JG lexical features that
select basic JG rule groups via algorithms that might ap-
ply, for example, for a specific verb family. However,
JG applications have relied more on specialized program-
ming accompanying basic JG rules rather than being able
to use forests of linked trees to implement lexicalized ap-
plications such as what a TAG approach would provide.

Because JG separates the syntax/semantics representa-
tion from the ordered words ready to articulate, many of
the complexities of TAG trees can be simplified. The JG
approach does put language-specific ordering and other
lexical rules into algorithms that operate on the JG syn-
tax/semantics trees, a deliberate tradeoff for not describ-
ing both syntax and order directly in tree structures. How-
ever, as the various TAG and variant systems have been
developed, amazingly complex trees are needed to allow
for all of the possible variations in word order for Ger-
man, Korean or Kashmiri. A similar set of trees for JG
parallel with a MC-TAG or DTG system would not re-
quire explicit encoding of multiple word order variations
and hence the number of trees would be reduced.

Figure 5 summarizes some of these similarities and dif-
ferences between JG and TAG.

3.1 JG-TAG

Because of their similarities, TAG and JG could conceiv-
ably be combined into a new JG-TAG approach. A parser

166

Subjunction rule Adjunction rule
in main tree in subordinate tree Sample output text

N � N/l = N V + N/l = PV The mouse that the cat chased (got away).
N � N/l = N PV + N/l = SV The cat that chased the mouse (lives next door).
N � N/l = N PA + N/l = SA The tall elephant . . .
N � N/l = N P + N/l = PP The ladder upon which (I was standing) . . .
N � N/l = N PP + N/l = SP The boy from Atlanta . . .
N � N/l = N PN + N/l = SN Harry, the class clown, . . .
V � V/l = V PA + V/l = SA He looked up (the number).
V � V/l = V PP + V/l = SP (He) dropped (the paint) into the burning cauldron.

PV � PV/l = PV PA + PV/l = SA (He) went quickly (into the city).
PV � PV/l = PV PP + PV/l = SP (The city) needed water for survival.
SV � SV/l = SV PA + SV/l = SA Unfortunately, . . .
SV � SV/l = SV PP + SV/l = SP Without a doubt, . . .

Figure 4: Some basic JG relationships via interjunction; nodes are linked via the /1 annotation.

Multiple linked trees:

� JG: syntax/semantics tree representation(s) for a sentence

� TAG: grammar is represented in multiple trees but output is single parse tree plus derivation tree

Expanded domain of locality:

� JG: interjunction rule pairs but still context-free

� TAG: initial and linked auxiliary trees with adjunction constraints, mildly context sensitive with LTAG

Syntax, semantics and language-specific ordering:

� JG: separation of syntax/semantics from lexical ordering; more complex algorithms attached to rules but with
simplified trees

� TAG: variations on TAG for complex word order but more complex and numerous trees required

Figure 5: JG and TAG: contrasts involving similar features.

could then be developed following TAG’s XTAG model.
Because JG representations have separate trees (Lytle,
1979) for syntax/semantics vs. ordered output words,
such a system would be simplified from standard XTAG
with fewer trees needed for a complete grammar.

The first enhancement needed to create a JG-TAG sys-
tem would be to attach a junction operator to each non-
terminal node. We will represent this junction attached
right to the end of the node label. Because the subjunction
operator is the “ � ” character, JG-TAG would also need
to change the foot node sign from a “ � ” to a “#”. Even
though a subjunction operator would not be attached to a
foot node, we will also propose another use of the “#”
in another enhancement. Generalizing junctions allow
for creation of an arbitrary number of conjuncts without
spawning new nonterminal nodes. Figure 6 shows how
bears could be added to the conjunction rule for lions and
tigers. In this case the auxiliary tree would use the foot

node indicator “#” attached to the non-terminal N node.
The output tree shows the result of this n-ary adjunction
capability. The lexicalization of and in these sentences
is assured by the conjunction operator for the noun non-
terminal node.

Another enhancement for JG-TAG is to allow for sub-
ordinate tree structures and their creation and processing.
This is where the capabilities of MC-TAG are essential.
One auxiliary tree would create the relative pronoun node
on the side of the main clause and the other auxiliary tree
would create the mirror node on the subordinate relative
clause side. To avoid confusion with subscripts that are
used in trace nodes in standard theory trees, we propose
that the link number between these mirrored linked nodes
be a superscript. Figure 7 illustrates this process with
the sample working tree for the sentence The cat caught
a mouse. The two MC-TAG trees would operate on the
working tree by first adjoining with the node for cat and

167

Figure 6: Adjoining trees in JG-TAG to form a three-node
conjunction concept tree.

then creating the subordinate relative clause, linked by
the superscript “1” with the main tree. The tree that ad-
joins into the main clause to create the

� � � � � rule
would be defined as an auxiliary tree and the subordinate
clause would be defined as an elementary tree in order
to create the new tree. The SV node of the main clause
would also be marked as the starting point for processing
the resulting JG tree forest. The overall process would be
as follows:

1. The left JG-TAG auxiliary tree will left-adjoin with
the cat node to create a

� � ����� � � subtree with
cat and that associated with the nodes.

2. The right JG-TAG elementary tree that/1 the dog
chased will then be added to the working tree forest
and the relative pronoun noun node with the super-
script link stays linked with the N/1 node in the main
working tree.

3. The resulting new working tree has the main tree,
where processing of the tree would begin, marked
as the start tree (the cat that/1 caught a mouse).

4. The subordinate tree is accessed during tree traversal
by going from the main clause mirrored link to the
subordinate clause.

3.2 JG-TAG: prospects and challenges

Early NLP applications of JG used junction rules plus
specialized programming to examine rule contexts for
triggering language-specific transfer or lexical rules. Cur-
rently JG tree processing programs are limited to a propri-
etary control language used inside recent applications. A
JG-TAG system would allow a standard XTAG-like sys-
tem to be developed that could provide a parsing capabil-

ity for JG trees, allowing wider access and easier com-
parisons with existing systems using other theories.

Another benefit of such a system would be its ability to
represent a greater portion of the grammar of a language
with fewer TAG trees. For example, if the JG concept
tree in Figure 3 were represented in JG-TAG, only one
tree would be needed to cover both cases where the sub-
stituted noun nodes include a “+WH” feature or not. This
same tree could also work for nonstandard orderings of
an SVO sentence as OSV.

A JG-TAG system would provide an excellent frame-
work to represent subcategorization frames for different
verb classes using supertag trees. TAG has always ex-
celled in providing context sensitivity to a basic rule sys-
tem and a lexicalized JG grammar implementation would
allow JG structures that have previously been represented
programmatically to be described in a more easily visu-
alized and maintainable data structure format. The verb
class JG-TAG trees would also simplify the lexical rules
by attaching them to specific verbs and allowing them to
be limited to the context of a specific verb.

One of the exercises in creating such a system would
involve the format of lexical rules that would be at-
tached to the JG-TAG trees. Each JG-like rule in the
tree specifies left-to-right, right-to-left or discontinuous
ordering. Recall that the JG approach involves in-situ
wh-elements and a specific traversal order without cre-
ating target nodes for movement. Thus the algorithm
for deciding traversal would reflect, but not implement,
movement. The documentation and implementation pa-
pers for the JG ordering algorithms and transfer language
used in an early machine translation project could be a
good starting point for a JG-TAG system (Melby 1974,
Gessel 1975).

Another challenge would be matching and using fea-
tures attached to JG nodes with the TAG feature capabili-
ties. TAG unification features that prevent more than one
tense-bearing verb to be attached usually would be imple-
mented by JG lexical agreement rules. However, the fea-
ture unification approach from TAG provides a straight-
forward manner to keep track of main and auxiliary verbs
and their inflections as a sentence is created from the tree.

Mandatory, optional and null adjunction constraints
allow the relationships between the various TAG tree
sets to be carefully defined, linked together and main-
tained. Expert rule systems generally need these kinds of
constraints in order to assure tractable development and
maintenance. These same capabilities would be very ad-
vantageous to link together JG tree fragments that would
define a working grammar for a particular language.

The power of the MC-TAG trees that encapsulate
semantic relationships would then output not just a
surface ordered derived tree but an order-independent
syntax/semantics representation less dependent on the

168

Figure 7: JG-TAG MC trees for a relative clause; the top working tree is operated on by the JG-TAG multicomponent
tree that would attach the relative structure at the appropriate node and subordinate tree. The N node is structure-shared
between the trees; superscripts specify inter-tree links.

derivation tree for semantic relationships. The JG trees
are not at as low a semantic level as the derivation tree
but provide structure related to the original utterance (e.g.
active vs. passive) and are very rich in specific syntax and
semantic relationships (e.g. themes and verb classes with
thematic roles (Millett, 1975)) between the concepts of
the utterance. Comparative and quantifier structures have
a particularly rich semantic structure in JG (Lytle 1985)
and a JG-TAG system could facilitate comparison of the
capabilities of a JG-based text-understanding application
to other standard approaches. A JG-TAG system could
also provide a standardized application and coding frame-
work for using Junction Grammar.

4 Conclusions

As TAG formalisms have been applied to natural lan-
guages, their advantages over context-free phrase struc-
ture rules have become more apparent. Many useful re-

finements to the basic TAG formalism have supported
a wide variety of structures. Meanwhile JG embodies
rather different assumptions than do traditional theories:
a separation of linguistic data via conceptual and artic-
ulation trees, junction operators on non-terminal nodes,
multiple-linked tree structures, and flexible traversal of
lexical rules. The appreciable overlap of approaches with
TAG and JG has prompted this discussion on combining
the benefits of both theoretical systems to represent and
process Junction Grammar trees. The advantages of the
mildly context sensitive lexical JG-TAG system proposed
in this paper can expand the domain of locality for JG
trees, simplify lexical rules by attaching them to supertag
class trees and draw on the extensive NLP experience us-
ing TAG based systems to benefit JG. TAG could likely
also benefit from junctions, ordering, and multiple tree
enhancements from Junction Grammar.

169

Acknowledgement We wish to thank Eldon Lytle for
comments on drafts of this paper. All errors or inaccura-
cies are the authors’.

References

Anne Abeillé and Owen Rambow. 2000. Tree Adjoin-
ing Grammar: An overview. In Anne Abeillé and
Owen Rambow, editors, Tree Adjoining Grammars:
Formalisms, Linguistic Analysis and Processing, pages
1–68. CLSI Publications.

T. Becker, A.K. Joshi, and O. Rambow. 1991. Long
distance scrambling and tree adjoining grammars. In
EACL-91: Papers presented to the 5th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, Berlin.

Floyd H. Billings. 1972. Proposals for ordering
well-formed syntactical statements. Master’s thesis,
Brigham Young University.

Hunter M. Breland and Eldon G. Lytle, 1990. Computer-
assisted writing skill assessment using WordMAP.
American Educational Research Association and the
National Council on Measurement in Education,
Boston, MA. ERIC Document Reproduction Service
No. ED 317 586.

Brian Gessel. 1975. The formulation and computer
adaption of synthesis grammars. Master’s thesis,
Brigham Young University.

Daryl K. Gibb. 1970. An application to mechanical
translation of a variable recursive algorithm based on
the operations of union and intersection. Master’s the-
sis, Brigham Young University.

Karin Harbusch and Peter Poller. 2000. Non-isomorphic
synchronous tags. In Anne Abeillé and Owen Ram-
bow, editors, Tree Adjoining Grammars: Formalisms,
Linguistic Analysis and Processing, pages 147–166.
CSLI Publications.

Eldon G. Lytle and N. C. Mathews, 1986. Field Test of
the WordMAP Writing Aids System. Panaca, NV, May.
Official publication of the Lincoln County School Dis-
trict.

Eldon G. Lytle. 1971. Structural Derivation in Russian.
Ph.D. thesis, University of Illinois.

Eldon G. Lytle. 1974. A Grammar of subordinate struc-
tures in English. Mouton, The Hague.

Eldon G. Lytle. 1975. Junction Grammar as a base for
natural language processes. American Journal of Com-
putational Linguistics. Microfiche no. 26.

Eldon G. Lytle. 1979. Junction Grammar: Theory and
application. In William C. McCormack and Herbert J.
Izzo, editors, Sixth LACUS Forum, pages 305–343.
Hornbeam Press.

Eldon G. Lytle. 1985. Come on up. In Adam Makkai
and Alan K. Melby, editors, Linguistics and Philoso-
phy: Essays in honor of Rulon S. Wells, volume 42 of
Amsterdam studies in the theory and history of linguis-
tic science: Current Issues in Linguistic Theory (IV).
John Benjamins, Amsterdam.

Alan K. Melby. 1974. Formulating and testing syntactic
transfers. Master’s thesis, Brigham Young University.

Alan K. Melby. 1976. Computer Generated Intona-
tion in Synthetic Speech. Ph.D. thesis, Brigham Young
University.

Alan K. Melby. 1978. Design and implementation of
a machine-assisted translation system. In Proceedings
of the Seventh International Conference on Computa-
tional Linguistics, Bergen, Norway.

Alan K. Melby. 1985. Generalization and prediction
of syntactic patterns in Junction Grammar. In Adam
Makkai and Alan K. Melby, editors, Linguistics and
Philosophy: Essays in honor of Rulon S. Wells, vol-
ume 42 of Amsterdam studies in the theory and history
of linguistic science: Current Issues in Linguistic The-
ory (IV). John Benjamins, Amsterdam.

Ronald P. Millett and Eldon G. Lytle. 2004. Language
included: Book 1: Sentence pictures, picturing gram-
mar, picturing sentences. eBook format.

Ronald P. Millett. 1975. Junction Grammar verb classes
in Spanish. Technical report, Brigham Young Uni-
veristy. Junction Grammar Papers.

Ronald P. Millett. 1976. A pitch contour generating algo-
rithm based on a Junction Grammar linguistic model.
Technical report, Brigham Young Univeristy. Junction
Grammar Papers.

Royden S. Olsen and David M. Tuttle. 1973. The ef-
fect of ’language trees’ on the acquisition of genera-
tive capacity in a second language. Technical report,
Brigham Young Univeristy. Junction Grammar Papers.

Owen Rambow and Y. S. Lee. 1994. Word order varia-
tion and tree-adjoining grammars. Computational In-
telligence, 10:386–400.

Owen Rambow, K. Vijay-Shanker, and David Weir.
1995. D-tree grammars. In Proceedings of ACL-95.

XTAG Research Group. 2001. A lexicalized tree adjoin-
ing grammar for English. Technical Report IRCS-01-
03, IRCS, University of Pennsylvania.

170

