
Scoring Algorithms for Wordspotting Systems

Robert W. Morris and Jon A. Arrowood and Peter S. Cardillo

Nexidia Inc.

3060 Peachtree Rd Suite 730

Atlanta, Georgia 30305-2240

{rmorris,jarrowood,pcardillo}@nexidia.com

Mark A. Clements

Center for Signal & Image Processing

Georgia Institute of Technology

Atlanta, Georgia 30332-0250

clements@ece.gatech.edu

Abstract

When evaluating wordspotting systems, one

normally compares receiver operating charac-

teristic curves and different measures of accu-

racy. However, there are many other factors

that are relevant to the system’s usability for

searching speech. In this paper, we discuss

both measures of quality for confidence scores

and propose algorithms for producing scores

that are optimal with respect to these criteria.

1 Introduction

In order to evaluate any system, it is useful to have objec-

tive quality measures that can be automatically applied to

systems for comparison. For wordspotting systems, these

measures are oriented towards recall accuracy. Most of

these measures are based on receiver operating character-

istic (ROC) curves and functions of these curves. How-

ever, there are many other factors that are relevant to the

systems usability.

When a user enters a query to the Nexidia wordspot-

ter (Clements et al., 2001), the system returns a sorted re-

sult list that marks the times where the query matches the

audio. In addition, scores are associated with each result.

These scores are related to the likelihood that the tagged

audio matches the query. Although this score gives an

indication of the strength of the match, users have had

difficulty interpreting the scores.

We found that most users want to use the score in one

of two ways. The first application is to provide a score

threshold for monitoring applications. Alternatively, peo-

ple also assume that the score reflects the probability that

the tagged audio segment is actually a match.

However, without any objective quality measure of

these scores, it was difficult to evaluate different score

generation algorithms. In this paper, we discuss both

measures of quality for confidence scores and propose

algorithms for producing scores that are optimal with re-

spect to these criteria.

2 Assumptions

In order to derive a scoring algorithm, a key assumption

must be made by the wordspotting algorithm: each match

must have a numeric score associated with it. In addition,

there must be some theoretical basis for an additive de-

composition of this score. This decomposition is given

by

R(q) =

L
∑

l=1

R
(q)
l , (1)

where R(q) is the score returned by query q, and R
(q)
l is

the score associated with the lth phoneme in the query.

With this assumption, we also assume that these compo-

nents can be modeled with a Gaussian distribution with

dependence on whether the match is truly a hit or a miss.

The distributions are then given by
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where S
(q)
l is the lth phoneme in query q. In this model,

the means, µ are dependent on the phoneme, but the vari-

ance, σ2, is not. Using the additive model, the raw scores

are distributed by
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3 Performance Measures

We propose two scoring evaluation measures. In each of

these methods, the raw score is modified by some scoring



function F (). The first measure evaluates a scoring algo-

rithms usefulness for setting detection thresholds. This

method assumes that the scoring function calculates the

cdf of the missed score distributions. The measurement

is based on the Kolmogorov-Smirnov test statistic, which

is given by
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where R
(i)
M are the raw scores for the false alarms in de-

scending order.

A metric for measuring scoring algorithms based on

result confidence is given by
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where NM and NH are the number of hits and misses.

This value is equal to zero when all hits are scored to one

and all misses are scored as zero. On the other hand, B is

equal to 0.5 if F (R) is set to 0.5 regardless of the input.

4 Algorithms

If one is interested in setting a detection threshold based

on false alarms per hour, then one can set the score using

the cumulative density function of the misses. This yields

the score

FC

(

R(q)
)

= Pr
(

x < R(q)
)

= Q

[

1√
LσM

(

R(q) −
L

∑

l=1

µM

(

S
(q)
l

)

)]

, (8)

where Q is the cdf of the unit normal distribution. To set a

threshold for K false alarms per hour, then the threshold

should be set to

α = 1.0 − K

KT

, (9)

where KT is the range of false alarms per hour that the

miss model is trained.

If one is looking at a list of scores, one might be inter-

ested in the probability that the score was generated by a

true match. By Bayes law, the conditional probability can

be calculated by

FB

(

R(q)
)

= Pr
(

Hit|R(q)
)

=
PHp(R(q)|Hit)

PHp(R(q)|Hit) + (1−PH)p(R(q)|Miss)
,(10)

where PH is the prior probability of a hit.

5 Model Training

Each of the scoring methods described above require

models of how the phonemes relate to the scores through

the parameters: µM , µH , σ2
M , and σ2

H . For this purpose,

a series of hits and misses over the desired range of false

alarms rates must be collected from the wordspotter. With

these scores, it is possible to train the miss and hit mod-

els independently. For this reason, only the miss model

training is described here.

Given the model in Equation 5, the following distribu-

tion holds with N observations:
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The maximum likelihood solution for µM and σ2
M is a

difficult optimization problem. However, if the phoneme

components R
(n)
l from Equation 1, the distribution sim-

plifies to observations of the Gaussian components. By

using the Expectation Maximization (EM) algorithm, the

overall likelihood in Equation 11 can be iteratively max-

imized (Dempster et al., 1977).

Similarly, the training problem can also be viewed in a

Bayesian framework, where a Minimum Mean Squared

Error (MMSE) estimate can be calculated. Like the

maximum likelihood estimate, this requires an iterative

method where the components of the score are generated.

This can be computed by a Gibbs sampler (Gamerman,

1997).

In addition to providing a mechanism for creating

meaningful scores, these models can be useful for other

purposes. For example, one can analyze the mean vectors

to determine which phonemes provide better discrimina-

tion for wordspotting. These can also be used to diagnose

problems in performance that are phoneme specific.

6 Results

The experiments for this algorithm were conducted us-

ing the Nexidia wordspotting system trained on broadcast

quality North American English speech. The effect of us-

ing different scoring algorithms was accomplished using

a nine hour subset of the HUB-4 1996 North American

English broadcast corpus. This data was chosen since this

corpus is widely available and is disjoint from the train-

ing data used for the wordspotter. From this corpus, 8500

search terms were randomly selected from the transcripts.

These queries were equally distributed in length from 4

to 20 phonemes, and then split into a testing and training

set. For each search term, results ranging from the top

score down to the 90th false alarm were collected. The

results from the training terms were then used to train the



score models using both the EM algorithm and a Gibbs

sampler.

These trained models were then then used to gener-

ate both FB and FC for all of the test queries. In addi-

tion, the “Standard” scores were generated. These scores

are what the Nexidia wordspotting product reveals to the

users, and are calculated by scaling the raw scores by

the number of phonemes and mapping these from zero

to one.

The resulting scores from these tests are listed in Ta-

ble 1. As expected, the CFAR based score performed

well on the KS metric, while the Bayesian score was

more accurate on the B measure. Both of these methods

performed much better than the previous ad-hoc “Stan-

dard” method. However, performance improvements on

one measure resulted in very poor scores on the other.

This is due to the fact that the objective of each mea-

sure is very different. In addition, the estimation scheme

had little effect on the overall scores. Since the EM al-

gorithm requires a small fraction of the computation that

the Gibbs sampler requires, this method is preferable.

Table 1: Comparison of different scoring algorithms

based on two scoring measurements

Algorithm
Performance Measure

KS B

Gibbs
CFAR 0.312 0.350

Bayes 0.790 0.197

EM
CFAR 0.322 0.351

Bayes 0.789 0.196

Standard 0.633 0.496

To illustrate the differences between the three scoring

algorithms, the hits and misses were also collected and

plotted in Figure 6. In each subplot, there are histograms

of the hits and misses. In all three cases, most of the hits

tend to have scores close to one. However, the misses

in the standard scoring scheme are concentrated from 0.5
to 0.8. When the Bayes scoring method is used, half of

the hits are very close to 1.0, while half of the misses are

very close to 0.0. The other half of the scores are dis-

tributed along the score range. Finally, the misses from

the CFAR scoring algorithm are distributed evenly along

entire range of scores. Because the normal score assump-

tion does not strictly hold, this distribution is not perfectly

flat at the start and the end, but it is fairly close.

7 Conclusions

Several methods for for both generating and evaluating

scores from wordspotting systems have been proposed.

These methods can operate on any system that generates

scores where an additive model based on phonemes is

valid. The scores that are produced by the algorithms

described can be used to both give intuitive confidence

levels, as well as provide a simple mechanisms for setting

thresholds in monitoring environments. These methods

have been shown to provide superior performance when

compared to their relevant metrics.
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Figure 1: Comparison of different scoring methods on Broadcast English queries. Scores are derived from results

ranging from zero to ten false alarms per hour.


