
The University of Jaén Word Sense Disambiguation System
*

Manuel García-Vega

Universidad de Jaén

Av. Madrid 35

Jaén, Spain, 23071

mgarcia@ujaen.es

Miguel A. García-Cumbreras

Universidad de Jaén

Jaén, Spain, 23071

Av. Madrid 35, 23071

magc@ujaen.es

M. Teresa Martín-Valdivia

Universidad de Jaén

Av. Madrid 35

Jaén, Spain, 23071

maite@ujaen.es

L. Alfonso Ureña-López
Universidad de Jaén

Av. Madrid 35

Jaén, Spain, 23071

laurena@ujaen.es

*

 This paper has been partially supported by the Spanish Government (MCYT) Project number TIC2003-07158-
C04-04

Abstract

This paper describes the architecture and re-
sults of the University of Jaén system pre-
sented at the SENSEVAL-3 for the English-
lexical-sample and English-All-Words tasks.
The system is based on a neural network ap-
proach. We have used the Learning Vector
Quantization, which is a supervised learning
algorithm based on the Kohonen neural model.

1 Introduction

Our system for SENSEVAL-3 uses a supervised
learning algorithm for word sense disambiguation.
The method suggested trains a neural network us-
ing the Learning Vector Quantization (LVQ) algo-
rithm, integrating several semantic relations of
WordNet (Fellbaum, 1998) and SemCor corpus
(Miller et al., 1993). The University of Jaén system
has been used in English-lexical-sample and Eng-
lish-All-Words tasks.

2 Experimental Environment

The presented disambiguator uses the Vector
Space Model (VSM) as an information representa-
tion model. Each sense of a word is represented as
a vector in an n-dimensional space where n is the
number of words in all its contexts.

The accuracy of the disambiguator depends es-
sentially on the word weights. We use the LVQ
algorithm to adjust them. The input vector weights
are calculated as shown by (Salton and McGill,
1983) with the standard tf·idf, where the documents
are the paragraphs. They are presented to the LVQ
network and, after training, the output vectors
(called prototype or codebook vectors) are ob-
tained, containing the adjusted weights for all
senses of each word.

Any word to disambiguate is represented with a
vector in the same way. This representation must
be compared with all the trained word sense vec-
tors by applying the cosine similarity rule:

ik

ik

ik
sim

xw

xw

xw

·

·
),(= [1]

The sense corresponding to the vector of highest

similarity is selected as the disambiguated sense.
To train the neural network we have integrated

semantic information from two linguistic re-
sources: SemCor corpus and WordNet lexical da-
tabase.

2.1 SemCor

Firstly, the SemCor (the Brown Corpus labeled
with the WordNet senses) was fully used (the
Brown-1, Brown-2 and Brown-v partitions). We
used the paragraph as a contextual semantic unit

 Association for Computational Linguistics
 for the Semantic Analysis of Text, Barcelona, Spain, July 2004
 SENSEVAL-3: Third International Workshop on the Evaluation of Systems

and each context was included in the training vec-
tor set.

The SENSEVAL-3 English tasks have used the
WordNet 1.7.1 sense inventory, but the SemCor is
tagged with an earlier version of WordNet (spe-
cifically WordNet version 1.6).

Figure 1. SemCor context for “climb”.

Therefore it was necessary to update the SemCor

word senses. We have used the automatically
mapped version of Semcor with the WordNet 1.7.1
senses found in WordNet site1.

Figure 2. WordNet artificial paragraph

1
 http://www.cogsci.princeton.edu/~wn/

Figure 1 shows the common format for the all
the resource input paragraphs. For each word, the
pos and sense are described, e.g. “climb\2#1” is the
verb “climb” with sense 1. In addition, it has 158
different words in its context and all of them are
shown like the pair word-frequency.

2.2 WordNet

'Semantic relations from WordNet 1.7.1 were
considered, in particular synonymy, antonymy,
hyponymy, homonymy, hyperonymy, meronymy,
and coordinate terms to generate artificial para-
graphs with words along each relation.

For example, for a word with 7 senses, 7 artifi-
cial paragraphs with the synonyms of the 7 senses
were added, 7 more with all its hyponyms, and so
on.

Figure 2 shows these artificial paragraphs for the
“climb” verb.

3 Learning Vector Quantization

The LVQ algorithm (Kohonen, 1995) performs
supervised learning, which uses a set of inputs with
their correctly annotated outputs adjusting the
model when an error is committed between the
model outputs and the known outputs.

The LVQ algorithm is a classification method
based on neural competitive learning, which allows
the definition of a group of categories on the input
data space by reinforced learning, either positive
(reward) or negative (punishment). In competitive
learning, the output neurons compete to become
active. Only a single output neuron is active at any
one time.

The general application of LVQ is to adjust the
weights of labels to high dimensional input vec-
tors, which is technically done by representing the
labels as regions of the data space, associated with
adjustable prototype or codebook vectors. Thus, a
codebook vector, wk, is associated for each class,
k. This is particularly useful for pattern classifica-
tion problems.

The learning algorithm is very simple. First, the
learning rate and the codebook vectors are initial-
ised. Then, the following procedure is repeated for
all the training input vectors until a stopping crite-
rion is satisfied:

- Select a training input pattern, x, with class
d, and present it to the network

climb\2#1 158 a_hundred\5 1 ab-
sorb\2 1 advance\2 1 ... walk\2 1
want\1 1 warn\2 1 warped\5 1 way\1
2 west\3 1 whip\1 2 whir\1 1
wraithlike\5 1
climb\2#1 45 abruptly\4 1 absence\1
1 ... stop\2 1 switch_off\2 1
there\4 1 tube\1 1 two\5 1 unex-
pectedly\4 1 water\1 1
...
climb\2#2 33 adjust\2 1 almost\4 1
arrange\2 1 ... procedure\1 1 re-
vetment\1 1 run\2 1 sky\1 1
snatch\2 1 spread\2 1 stand\2 1
truck\1 1 various\5 1 wait\2 1
wing\1 1
...
climb\2#3 3 average\2 1 feel\2 1
report\2 1

climb\2#1 10 arise\2 1 come_up\2 1
go\2 1 go_up\2 1 lift\2 1 locomote\2
1 move\2 1 move_up\2 1 rise\2 1
travel\2 1
climb\2#1 3 climb_up\2 1 go_up\2 1
mount\2 1
climb\2#1 5 mountaineer\2 1 ramp\2 1
ride\2 1 scale\2 1 twine\2 1
climb\2#2 7 clamber\2 1 scramble\2 1
shin\2 1 shinny\2 1 skin\2 1 sput-
ter\2 1 struggle\2 1
...
climb\2#5 2 go up\2 1 rise\2 1

- Calculate the Euclidean distance between
the input vector and each codebook vector
||x-wk||

- Select the codebook vector, wc, that is
closest to the input vector, x.

{ }
kc

wxwx −=−
k

min

 [2]

This codebook vector is the winner neu-
ron and only this neuron updates its
weights according the learning equation
(equation 3). If the class of the input pat-
tern, x, matches the class of the winner
codebook vector, wc (the classification has
been correct), then the codebook vector is
moved closer to the pattern (reward), oth-
erwise it is moved further away.

Let x(t) be a input vector at time t, and wk(t) the
codebook vector for the class k at time t. The fol-
lowing equation defines the basic learning process
for the LVQ algorithm.

 [])()()()()1(tttstt
ccc

wxww −⋅⋅+=+ α [3]

Figure 3. Codebook vectors for “climb” domain

where s = 0, if k ≠ c; s = 1, if x(t) and wc(t) be-
long to the same class (c = d); and s = -1, if they do

not (c ≠ d). α(t) is the learning rate, and 0<α(t)<1
is a monotically decreasing function of time. It is

recommended that α(t) should initially be rather

small, say, smaller than 0.1 (Kohonen, 1995) and

α(t) continues decreasing to a given threshold, u,
very close to 0.

The codebook vectors for the LVQ were initial-
ized to zero and every training vector was intro-
duced into the neural network, modifying the
prototype vector weights depending on the correct-
ness in the winner election.

All training vectors were introduced several
times, updating the weights according to learning

equation. α(t) is a monotonically decreasing func-
tion and it represents the learning rate factor, be-
ginning with 0.1 and decreasing lineally:

 () () ()
P

tt
0

1
ααα −=+ [4]

where P is the number of iterations performed in

the training. The number of iterations has been
fixed at 25 because at this point the network is
stabilized.

The LVQ must find the winner sense by calcu-
lating the Euclidean distances between the code-
book vectors and input vector. The shortest
distance points to the winner and its weights must
be updated.

4 English Tasks

The training corpus generated from SemCor and
WordNet has been used to train the neural net-
works. All contexts of every word to disambiguate
constitute a domain. Each domain represents a
word and its senses. Figure 3 shows the codebook
vectors generated after training process for “climb”
domain.

We have generated one network per domain and
after the training process, we have as many do-
mains as there are words to disambiguate adjusted.
The network architecture per domain is shown in
Figure 4. The number of input units is the number
of different terms in all contexts of the given do-
main and the number of output units is the number
of different senses.

The disambiguator system has been used in Eng-
lish lexical sample and English all words tasks.

For the English lexical sample task, we have
used the available SENSEVAL-3 corpus to train
the neural networks. We have also used the con-
texts generated using SemCor and WordNet for
each word in SENSEVAL-3 corpus. For the Eng-

climb\2#1 1921 a\1#0 0.01883
aarseth\1#0 0.03259 abelard\1#0 ...
yorkshire\1#0 0.03950 young\3#0
0.00380 zero\1#0 0.01449
climb\2#2 235 act\1#0 -0.11558
alone\4#0 -0.07754 ... windy\3#0 -
0.00922 worker\1#0 -0.02738 year\1#0
-0.03715 zacchaeus\1#0 -0.02344
climb\2#3 1148 abchasicus\1#0
0.04127 able\3#0 -0.00945 ...
young\3#0 -0.00275 zero\1#0 -0.00010
climb\2#4 258 age\1#0 -0.04180 air-
space\1#0 -0.02862 alone\4#0 -
0.01920 apple\1#0 -0.04242 ...
world\1#0 -0.14184 year\1#0 -0.04113
young\3#0 -0.04831 zero\1#0 -0.06230
...

lish all word task, we have only used the complete
contexts of both SemCor and WordNet resources.
The corpus has been tagged and lemmatized using
the Tree-tagger (Schmid, 1994).

Figure 4. The network architecture

Once the training has finished, the testing be-

gins. The test is very simple. We establish the
similarity between a given vector of the corpus
evaluation with all the codebook vectors of its do-
main, and the highest similarity value corresponds
to the disambiguated sense (winner sense). If it is
not possible to find a sense (it is impossible to ob-
tain the cosine similarity value), we assign by de-
fault the most frequent sense (e.g. the first sense in
WordNet).

The official results achieved by the University of
Jaén system are presented in Table 1 for English
lexical sample task, and in Table 2 for English all
words.

ELS Precision Recall Coverage

Fine-grained 0.613 0.613 99.95%
Coarse-grained 0.695 0.695 99.95%

Table 1. Official results for ELS.

EAW Precision Recall Coverage

With U 0.590 0.590 100%

Without U 0.601 0.588 97.795%

Table 2. Official results for EAW.

5 Conclusion

This paper presents a new approach based on
neural networks to disambiguate the word senses.
We have used the LVQ algorithm to train a neural
network to carry out the English lexical sample and
English all words tasks. We have integrated two
linguistic resources in the corpus provided by the
organization: WordNet and SemCor.

References

Fellbaum, C. 1998. WordNet: An Electronic Lexi-
cal Database. The MIT Press

Kohonen, T. 1995. Self-Organization and Associa-
tive Memory. 2nd Ed, Springer.Verlag, Berlín.

Kohonen, T., J. Hynninen, J. Kangas, J. Laak-
sonen, K. Torkkola. 1996. Technical Report,
LVQ_PAK: The Learning Vector Quantization
Program Package. Helsinki University of Tech-
nology, Laboratory of Computer and Information
Science, FIN-02150 Espoo, Finland.

Miller G., C. Leacock, T. Randee, R. Bunker.
1993. A Semantic Concordance. Proc. of the 3rd
DARPA Workshop on Human Language Tech-
nology.

Salton, G. & McGill, M.J. 1983. Introduction to
Modern Information Retrieval. McGraw-Hill,
New York.

Schmid, H., 1994. Probabilistic Part-of-Speech
Tagging Using Decision Trees. In Proceedings
of International Conference on New Methods in
Language Processing.

T1

T2

T3

TM

...

Sense1

Sense1

SenseN

...

