
NP Bracketing by Maximum Entropy Tagging and SVM Reranking

Hal Daumé III and Daniel Marcu
University of Southern California

Information Sciences Institute
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292
{hdaume,marcu}@isi.edu

Abstract

We perform Noun Phrase Bracketing by using a lo-
cal, maximum entropy-based tagging model, which
produces bracketing hypotheses. These hypothe-
ses are subsequently fed into a reranking frame-
work based on support vector machines. We solve
the problem of hierarchical structure in our tag-
ging model by modeling underspecified tags, which
are fully determined only at decoding time. The
tagging model performs comparably to competing
approaches and the subsequent reranking increases
our system’s performance from an f-score of 81.7 to
86.1, surpassing the best reported results to date of
83.8.

1 Introduction and Prior Work

Noun Phrase Bracketing (NP Bracketing) is the task
of identifying any and all noun phrases in a sen-
tence. It is a strictly more difficult problem than
NP Chunking (Ramshaw and Marcus, 1995), in
which only non-recursive (or “base”) noun phrases
are identified. It is simultaneously strictly more sim-
ple than either full parsing (Collins, 2003; Charniak,
2000) or supertagging (Bangalore and Joshi, 1999).
NP Bracketing is both a useful first step toward full
parsing and also a meaningful task in its own right;
for instance as an initial step toward co-reference
resolution and noun-phrase translation.

While existing NP Bracketers (including the one
described in this paper) tend to achieve worse over-
all F-measures than a full statistical parser (eg.,
(Collins, 2003; Charniak, 2000)), they can be sig-
nificantly more computationally efficient. Statisti-
cal parsers tend to scale exponentially in sentence
length, unless a narrow beam is employed, which
leads to globally poorer parses. In contrast, the
bracketer described in this paper scales linearly in

[[Confidence] in [the pound]] is widely expected
to take [another sharp dive] if [[[trade figures] for
[September]] , due for [release] [tomorrow] ,] . . .

Figure 1: Sample sentence with NPs bracketed.

the length of the sentence to find the globally op-
timal solution. This trade-off is depicted graphi-
cally in Figure 2. This figure shows the amount of
time (excluding any startup overhead) spent pars-
ing or bracketing using this system (the two lowest
lines) versus the parsers of Collins (2003) and Char-
niak (2000) run with default settings.

NP Bracketing was the shared task of the Com-
putational Natural Language Learning workshop in
1999 (CoNLL-99). In this competition, NP Brack-
eting systems were trained on sections 15-18 of the
Wall Street Journal corpus, while section 20 was
used for testing. The bracketing information was
extracted directly from the Penn Treebank, essen-
tially disregarding all non-NP brackets. An example
bracketed sentence is in Figure 1.

There have been several successful approaches
reported in the literature to solve this task. Tjong
Kim Sang (1999) first used repeated chunking to at-
tain an f-score of 82.98 during the CoNLL compe-
tition and subsequently (Sang, 2002) an f-score of
83.79 using a combination of two different systems.
Krymolowski and Dagan (2000) have obtained sim-
ilar results using more training data and lexicaliza-
tion. Brandts (1999) has used cascaded HMMs to
solve the NP Bracketing problem; however, he eval-
uated his system only on German NPs, so his results
cannot be directly compared.

Obviously, the difficulty that arises in NP Brack-
eting that differentiates it from NP Chunking is the
issue of embedded NPs, thus requiring output in the

5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

Sentence Length

S
ec

on
ds

 to
 P

ar
se

 (
no

rm
al

iz
ed

)
Charniak
Collins
Bracketer+SVM
Bracketer

Figure 2: Speed of different systems

form of a tree structure. Most solutions to prob-
lems involving building trees from sequences build
in to the model a concept of depth (in parsing, this
is typically in the form of a chart; in bracketing and
shallow parsing, this is typically in the form of em-
bedded finite-state automata). We elect to take a
completely different approach. The model we use
is agnostic to any sort of depth: it hypothesizes un-
derspecified tags and allows the matching bracket
constraint to select a solution.

Specifically, we approach the NP Bracketing
problem as a tagging and reranking problem. We
use an efficient maximum entropy-based tagger to
hypothesize possible bracketings (see Section 2)
and then rerank these hypotheses using a support
vector reranking system (see Section 3). Using only
the tagger (without reranking), we achieve compa-
rable results to those referenced above and, with the
addition of the reranking system, achieve, to our
knowledge, the best reported results to date.

2 Bracketing as a Tagging Problem

In any tagging problem, the task is to associate each
word in the input with a single tag. There are
many competing approaches to tagging problems
including Hidden Markov Models (HMMs), Maxi-
mum Entropy Markov Models (MEMMs) and Con-
ditional Random Fields (CRFs). We adopt a slight
variant of the MEMM framework.

2.1 Maximum Entropy Tagging Model

In the formulation of the maximum entropy tagging
model, we assume that the probability distribution
of tags takes the form of an exponential distribution,
parameterized by a sequence of feature weights,
λm

1 , where there are m-many features. Thus, we

obtain a distribution for Prλm
1

(ti ti−1, w̄) of the
form:

1

Zti−1,w̄

exp

m
∑

j=1

λjfj(ti, ti−1, w̄)

 (1)

where Zti−1,w̄ is a normalizing factor.
Like other maximum entropy approaches, this

distribution is unimodal and optimal values for the
λs can be found through various algorithms; we
use GIS. A good introduction to maximum entropy
models can be found in (Berger et al., 1996).

In our approach, we use a tag set of exactly five
tags: {open, close, in, out, sing}. An open tag is
assigned to all words that open a bracketing (regard-
less of the number of brackets opened) and do not
also close a bracketing. A close tag is assigned to all
words that close a bracketing and do not also open
one. An in tag is assigned to all words enclosed in
an NP, but which neither open nor close one. An out

tag is assigned to all words which are not enclosed
in an NP. A sing(leton) tag is assigned to all words
that both open and close a bracketing (regardless of
whether they open or close more than just their own
bracketing).

Note that such a tagging does not uniquely deter-
mine a bracketing. For instance, the tag sequence
〈sing sing〉 could correspond either to [[w1] [w2]]
or to [w1] [w2]. Nevertheless, due to the constraints
involved in the tagging process (namely that a close
tag cannot appear unless one is already within an
NP and that one cannot have two close tags when
the corresponding open tags appear at the same lo-
cation1), we hope that our system will be able to dis-
ambiguate sufficiently. In other words, although our
taggings are under-specified, we hope that the ad-
ditional constraints that we subsequently associate
with these tags will yield high quality bracketings.

2.2 Feature Functions

The probability distribution shown in Equation 1 is
based on m-many real-valued feature functions, fj .
We use two classes of features, closed features and
open features (these roughly correspond to whether
they look at closed class elements or open class ele-
ments). The open features for position i are applied
at positions i, i − 1 and i + 1. The closed features
are applied at i, i − 1, i − 2, i − 3 and i + 1, i + 2
and i + 3.

1For instance, the bracketing [[wi . . . wj]] is disallowed;
this bracketing must appear simply as [wi . . . wj].

Closed features include: part of speech tag (ac-
cording to Brill’s (1995) tagger); two character suf-
fix of word; first character of part of speech; initial
character capitalized; word fully capitalized; last
character is period; word position in sentence; and
two features for when the word is either the first or
last word in the sentence. Open features include: the
word itself; the word lower-cased; the lower-cased
stem (Porter, 1980); the lower-cased stem plus the
part of speech; and 3 features that are each true
when there is a CC in the next 2 through 5 words.
In addition, we include a feature for tag ti−1.

2.3 Maximum Entropy Training

We used generalized iterative scaling to train the
maximum entropy model2 on 929, 921 features and
211, 728 training instances from sections 15-18 of
the Penn Treebank (20% of which was set aside as
a validation set). Training was run for ten thousand
iterations and, at convergence, achieved a tagging
error rate of 2.1% on the training data and 6.9% on
the validation data.

2.4 Decoding Algorithm

We use a Viterbi-like dynamic programming de-
coding algorithm, where transition probabilities
are governed by the discriminative tagging model.
However, the tags generated by our decoder are not
the same as those predicted by the maximum en-
tropy model. Our decoder does not search in the
original space of tags (sing, in, out, . . .) but rather
in a new space that yields only well-formed brack-
etings. In the secondary search space, the algorithm
is guaranteed to find the most likely well-formed
bracketing, even though this might not correspond
to the most likely tag sequence. While it would be
possible to simply tag using the original tag set and
allow the reranker (see Section 3) to select a well-
formed bracketing, it is unlikely that this will lead
to improved performance: the complexity of the de-
coders will be the same, yet the bracketer would
have to wade through significantly more bad tag-
gings to find a good solution.

Our decoding tags take one of five forms, capi-
talized to distinguish them from the maximum en-
tropy tags: On, Cn , N , OnC , OCn where n ≥ 1
for all but OCn where n ≥ 2. The meaning of the
tags is: On means n simultaneous open brackets:
Cn means n simultaneous close brackets. N means
that no brackets appear at this position. OnC corre-

2Using the YASMET maximum entropy training package:
http://www.isi.edu/˜och/YASMET/.

0 20 40 60 80 100 120 140 160 180 200
82

84

86

88

90

92

94

96

98

Precision
Recall
F−Score

Figure 3: Plot of n versus maximal f-score (and as-
sociated precision and recall) for test data.

sponds to n open brackets and one close bracket,
while OCn corresponds to one open bracket and
n ≥ 2 close brackets. These tags are enough to
decode any well-formed bracketing.

Our decoder assumes a maximum depth of tags
d has been prespecified and then solves a dynamic
programming problem on an n × d × t array A,
where n is the sentence length and t denotes an inte-
ger corresponding to the highest possible decoding
tag in an enumeration. The value Ai,d,t stores the
probability of being at position i and depth d af-
ter applying tag t at that position. It is always the
case that t ≤ 4d. The time and space complexity
of this decoding problem is thus O(d2n). The dy-
namic programming problem is:

A1,d,t = Prλ̄

(

t̂0
)

(2)

Ap,d,t = max
t′

Ap−1,d−∆t,t′ · Prλ̄

(

t̂d t′
)

(3)

where

t̂d =

out t = N ∧ d = 0
in t = N ∧ d > 0
sing t ∈ {OnC,OCn}
begin t = On

end t = Cn

(4)

∆t =

n t = On

n − 1 t = OnC

−n t = Cn

−n + 1 t = OCn

0 t = N

(5)

The intuition for calculating the value of Ap,d,t

for p > 1 (see Equation 3) is that we first choose
the optimal previous tag, t′. Furthermore, based on

t and d, we can calculate the depth (d − ∆t, see
Equation 5) we must have been at previously. Thus,
we must take the value of Ap−1,d−∆t,t′ which is the
probability of having arrived at position p − 1 at
depth d − ∆t with tag t′. We then multiply this
by the probability of getting from that position to
the current position, which is given by Prλ̄

(

t̂d t′
)

(note that the normalization occurs over the new
space of tags). The optimal tagging is given by
back-tracing through A, beginning at An,0,t for any
tag t. Even for long sentences, this algorithm re-
quires very little time and memory.

2.5 Model Deficiencies

While the bracketing model described above al-
ready performs comparably to competing ap-
proaches (see Section 4), it is still subject to mak-
ing categorical mistakes. Most of its errors are due
to the locality of the decisions made. Because of
the coarseness of the tags used in the maximum en-
tropy tagging framework, the model is unable to dis-
criminate between some bad bracketings and some
good ones. For instance, it must assign precisely
the same probability to both of the following brack-
etings, since the maximum entropy tags (shown be-
neath) are identical:

[[John,] [president] of [the company] ,]
[[John,] [[president] of [the company]]] ,]
sing sing in open close close

This limitation causes the model to make con-
sistent mistakes distinguishing between, for exam-
ple, lists and appositional phrases. To solve these
problems in the tagging model would be nearly im-
possible, without giving up on efficiency. However,
our decoder is able to produce n-best lists using ex-
act A∗ search that very frequently contain globally
superior taggings, even though the simple tagging
model cannot recognize them as such.

In Figure 3, we show the maximal f-score (and
corresponding precision and recall) for the best
bracketing chosen out of the n-best, as we let n

range from 1 to 400 for both the validation data
and the test data. As we can see from these graphs,
we have the possibility of improving our system’s f-
score performance by about ten points – from 82%
to 93%, simply by being able to choose the correct
hypothesis from the n-best list; also working with
100-best lists is likely sufficient.

3 Hypothesis Reranking
In the previous section, we described a tagging
model for NP Bracketing that can produce n-best
lists. In this section, we describe a machine learn-
ing method for reranking these lists in an attempt to
choose a hypothesis which is superior to the first-
best output of the decoder. Reranking of n-best lists
has recently become popular in several natural lan-
guage problems, including parsing (Collins, 2003),
machine translation (Och and Ney, 2002) and web
search (Joachims, 2002). Each of these researchers
takes a different approach to reranking. Collins
(2003) uses both Markov Random Fields and boost-
ing, Och and Ney (2002) use a maximum entropy
ranking scheme, and Joachims (2002) uses a sup-
port vector approach. As SVMs tend to exhibit less
problems with over-fitting than other competing ap-
proaches in noisy scenarios, we also adopt the sup-
port vector approach.

3.1 Support Vector Reranking

A support vector classifier is a binary classifier with
a linear decision boundary. The selected decision
boundary is a hyperplane that is chosen in such a
way that the distance between it and the nearest data
points is maximized. Slack variables are commonly
introduced when the problem is not linearly separa-
ble, leading to soft margins.

For reranking, we assume that instead of having
binary classes for the yis, we have real values which
specify the relative ordering (higher values come
first). For this task, we get the following optimiza-
tion problem (Joachims, 2002):

minimize
1

2
||w̄||2 + C

N
∑

i=1

ξi,j (6)

subject to w̄ · x̄i ≥ w̄ · x̄j + 1 − ξi,j (7)

ξi,j ≥ 0 (8)

Where the i, js are drawn from comparable data
points and yi ≥ yj and C is a regularization param-
eter that specifies how great the cost of mis-ordering
is. As noticed by Joachims, the condition in Equa-
tion 7 can be reduced to the standard SVM model
by subtracting w̄ · x̄j from both sides.

3.2 Reranking Feature Functions

Since our problem is closely related to that of
Collins’ (2003), we use many of the same feature
functions he does, though we do introduce many of

our own (those which are copied from Collins are
marked with an asterisk). We view the hypothesized
bracketing as a tree in a context free grammar and
include features based on each rule used to gener-
ate the given tree. For concreteness, we will use the
CFG rule NP → DT JJ NP (where the NP is selected
as the head) as an example.

Rules*: the full CFG rule; in this case, the active
rule would be NP → DT JJ NP.

Markov 2 Rules: CFG rules where 2-level
Markovization has been applied. That is, we look
at the rule for generating the first two tags, then
the next two (given the previous one), then the next
two (given the previous one), and so on. A start
of branch tag ([S]) and end of branch tag ([/S]) are
added to the beginning and end of the children lists.
In this case, the rules that fire are: NP! → [S] DT,
NP![S] → DT JJ, NP!DT → JJ NP and NP!JJ → NP
[/S]. The notation is X!Y → A B, where X is the true
parent, Y was the previous child in the Markoviza-
tion, and A B are the two children.

Lex-Rules*: full CFG rules, where terminal POS
tags are replaced with lexical items.

Markov 2 Lex-Rules: Markov 2-style rules, ter-
minal POS tags are replaced with lexical items.

Bigrams*: pairs of adjacent tags in the CFG
rule; in our example, the active pairs are ([S],DT),
(DT,JJ), (JJ,NP) and (NP,[/S]).

Lex-Bigrams*: same as BIGRAMS, but with lex-
ical heads instead of POS tags.

Head Pairs*: pairs of internal node tags with the
head type; in the example, (DT, NP), (JJ, NP) and
(NP, NP).

Sizes: the child count, conditioned on the internal
tag; eg., NP → 3.

Word Count: pair of the SIZES and total number
of words under this constituent.

Boundary Heads: pairs of the first and last head
in the constituent.

POS-Counts: a scheme of features that count
the number of children whose part of speech tag
matches a given predicate. There are six of these:
(1) children whose tag begins with N, (2) children
whose tag begins with N but is not NP, (3) children
which are DTs, (4) children whose tag begin with V,
(5) children which are commas, (6) children whose
tag is CC. In this case, we get a count of 1 for rules
(2) and (3), and 2 for rule (1).

Lex-Tag/Head Pairs: same as HEAD PAIRS, but
where lexical items are used instead of POS tags.

Special Tag Pairs: count of the lexical heads to
the left and right of leaves tagged with each of POS,
CC, IN and TO.

Tag-Counts: another schema of features that
replicates some of the features used in the maxi-
mum entropy tagger. This schema includes all the
original maximum entropy tags, as well as a feature
for each maximum entropy tag at position i, paired
with (a) the part of speech tag at position i, i−1 and
i + 1, (b) the word at position i, i − 1 and i + 1, (c)
the part of speech + word pair at those positions, (d)
the maximum entropy tag at that position.

3.3 SVM Training
We develop three reranking systems, differentiated
by the amount of training data used. The first,
RR1, is trained on the validation part of the train-
ing set (20% of sections 15-18). The second, RR2.
is trained on the entire training set through cross-
validation (all of sections 15-18). The final, RR3 is
trained on the entire Penn Treebank corpus, except
section 20.

Training the reranking system only on the valida-
tion data (RR1) results in only a marginal gain of
overall f-score, due primarily to the fact that most
of the features use lexical information to prefer one
bracketing over another. The validation data from
sections 15-18 gives rise to 2, 012 training instances
and 362, 415 features. In order to train the reranking
system on all of the training data (RR2), we built
five decoders, each with a different 20% of the train-
ing data held out. Each decoder is then used to tag
the held-out 20% (this is done so that the tagger does
not do “too well” on its training data). This leads to
8, 935 sentences for training, with a total of 1.1 mil-
lion features. Training on all the WSJ data except
section 20 (RR3) gives rise to 39, 953 training in-
stances and a total of just over 2.1 million features.
These examples give 1, 462, 568 rank constraints.

4 Results
We compare our system against those reported in
the literature. In all, the evaluation is over 2, 012
sentences of test data. In Table 1, we display the re-
sults of state-of-the-art systems, and the system de-
scribed in this paper (both with and without rerank-
ing). The upper part of the table displays results
from systems which are trained only on sections 15-
18 of the WSJ. The lower part displays results based
on systems trained on more data.

System BR BP BF CB
TKS99 76.1 91.3 82.8 0.14
TKS02 78.4 90.0 83.8 -
TAG 81.0 86.0 83.4 0.26
RR1 82.1 88.8 85.3 0.18
RR2 82.7 89.8 86.1 0.14
COL03NP 68.6 68.9 68.7 0.91
COL03Full 88.2 87.7 87.9 0.31
CHUNK 73.0 100.0 84.4 -
COL03All 88.0 89.8 88.9 0.18
KD00 79.3 88.5 83.7 -
RR3 84.3 90.8 87.4 0.12

Table 1: Results on test data. The systems in the
lower half are not directly comparable, since they
were either trained or tested on different data.

In the table, TKS99 and TKS02 are the sys-
tems of Tjong Kim Sang (1999; 2002). KD00 is
the system of (Krymolowski and Dagan, 2000). All
the COL03 systems are results obtained using the
restriction of the output of Collins (2003) parser.
In particular, the two comparable numbers coming
from Collins’ parser are COL03NP and COL03Full .
The difference between these two systems is that the
NP system is trained on parse trees, with all non-NP
nodes removed. The FULL system is trained on full
parse trees, and then the output is reduced to just in-
clude NPs. COL03All is trained on sections 2-21 of
WSJ and tested on section 23, and is thus an upper
bound, since these numbers are testing on training
data.3 Our RR3 system had the reranking compo-
nent (but not the tagging component) trained on all
of the WSJ except for section 20.

The CHUNK row in the results table is the per-
formance of an optimally performing NP chunker.
That is, this is the performance attainable given a
chunker that identifies base NPs perfectly (at 100%
precision). However, since this hypothetical sys-
tem only chunks base NPs, it misses all non-base
NPs and thus achieves a recall of only 73.0, yield-
ing an overall F-score below our system’s perfor-
mance. Note also that no chunker will perform this
well. Current systems attain approximately 94%
precision and recall on the chunking task (Sha and
Pereira, 2002; Kudo and Matsumoto, 2001), so the

3Collins independently reports a recall of 91.2 and preci-
sion of 90.3 for NPs (Collins, 2003); however, these numbers
are based on training on all the data and testing on section 0.
Moreover, it is possible that his evaluation of NP bracketing is
not identical to our own. The results in row COL03Full are
therefore perhaps more relevant.

actual performance for a real system would be sub-
stantially lower.

The four criteria these systems are evaluated
on are bracketing recall (BR), bracketing precision
(BP), bracketing f-score (BF) and average crossing
brackets (CB). Some systems do not report their
crossing bracket rate. All of these metrics are cal-
culated only on NP* and WHNP* brackets.

5 Comparison of Performance
The results depicted in Table 1 show that, when
comparing our system directly to Collins’ parser,
his system tends to achieve significantly higher lev-
els of recall, while maintaining a slight advantage
in terms of precision. This table, however, does not
tell the full story. As is typically observed in these
sort of applications, it is not the case that Collins’
parser is “winning” by a little on all the data, but
rather that Collins’ parser wins on some of the data
and our bracketer wins on some of the data. In this
section, we analyze the differences.

Overall, there are 2, 012 sentences in the test
data. In 558 cases, both the bracketing system and
Collins’ parser achieve perfect precision. In 505
cases, both achieve perfect recall. For the remainder
of the discussion in this section, when discussing
precision, we will only consider the cases in which
not both achieved perfect scores, and similarly for
recall.

In Figure 4, we depict (excluding the mutually
perfect sentences) the percentage of sentences on
which each system is better than the other by a dis-
tance of at least ε. Along the X-axes, the value of ε

ranges from 0 to 20. At a given value of ε, the seg-
mentation along the Y-axes depict (a) along the top
(in yellow where available), the proportion of sen-
tences for which the bracketer’s precision (for the
left hand image) was at least ε of that of Collins’;
(b) in the middle (in red), the proportion of sen-
tences for which Collins’ was at least ε better; and
(c) along the bottom (in blue), the proportion of sen-
tences where the two systems performed within ε of
each other.

As should be expected, as ε increases, the
“Equal” region also increases. However, it is worth
noticing that even at an ε of 20 precision points,
there are still roughly 11% of the sentences for
which one system’s performance is noticeably dif-
ferent from the other’s (and furthermore, that these
are about even). As can be immediately seen from
the right-hand graph, Collins’ parser consistently
outperforms the bracketer in terms of recall. How-

Figure 4: Proportion of sentences for which one system outperforms the other with difference at least ε.

Precision Recall
Tag RR2 COL03 RR2 COL03
NP 21.4 19.8 20.5 21.3
VP 7.49 8.52 8.31 7.57
NN 8.22 7.62 7.43 7.83
IN 6.01 5.89 5.31 6.15
PP 5.90 5.63 5.16 6.03
S 4.96 5.82 5.44 5.15
NNP 6.15 4.79 6.29 5.82

Table 2: Percentage of tags on superior system.

ever, in contrast to the Precision graph, for the
first 10 or so values of ε, these proportions remain
roughly the same (in fact, for a short period, Collins’
actually looses ground). This suggests that there are
a relatively large proportion of sentences for which
our system is performing abominably (with > 10
recall points difference) in comparison to Collins’.
However, once a critical mass of ε > 10 is reached,
the relative differences become less strong.

Since neither system is winning in all cases, in an
effort to better understand the conditions in which
one system will outperform the other, we inspect
the sentences for which there was a difference in
performance of at least 10 (for precision and recall
separately). To perform this investigation, we look
at the distribution of tags in the true, full parse trees
for those sentences. These percentages, for the 7
most common tags, are summarized in Table 2 (for
example, the relative frequency of the NP tag in sen-
tences where the RR2 system achieved higher pre-
cision was 21.4, while for the sentences for which
COL03 achieved higher precision was 19.8).

The first thing worth noticing in this table is that

in general, when one system achieves higher preci-
sion, the other system achieves higher recall, which
is not surprising. However, in the last row, corre-
sponding to proper nouns, the RR2 system outper-
forms the COL03 (this is the “Full” implementa-
tion) in both precision and recall, suggesting that
our system is better able to capture the phrasing
of proper nouns. We attribute this to the fact that
our model is specialized to identify noun phrases,
of which proper nouns comprise a large part. Simi-
larly, the largest gains in recall for COL03 over RR2
are in sentences with many PPs. This coincides with
our intuition about the syntactic parser being better
able to capture long, embedded noun phrases.

6 Conclusion

We have presented a method for performing noun
phrase bracketing, which outperforms competing
methods both in terms of f-score and recall. The
system is based on two separate components: a
maximum entropy-based tagging system and a sup-
port vector machine reranking system. The key
component of the tagging system is that it produces
underspecified tags that are determined only at de-
coding time by bracketing constraints. The tagging
system operates very quickly and can tag and rerank
at a rate of approximately two sentences per second.
The tagger alone achieves an f-score of 83.4. This
score is only 0.4% lower (absolute) than the best re-
ported result to date of 83.8.

After tagging, we have fed 100 best lists into a
support vector reranking system, which performs
global optimization to choose a good bracketing.
Our reranking system is able to increase the f-score
of our bracketing approach from 83.4 to 86.1, im-

proving our performance beyond the best reported
system to date.

As we can see from Table 1, by comparing the
output of our system to that of COL00Full , there is
much in the way of recall to be gained by using a
full syntactic parser. However, this gain comes at
two expenses. First, full syntactic parsers are com-
putationally more expensive to run. Moreover, per-
formance of Collins’ parser degrades significantly
(from 87.9 to 68.7 in f-score) when it cannot take
advantage of other constituent information. This
has a strong influence when one is faced with the
task of moving to a new domain. On the one hand,
our system (as well as the other bracketing systems
cited) requires data to only be annotated at the NP
level in order to achieve high performance. Con-
versely, without full parses, using a parser for learn-
ing NPs is inadequate.

Despite these successes, there is still much that
can be improved upon. While the reranking is
very efficient in the classification phase, training
a support vector reranking system is computation-
ally very expensive. Other well grounded statistical
learning systems might allow us to train this com-
ponent on more data and using more features. We
also hope to be able to improve our system’s perfor-
mance from its current rate of 86.1 (on official data)
and 87.4 (on all data) closer to the n-best optimal,
depicted in Figure 3.

7 Acknowledgments
This work was partially supported by DARPA-ITO
grant N66001-00-1-9814, NSF grant IIS-0097846,
and a USC Dean Fellowship to Hal Daumé III.

References
Srinivas Bangalore and Aravind K. Joshi. 1999.

Supertagging: An approach to alsmost parsing.
Computational Linguistics, 25(2):237–265.

Adam L. Berger, Stephen A. Della Pietra, and Vin-
cent J. Della Pietra. 1996. A maximum entropy
approach to natural language processing. Com-
putational Linguistics, 22(1):39–71.

Thorsten Brandts. 1999. Cascaded markov models.
In Proceedings of EACL 1999.

Eric Brill. 1995. Transformation-based error-
driven learning and natural language processing:
a case study in part of speech tagging. Computa-
tional Linguistics, December.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the First An-
nual Meeting of the North American Chapter

of the Association for Computational Linguistics
NAACL–2000, pages 132–139, Seattle, Washing-
ton, April 29 – May 3.

Michael Collins. 2003. Head-driven statistical
models for natural language parsing. Computa-
tional Linguistics, 29(4), December.

Thorsten Joachims. 2002. Optimizing search en-
gines using clickthrough data. In Proceedings of
the ACM Conference on Knowledge Discovery
and Data Mining (KDD). ACM.

Yuval Krymolowski and Ido Dagan. 2000. Incorpo-
rating compositional evidence in memory-based
partial parsing. In Proceedings of ACL 2000,
Hong Kong.

Taku Kudo and Yuji Matsumoto. 2001. Chunking
with support vector machines. In NAACL.

Franz Josef Och and Hermann Ney. 2002. Discrim-
inative training and maximum entropy models for
statistical machine translation. In ACL 02, pages
295–302, Philadelphia, PA, July.

M.F. Porter. 1980. An algorithm for suffix strip-
ping. Program, 14:130–137.

Lance A. Ramshaw and Michell P. Marcus. 1995.
Text chunking using transformation-based learn-
ing. In Proceedings of the Third ACL Workshop
on Very Large Corpora. Association for Compu-
tational Linguistics.

Erik F. Tjong Kim Sang. 1999. Noun phrase detec-
tion by repeated chunking. In CoNLL-99 Work-
shop, Bergen, Norway.

Erik F. Tjong Kim Sang. 2002. Memory-based
shallow parsing. Journal of Machine Learning
Research, 2:559 – 594, March.

Fei Sha and Fernando Pereira. 2002. Shallow pars-
ing with conditional random fields. In HLT-
NAACL.

