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Abstract 

This paper describes the architecture and re-
sults of the University of Jaén system pre-
sented at the SENSEVAL-3 for the English-
lexical-sample and English-All-Words tasks. 
The system is based on a neural network ap-
proach. We have used the Learning Vector 
Quantization, which is a supervised learning 
algorithm based on the Kohonen neural model. 

1 Introduction 

Our system for SENSEVAL-3 uses a supervised 
learning algorithm for word sense disambiguation. 
The method suggested trains a neural network us-
ing the Learning Vector Quantization (LVQ) algo-
rithm, integrating several semantic relations of 
WordNet (Fellbaum, 1998) and SemCor corpus 
(Miller et al., 1993). The University of Jaén system 
has been used in English-lexical-sample and Eng-
lish-All-Words tasks. 

2 Experimental Environment 

The presented disambiguator uses the Vector 
Space Model (VSM) as an information representa-
tion model. Each sense of a word is represented as 
a vector in an n-dimensional space where n is the 
number of words in all its contexts. 

The accuracy of the disambiguator depends es-
sentially on the word weights. We use the LVQ 
algorithm to adjust them. The input vector weights 
are calculated as shown by (Salton and McGill, 
1983) with the standard tf·idf, where the documents 
are the paragraphs. They are presented to the LVQ 
network and, after training, the output vectors 
(called prototype or codebook vectors) are ob-
tained, containing the adjusted weights for all 
senses of each word. 

Any word to disambiguate is represented with a 
vector in the same way. This representation must 
be compared with all the trained word sense vec-
tors by applying the cosine similarity rule: 
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The sense corresponding to the vector of highest 

similarity is selected as the disambiguated sense. 
To train the neural network we have integrated 

semantic information from two linguistic re-
sources: SemCor corpus and WordNet lexical da-
tabase.  

2.1 SemCor  

Firstly, the SemCor (the Brown Corpus labeled 
with the WordNet senses) was fully used (the 
Brown-1, Brown-2 and Brown-v partitions). We 
used the paragraph as a contextual semantic unit 
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and each context was included in the training vec-
tor set. 

The SENSEVAL-3 English tasks have used the 
WordNet 1.7.1 sense inventory, but the SemCor is 
tagged with an earlier version of WordNet (spe-
cifically WordNet version 1.6).  

 

Figure 1. SemCor context for “climb”. 

 
Therefore it was necessary to update the SemCor 

word senses. We have used the automatically 
mapped version of Semcor with the WordNet 1.7.1 
senses found in WordNet site1.  

Figure 2. WordNet artificial paragraph 

 

                                                             

1
 http://www.cogsci.princeton.edu/~wn/ 

Figure 1 shows the common format for the all 
the resource input paragraphs. For each word, the 
pos and sense are described, e.g. “climb\2#1” is the 
verb “climb” with sense 1. In addition, it has 158 
different words in its context and all of them are 
shown like the pair word-frequency. 

2.2 WordNet  

'Semantic relations from WordNet 1.7.1 were 
considered, in particular synonymy, antonymy, 
hyponymy, homonymy, hyperonymy, meronymy, 
and coordinate terms to generate artificial para-
graphs with words along each relation. 

For example, for a word with 7 senses, 7 artifi-
cial paragraphs with the synonyms of the 7 senses 
were added, 7 more with all its hyponyms, and so 
on. 

Figure 2 shows these artificial paragraphs for the 
“climb” verb. 

3 Learning Vector Quantization 

The LVQ algorithm (Kohonen, 1995) performs 
supervised learning, which uses a set of inputs with 
their correctly annotated outputs adjusting the 
model when an error is committed between the 
model outputs and the known outputs. 

The LVQ algorithm is a classification method 
based on neural competitive learning, which allows 
the definition of a group of categories on the input 
data space by reinforced learning, either positive 
(reward) or negative (punishment). In competitive 
learning, the output neurons compete to become 
active. Only a single output neuron is active at any 
one time. 

The general application of LVQ is to adjust the 
weights of labels to high dimensional input vec-
tors, which is technically done by representing the 
labels as regions of the data space, associated with 
adjustable prototype or codebook vectors. Thus, a 
codebook vector, wk, is associated for each class, 
k. This is particularly useful for pattern classifica-
tion problems. 

The learning algorithm is very simple. First, the 
learning rate and the codebook vectors are initial-
ised. Then, the following procedure is repeated for 
all the training input vectors until a stopping crite-
rion is satisfied:  

- Select a training input pattern, x, with class 
d, and present it to the network 

climb\2#1 158 a_hundred\5 1 ab-
sorb\2 1 advance\2 1 ... walk\2 1 
want\1 1 warn\2 1 warped\5 1 way\1 
2 west\3 1 whip\1 2 whir\1 1 
wraithlike\5 1 
climb\2#1 45 abruptly\4 1 absence\1 
1 ... stop\2 1 switch_off\2 1 
there\4 1 tube\1 1 two\5 1 unex-
pectedly\4 1 water\1 1 
... 
climb\2#2 33 adjust\2 1 almost\4 1 
arrange\2 1 ... procedure\1 1 re-
vetment\1 1 run\2 1 sky\1 1 
snatch\2 1 spread\2 1 stand\2 1 
truck\1 1 various\5 1 wait\2 1 
wing\1 1 
... 
climb\2#3 3 average\2 1 feel\2 1 
report\2 1 

climb\2#1 10 arise\2 1 come_up\2 1 
go\2 1 go_up\2 1 lift\2 1 locomote\2 
1 move\2 1 move_up\2 1 rise\2 1 
travel\2 1 
climb\2#1 3 climb_up\2 1 go_up\2 1 
mount\2 1 
climb\2#1 5 mountaineer\2 1 ramp\2 1 
ride\2 1 scale\2 1 twine\2 1 
climb\2#2 7 clamber\2 1 scramble\2 1 
shin\2 1 shinny\2 1 skin\2 1 sput-
ter\2 1 struggle\2 1 
... 
climb\2#5 2 go up\2 1 rise\2 1 



- Calculate the Euclidean distance between 
the input vector and each codebook vector 
||x-wk|| 

- Select the codebook vector, wc, that is 
closest to the input vector, x.  
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This codebook vector is the winner neu-
ron and only this neuron updates its 
weights according the learning equation 
(equation 3). If the class of the input pat-
tern, x, matches the class of the winner 
codebook vector, wc (the classification has 
been correct), then the codebook vector is 
moved closer to the pattern (reward), oth-
erwise it is moved further away. 

Let x(t) be a input vector at time t, and wk(t) the 
codebook vector for the class k at time t. The fol-
lowing equation defines the basic learning process 
for the LVQ algorithm. 
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Figure 3. Codebook vectors for “climb” domain 

 

where s = 0, if k ≠ c; s = 1, if x(t) and wc(t) be-
long to the same class (c = d); and s = -1, if they do 

not (c ≠ d). α(t) is the learning rate, and 0<α(t)<1 
is a monotically decreasing function of time. It is 

recommended that α(t) should initially be rather 

small, say, smaller than 0.1 (Kohonen, 1995) and 

α(t) continues decreasing to a given threshold, u, 
very close to 0. 

The codebook vectors for the LVQ were initial-
ized to zero and every training vector was intro-
duced into the neural network, modifying the 
prototype vector weights depending on the correct-
ness in the winner election. 

All training vectors were introduced several 
times, updating the weights according to learning 

equation. α(t) is a monotonically decreasing func-
tion and it represents the learning rate factor, be-
ginning with 0.1 and decreasing lineally: 
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where P is the number of iterations performed in 

the training. The number of iterations has been 
fixed at 25 because at this point the network is 
stabilized. 

The LVQ must find the winner sense by calcu-
lating the Euclidean distances between the code-
book vectors and input vector. The shortest 
distance points to the winner and its weights must 
be updated. 

4 English Tasks 

The training corpus generated from SemCor and 
WordNet has been used to train the neural net-
works. All contexts of every word to disambiguate 
constitute a domain. Each domain represents a 
word and its senses. Figure 3 shows the codebook 
vectors generated after training process for “climb” 
domain. 

We have generated one network per domain and 
after the training process, we have as many do-
mains as there are words to disambiguate adjusted. 
The network architecture per domain is shown in 
Figure 4. The number of input units is the number 
of different terms in all contexts of the given do-
main and the number of output units is the number 
of different senses. 

The disambiguator system has been used in Eng-
lish lexical sample and English all words tasks. 

For the English lexical sample task, we have 
used the available SENSEVAL-3 corpus to train 
the neural networks. We have also used the con-
texts generated using SemCor and WordNet for 
each word in SENSEVAL-3 corpus. For the Eng-

climb\2#1 1921 a\1#0 0.01883 
aarseth\1#0 0.03259 abelard\1#0 ... 
yorkshire\1#0 0.03950 young\3#0 
0.00380 zero\1#0 0.01449 
climb\2#2 235 act\1#0 -0.11558 
alone\4#0 -0.07754 ... windy\3#0 -
0.00922 worker\1#0 -0.02738 year\1#0 
-0.03715 zacchaeus\1#0 -0.02344 
climb\2#3 1148 abchasicus\1#0 
0.04127 able\3#0 -0.00945 ... 
young\3#0 -0.00275 zero\1#0 -0.00010
climb\2#4 258 age\1#0 -0.04180 air-
space\1#0 -0.02862 alone\4#0 -
0.01920 apple\1#0 -0.04242 ... 
world\1#0 -0.14184 year\1#0 -0.04113
young\3#0 -0.04831 zero\1#0 -0.06230
... 



lish all word task, we have only used the complete 
contexts of both SemCor and WordNet resources. 
The corpus has been tagged and lemmatized using 
the Tree-tagger (Schmid, 1994). 

Figure 4. The network architecture 

 
Once the training has finished, the testing be-

gins. The test is very simple. We establish the 
similarity between a given vector of the corpus 
evaluation with all the codebook vectors of its do-
main, and the highest similarity value corresponds 
to the disambiguated sense (winner sense). If it is 
not possible to  find a sense (it is impossible to ob-
tain  the cosine similarity value), we assign by de-
fault the most frequent sense (e.g. the first sense in 
WordNet). 

The official results achieved by the University of 
Jaén system are presented in Table 1 for English 
lexical sample task, and in Table 2 for English all 
words. 

 
ELS Precision Recall Coverage 

Fine-grained 0.613 0.613 99.95% 
Coarse-grained 0.695 0.695 99.95% 

Table 1. Official results for ELS. 

 

EAW Precision Recall Coverage 

With U 0.590 0.590 100% 

Without U 0.601 0.588 97.795% 

Table 2. Official results for EAW. 

5 Conclusion 

This paper presents a new approach based on 
neural networks to disambiguate the word senses. 
We have used the LVQ algorithm to train a neural 
network to carry out the English lexical sample and 
English all words tasks. We have integrated two 
linguistic resources in the corpus provided by the 
organization: WordNet and SemCor.  
 

References 

Fellbaum, C. 1998. WordNet: An Electronic Lexi-
cal Database. The MIT Press 

Kohonen, T. 1995. Self-Organization and Associa-
tive Memory. 2nd Ed, Springer.Verlag, Berlín. 

Kohonen, T., J. Hynninen, J. Kangas, J. Laak-
sonen, K. Torkkola. 1996. Technical Report, 
LVQ_PAK: The Learning Vector Quantization 
Program Package. Helsinki University of Tech-
nology, Laboratory of Computer and Information 
Science, FIN-02150 Espoo, Finland. 

Miller G., C. Leacock, T. Randee, R. Bunker. 
1993. A Semantic Concordance. Proc. of the 3rd 
DARPA Workshop on Human Language Tech-
nology. 

Salton, G. & McGill, M.J. 1983. Introduction to 
Modern Information Retrieval. McGraw-Hill, 
New York. 

Schmid, H., 1994. Probabilistic Part-of-Speech 
Tagging Using Decision Trees. In Proceedings 
of International Conference on New Methods in 
Language Processing. 

 

 

 

 

T1 

T2 

T3 

TM 

... 

Sense1 

Sense1 

SenseN 

... 


