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Abstract 

Logs of user queries to an internet search engine pro-
vide a large amount of implicit and explicit informa-
tion about language. In this paper, we investigate 
their use in spelling correction of search queries, a 
task which poses many additional challenges beyond 
the traditional spelling correction problem. We pre-
sent an approach that uses an iterative transformation 
of the input query strings into other strings that corre-
spond to more and more likely queries according to 
statistics extracted from internet search query logs. 

1 Introduction 

The task of general purpose spelling correction has 
a long history (e.g. Damerau, 1964; Rieseman and 
Hanson, 1974; McIlroy, 1982), traditionally focus-
ing on resolving typographical errors such as in-
sertions, deletions, substitutions, and 
transpositions of letters that result in unknown 
words (i.e. words not found in a trusted lexicon of 
the language). Typical word processing spell 
checkers compute for each unknown word a small 
set of in-lexicon alternatives to be proposed as 
possible corrections, relying on information about 
in-lexicon-word frequencies and about the most 
common keyboard mistakes (such as typing m in-
stead of n) and phonetic/cognitive mistakes, both 
at word level (e.g. the use of acceptible instead of 
acceptable) and at character level (e.g. the misuse 
of f instead of ph). Very few spell checkers attempt 
to detect and correct word substitution errors, 
which refer to the use of in-lexicon words in inap-
propriate contexts and can also be the result of 
both typographical mistakes (such as typing coed 
instead of cord) and cognitive mistakes (e.g. prin-
cipal and principle). Some research efforts to 
tackle this problem have been made; for example 
Heidorn et al. (1982) and Garside et al. (1987) de-
veloped systems that rely on syntactic patterns to 
detect substitution errors, while Mays et al. (1991) 
employed word co-occurrence evidence from a 
large corpus to detect and correct such errors.   
The former approaches were based on the imprac-
tical assumption that all possible syntactic uses    
of all words (i.e. part-of-speech) are known, and 

presented both recall and precision problems be-
cause many of the substitution errors are not syn-
tactically anomalous and many unusual syntactic 
constructions do not contain errors. The latter ap-
proach had very limited success under the assump-
tions that each sentence contains at most one 
misspelled word, each misspelling is the result of a 
single point change (insertion, deletion, substitu-
tion, or transposition), and the defect rate (the rela-
tive number of errors in the text) is known. A 
different body of work (e.g. Golding, 1995; Gold-
ing and Roth, 1996; Mangu and Brill, 1997) fo-
cused on resolving a limited number of cognitive 
substitution errors, in the framework of context 
sensitive spelling correction (CSSC). Although 
promising results were obtained (92-95% accu-
racy), the scope of this work was very limited as it 
only addressed known sets of commonly confused 
words, such as {peace, piece}). 

1.1 Spell Checking of Search Engine Queries 

The task of web-query spelling correction ad-
dressed in this work has many similarities to tradi-
tional spelling correction but also poses additional 
challenges. Both the frequency and severity of 
spelling errors for search queries are significantly 
greater than in word processing.  Roughly 10-15% 
of the queries sent to search engines contain errors. 
Typically, the validity of a query cannot be de-
cided by lexicon look-up or by checking its gram-
maticality. Because web queries are very short (on 
average, less than 3 words), techniques that use a 
multitude of features based on relatively wide con-
text windows, such as those investigated in CSSC, 
are difficult to apply. Rather than being well-
formed sentences, most queries consist of one con-
cept or an enumeration of concepts, many times 
containing legitimate words that are not found in 
any traditional lexicon. 

 Just defining what a valid web query is represents 
a difficult enterprise. We clearly cannot use only a 
static trusted lexicon, as many new names and 
concepts (such as aznar, blog, naboo, nimh, nsync, 
and shrek) become popular every day and it would 



be extremely difficult if not impossible to maintain 
a high-coverage lexicon. In addition, employing 
very large lexicons can result in more errors sur-
facing as word substitutions, which are very diffi-
cult to detect, rather than as unknown words. 

 One alternative investigated in this work is to ex-
ploit the continuously evolving expertise of mil-
lions of people that use web search engines, as 
collected in search query logs (seen as histograms 
over the queries received by a search engine). In 
some sense, we could say that the validity of a 
word can be inferred from its frequency in what 
people are querying for, similarly to Wittgen-
stein’s (1968) observation that “the meaning of a 
word is its use in the language”. Such an approach 
has its own caveats. For example, it would be er-
roneous to simply extract from web-query logs all 
the queries whose frequencies are above a certain 
value and consider them valid. Misspelled queries 
such as britny spears are much more popular than 
correctly spelled queries such as bayesian nets and 
amd processors. Our challenge is to try to utilize 
query logs to learn what queries are valid, and to 
build a model for valid query probabilities, despite 
the fact that a large percentage of the logged que-
ries are misspelled and there is no trivial way to 
determine the valid from invalid queries. 

2 Problem Formulation. Prior Work 

Comprehensive reviews of the spelling correction 
literature were provided by Peterson (1980), 
Kukich (1992), and Jurafsky and Martin (2000). In 
this section, we survey a few lexicon-based spell-
ing correction approaches by using a series of for-
mal definitions of the task and presenting concrete 
examples showing the strengths and the limits cor-
responding to each situation. We iteratively rede-
fine the problem, starting from an approach purely 
based on a trusted lexicon and ending up with an 
approach in which the role of the trusted lexicon is 
greatly diminished. While doing so, we also make 
concrete forward steps in our attempt to provide a 
definition of valid web queries.  

 Let Σ  be the alphabet of a language and *Σ⊂L a 
broad-coverage lexicon of the language. The sim-
plest and historically the first definition of lexicon-
based spelling correction (Damerau, 1964) is: 

Given an unknown word Lw \*Σ∈ , find Lw ∈'  
such that ),(min)',( vwdistwwdist

Lv∈
= . 

i.e. for any out-of-lexicon word in a text, find the 
closest word form(s) in the available lexicon and 
hypothesize it as the correct spelling alternative. 
dist  can be any string-based function; for exam-

ple, it can be the ratio between the number of let-
ters two words do not have in common and the 
number of letters they share.1 The two most used 
classes of distances in spelling correction are edit 
distances, as proposed by Damerau (1964) and 
Levenshtein (1965), and correlation matrix dis-
tances (Cherkassky et al., 1974). In our study, we 
use a modified version of the Damerau-Lev-
enshtein edit distance, as presented in Section 3. 

 One flaw of the preceding formulation is that it 
does not take into account the frequency of words 
in a language. A simple solution to this problem is 
to compute the probability of words in the target 
language as maximum likelihood estimates (MLE) 
over a large corpus and reformulate the general 
spelling-correction problem as follows: 

Given Lw \*Σ∈ , find Lw ∈'  such that 
δ≤)',( wwdist and )(max)'(

),(:
vPwP

vwdistLv δ≤∈
= . 

 In this formulation, all in-lexicon words that are 
within some “reasonable” distance δ  of the un-
known word are considered as good candidates, 
the correction being chosen based on its prior 
probability in the language. While there is an im-
plicit conditioning on the original spelling because 
of the domain on which the best correction is 
searched, this objective function only uses the 
prior probability of words in the language and not 
the actual distances between each candidate and 
the input word  

 One solution that allows using a probabilistic edit 
distance is to condition the probability of a correc-
tion on the original spelling )|( wvP :  

Given Lw \*Σ∈ , find Lw ∈'  such that 
δ≤)',( wwdist and )|(max)|'(

),(:
wvPwwP

vwdistLv δ≤∈
= . 

  In a noisy channel model framework, as em-
ployed for spelling correction by Kernigham et al. 
(1990), the objective function can be written by 
using Bayesian inversion as the product between 
the prior probability of words in a language )(vP  
(the language model), and the likelihood of mis-
spelling a word v as w, )|( vwP  (which models the 
noisy channel and will be called the error model). 

In the above formulations, unknown words are   
corrected in isolation. This is a rather major flaw 
because context is extremely important for spelling 
correction, as illustrated in the following example: 

power crd � power cord 
video crd � video card 

                                                           
1 Note that the function does not have to be symmetric; thus, 
the notation dist(w,w′) is used with a loose sense. 



 The misspelled word crd should be corrected to 
two different words depending on its contexts.2   

 A formulation of the spelling correction problem 
that takes into account context is the following: 

Given a string *Σ∈s , rl wccs = , with Lw \*Σ∈  

and 
*, Lcc rl ∈ , find Lw ∈'  such that δ≤)',( wwdist  

and )|(max)|'(
),(:

rl
vwdistLv

rl wccvPwccwP
δ≤∈

= . 

 Spaces and other word delimiters are ignored in 
this formulation and the subsequent formulations 
for simplicity, although text tokenization repre-
sents an important part of the spelling-correction 
process, as discussed in Sections 5 and 6. 

 The task definitions enumerated up to this point 
(on which most traditional spelling correction sys-
tems are based) ignore word substitution errors. In 
the case of web searches, it is extremely important 
to provide correction suggestions for valid words 
when they are more meaningful as a search query 
than the original query, for example: 

golf war � gulf war 
sap opera � soap opera 

 This problem is partially addressed by the task of 
CSSC, which can be formalized as follows: 

Given a set of confusable valid word forms          
in a language },...,,{ 21 nwwwW =  and a string 

ril cwcs = , choose Ww j ∈  such that 

)|(max)|(
..1

rilk
nk

rilj cwcwPcwcwP
=

= . 

 In the CSSC literature, the sets of confusables are 
presumed known, but they could also be built for 
each in-lexicon word w as all words 'w  with 

δ≤)',( wwdist , similarly to the approach investi-
gated by Mays et al. (1991), in which they chose a 

1=δ  and employed an edit distance with all point 
changes having the same cost 1. 

 The generalized problem of phrasal spelling cor-
rection can then be formulated as follows: 

Given *Σ∈s , find *' Ls ∈  such that δ≤)',( ssdist  

and )|(max)|'(
),(:*

stPssP
tsdistLt δ≤∈

= . 

 Typically, a correction is desirable when *Ls ∉  
(i.e. at least one of the component words is un-
known) but, as shown above, there are frequent 
cases (e.g. golf war) when sequences of valid 
words should be changed to other word sequences. 
Note that word boundaries are hidden in this latter 

                                                           
2 To simplify the exposition, we only consider two highly 
probable corrections, but other valid alternatives exist, e.g. 
video cd. 

formulation, making it more general and allowing 
it to cover two other important spelling error 
classes, concatenation and splitting, e.g.: 

power point slides � powerpoint slides 
chat inspanich  � chat in spanish 

 Yet, it still does not account for another important 
class of cases in web query correction which is 
represented by out-of-lexicon words that are valid 

in certain contexts (therefore, 
*' Ls ∉ ), for example: 

amd processors � amd processors (no change) 

 The above phrase represents a legitimate query, 
despite the fact that it may contain unknown words 
when employing a traditional English lexicon.  

 Some even more interesting cases not handled by 
traditional spellers and also not covered by the 
latter formulation are those in which in-lexicon 
words should be changed to out-of-lexicon words, 
as in the following examples, where two valid 
words must be concatenated into an out of lexicon 
word: 

gun dam planet � gundam planet 
limp biz kit � limp bizkit 

 These observations lead to an even more general 
formulation of the spelling-correction problem: 

Given *Σ∈s , find *' Σ∈s  such that δ≤)',( ssdist  

and )|(max)|'(
),(:*

stPssP
tsdistt δ≤Σ∈

= . 

 For the first time, the formulation no longer 
makes explicit use of a lexicon of the language.3 In 
some sense, the actual language in which the web 
queries are expressed becomes less important than 
the query-log data from which the string probabili-
ties are estimated. This probability model can be 
seen as a substitute for a measure of the meaning-
fulness of strings as web-queries. For example, an 
implausible random noun phrase in any of the tra-
ditional corpora such as sad tomatoes is meaning-
ful in the context of web search (being the name of 
a somewhat popular music band). 

3 The Error Model. String Edit Functions 

All formulations of the spelling correction task 
given in the previous section used a string distance 
function and a threshold to restrict the space in 
which alternative spellings are searched. Various 
previous work has addressed the problem of 
choosing appropriate functions (e.g. Kernigham et 
al. 1990, Brill and Moore, 2002; Toutanova and 
Moore, 2003). 

                                                           
3 A trusted lexicon may still be used in the estimation of the 
language model probability for the computation of )|( stP . 



 The choice of distance function d and threshold δ 
could be extremely important for the accuracy of a 
speller. At one extreme, the use of a too restrictive 
function/threshold combination can result in not 
finding the best correction for a given query. For 
example, using the vanilla Damerau-Levenshtein 
edit distance (defined as the minimum number of 
point changes required to transform a string into 
another, where a point change is one of the follow-
ing operations: insertion of a letter, deletion of a 
letter, and substitution of one letter with another 
letter) and a threshold 1=δ , the correction donadl 
duck � donald duck would not be possible. At the 
other extreme, the use of a less limiting function 
might have as consequence suggesting very 
unlikely corrections. For example, using the same 
classical Levenshtein distance and 2=δ  would 
allow the correction of the string donadl duck, but 
will also lead to bad corrections such as log wood 
� dog food (based on the frequency of the queries, 
as incorporated in )(sP ).  Nonetheless, large dis-

tance corrections are still desirable in a diversity of 
situations, for example: 

platnuin rings �  platinum rings 
ditroitigers  � detroit tigers 

 The system described in this paper makes use of a 
modified context-dependent weighted Damerau-
Levenshtein edit function which allows insertion, 
deletion, substitution, immediate transposition, and 
long-distance movement of letters as point 
changes, for which the weights were interactively 
refined using statistics from query logs. 

4 The Language Model. Exploiting Large 
Web Query Logs 

A misspelling such as ditroitigers is far from the 
correct alternative and thus, it might be extremely 
difficult to find its correct spelling based solely on 
edit distance. Nonetheless, the correct alternative 
could be reached by allowing intermediate valid 
correction steps, such as ditroitigers � detroitti-
gers � detroit tigers. But what makes detroittigers 
a valid correction step? Recall that the last formu-
lation of spelling correction in Section 3 did not 
explicitly use a lexicon of the language. Rather, 
any string that appears in the query log used for 
training can be considered a valid correction and 
can be suggested as an alternative to the current 
web query based on the relative frequency of the 
query and the alternative spelling. Thus, a spell 
checker built according to this formulation could 
suggest the correction detroittigers because this 

alternative occurs frequently enough in the em-
ployed query log. However, detroittigers itself 
could be corrected to detroit tigers if presented as 
a stand-alone query to this spell checker, based on 
similar query-log frequency facts, which naturally 
leads to the idea of an iterative correction ap-
proach. 
 

albert einstein 4834 
albert einstien 525 
albert einstine 149 
albert einsten 27 
albert einsteins 25 
albert einstain 11 
albert einstin 10 
albert eintein 9 
albeart einstein 6 
aolbert einstein 6 
alber einstein 4 
albert einseint 3 
albert einsteirn 3 
albert einsterin 3 
albert eintien 3 
alberto einstein 3 
albrecht einstein 3 
alvert einstein 3 

Table 1. Counts of different (mis)spellings of Albert          
Einstein’s name in a web query log.  

 Essential to such an approach are three typical 
properties of the query logs (e.g. see Table 1): 

• words in the query logs are misspelled in vari-
ous ways, from relatively easy-to-correct mis-
spellings to very-difficult-to-correct ones, that 
make the user’s intent almost impossible to 
recognize;  

• the less malign (difficult to correct) a misspell-
ing is the more frequent it is; 

• the correct spellings tend to be more frequent 
than misspellings. 

 In this context, the spelling correction problem 
can be given the following iterative formulation: 

Given a string *
0 Σ∈s , find a sequence    

*
21 ,..., Σ∈nsss   such that  δ≤+ ),( 1ii ssdist , 

)|(max)|(
),(:

1 * i
tsdistt

ii stPssP
i δ≤Σ∈

+ = , 1..0 −∈∀ ni , 

and )|(max)|(
),(:* n

tsdistt
nn stPssP

n δ≤Σ∈
= . 

 An example of correction that can be made by   
iteratively applying the base spell checker is: 

anol scwartegger  � arnold schwarzenegger 



Misspelled query: anol scwartegger 
First iteration: arnold schwartnegger 
Second iteration: arnold schwarznegger 
Third iteration: arnold schwarzenegger 
Fourth iteration: no further correction 

 Up to this point, we underspecified the notion of 
string in the task formulations given. One possibil-
ity is to consider whole queries as the strings to be 
corrected and iteratively search for better logged 
queries according to the agreement between their 
relative frequencies and the character error model. 
This is equivalent to identifying all queries in the 
query log that are misspellings of other queries and 
for any new query, find a correction sequence of 
logged queries. While such an approach exploits 
the vast information available in web-query logs, it 
only covers exact matches of the queries that ap-
pear in these logs and provides a low coverage of 
infrequent queries. For example, a query such as 
britnet spear inconcert could not be corrected if 
the correction britney spears in concert does not 
appear in the employed query log, although the 
substring britnet spear could be corrected to brit-
ney spears. 

 To address the shortcomings of such an approach, 
we propose a system based on the following for-
mulation, which uses query substrings: 

Given *
0 Σ∈s , find a sequence *

21 ,..., Σ∈nsss , 
such that for each 1..0 −∈ ni  there exist the de-

compositions ii l
ii

l
iii wwwws 1,1

1
1,11i0,

1
0, ...s ,... +++ == , 

where k
hjw ,  are words or groups of words such that 

δ≤+ ),( 1,10,
k
i

k
i wwdist , ilkni ..1  ,1..0 ∈∀−∈∀  and 

)|(max)|(
** ),(:

1 i
tsdistt

ii stPssP
i δ≤Σ∈

+ = , 1..0 −∈∀ ni , 

and )|(max)|(
** ),(:

n
tsdistt

nn stPssP
n δ≤Σ∈

= . 

Note that the length of the string decomposition 
may vary from one iteration to the next one, for 
example: 

 

 In the implementation evaluated in this paper, we 
allowed decompositions of query strings into 

words and word bigrams. The tokenization process 
uses space and punctuation delimiters in addition 
to the information provided about multi-word 
compounds (e.g. add-on and back-up) by a trusted 
English lexicon with approximately 200k entries. 
By using the tokenization process described above, 
we extracted word unigram and bigram statistics 
from query logs to be used as the system’s lan-
guage model. 

5 Query Correction 

An input query is tokenized using the same space 
and word-delimiter information in addition to the 
available lexical information as used for process-
ing the query log. For each token, a set of alterna-
tives is computed using the weighted Levenshtein 
distance function described in Section 3 and two 
different thresholds for in-lexicon and out-of-
lexicon tokens 

 Matches are searched in the space of word uni-
grams and bigrams extracted from query logs in 
addition to the trusted lexicon. Unigrams and bi-
grams are stored in the same data structure on 
which the search for correction alternatives is 
done. Because of this, the proposed system han-
dles concatenation and splitting of words in ex-
actly the same manner as it handles 
transformations of words to other words. 

 Once the sets of all possible alternatives are com-
puted for each word form in the query, a modified 
Viterbi search (in which the transition probabilities 
are computed using bigram and unigram query-log 
statistics and output probabilities are replaced with 
inverse distances between words) is employed to 
find the best possible alternative string to the input 
query under the following constraint: no two adja-
cent in-vocabulary words are allowed to change 
simultaneously. This constraint prevents changes 
such as log wood � dog food. An algorithmic con-
sequence of this constraint is that there is no need 
to search all the possible paths in the trellis, which 
makes the modified search procedure much faster, 
as described further. We assume that the list of 
alternatives for each word is randomly ordered but 
the input word is on the first position of the list 
when the word is in the trusted lexicon. In this 
case, the searched paths form what we call fringes. 
Figure 1 presents an example of a trellis in which 
w1, w2 and w3 are in-lexicon word forms. Observe 
that instead of computing the cost of k1�k2 possible 
paths between the alternatives corresponding to w1 
and w2, we only need to compute the cost of k1+k2 
paths. 

31 =l  

42 =l  

20 =l  0s  britenetspear   inconcert 

 

1s  britneyspears  in concert 
 

2s  britney spears in concert 

 

3s  britney spears in concert 
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Figure 1. Example of trellis of the modified Viterbi search 

 Because we use word-bigram statistics, stop 
words such as prepositions and conjunctions may 
interfere negatively with the best path search. For 
example, in correcting a query such as platunum 
and rigs, the language model based on word bi-
grams would not provide a good context for the 
word form rigs. 

 To avoid this type of problems, stop words and 
their most likely misspelling are given a special 
treatment. The search is done by first ignoring 
them, as in Figure 1, where w4 is presumed to be 
such a word. Once a best path is found by ignoring 
stop words, the best alternatives for the skipped 
stop words (or their misspellings) are computed in 
a second Viterbi search with fringes in which the 
extremities are fixed, as presented in Figure 2. 
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Figure 2. Modified Viterbi search – stop-word treatment 

 The approach of search with fringes coupled with 
an iterative correction process is both very effi-
cient and very effective. In each iteration, the 
search space is much reduced. Changes such as log 
wood � dog food are avoided because they can not 
be made in one iteration and there are no interme-

diate corrections conditionally more probable than 
the left-hand-side query (log wood) and less prob-
able than the right-hand-side query (dog food). 
 An iterative process is prone to other types of 
problems. Short queries can be iteratively trans-
formed into other un-related queries; therefore, 
changing such queries is restricted additionally in 
our system. Another restriction we imposed is to 
not allow changes of in-lexicon words in the first 
iteration, so that easy-to-fix unknown-word errors 
are handled before any word substitution error. 

6 Evaluation 

For this work, we are concerned primarily with 
recall because providing good suggestions for mis-
spelled queries can be viewed as more important 
than abstaining to provide alternative query sug-
gestions for valid queries as long as these sugges-
tions are reasonable (for example, suggesting 
cowboy ropes for cowboy robes may not have ma-
jor cost to a user). A real system would have a 
component that decides whether to surface a spell-
ing suggestion based on where we want to be on 
the ROC curve, thus negotiating between precision 
and recall. 

 One problem with evaluating a spell checker de-
signed to correct search queries is that evaluation 
data is hard to get. Even if the system were used 
by a search engine and click-through information 
were available, such information would provide 
only a crude measure of precision and would not 
allow us to measure recall, by capturing only cases 
in which the corrections proposed by that particu-
lar speller are clicked on by the users. 

 We performed two different evaluations of the 
proposed system.4 The first evaluation was done 
on a test set comprising 1044 unique randomly 
sampled queries from a daily query log, which 
were annotated by two annotators. Their inter-
agreement rate was 91.3%. 864 of these queries 
were considered valid by both annotators; for the 
other 180, the annotators provided spelling correc-
tions. The overall agreement of our system with 
the annotators was 81.8%. The system suggested 
131 alternative queries for the valid set, counted as 
false positives, and 156 alternative queries for the 
misspelled set. Table 2 shows the accuracy ob-
tained by the proposed system and results from an 
ablation study where we disabled various compo-
nents of the system, to measure their influence on 
performance. 
                                                           
4 The test data sets can be downloaded from 
http://research.microsoft.com/~silviu/Work 



 

 All queries Valid Misspelled 
Nr. queries 1044 864 180 

Full system 81.8 84.8 67.2 
No lexicon 70.3 72.2 61.1 

No query log 77.0 82.1 52.8 
All edits equal 80.4 83.3 66.1 
Unigrams only 54.7 57.4 41.7 
1 iteration only 80.9 88.0 47.2 
2 iterations only 81.3 84.4 66.7 

No fringes 80.6 83.3 67.2 

Table 2. Accuracy of various instantiations of the system 

 By completely removing the trusted lexicon, the 
accuracy of the system on misspelled queries 
(61.1%) was higher than in the case of only using 
a trusted lexicon and no query log data (52.8%). It 
can also be observed that the language model built 
using query logs is by far more important than the 
channel model employed: using a poorer character 
error model by setting all edit weights equal did 
not have a major impact on performance (66.1% 
recall), while using a poorer language model that 
only employs unigram statistics from the query 
logs crippled the system (41.7% recall). Another 
interesting aspect is related to the number of itera-
tions. Because the first iteration is more conserva-
tive than the following iterations, using only one 
iteration led to fewer false positives but also to a 
much lower recall (47.2%). Two iterations were 
sufficient to correct most of the misspelled queries 
that the full system could correct. While fringes 
did not have a major impact on recall, they helped 
avoid false positives (and had a major impact on 
speed). 
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Figure 3. Accuracy and recall as functions of the number of  
 monthly query logs used to train the language model 

 Figure 3 shows the performance of the full system 
as a function of the number of monthly query logs 
employed. While both the total accuracy and the 
recall increased when using 2 months of data in-
stead of 1 month, by using more query log data (3 
and 4 month), the recall (or accuracy on mis-
spelled queries) still improves but at the expense 
of having more false positives for valid queries, 
which leads to an overall slightly smaller accuracy.  

 A post-analysis of the results showed that the sys-
tem suggested in many cases reasonable correc-
tions but different from the gold standard ones. 
Many false positives could be considered reason-
able suggestions, although it is not clear whether 
they would have been helpful to the users (e.g. 
2002 kawasaki ninja zx6e � 2002 kawasaki ninja 
zx6r was counted as an error, although the sugges-
tion represents a more popular motorcycle model). 
In the case of misspelled queries in which the 
user’s intent was not clear, the suggestion made by 
the system could be considered valid despite the 
fact that it disagreed with the annotators’ choice 
(e.g. gogle � google instead of the gold standard 
correction goggle). 

 To address the problems generated by the fact that 
the annotators could only guess the user intent, we 
performed a second evaluation, on a set of queries 
randomly extracted from query log data, by sam-
pling pairs of successive queries ),( 21 qq  sent by 
the same users in which the queries differ from 
one another by an un-weighted edit distance of at 
most 1+(len( 1q )+len( 2q ))/10 (i.e. allow a point 
change for every 5 letters). We then presented the 
list to human annotators who had the option to re-
ject a pair, choose one of the queries as a valid cor-
rection of the other, or propose a correction for 
both when none of them were valid but the in-
tended valid query was easy to guess from the se-
quence, as in example 3 below: 

(audio flie, audio file) � audio file 
(bueavista, buena vista) � buena vista 

(carrabean nooms, carrabean rooms) � caribbean rooms 

 Table 3 shows the performance obtained by dif-
ferent instantiations of the system on this set.  
 

Full system 73.1 
No lexicon 59.2 

No query log 44.9 
All edits equal 69.9 
Unigrams only 43.0 
1 iteration only 45.5 
2 iterations only 68.2 

No fringes 71.0 

Table 3. Accuracy of the proposed system on a set which  
     contains misspelled queries that the users had reformulated 

 The main system disagreed 99 times with the gold 
standard, in 80 of these cases suggesting a differ-
ent correction. 40 of the corrections were not ap-
propriate (e.g. porat was corrected by our system 
to pirate instead of port in chinese porat also 
called xiamen), 15 were functionally equivalent 



corrections given our target search engine (e.g. 
audio flie � audio files instead of audio file), 17 
were different valid suggestions (e.g. bellsouth 
lphone isting � bellsouth phone listings instead of 
bellsouth telephone listing), while 8 represented 
gold standard errors (e.g. the speller correctly sug-
gested brandy sniffters � brandy snifters instead 
of brandy sniffers). Out of 19 cases in which the 
system did not make a suggestion, 13 were genu-
ine errors (e.g. paul waskiewiscz with the correct 
spelling paul waskiewicz), 4 were cases in which 
the original input was correct, although different 
from the user’s intent (e.g. cooed instead of coed) 
and 2 were gold standard errors (e.g. commandos 3 
walkthrough had the wrong correction commando 
3 walkthrough, as this query refers to a popular 
videogame called “commandos 3”). 
 

Differences Gold std errors Format  Diff. valid Real Errors 

80+19 8+2 15+0 17+4 40+13 

 The above table shows a synthesis of this error 
analysis on the second evaluation set. The first 
number in each column refers to a precision error 
(i.e. the speller suggested something different than 
the gold standard), while the second refers to a 
recall error (i.e. no suggestion). 

 As a result of this error analysis, we could argua-
bly consider that while the agreement with the 
gold standard experiments are useful for measur-
ing the relative importance of components, they do 
not give us an absolute measure of  system useful-
ness/accuracy. 
 

Agreement Correctness Precision Recall 

73.1 85.5 88.4 85.4 

 In the above table, we consider correctness as the 
relative number of times the suggestion made by 
the speller was correct or reasonable; precision 
measures the number of correct suggestions in the 
total number of spelling suggestions made by the 
system; recall is computed as the relative number 
of correct/reasonable suggestions made when such 
suggestions were needed.  

 As an additional verification and to confirm the 
difficulty of the test queries, we sent a set of them 
to Google and observed that Google speller’s 
agreement with the gold standard was slightly 
lower than our system’s agreement. 

7 Conclusion 

To our knowledge, this paper is the first to show a 
successful attempt of using the collective knowl-
edge stored in search query logs for the spelling 

correction task. We presented a technique to mine 
this extremely informative but very noisy resource 
that actually exploits the errors made by people as 
a way to do effective query spelling correction. A 
direction that we plan to investigate is the adapta-
tion of such a technique to the general purpose 
spelling correction, by using statistics from both 
query-logs and large office document collections. 
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