
Constructing Text Sense Representations

Ronald Winnemöller
Regional Computer Centre

University of Hamburg
Hamburg, Germany

ronald.winnemoeller@rrz.uni-hamburg.de

Abstract

In this paper we present a novel approach to map
textual entities such as words, phrases, sentences,
paragraphs or arbitrary text fragments onto artificial
structures which we call “Text Sense Representation
Trees” (TSR trees). These TSR trees represent an
abstract notion of the meaning of the respective text,
subjective to an abstract “common” understanding
within the World Wide Web. TSR Trees can be
used to support text and language processing sys-
tems such as text categorizers, classifiers, automatic
summarizers and applications of the Semantic Web.
We will explain how to construct the TSR tree struc-
tures and how to use them properly; furthermore we
describe some preliminary evaluation results.

1 Introduction

Many important tasks in the field of Natural Lan-
guage Processing (NLP) such as text categorization,
text summarization, (semi-) automatic translation
and such require a certain amount of world knowl-
edge and knowledge about text meaning and sense
(Allen, 1995; R. Cole et al., 1995).

Handling the amount of textual data in the World
Wide Web also increasingly requires advanced auto-
matic text and language processing techniques: suc-
cessful search engines like Google (Google, Inc.,
2004) already employ text retrieval and information
extraction methods based on shallow semantic in-
formation.

There are many methodologies to generate word
sense representations, but efficiency and effectiv-
ity of fully automated techniques tends to be low
(Diana Zaiu Inkpen and Graeme Hirst, 2003). Fur-
thermore, formalisation and quantification of eval-
uation methods is difficult because in general word
sense related techniques are only verifyable through
theoretical examination, application on language or
human judges (Alexander Budanitsky and Graeme
Hirst, 2001), i.e. there is no inherent validation
because there is no direct connection to the world
as perceived by humans. In the case of frequency

based word sense representations corpus related dif-
ficulties arise (number of tagged entities, corpus
quality, etc.). In order to overcome these limita-
tions, we developed a methodology to generate and
use explicit computer-usable representations of text
senses.

A common understanding of the “sense” of words
is defined by the ways the word is used in context,
i.e. the interpretation of the word that is consistent
with the text meaning1 - as summarized by S. G.
Pulman in (R. Cole et al., 1995, Section 3.5). Ex-
tending this definition onto full texts, we introduce
our notion of “Text Sense Representation” (TSR) as
“the set of possible computer usable interpretations
of a text without respect to a particular linguistic
context”2.

TSR Trees provide detailed answers to questions
like “how close are these n words topically related
to each other?”, “are these m sentences really about
the same topic?” or “how much does paragraph x
contribute to topic y?”. They cannot tell e.g. a tele-
phone is a physical artifact, it’s purpose is to enable
distant communication, etc.

TSR Trees are not meant to substitute meaning
acquired through conceptual or linguistic analysis
but are rather aimed at:

• augmenting deeper (linguistic or conceptual)
methodologies by providing additional analy-
sis clues

• standalone usage in generic shallow methods
(e.g. in shallow text categorization) and spe-
cific applications (e.g. anti-spam functionality)

2 Related Work

Our notion of semantics is closely related to the no-
tion of “naive semantics” discussed in (K. Dahlgren

1In this paper, we would like to extend the notion of “Word
Sense” onto “Text Sense”, i.e. texts of arbitrary length

2Allen instead uses the term “logical form” for this kind
of context-independent meaning representation, c.f. (Allen,
1995), p.14



et al., 1989). This article describes “naive se-
mantics” as “a level of world knowledge that is
general and common to many speakers of a lan-
guage”, i.e. commonsense knowledge associated
with words. Naive semantics identifies words with
concepts which vary in type.

A discussion of fundamental corpus-related as-
pects of word senses is provided by Kilgariff (Adam
Kilgariff, 1997). Kilgariff herein questions the use
of word sense disambiguation and concludes that
word senses can only be defined “relative to a set
of interests” and the “basic units of word meanings”
are occurrences of words in contexts. Our notion of
TSR trees aims at aggregating text meaning in it’s
topical context in order to construct a context inde-
pendent representation.

In Literature, there are several strong directions
of representing text meaning or text sense: one
prominent approach uses frame-based representa-
tion languages in combination with first order logic
semantics. The analyzed text is matched against
the frame database in order to construct text mean-
ing representations. An example of this approach is
presented by Clark et. al. (P. Clark et al., 2003).
Dahlgren et. al. present “KT”, a complex text un-
derstanding system based on naive semantics. KT
also uses frames to represent semantic content.

A project that is based on a roughly similar no-
tion of text meaning representation (TMR) concepts
is the µkosmos project (Mahesh, 1996; Kavi Ma-
hesh and Sergei Nirenburg, 1996). It is aimed at the
creation of a machine translation system that uses a
broad-coverage ontology and various input sources
in order to translate english to spanish texts and vice
versa. TMR concepts within µkosmos are hand-
written frame-based data structures. Text meaning
is represented by instances thereof that are derived
by semantic rules from a linguistic rule database.

Frame-based meaning representations are also
the basis of AutoSlog-TS, an information extrac-
tion system that automatically acquires conceptual
patterns from untagged texts, using only a prepro-
cessed training corpus (Ellen Riloff and Jay Shoen,
1995). The thusly constructed concepts can be seen
as text meaning representations.

Approaches of computing text meaning similar-
ities include using web directories for generating
path-shaped data structures for text categorization
(Fabrizio Sebastiani, 2003; Giuseppe Attardi et al.,
1998). Sebastiani herein purports his efforts in by
mining the structure of both web “catalogues” (web
directories) for extracting category labels and min-
ing web page structure for the actual classification
task. This is an example for using path- and graph

based methods rather than frame based structures.
Another example would be the methodology de-
scribed in this article.

3 TSR Trees

In this Section we will informally describe our two
algorithms for constructing Text Sense Representa-
tion Trees. The first algorithm builds “initial” TSR
trees of single input words or very short phrases
(Section 3.1), the second generates “derived” TSR
trees for arbitrary texts from pre-computed TSR
trees.

3.1 Building Initial TSR Trees

The algorithm for building initial TSR trees is based
on the retrieval of pages from a “web directory” A
“web directory” (other sources use the term “web
catalogue” (Fabrizio Sebastiani, 2003)) is a brows-
able taxonomy of web pages. These web pages are
parsed and category descriptions and weight values
are extracted from them. The extracted information
is then merged into term-specific TSR trees, option-
ally normalized and pruned.

In the following explanations we will use the no-
tions “input term”, “input word” and “input phrase”
as follows: An input term is any text that is used
as input to an algorithm or program. An input
word is any singular word that is an input term. A
word is defined as sequence of alphanumeric sym-
bols not interrupted by whitespace. An input phrase
is any sequence of input words that are separated by
whitespace or other non-alphanumeric characters.

Our algorithm takes single words or very short
phrases as input terms and assumes that every part
of the input phrase has pragmatic and semantic rel-
evance. Input term selection is therefore a funda-
mental prerequisite in this context.

The output of our algorithm consists of a tree
structure of labeled and weighted nodes. The la-
bels are short phrases that provide some meaningful
context while the weights are simple integer num-
bers. Each tree node has exactly one label and one
weight attached to it.

The following five steps will explain how to gen-
erate initial TSR Trees:

a. Retrieval The input term is redirected as input
to a web directory. 3

3Since our prototype was based on the “Open Directory
Project” (ODP), consisting of a web directory and a search en-
gine (Netscape Inc., 2004), we will refer to this particular ser-
vice throughout this article and use it as implementation data
source. Nonetheless, our algorithm is not restricted to the ODP
but can use other web directories like Yahoo Inc. (Yahoo Inc.,
2004) or even internet newsgroups.



Figure 1: Category Path Listing for “account” ex-
ample (excerpt)

Figure 2: TSR tree for “account” example (excerpt)

The web directory to use is not assumed to meet
strict requirements in terms of sensible category la-
bels, balanced branches, etc. but can be any taxo-
nomic structure provided it can be transformed into
weighted paths and is large enough to cover a sub-
stantial subset of the target language.

Outcome of this redirection is a HTML-formatted
list of categories including the number of hits for
each category.

b. Tree Construction The lines of the output
list returned by the web directory are then parsed
and converted into a sequence of weighted category
terms. Because each sequence represents a different
contextual use of the word (in the symbolic sense),
each sequence also represents a different sense of
that word in that topical context.

Each term contains a singular category path label
and the number of query hits within that category.
An excerpt of the account example terms is exem-
plified in the Figure 1:

After that, all terms are merged into a single hier-
archical tree with weighted and labeled nodes. Fig-
ure 2 provides an example hereof.

The resulting tree then reprenrepresentsts the in-
put text phrase. Even though the uniqueness of
this representation cannot be guaranteed in theory, a
clash of two different terms representation is highly
unlikely.

The tree generation process obviously fails if the
input term cannot be found within the web directory
and hence no categorical context is available for that
term.

Figure 3: The complete (unpruned) “account” TSR
tree

Figure 4: Pruning the “account” TSR tree by thresh-
old 5%

c. Normalization In order to enable uniform pro-
cessing of arbitrary trees, each tree has to be “nor-
malized” by weight adjustment: The sum of all node
weights is computed as 100 percent. All weights are
then recalculated as percentage of this overall tree
weight sum. The sum weight is attached to the TSR
tree root as “tree weight”.

d. Node Pruning (optional) Due to the nature of
the underlying web directory, there are sometimes
false positives in wrong categories, i.e. when a term
is used in a rather esoteric way (e.g. as part of a
figure of speech, etc.).

In order to sort out such “semantical noise”,
“insignificant” nodes can be deleted using a com-
mon heuristic. Some preliminary experiments have
shown that using a certain threshold on the node
weight percentage is a good heuristic. An example
of a processed TSR tree is shown in Figure 4. while
the corresponding unprocessed TSR tree is depicted
in Figure 34

e. List Transformation (optional) It is possible
to transform a TSR tree into a list: by iterating the
TSR tree and selecting only the nodes with the high-

4The labels within this figure might be printed too small to
read but it is the shape of the structure that is important rather
than individual node labels.



Figure 5: List representation of “account” example
(from excerpt)

est weight at each respective depth, a TSR list is
easily created. This list represents the most com-
mon meaning of the input term. Since this mean-
ing is applicable in most cases, sufficiently robust
algorithms may use these lists successfully, e.g. for
simple text classification purposes. An example list,
derived from the “account” example (Figure 2), is
depicted in Figure 5.

f. External Representation (optional) Lastly,
the tree is converted into an external representation
in the RDF (O. Lassila and R. Swick, 1999) lan-
guage. We chose this particular paradigm because it
is an open standard and well suited for representing
graph and tree based data. Furthermore, a number
of tools for dealing with RDF already exist – RDF
is one of the basic building blocks of the Semantic
Web (O. Lassila and R. Swick, 1999) and we ex-
pect RDF based TSR trees to be of great use in that
domain (e.g. for classification and information ex-
traction).

Summary In this section we presented the con-
struction of computer usable complex TSR trees by
utilizing an underlying web directory containing ex-
plicit world knowledge. The generated trees are our
basic building blocks to represent the “sense” of the
input term in a programmatically usable way.

The construction of a TSR tree can therefore be
seen as the result of a (shallow) text “understand-
ing” process as defined in (Allen, 1995).

3.2 Constructing Derived TSR Trees

TSR trees can also be constructed by merging ex-
istent TSR trees. This process provides means of
dealing with complex phrases: through adding TSR
trees (applying the set union operation) it is possi-
bly to acquire TSR trees of arbitrary text fragments,
i.e. to build TSR trees by merging the TSR trees of
its constituents.

By using the derivation process, TSR trees can
be built for arbitrary input texts while maintaining
comparability through the respective tree features
(see 4.1).

Since TSR trees consist of weighted paths, out-
of-context senses of single terms will be eliminated
in the merging process. This makes using TSR trees
in large texts a very robust algorithm (preliminary

experiments have shown that virtually all errors oc-
cur in preprocessing steps such as language identi-
fication, etc.). Superficial investigation showed that
TSR trees generated from complex descriptions are
of higher quality than TSR trees from single terms
(less “semantic noise”, features are more expres-
sive).

On the other hand, the derivation process (in con-
junction with a dictionary) can also be used to build
TSR trees of descriptions of words that cannot be
found in the web directory as a substitute for the
word itself.

It is a matter of current research whether TSR
trees derived from dictionary-like descriptions of
terms are in general preferrable to the use of ini-
tial TSR trees (see the discussion of the “distance”
feature in 4.2).

4 Using Text Sense Representation Trees
In this Section, the term “feature” will be used quite
synonymous to the term “operation”: a feature is a
bit of information that is retrieved by application of
the corresponding operation on a TSR tree.

It is important to note that even though the TSR
trees themselves are very subjective to the underly-
ing web directory, the resulting features do not show
this weakness. Any NLP application implementing
algorithms that are based on TSR trees should not
rely on the tree representations themselves (in terms
of tree structure or node labels), but rather on the op-
erational TSR tree features discussed in this section.

4.1 Simple TSR Tree Features
At first, we define a set of four features that can be
computed for single TSR trees:

1. Tree Weight. The individual tree’s weight can
be interpreted as quantitative measure of the in-
put term within the web directory. By compar-
ing the weight of individual trees, it is possible
to determine which term occurs more often in
written language (as defined by the web direc-
tory itself).

2. Generality. The tree’s breadth factor is an in-
dicator for the “generality” of the input term,
i.e. the broader the tree, the more general the
use of the word in written language and the
more textual contexts the word can be used in.

General terms tend to be not specific to partic-
ular web pages, hence will show up in a num-
ber of pages throughout the web taxonomy. In
contrast, less general terms tend to occur only
on pages specific to a particular category in the
web taxonomy.



3. Domain Dependency. The tree’s depth factor
can be interpreted as “domain dependency in-
dicator” of the input term. Deep structures only
occur when the input term is most often located
at deep subcategory levels in the web directory
which is an indicator for restricted use of that
term within a particular domain of interest.

4. Category Label. Usually the node labels
themselves provide clues to its respective terms
meaning. Even though these clues may be
quite subjective and in some cases misleading
or incomplete, in most cases they can serve as
hints for human skimming of the categories in-
volved. Since these labels are provided as en-
glish words or short phrases, they might them-
selves be subject to initial TSR tree building
(see Section 4.3).

4.2 Advanced TSR Tree Features and
Operations

While operations on single TSR trees provide sim-
ple text processing clues, operations on sets of trees
are much more informative:

1. Difference. A number of “difference” features
are available that can be used to compare indi-
vidual features of a number of trees:

• Tree weight difference

• Breadth difference

• Depth difference

These difference features arise from compar-
isons of the simple TSR tree features, hence
they describe numerical differences between
such values. For example, a high weight dif-
ference shows a high difference between the
respective terms’ general use in language.
It is important to note that the difference fea-
tures are not only usable in respect to com-
plete trees but can be applied to tree branches
as well, e.g. in order to analyze tree behaviour
in certain contexts.

2. Distance. The “distance” feature is com-
puted by counting the number of “edit” op-
erations (add node, delete node, transform
node) it takes to transform one tree into an-
other. This feature is designed much after the
“Levenshtein-distance feature” in the field of
text-processing (D. S. Hirschberg, 1997).

In general, this feature describes a notion
of “semantic relatedness” between two input
terms, i.e. a high distance value is expected

between largely unrelated terms such as “air”
and “bezier curve” while a low value is ex-
pected between closely related terms such as
“account” and “cash”.

The distance feature can be implemented by
applying the set difference operation: the sub-
tracting of TSR tree from one another results
in a number of remaining nodes, i.e. the actual
distance value.

Recent findings have shown though that this
simple procedure is only applicable on trees
of roughly the same number of nodes: obvi-
ously, the computed distance of two words can
achieve a high value when one word is much
more common in language than the other (and
is thusly represented by a much larger tree).
This is true even when these two words are
actually synonyms of each other, or just two
different lexical representations of the same
word, like “foto” and “photo”. In fact, because
the co-occurence of different lexical represen-
tations of the same word in the same text is
quite seldom, is is very likely that in these sit-
uations a high distance will show.

It can be reasoned that these difficulties will
prominently lead to the use of TSR trees de-
rived from term descriptions rather than initial
trees (see 3.2).

4.3 TSR Tree Translation and Corpus Related
Features

In some cases, a need for “higher-level” operations
will occur, e.g. when two agents cooperate, who
use different web taxonomies. Our approach is able
to deal with these situations through translation of
TSR trees of category labels (this can be interpreted
as a simple classification task).

Sometimes, information about TSR tree features
of a corpus as a whole is important. In these cases,
the individual TSR trees of all items that constitute
the respective corpus are merged into one “corpus”
TSR tree. Afterwards, the corpus tree can be an-
alyzed using the features described in Section 4.1
and Section 4.2.

5 Preliminary Evaluation Results
For testing, we set up some preliminary experi-
ments5:We built a prototype system based on a
Tomcat application server6 that was able to gener-
ate TSR trees for lists of input terms and store these

5Exhaustive evaluation is the goal of our current research
efforts

6c.f. http://jakarta.apache.org



trees along with their width, weight and depth fea-
tures in an SQL database. From this database we
extracted the data used in the evaluation process.

We applied each feature explained in Section 4 on
a set of words taken from 4 corpora. These corpora
were constructed as follows:

The Basic corpus: The 100 first terms from a
dictionary of “basic english words” like account,
brother, crush, building, cry, etc. The Med cor-
pus: The 100 first terms from a specialized med-
ical dictionary. The Comp corpus: The 100 first
terms from a specialized dictionary of computer sci-
ence. The Top’ corpus: The 100 terms that were
ranked as “top 100” by the Wortschatz engine (Uwe
Quasthoff, 2000).

We expected terms of the Basic and Top corpora
to show high weight and breadth and low depth val-
ues. We also expected terms from the Med and
Comp corpora to be of high depth but differing in
weight and breadth.

These Expectations were supported by our results
from generating and comparing the respective cor-
pus TSR trees (see below).

For brevity, we will only present a summary of
our findings here.

Single Tree Features Comparing the outcome of
applying single TSR tree features onto the four cor-
pora showed some interesting results:

1. Tree Weight. Terms from the Med corpus are
often not represented within the web directory
which means that a TSR tree cannot be built
for these terms. In general, terms from the
Med corpus have a very low tree weight value
(in most cases < 10). Strangely, some words
such as “by”, “and”, “because” etc. from the
Top corpus also have low ratings. Examining
the actual web directory pages exhibits that
these terms seldom contributed to a web pages
semantic context and thusly were seldom
represented in the web directory. It appears
that all input terms were interpreted by the
ODP search engine as being semantically
relevant, e.g. the word “about” only generated
hits in categories about movie titles, e.g.
Arts:Movies:Titles:A:About a Boy,
Arts:Movies:Titles:A:About Adam,
etc.

This strongly indicates that the input to the al-
gorithm should be a noun or a common noun
phrase.

Terms from the Basic corpus and the Comp
corpus are rated comparably high, e.g. some
common words from the Basic corpus such as

“air”, “animal”, etc. were assigned very high
weight values (weight > 100).

2. Generality. The generality values listing ex-
hibits that indeed mostly general terms are
identified by this feature. Surprisingly, some
terms such as “software” and “design” were
also attributed high generality. Further investi-
gation shows that “generality” is a context de-
pendent feature, e.g. the term “software” is
very general for the computer domain. Only at
the first tree level, a domain independent gen-
erality factor can be attributed to this feature.

We also found that pruning has its greatest ef-
fect on this feature; this leads to the conclu-
sion that the generality feature should be ap-
plied on TSR trees that are not pruned accord-
ing to some threshold.

3. Domain Dependency. Except a very few
cases, all top rated terms are in the Comp or
in the Med corpus i.e. the two specialized cor-
pora. These terms are apparently more specific
in context than the lower rating terms.

Advanced Tree Features Even though we tested
the Multi Tree features on only a few test cases
(about 30), we are confident that future evaluation
will confirm our preliminary results.

1. Difference. Computing the difference of two
or three single TSR trees turned out to be less
informative than the distance value between
these trees but a small number of experiments
lead us to the conclusion that TSR trees of large
text fragments can be compared by difference
features with a conclusive outcome.

2. Distance. Using node labels and weights for
comparison in any case resulted in a 100% dis-
tance. This effect derived from the fact that
even though some trees were similar in struc-
ture, their respective weights differed in every
case. The distance feature therefore is appli-
cable to node labels only or has to introduce
arithmetical means for adjusting weights. Af-
ter correcting the distance algorithm, it worked
as expected on trees with about the same node
number (High distance between e.g. “blood”
and “air”, low distance between “account” and
“credit”). We also achieved reasonable results
on trees differing in node number when apply-
ing a methodology of filtering homonymous
aspects of the respective larger TSR tree (i.e.
by using the node number of the smaller tree as
upper bound and filtering first level tree nodes).



Nonetheless we did not yet manage to find an
absolute numerical expression that describes
the distance feature appropriately.

TSR Tree Translation and Corpus Features

1. Corpus Tree Features.
We have merged all of the terms of each re-
spective corpus in order to generate a “corpus
representation tree”. These corpus representa-
tions can be used to demonstrate certain prop-
erties of the chosen corpora. Our experiments
exhibit that terms from the “general” corpora
(Basic and Top) had a higher generality value
than terms from the more specialized corpora
(Comp and Med). The same results also con-
firm our hypothesis of the WWW occurrence
property of the computer corpus, since it is also
well represented in the web dictionary.

6 Conclusions
In this paper, we have introduced a novel concept of
representing text senses as defined in Section 1.

According to the results of our preliminary eval-
uation, our approach shows the following advan-
tages:

TSR trees can be used to unambiguously repre-
sent text senses. There is a fundamental semantic
relationship between TSR trees and their respective
input terms. Their use is efficient: TSR trees can
– once retrieved and computed – be re-used with-
out necessary modifications. In that sense they can
be used “stand-alone”. Application of TSR tree
features is very fast (one SELECT SQL statement
within our prototype system). Meaning represen-
tation within TSR trees is robust: generating trees
of text fragments7 by merging the TSR trees of its
constituents reduces potential errors.

TSR trees are in close interaction with the seman-
tic context of the input terms, it is therefore possible
to determine topical relationships between textual
fragments.

Nonetheless, our findings also exhibit some
weaknesses and dependencies:

If an input term cannot be found within the web
directory in use, a corresponding initial TSR tree
cannot be built. This is a big problem for lan-
guages that are not well represented in the web di-
rectory (there is a strong bias towards the english
language). Very specialized domains (e.g. med-
ical topics) are also underrepresented in the web
directory and hence problematic for the same rea-
son. Observations show that there is a strong bias

7e.g. sentences, paragraphs or static size text windows

towards computer and business related topics. One
approach to solving these problems would be to use
derived TSR trees in place of directly acquired TSR
trees. It is yet a matter of current research to which
degree intial TSR trees should be substituted by de-
rived TSR trees.

TSR tree usage usually depends on the output
quality of a number of preprocessing steps, e.g.
language identification, noun phrase identification,
morphological analysis, etc.

7 Future Work
We will continue research on the TSR tree topic. In
particular, we will investigate the relationship be-
tween derived and initial TSR trees and in turn we
will find a more appropriate “distance” feature. We
are also evaluating a new feature based on compar-
ing tree labels.

We will also thoroughly evaluate our approach
against application based testing methodologies,
e.g. on text classification. We will also implement a
number of example applications in the fields of text
classification and text summarization.

References
Adam Kilgariff. 1997. I don’t believe in word

senses. Computers and the Humanities, 31
(2):91–113.

Alexander Budanitsky and Graeme Hirst. 2001.
Semantic Distance in WordNet: An experimen-
tal, application-oriented evaluation of five mea-
sures. In Workshop on WordNet and Other Lex-
ical Resources, second meeting of the North
American Chapter of the Association for Compu-
tational Linguists, Pittsburgh.

James Allen. 1995. Natural Language Understand-
ing. Benjaming/Cummings Publish. Corp, CA, 2
edition.

D. S. Hirschberg. 1997. Serial computations of
Levenshtein distances. In A. Apostolico and
Z. Galil, editors, Pattern matching algorithms,
pages 123–141. Oxford University Press.

Diana Zaiu Inkpen and Graeme Hirst. 2003.
Automatic sense disambiguation of the near-
synonyms in a dictionary entry. In Proceedings
of the 4th Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 258–
267, Mexico City.

Ellen Riloff and Jay Shoen. 1995. Automatically
Acquiring Conceptual Patterns Without an Anno-
tated Corpus. In Proceedings of the Third Work-
shop on Very Large Corpora, pages 148–161.

Fabrizio Sebastiani. 2003. Text categorization. In
Alessandro Zanasi, editor, Text Mining and its



Applications. WIT Press, Southampton, UK. In-
vited chapter. Forthcoming.

Giuseppe Attardi, Sergio Di Marco, David F. Salvi,
and Fabrizio Sebastiani. 1998. Categorization by
context. In David Schwartz, Monica Divitini, and
Terje Brasethvik, editors, Proceedings of IIIS-98,
First International Workshop on Innovative Inter-
net Information Systems, pages 1–13, Pisa, IT.

Google, Inc. 2004. Google.
http://www.google.com.

K. Dahlgren, J. McDowell, and E. Stabler. 1989.
Knoweldge representation for commonsense rea-
soning with text. Computational Linguistics,
15(3).

Kavi Mahesh and Sergei Nirenburg. 1996. Mean-
ing representation for knowpedge sharing in prac-
tical machine translation. In Florida Artificial
Intelligence Research Symposium, FLAIRSÂ96,
Special Track on Information Interchange, pages
19–22, Key West, FL.

Kavi Mahesh. 1996. Ontology development for
machine translation: Ideology and methodology.
Technical Report MCCSÂ96Â292, Computing
Research Laboratory New Mexico State Univer-
sity.

Netscape Inc. 2004. Open directory project.
http://dmoz.org.

O. Lassila and R. Swick. 1999. Resource Descrip-
tion Framework (RDF) Model and Syntax Speci-
fication. World Wide Web Consortium.

P. Clark, P. Harrison, and J. Thompson. 2003. A
Knowledge-Driven Approach to Text Meaning
Processing. In Proceedings of the HLT Workshop
on Text Meaning Processing, pages 1–6. ACL
Press.

R. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and
V. Zue. 1995. Survey of the state of the art in hu-
man language technology. http://www.coli.uni-
sb.de/ hansu/publ.html.

Uwe Quasthoff. 2000. Deutscher wortschatz on-
line. http://wortschatz.uni-leipzig.de.

Yahoo Inc. 2004. Yahoo. http://www.yahoo.com.


