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Abstract

Tree adjoining grammar parsers can use a su-
pertagger as a preprocessor to help disam-
biguate the category1 of words and thus speed
up the parsing phase dramatically. However,
since the errors in supertagging propagate to
this phase, it is vital to keep the error rate of the
supertagger phase reasonably low. With very
large tagsets coming from extracted grammars,
this error rate can be of almost 20%, using stan-
dard Hidden Markov Model techniques. To
combat this problem, we can trade a higher pre-
cision for increased ambiguity in the supertag-
ger output. I propose a new approach to in-
troduce ambiguity in the supertags, looking for
a suitable trade-off. The method is based on
a representation of the supertags as a feature
structure and consists in grouping the values,
or a subset of the values, of certain features,
generally those hardest to predict.

1 Introduction

This paper deals with supertagging2 as a preprocessing
step before full parsing.

A TAG parser has too many elementary trees to choose
from if they are not at least partially disambiguated be-
forehand (Joshi and Bangalore, August 1994): the com-
binatorics at the parsing level are huge. As suggested
in Srinivas Bangalore’s Ph.D. thesis (Bangalore, 1997),
supertagging may be used to reduce the high number of
trees associated with each word. But to tag and parse
real-world text, we need a sufficiently sized grammar.
One convenient way to constitute a large TAG is to ex-
tract it from a hand-corrected treebank. Naturally, the re-
sulting tagset for supertagging is also large. The problem

1Specifically, a rich description of the syntactic properties of
words.

2Supertagging consists in assigning an elementary tree (of a
TAG) to each word of a sentence.

thus becomes the fact that when the tagset is very large
(e.g. about 5,000 different trees), the precision of the su-
pertagger output is so low (about 80%) that the parser
fails on most sentences.

The supertagger we use is based on a Hidden Markov
Model (HMM) tagger trained on a grammar extracted
(Chen, 2001) from the Wall Street Journal part of the
Penn Treebank (Marcus et al., 1993) and the parser is the
one described in (Nasr et al., 2002).

2 Supertagging and Very Large Tagsets

If HMM part of speech tagging has been proven quite
successful, supertagging is more problematic for two
main reasons.

• (A) The large number of categories which charac-
terizes supertagging entails statistical problems, but
for the result to be useful in helping parse real-
world texts, a medium-sized or small grammar (with
e.g. 300 or 400 different elementary trees) seems in-
sufficient.

• (B) The non-local nature of the information included
in the supertag clashes with the local vision of the
HMM tagger (e.g. a three-word window). Indeed,
supertags locally represent dependencies not repre-
sented in parts of speech. For instance, the supertag
assigned to the verb brought in I brought their chil-
dren my son’s old bicycle will include a slot for each
of the two complements, the second of which (my
son’s old bicycle) is beyond the three-word window
in this sentence.

With a tagset of about 5,000 trees, HMM tagging tech-
niques suffer from severe training data sparseness. Sta-
tistical problems arise that are little or not encountered in
a regular part of speech tagging context. Indeed, various
types of events are never seen in the training corpus. The
simplest type is the supertag itself. Some supertags are
new in the test corpus. Obviously, standard techniques
cannot guess them.
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A more frequent type of unseen events is the associa-
tion of known words with known supertags that did not
occur together in the training corpus. About 5% of the
word-supertag pairs are new, these pairs being involved
in about a quarter of the errors3. John Chen (Chen, 2001)
has addressed this problem and has designed tree families
to automatically extend the grammar. In (Hockenmaier
and Steedman, 2002), a Combinatory Categorial Gram-
mar is extracted from the Penn Treebank and the authors
have found a 26% reduction of “unseen pairings of seen
words and seen categories” (from 3% to 2.2%) thanks to a
reduction of the category inventory, and a 50% reduction
(from 3% to 1.5%) when combining the reduced category
inventory with a more elaborate treatment of unknown
words (using the part of speech instead of a single token
for unknown words).

Other existing solutions include reranking (Chen et al.,
2002) and class tagging (Chen et al., 1999) (Chen, 2001),
but either they are applied to smaller grammars (between
300 and 500 different trees) or they face problems similar
to ours.

The reranking technique notably is not bound to a lim-
ited context and is thus complementary with an n-gram
tagger.

3 Ambiguous Supertags

Failing to find the correct supertag often enough for the
parse to succeed, we resort to allowing some ambiguity
in the supertagger output. The main idea is to relieve the
supertagger from a part of its disambiguating duty, defer-
ring it to the parser which will make the final decisions
(given that it has information about the whole sentence).
The key point is finding a good trade-off between preci-
sion rate (for successful parses) and ambiguity (to keep
the parsing phase tractable).

With the n-best tagging technique (Bangalore and
Joshi, 1999), the supertagger outputs several trees (the
most probable n supertags) and the parser chooses among
them. One drawback is that the output consists in the
same number of supertags for each word, regardless of
its type (e.g. verb or adjective), whereas it seems attrac-
tive to keep more possible supertags for a verb than for
less ambiguous words, for instance.

Previously we tested a kind of n-best supertagging on
our grammar, but failed to achieve an error rate below
9.5%, which was unsatisfactory and led us to imagine
harder ways to produce an ambiguous output.

3The results presented here have been computed from a su-
pertagged portion of the Penn Treebank consisting of 1,939
sentences (about 50K words), the training corpus consisting of
37,858 sentences (about 980K words).

3.1 Underspecification Using a Feature Structure

The solution I propose introduces underspecification at
the supertag level. In other words, the supertag con-
veys less information, but still more than in mere parts
of speech. To do this I represent the trees as a feature
structure in which the salient characteristics of a supertag
are encoded, as was initially suggested in John Chen’s
Ph.D. (for another purpose) (Chen, 2001)4.

The results presented here are from experiments using
a structure of 18 features, among which are:

• the part of speech of the root node (26 possible val-
ues),

• the subcategorization (more than one hundred pos-
sible values),

• several transformational features,

• the two ordered lists of the nodes on the left and right
frontiers,

• the list of internal nodes (neither the root nor the
nodes on the frontier),

• the list of co-anchors (more than one hundred possi-
ble values),

• the part of speech of the modified word if this is a
modifier,

• the direction of the modification if this is a modifier.

3.2 More on Two Features

Two features are of particular interest (both are pertinent
only for modifier trees): one specifies the part of speech
of the modified word and the other specifies the direc-
tion of the modification. It must be noted that both these
features have an extra value (NIL) which means non-
pertinent, for the case of a non-modifier word: thus pre-
dicting this feature involves predicting whether the word
is a modifier. These are the most difficult features to pre-
dict (error rates of about 12.6% for the first with 38 pos-
sible values and almost 9% for the second with only 3
possible values). Moreover, predicting them makes the
supertagging process much longer. However, as is shown
below, knowing their values for a given supertag helps
predict other features, including the part of speech.

3.3 Neutralizing Features

By neutralizing certain features describing the trees
(i.e. not specifying the value for those features), we ob-
tain an underspecified supertag (the tagset is therefore re-
duced), which is thus ambiguous but easier to predict.

4For my experiments I used John Chen’s feature structures
but my plans for future work involve the use of others.
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This approach allows us to control the amount of infor-
mation we are able and willing to supply the parser with5.
This is particularly interesting since the error comes from
a relatively small number of features each time (but the
features which are incorrectly predicted are not always
the same). Table 1 shows that 42% of the errors on trees6

involve only up to two features.

Table 1: Cumulated proportion or errors due to n features
incorrectly predicted (the remaining 6.3% is due to co-
anchors).

# of
features

% of errors
(cumulated)

1 19.972
2 42.038
3 54.429
4 62.934
5 74.584
6 82.122
7 85.440
8 89.660
9 91.485

10 92.290
11 93.386
12 93.611

13 to 18 93.697

It is important to state that the feature neutralization
must take place only after training and supertagging. In-
deed, if the supertagger is trained on an “underspecified”
annotated corpus, it gives worse results than if it is trained
on a corpus annotated with regular supertags, its output
then being modified to change the regular supertags into
their underspecified versions. For instance, there is a 15%
relative reduction of the error rate for the part of speech
feature when we tag the whole supertag. This is due to
the dependencies between the features: learning on more
features helps predict one particular feature. Of course,
if it is just to tag with part of speech, the whole process
takes much more time than regular part of speech tag-
ging. On the other hand, the precision is higher (the two
features mentioned above are in a large part responsible
for this).

3.4 Experiments on (Almost) All the Combinations

As a first trial in this direction I conducted experiments
consisting in neutralizing series of sets of features to
study the coordinated behavior of both the error rate and
ambiguity according to the features neutralized. The

5To do this we can neutralize certain features altogether or
tag with a set of values for certain features instead of only one
value for those features.

6not including errors on a co-anchor.

combinatorics are rather large7, but evaluating the error
rate and ambiguity of the supertagged output with a given
set of neutralized features takes very little time (about one
or two seconds on a personal computer). Indeed, since
the input text is tagged with the full supertag, there is no
need to supertag the text for each set of neutralized fea-
tures. We only have to extract the reduced information
from the supertags in both the hypothesis and the refer-
ence and run the evaluation on it.

I decided never to neutralize the part of speech feature
(numbered 0); I thus gathered the resulting 131,072 error
rate/ambiguity pairs. To find a good trade-off between er-
ror rate and ambiguity, one needs to consider some candi-
date sets of neutralized features; a simple method to pre-
select some candidates is to search for the set of neutral-
ized features yielding the lowest ambiguity for a (small)
number of given maximum error rates. Figure 1 and Ta-
ble 2 show the lowest ambiguity for each given maximum
entire error rate, from 19% to 4%. These boundaries
come from the error rate associated with no neutraliza-
tion at all (18.64%) and the one associated with all the
features neutralized except part of speech (3.67%).

The ambiguity figures are the average number of su-
pertags (from the original tagset) represented by the un-
derspecified tag for each word in the test corpus. Thus it
depends on the tags chosen for each word, it is not just
the ambiguity of the simplified grammar with regard to
the original grammar.

The lowest error rate is a bit under 4%, associated with
an average ambiguity above 450, and corresponds to a tag
representing (a little more than) part of speech. We hope
to find at least one set of neutralized features allowing for
acceptable error rate and ambiguity. Error rates of 6%
or 5% would seem suitable, but they are associated with
an ambiguity of about 212 and 306 respectively. It is not
sure that such high ambiguity can be handled by a pro-
cessor with such input; in the case of a statistical parser,
the resulting combinatorics would make it necessary to
use an appropriate beam search. However, the accuracy
of the parser is not guaranteed to be preserved with such
a beam search.

3.5 The Incremental Method

Exploring the whole set of possible combinations is af-
fordable when each test mainly involves translating tags.
However, the performance of the supertagger in itself is
not the only relevant measure when it comes to use its
output as an input for a parser. To find the best trade-off
between error rate and ambiguity, the most natural test
is the performance of the parser. We would need both
the accuracy of its output and the average time it takes to
parse a sentence. These experiments are yet to be done,

7A structure of 18 features entails 2
18

= 262144 possible
sets of neutralizations.
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Figure 1: Lowest ambiguity per WER (from full set of combinations).

Table 2: Lowest ambiguity per WER (from full set of
combinations). The third column (#) represents the num-
ber of neutralized features for the given set (detailed in
the fourth column). The word error rate is given in %.

WER Ambig. # Neutralized features
18.635 1.014 1 9
17.998 3.944 5 1 2 6 11 15
15.948 5.810 1 16
15.948 5.810 1 16
14.993 14.699 2 11 16
13.347 16.012 2 16 17
12.999 17.394 10 3 4 6 7 8 12 13 15 16 17
11.917 28.162 10 2 3 5 7 8 12 14 15 16 17
10.928 45.532 3 11 16 17
8.950 67.129 6 1 2 11 13 16 17
8.950 67.129 6 1 2 11 13 16 17
7.935 119.928 8 1 2 11 13 14 15 16 17
6.778 167.370 9 1 2 3 11 12 13 14 16 17
5.903 212.301 10 1 2 3 11 12 13 14 15 16

17
4.994 306.446 13 1 2 3 4 7 9 11 12 13 14 15

16 17
3.984 450.421 15 1 2 3 4 5 6 7 9 11 12 13

14 15 16 17

but one can already guess that the same thorough series
of tests will probably not be tractable when testing the
parser every time. Not only the tests will take the time
of parsing, but this time will increase exponentially with
the ambiguity. As a matter of fact, achieving a test in a
limited time is a result in itself: it means the parser can
handle the ambiguity.

Consequently, the tests must be run in the order of
fastest to slowest. Also, we will not run all the tests but
only those that have the best chances to reveal interesting
results. That is, we need a method to select the combina-
tions.

With this objective in mind, I designed an incremental
method to choose which features are to be neutralized in
order to minimize the error rate. I applied this method to
the supertagger output, which gives a preview of its use-
fulness (I hope it will be as useful with the parser eval-
uation). There again, the result is a graduated trade-off
between precision and ambiguity. We will compare it to
our previous combinations.

I now describe the incremental method as I applied it
on the supertagger output. The goal is to construct a num-
ber of sets of neutralized features, from a set of one fea-
ture to a set of 17 features (for a structure of 18 features).
The main idea is follow the optimum “path” by select-
ing the most interesting feature to neutralize at each step,
adding it to the previous set. Let S be the current set of
neutralized features. I first decided to always keep the
feature representing the part of speech of the anchor of
the tree. So the second step was to add one of the 17
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remaining features to the (yet empty) set S. To choose
this feature, each of the candidate features is temporarily
added to S and the corresponding error rate and ambigu-
ity are computed. The feature leading to the best result is
then selected and permanently added to S. The process
is repeated with the remaining features until there are no
more features to neutralize and only the part of speech
(which is our baseline) remains.

The number of tests required by this method is only∑17

i=1
i = 154 instead of 2

17
= 131, 072 for the full set

of combinations.

The search for the next feature to neutralize can be
driven by three types of criteria: the error rate, the am-
biguity, or a combination of the two. I tried the first two
criteria, which selected different features but yielded sim-
ilar trade-offs.

3.6 Experiments on the Incremental Method
Applied to the Supertagger

Figure 3 shows the linked progression of the error rate
and ambiguity, using the error rate criterium to select
each feature to neutralize. Here the relevant curves are
those marked as feature. We will see values below.

It is interesting to see how the incremental method be-
haves compared with the full set of combinations. Figure
2 compares the two corresponding curves (features be-
ing either fully neutralized or not at all). Let us first note
that the incremental method’s curve is very similar to the
curve obtained by selecting the lowest error rate per num-
ber of neutralized features, as opposed to the average er-
ror rates per number of neutralized features. Indeed, only
4 out of 17 sets of neutralized features are different in the
two curves.

Let’s take a closer look at those four couples of sets in
Table 3. What happened is that for the lowest error rate
from the full set of combinations, the set of 6 neutral-
ized features (1 2 11 13 16 17) has only 3 features (11 16
17) in common with the set of 5 neutralized features (11
12 14 16 17). Of course, the incremental method can-
not compete with this performance because it keeps the
whole previous set by design.

What’s more, both the error rate and the ambiguity are
lower for the set of 6 features than for the set of 5 features.
For the other sets, the balance between error rate and am-
biguity is regular again, and new features are just added
to the previous set, just like in the incremental method.

The combinations of error rate and ambiguity drop
from 18.64%/1 with no neutralization at all to 3.67%/509
for just part of speech. The point of the method is to
choose an intermediate value (the best trade-off). For ex-
ample, with 11 neutralized features, we have 5.17%/284,
and for 10 neutralized features, 5.9%/212.

3.7 Refinement

A slight improvement of this method can be achieved by
neutralizing only part of the features as opposed to the
features altogether. In other words, instead of grouping
all the values for a given feature, we can group some val-
ues. For instance, consider the three-value feature direc-
tion of modification. The three possible values are left,
right or NIL (in case this is not a modifier). We could
group the first two values, which would result in a binary
feature simply indicating whether this is a modifier. The
selection of values to group can be done according to er-
ror analysis. We group the values which the supertagger
most often confuses.

To evaluate the power of this improved method, I used
the same test corpus for both the error analysis and the
new evaluation with grouped values, which one cannot
do when (super)tagging new text but this shows the max-
imum gain we can get thanks to this refined method.

On Figure 3, the relevant curves are those marked as
values. The error rate curve is the same as the old one,
since all values which were confused by the supertagger
on this test corpus, and only these values, were grouped.
Only ambiguity is different, and naturally always lower
or equal, since the supertags represented by the under-
specified tags have all their features present, only with
ambiguous values for some of them.

To compare with the previous results, with 11 neutral-
ized features, ambiguity drops from 284 down to 248, and
for 10 features, from 212 down to 185.

As we can see, the ambiguity associated with accept-
able error rates is still quite large, even with the refined
method. This seems to indicate that this kind of approach
is not sufficient. Replacing the error rate criterium with
the parser’s accuracy, as was explained above, will proba-
bly highlight better trade-offs, but it seems likely that the
improvement will be limited.

3.8 Feature Structures

All my experiments were based on John Chen’s various
feature structures. I believe the choice of a feature struc-
ture must have a noticeable (but somewhat limited) in-
fluence on the results one can get from playing with am-
biguity in the way described in this paper. But there is
more to it: the extracted grammar itself is determined by
the feature structure. The grammar I used is very close to
what was seen in the training corpus. A good deal of gen-
eralization can be done, though, and this would probably
entail lower error rates for the same amount of ambiguity.
Metagrammars (Candito, 1999) and their associated fea-
ture structures are designed in this spirit. First, features
are drawn, then a generalization phase takes place, and
finally the grammar is extracted. Thus unseen supertags
are less likely to appear in a test corpus.
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Figure 2: Linked progression of error rate and ambiguity, for whole feature neutralization, to compare the incremental
method with the full set.

Table 3: Different sets between incremental method and whole combination (lowest error rate).
Whole combination Incremental

# WER Ambig. Neutralized features WER Ambig. Neutralized features
6 8.95 67.129 1 2 11 13 16 17 9.81 76.959 16 17 11 14 12 3
7 8.52 107.972 1 2 11 13 14 16 17 9.55 78.925 16 17 11 14 12 3 2
8 7.36 151.844 1 2 11 12 13 14 16 17 9.22 92.238 16 17 11 14 12 3 2 1
9 6.62 184.199 1 2 11 12 13 14 15 16 17 6.78 167.370 16 17 11 14 12 3 2 1 13
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Figure 3: Linked progression of error rate and ambiguity, using only the incremental method, to compare whole feature
neutralization and selected values neutralization. The error rate is the same in both cases. Here the selection of values
is driven by error analysis on the same test corpus (to show the theoretical maximum gain we could get with this
precise method).

4 Conclusion

The incremental method, while not being perfect, can of-
fer a good approximation at a low cost.

Having applied various Hidden Markov-derived mod-
els on supertagging with large extracted grammars, I be-
lieve that with such a large tagset it is impossible to
achieve a precision rate acceptable for parsing in a sin-
gle process. Consequently, underspecification imposes
itself as one of the most promising directions in this re-
spect. Hopes for future work on this subject mainly lie
in a grammar less dependent on the treebank from which
it is extracted, in a feature structure better structured (us-
ing Metarules (Xia, 2001) or inspired by (Kinyon, 2000)
which rely on a Metagrammar (Candito, 1999)), and
more importantly in a shallow parsing phase eliminating
supertags which would not fit in, thanks to a global con-
sideration of the sentence.

In this last respect, it must be noted that many su-
pertagged sequences are inconsistent: I have observed
that a third of them contained at least a supertag which
required a certain category before or after it that was not
in the relevant part (either to the left or to the right) of the
sequence. It is clear that a global vision of the sentence
can help reduce the ambiguity of the supertags. The dif-
ficulty is to keep the computation simple and fast enough
to be used efficiently before full parsing.
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