
HYPERBUG: A Scalable Natural Language Generation Approach

Martin Klarner
University Erlangen-Nuremberg

klarner@cs.fau.de

Abstract

A scalable natural language generation (NLG)
system called HYPERBUG

1 embedded in an
agent-based, multimodal dialog system is pre-
sented. To motivate this presentation, several
scenarios (including a domain shift) are iden-
tified where scalability in dialog systems is
really needed, and NLG is argued to be one
way of easing this desired scalability. There-
fore the novel approach to hybrid NLG in the
HYPERBUG system is described and the scal-
ability of its parts and resources is investi-
gated. Concluding with a few remarks to
discourse generation, we argue that NLG can
both contribute to and benefit from scalability
in dialog systems.

1 Introduction

Scalability in dialog systems is, of course, not only a
matter of the natural language understanding (NLU)
component, but also of the NLG part of the system.2 We
nevertheless see a lot of the effort spent in designing
and implementing spoken dialog systems go into analy-
sis of speech and language; generation is often left aside
or squeezed in afterwards. Therefore an NLG compo-
nent must fit into the existing dialog system framework
and answer to the preset priorities in dialog system de-
velopment.
We present a scalable NLG system embedded in an
agent-based, multimodal dialog system. To this end, we

1 The acronym stands for hybrid, pragmatically embedded
realization with bottom-up generation.
2 In fact, for a working spoken dialog system even more
components have to be scalable, including the speech recog-
nizer, the speech synthesizer and, most important of all, the
dialog manager. But for now we concentrate on the opposi-
tion of NLU and NLG.

first address common scenarios for scalability in dialog
systems and describe the role of NLG in such systems
before focusing on a classification of NLG systems in
general and our hybrid linguistic realization approach in
particular. After giving an overview of our NLG system
we will be able to show how our notion of reversibility
with respect to internal and external resources and the
interaction and combination of shallow and deep NLG
in HYPERBUG work towards and profit from scalability
in our dialog system.

2 Scalability in Dialog Systems

Scalability for spoken dialog systems is needed in sev-
eral situations, including the following scenarios:
1. Enlarging the domain content modifies and extends

the thematic orientation of the domain.
2. Refining the domain language extends the linguis-

tic coverage and expressibility of the domain.
3. Changing the application domain refers to usually

both of the first two and can lead to completely new
requirements for a dialog system and its parts.

4. Changing the discourse domain alters the dis-
course type within the same domain.

The common consequence of these four scenarios is
their impact on both NLU and NLG: If scalability is not
biased between these two parts, one cannot expect the
system to be scalable as a whole. Especially in the situa-
tion of a domain shift, the degree of automated knowl-
edge acquisition is an important issue to minimize
costly (both in terms of time and money) manual efforts.
If these are unavoidable for the NLU component, as it
will often be the case in a real-world scenario, at least
the NLG module must automatically benefit from them.

3 NLG in Dialog Systems

NLG itself and for its own can be seen as a way to im-
prove the scalability of a dialog system. (Reiter, 1995)
analyze the costs and benefits of NLG in comparison to
other technologies and approaches, such as graphics,
mail merging and human authoring, and argue for a hy-

brid approach of combining NLG and templates in the
IDAS system. Generally speaking, the application of
NLG techniques in a real-world system must be justified
with respect to linguistic and economic requirements.
If templates are used, a smart approach is needed in all
scenarios mentioned in section 2 to avoid being forced
to completely redesign at least the data part of the sys-
tem output component. Nevertheless, fielded dialog
systems often settle for a shallow generation module
which relies on canned text and templates because of
limited financial means and linguistic knowledge.

3.1 NLG and Dialog Management

In our spoken dialog system (Bücher et al., 2001), the
dialog manager (DM) is responsible for the integration
of user utterances into the discourse context. Moreover,
the DM initiates system answers to user’s questions and
system error messages if a user’s goal is unsatisfiable or
a system task cannot be fulfilled. But these system ut-
terances must be verbalized as well, i.e. translated from
abstract semantic representations to natural language
sentences. This task is not placed within the DM, but
“outsourced” to a component with adequate linguistic
competence, the NLG module. This way, the DM can be
designed completely amodal, i.e. it does not need to
have any linguistic knowledge. Moreover, we can see
that scenario 4 in section 2 can be separated into a lin-
guistic and a dialog part. The first part corresponds to
scenario 2, the second is covered by the DM in our sys-
tem; hence we may skip scenario 4 for the remainder of
this paper.

3.2 Reversibility in dialog systems

Given a spoken dialog system in general and an NLG
component in such a system in particular, we consider
reversibility a central means to allow for scalability.
Considering reversibility, we want to introduce two dis-
tinctions: We discriminate between reversibility of al-
gorithms and reversibility of data on the one hand and
between static (at developing time or at compile time)
and dynamic reversibility (at runtime) on the other
hand. In this terminology, reversibility of data means re-
using existing system resources by the NLG component.
We can classify NLG resources into two groups: The
language analysis part contains the (syntactic and se-
mantic) lexicon, the morphology component, and the
grammar, while the DM part comprises the discourse
memory, the domain model, and the user model.3

3 For a different classification of knowledge resources for
text planning, see (Maier, 1999).

4 Scalability in tactical generation

We focus on a special part of generation, the tactical
generation or linguistic realization, according to the
classification in (Reiter and Dale, 2000)4. We are able to
do so mainly because, as mentioned in 3.1, the DM is
responsible for content determination in our system.
This leaves the realization task for the NLG component
(besides some microplanning, which has to be per-
formed as well).

4.1 A taxonomy of existing systems

In this section we will classify existing tactical genera-
tion systems into three groups and address problems
with scalability in each one of them.
Shallow generation systems form the first group; e.g.
COMRIS (Geldof, 2000). The approach taken there
relies on canned text and templates, and the domain
dependency of these constructs is inherent. Therefore, in
scenario 3 of section Fehler! Verweisquelle konnte
nicht gefunden werden., once a domain shift is pro-
jected, the whole data part of the NLG component must
be redesigned from scratch. In scenarios 1 and 2 the
existing resources must be extended only, but even this
can become a hard task if the existing template database
is large enough.
Deep generation systems make up the second group, e.
g. KPML (Bateman 1997); they often suffer from large
overgenerating grammars and slow processing time.
Also often well-founded linguistic knowledge is re-
quired to create and maintain the grammars needed.
Their problems with scalability arise primarily in sce-
narios 1 and 2, when thematic or linguistic coverage
must be increased.
The third group, “modern” generation5 systems ide-
ally avoid the shortcomings of both of the above men-
tioned classical approaches. We distinguish between
three types here: NLG with XSLT (Wilcock, 2003),
which is basically template-based generation from XML
input; stochastic approaches like (Oh and Rudnicky,
2000), where the deep generation grammar is replaced
by a stochastic language model, and hybrid generation
approaches like D2S (Theune et al., 2000), which
bridges the gap between NLG and speech synthesis by a
prosody module.

4 Dale and Reiter distinguish between linguistic and struc-
ture realization, the former corresponding to the content and
the latter to the structural part of tactical generation. We find
this distinction somewhat artificial, because the content must
be already determined for realization, but want to use it
anyway to further clarify the task carried out by our system.
5 For these systems, the term “hybrid” is normally used in
the literature, but we want to spare it for hybridization be-
tween shallow and deep generation; see 4.2.

4.2 Hybrid tactical generation

In our terminology, hybrid generation means the combi-
nation of shallow and deep generation in a single sys-
tem; therefore, hybrid systems are a special case of the
“modern” approaches, which were mentioned in the
preceding section and do not necessarily contain any of
the two “classical” approaches. For practical needs, we
focus on how to combine deep (grammar-based) and
shallow (template-based) generation techniques under
the term hybrid NLG. We distinguish three types of
such hybrid NLG systems:
 Type I: Shallow NLG with deep elements
 Type II: Deep NLG with shallow elements
 Type III: Concurring deep and shallow NLG

Here are two examples of existing systems to illustrate
the classification just given: D2S fills slots in syntactic
templates containing derivation trees and therefore can
be classified as a type I system. (Wahlster, 2000) has
separate shallow and deep generation modules resulting
in a system of type III.6

5 The HYPERBUG Approach

5.1 System core functionality

Our approach to realization is to combine all three types
of hybrid tactical generation mentioned in section 4.2 in
a single system called HYPERBUG. The goals for its de-
sign and implementation were:

6 Type II was, though theoretically sound and possible, dif-
ficult to find in existing systems.

1. To re-use existing system resources originally de-
signed for parsing

2. To generate templates at runtime rather than mere
sentences

3. To dynamically reduce the workload on deep gen-
eration and gradually let shallow generation take
over

4. To learn the domain-dependent part of the tactical
generation task while the dialog is running and, ul-
timately, enable automatic adaptation to domain-
shifts

Figure 1 shows the system core of HYPERBUG. As a
shallow generation component, we implemented a pow-
erful template engine with recursion and embedded
deep generation parts, including a lexicon, a morphol-
ogy component, inflection, and constituent aggregation,
resulting in a system of type I in our classification.
For the deep generation branch, we decided to settle for
a combination of a microplanning and a realization
component: The first module, a “sentence planner”, in
essence converts the input discourse representation
structure (DRS, Kamp and Reyle, 1993) which is pro-
vided by the DM into a different semantic representa-
tion, the extended logical form (ELF) 7 . This ELF
structure serves as input for the second module, a modi-
fied and improved version of bottom-up generation
(BUG, van Noord, 1990) in Java, using a unification-
based grammar with feature structures. We also incor-
porated elements of shallow generation in our version of
BUG: Surface text parts, e.g. proper nouns, may occur
in the semantic input structure, the ELF. The precom-

7 The extensions allowed (as compared to a conventional
LF) include syntactic functions like tense and mode, topical-
ization information and subordination clause type.

Figure 1: System core of HYPERBUG

HYPERBUG

� � � �

����� ����	

 ������������� ���
� �����

� ������� � ��!

"#	%$�� &'� (*)
+,(-��.�/ 	

01	-243�/ 5-67	98�:;&<6	%2
shallow generation

>=>= ! � ���?��� � �

@= ! � �����

Legend

serves as resource for transmits data to

A�8�	-)�67	%)�$�	
B?/ 5-)�)�	-��A

 ����<�����C�� ���
D-E%F G�HJI !

B�5*6K6	%�J)
+,5-67$�L��)��

01	-243�/ 5%6	
"#5%675-M�5-&<	

8�:;)�675-$�67� $
N;	%5-/ � O<5-67� (-)

 P�� � � ���RQCSK�
T �������� � � ���K!

UWVKX
X�Y>Z<[\[,Z'Y

deep generation

�W]_^

DRS

surface
structure

piled exception lexicon is searched first, whenever a
proper noun occurs in the LF8. Thus, we get a type II
system.
Links between shallow and deep generation are pro-
vided in two ways: At first, a decision module analyzes
the input and invokes the appropriate realization branch,
making HYPERBUG a system of type III. Stage 1 of this
decision module is to use shallow generation as default
and deep generation only as a fallback strategy. Stage 2
uses keyword spotting techniques in the input XML
structure with XPATH and a lookup in an index table
containing references to available canned text and tem-
plates. For stage 3, a planning procedure makes use of
the speech act, the discourse situation and the user
model to ensure that the most appropriate processing
branch is selected; in extension of the approach for text

8 Proper nouns are indicated simply by capitalizing them.

planning presented in (Stent, 2001), we have applied
Conversation Acts Theory (Poesio, 1994) to linguistic
realization here.
Not only do we combine all three types of hybrid reali-
zation in our system, but we also interleave shallow and
deep generation in another way: At last, after the com-
plete utterance has been generated, a “bridge” between
shallow and deep generation implements a feedback
loop from BUG to the template system. This type of
“bootstrapping” 9 is mainly responsible for the novel
approach taken in HYPERBUG.
Figure 1 depicts, besides the system core, also the first
two parts of the “bootstrapping” procedure developed in
HYPERBUG.

9 We use the term “bootstrapping” mainly as an analogy to
classical bootstrapping procedures, hence the quotation
marks.

HYPERBUG

�

�������	��
��
�� � ��� ���
����� � �����������

����� ����� �!� " #!�%$
��#!&�'�(��� " #!��)

*,+ ��- � �
�� � ��� ���

. � . �

/10 ���
 ��2 � -

.

3�45����6�7
3�89�:�:7 � 0	+ 0* ��6 + 0	+ �5�

 ��25; - �

*,+ ��- � �
 �=<>��� 8

?A@CBED9F�GEHI@CJ1K9L

M ��<N4 - � �	�O3:8 0 �:��<

P�K9Q9F�R�@CG

- + � � ; + 0 � + 6
4 � � �

� 454 - + S
6 � � + ���
4 � � �

TVU�WAW,X:Y�X:Z
[�X�\ U]=^�_ U:`

a bAbNcedVf9gihjdekmlAnNoIkCpqgid lqril>ktsucVvxwCyzv

shallow generation

{%d lAyz|Ade}Ch	def~ril>ktsucVvxwCyzv

oIde}Cfmk�|C�9}1v�rxl�kisucVvxwCyzv

�������)%�C�����1� " (���

v���h	v���l>gic

� v�l>v��9gih	dek9l

��ktw�|AcVv

Legend

serves as resource for transmits data to corresponds to

(1) KQML + DRS

(3a)
sentence

+ wave files

(2b)
DRS

(2a)
DRS

(2c)
ELF

(3b)
sentence

���j���	�=���
\ �j�	�

� U:���:U	�

�mT��
T�U	��_ ^��j]

M ��<z4 - � �	�
*,� � ��� ��0 �

�=+ � � ; + 0 � + 6
� � �=- + 	� � + ���
��¡�#!� � #!&�¢ �V'
� ����������� " #!��)

��TV�
����X�WAW1X	�

deep generation

Figure 2: System resources of HYPERBUG

(I) BUG passes the generated derivation tree to the
bridge, where it is converted into a template.
(II) The bridge sends the template to the template sys-
tem where it is stored for further use and to the decision
module where a reference is saved in the index table.
This way, the next dialog turn with similar semantic
input can be realized faster using a template without
having to invoke the deep generation branch again.

5.2 Resources and reversibility

Extending our description from the core functionality
explained in the previous section, we now turn our at-
tention to the resources used in HYPERBUG. Figure 2
gives an overview of the internal and external resources
of HYPERBUG and their usage.
The linguistic knowledge is contained in the system
lexicon and the morphology component. The former can
be distinguished further into a valency lexicon contain-
ing case frames and a lemmata lexicon for domain ex-
ceptions10. These exceptions are compiled into the NLG
lexicon used by both the shallow and deep generation
branch, resulting in a static reversibility of data. The
morphology component is separated from the core lexi-
con and implemented as a server which can both ana-
lyze and generate and is consequently used for parsing
and generation. As a server with a uniform query inter-
face, from the outside it looks like it were algorithmi-
cally reversible, but internally the algorithms for parsing
and generation are implemented differently, resulting in
a dynamic reversibility of data, because identical data
are used and the processing direction is decided at run-
time in the query sent to the server.
A separated module called context manager (CM) is
responsible for sentence-spanning processing: It per-
forms macro-aggregation11 and completion of underspe-
cified utterances from the DM. For this task, access to
the dialog memory is required, which is performed indi-
rectly via a DM request12.
The templates are stored in a database which corre-
sponds to the grammar in the deep generation branch.
Unfortunately, the chunk grammar used for analysis is
insufficient for generation13, resulting in a lack of even
static reversibility: In this case, the requirements for
robust parsing differ too much from the ones for vari-
able NLG.

10 The domain independent lexicon entries are derived from
WORDNET synsets.
11 By this term we mean aggregation on the sentence level,
as opposed to micro-aggregation which occurs between con-
stituents.
12 In the current implementation of our system, the dialog
memory is only accessible this way.
13 The chunk grammar does, of course, not contain phrase
rules up to the sentence level.

The domain model is divided into a linguistic and an
application-specific part. Only the linguistic part is used
in HYPERBUG, mainly for substitution of synonyms,
hyperonyms and hyponyms to enlarge variability in
lexical choice, a part of microplanning also handled by
our approach to NLG.
The processing steps in the system are as follows:
(1) The dialog manager sends to HYPERBUG a KQML14
message with the semantic representation of the system
utterance to be realized (a DRS encoded in an XML
structure), enriched with pragmatic information such as
sender, KQML speech act, and pragmatic dialog act.
(2) The decision module determines, based on linguistic
and pragmatic information (such as the speech act and
the user model), whether shallow or deep generation is
(more) appropriate to process the message and feeds it
(a) to the template system or (b) to the deep generation
branch (or to both of them, as a fall-back strategy).
(3 a) The template system passes the generated surface
structure with additional information 15 to the speech
synthesis agent16, including wave files of utterance parts
which were already synthesized before.
(3 b) BUG passes the generated surface structure with
additional information to the speech synthesizer.
There is also a third bootstrapping aspect depicted in
Figure 2:
(III) The synthesizer agent returns the synthesized wave
files to the template system to enhance the stored tem-
plates. This way, the synthesizer does not have to pro-
cess identical utterance parts more than once, thus
increasing the efficiency in synthesis and the real-time-
capacity of the system. 17

5.3 Scalability in HYPERBUG

After giving an overview of our NLG system, we will
now address scalability issues in its parts and resources.
Template system. Templates in HYPERBUG are at least
algorithmically unproblematic: The pattern matching
algorithm is linear complex with the number of entries.
But normally, template systems are poorly maintainable
and need to be rewritten from scratch after a domain
shift. We try to overcome this difficulty by isolating a
considerably large domain-independent part, such as
metadialog (ambiguity, coherence state, and plan/action

14 The language KQML is currently used for agent commu-
nication in our system, but we are in the process of transition
to FIPA-ACL.
15 sentence accent to influence prosody generation in the
synthesizer and deixis to synchronize textual output with the
avatar in our multimodal system
16 in essence a wrapper agent around the open-source syn-
thesizer MBROLA
17 System profiling has shown a considerable amount of
processing time of the generation component going into syn-
thesis with MBROLA.

state), greeting, and default messages18, avoiding much
of the effort needed in scenario 3. Scenarios 1 and 2, on
the other hand, are treated in our template system by
using modularity via inclusion: The templates are recur-
sive so that we can easily extend and refine the existing
database. All in all, we can state that relatively few new
entries are required for our template system in all three
scenarios 1-3.
Lexicon and morphology component. The lexicon and
the morphology component are also algorithmically
unproblematic, as they are linear complex with the num-
ber of entries. Furthermore, we were able to re-use a
large part of the existing system resources initially de-
signed for parsing (i.e. the exception lexicon and the
morphology server). We can summarize that, for these
two components, NLG automatically grows with NLU,
and that no NLG-specific effort is required in the first
three scenarios mentioned above.
Grammar. For the deep generation branch, the gram-
mar can lead to algorithmic problems: The algorithm
has exponential complexity, but only in the number of
categories within the rules. However, this number is
finite with a low upper bound. The algorithm has linear
complexity in the number of words, just like the under-
lying lexicon does. Disjunctive unification can cause
problems, but not if it is restricted to simple features, as
it is in our system. Anyway, a large part of the rules can
be re-used in all three scenarios19, but a proper grammar
organization is required for the inevitable manual main-
tenance.
Hybrid approach. The central argument for the scal-
ability of HYPERBUG, however, lies in its special hybrid
design: The decision module before and the bridge after
the two generation branches constitute the bootstrapping
approach which continually improves the system per-
formance in terms of efficiency and linguistic coverage
at runtime (useful for scenarios 1 and 2) and enables
automatic adaptation to domain shifts (scenario 3).
Speech synthesis. HYPERBUG has a built-in feature ena-
bling intrasentential multilingual speech synthesis 20 ,
rendering the system scalable in terms of language
changes. The second aspect of scalability within speech
synthesis is the other “bridge” between this external
module and the template system which gradually im-
proves the system response time in all three scenarios.
Pragmatic resources. The pragmatic resources com-
prise the dialog memory, the domain model and the user
model. For the domain model, it is possible that new

18 i.e. ok and error messages, the latter tending to be rather
domain-specific, though
19 This is, of course, the inherent advantage of deep over
shallow NLG.
20 Basically, lexical information about the language of a
proper noun (e.g. a person’s name) is included in the output
to the synthesizer which uses this information to switch be-
tween target languages, even within a single sentence.

NLG-specific entries are required in the scenarios
above. But these entries are not a critical factor in terms
of scalability. The complexity of the discourse memory
mainly depends on the dialog length. This is a largely
domain-independent factor and not affected by our sce-
narios. All we can say about the user model is that as a
primarily non-linguistic resource it is not in the focus of
NLG. If it needs to be enriched or refined in scenario 1
and 2 or even redefined in scenario 3, its usage in our
NLG system retains its complexity.
We conclude that the external pragmatic resources can
be extended and re-used without any impact on
HYPERBUG and do therefore not influence the scalability
of our NLG component.
Discourse generation. Finally, we want to briefly ad-
dress some aspects of discourse generation as a way of
scalability in terms of linguistic expressibility. Deictic
expressions are currently hard-coded in special tem-
plates, because they are highly domain-dependent. In
our multimodal system, they must be synchronized with
the other output modalities, such as the avatar perform-
ing deictic gestures. The expected place for anaphora
generation in our system is the CM. As a pragmatic re-
source, the dialog memory is used for this task via the
DM. Pronominal references are enabled by the CM
which checks for appropriate discourse referents to be
pronominalized; they are executed by the sentence
planner which substitutes nouns by matching pronouns
in the LF. The conditions for appropriate (i.e. unambi-
guous) anaphora and replacements of nouns by pro-
nouns are not easy to meet and check. Our current idea
involves a generate-and-test approach, i.e. we want to
tentatively generate an anaphor or a pronoun and use the
analysis part of our dialog system to determine whether
they are ambiguous or not.

6 Related Work

Generally, the method known as explanation-based gen-
eralization from machine learning is comparable to the
bootstrapping approach described here; but normally
learning is achieved by offline training.
In (Neumann, 1997) a training phase with an appropri-
ate corpus is needed, while we perform generation at
runtime without such a corpus. Furthermore, Neumann
extracts complex subgrammars; we generate annotated
surface sentences instead, which are less expressible,
but faster to instantiate. And finally, Neumann performs
a static template choice as opposed to our runtime deci-
sion module which can opt for deep generation based on
pragmatic constraints, even if a semantically appropriate
template is already available.
(Corston-Oliver. 2002) has a machine learning approach
for realization similar to (Neumann, 1997): Transforma-
tion rules are learned offline from examples in a corpus.
Again, a separate training phase is needed beforehand.

(Scott, 1998) can be seen as offline interface generation
using a GUI and therefore as a manual version of the
bootstrapping approach described here, but her system
is used for content determination, not for realization.

7 Conclusion and Further Work

We have presented a hybrid NLG system that can both
contribute to and benefit from the scalability in its em-
bedding multimodal dialog system. Various scenarios
requiring a scalable NLG system where identified and
applied to our system components and resources in or-
der to analyze their scalability.
A prototype of the system is implemented and used in
several different domains, namely home A/V and car
audio management (Bücher, 2001), B2B e-procurement
(Kießling, 2001), and model train controlling (Huber
and Ludwig, 2002), but we need further evaluation of
the requirements for a domain shift and of the user ac-
ceptance to improve the quality of our output language
and speech.
What remains to do on the implementation side? Tech-
nically, we still lack a fully implemented “sentence
planner” with in-depth analysis of the semantic input
structure (which is only processed in a shallow manner
by now), and a separation of pure canned text from
templates for efficiency. Also, the interface to the lin-
guistic part of the domain model which is represented in
description logics must be implemented using an appro-
priate inference machine. Conceptually, we want to
broaden the bridge between shallow and deep genera-
tion, refine the specification of stage 3 in the decision
module, and work out a way to access the user model
directly (currently, it is accessed indirectly via the DM,
just like the discourse memory).

Acknowledgements

The author wants to thank Bernd Ludwig and Peter
Reiss for fruitful discussions and interesting ideas con-
tributing to the research reported in this paper.

References
John Bateman. 1997. Enabling technology for

multilingual natural language generation: the KPML
development environment. Journ. Natural Language
Engineering 3 (1):15-55.

Kerstin Bücher et al. 2001. Discourse and Application
Modeling for Dialogue Systems. Proc. KI-2001
Workshop on Applications of Description Logics.

Simon Corston-Oliver. 2002. An overview of Amalgam:
A machine-learned generation module. Proc. Int.
Natural Language Generation Conference, New
York:33-40.

Sabine Geldof. 2000. Context-sensitivity in advisory text
generation. PhD Thesis, University of Antwerp.

Alexander Huber and Bernd Ludwig. 2002. A Natural
Language Multi-Agent System for Controlling Model
Trains. Proc. AI, Simulation, and Planning in High
Autonomy Systems (AIS-2002):145-149.

Hans Kamp and Ulrich Reyle. 1993. From Discourse To
Logic. Kluwer, Boston/Dordrecht/London.

Werner Kießling et al. 2001. Design and Implementa-
tion of COSIMA - A Smart and Speaking E-Sales As-
sistant. Proc. 3rd International Workshop on
Advanced Issues of E-Commerce and Web-Based In-
formation Systems (WECWIS '01):21-30.

Günther Neumann. 1997. Applying Explanation-based
Learning to Control and Speeding-up Natural Lan-
guage Generation. Proc. ACL/EACL-97.

Gertjan van Noord. 1990. An Overview of Head-Driven
Bottom-Up Generation. In: Robert Dale et al. Cur-
rent Research in Natural Language Generation.
Springer, Berlin/Heidelberg/New York.

Alice Oh and Alexander Rudnicky: Stochastic language
generation for spoken dialogue systems. Proc.
ANLP/NAACL 2000 Workshop on Conversational
Systems: 27-32.

Ehud Reiter. 1995. NLG vs. Templates. Proc. 5th Euro-
pean Workshop on Natural Language Generation
(EWNLG-1995).

Ehud Reiter and Robert Dale. 2000. Bulding Natural
Language Generation Systems. Cambridge Univer-
sity Press, Cambridge, UK.

Donia Scott et al. 1998. Generation as a Solution to its
Own Problem. Proc. 9th Int. Workshop on Natural
Language Generation (INLG-98).

Amanda J. Stent. 2001. Dialogue Systems as Conver-
sational Partners: Applying Conversation Acts
Theory to Natural Language Generation for Task-
Oriented Mixed-Initiative Spoken Dialogue. PhD
Thesis, Rochester, NJ.

Marie Theune et al. 2000. From Data to Speech: A
General Approach. Natural Language Engineering
7(1):47-86.

Wolfgang Wahlster. 2000. Verbmobil: Foundations of
Speech-to-Speech Translation. Springer, Berlin/Hei-
delberg/New York.

Graham Wilcock. 2003. Generating Responses and
Explanations from RDF/XML and DAML+OIL. Proc.
IJCAI-2003:58-63.

