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Abstract 

The development of FrameNet, a large 
database of semantically annotated sen-
tences, has primed research into statistical 
methods for semantic tagging.  We ad-
vance previous work by adopting a 
Maximum Entropy approach and by using 
previous tag information to find the high-
est probability tag sequence for a given 
sentence.  Further we examine the use of 
sentence level syntactic pattern features to 
increase performance.  We analyze our 
strategy on both human annotated and 
automatically identified frame elements, 
and compare performance to previous 
work on identical test data.  Experiments 
indicate a statistically significant im-
provement (p<0.01) of over 6%. 

1 Introduction 

Recent work in the development of FrameNet, a 
large database of semantically annotated sentences, 
has laid the foundation for statistical approaches to 
the task of automatic semantic classification.   

The FrameNet project seeks to annotate a large 
subset of the British National Corpus with seman-
tic information.  Annotations are based on Frame 
Semantics (Fillmore, 1976), in which frames are 
defined as schematic representations of situations 
involving various frame elements such as partici-
pants, props, and other conceptual roles.   

In each FrameNet sentence, a single target 
predicate is identified and all of its relevant frame 
elements are tagged with their semantic role (e.g., 
Agent, Judge), their syntactic phrase type (e.g., 

NP, PP), and their grammatical function (e.g., ex-
ternal argument, object argument).  Figure 1 shows 
an example of an annotated sentence and its appro-
priate semantic frame.   
 
 
 
 
 
 

 
          She  clapped  her hands  in inspiration. 

Frame:        Body-Movement 
 
Frame Elements:   

Agent     Body Part Cause 

       -NP            -NP  -PP 
       -Ext              -Obj -Comp 

 

Figure 1.  Frame for lemma “clap” shown with three 
core frame elements and a sentence annotated with ele-
ment type, phrase type, and grammatical function. 

 
As of its first release in June 2002, FrameNet 

has made available 49,000 annotated sentences.  
The release contains 99,000 annotated frame ele-
ments for 1462 distinct lexical predicates (927 
verbs, 339 nouns, and 175 adjectives). 

While considerable in scale, the FrameNet da-
tabase does not yet approach the magnitude of re-
sources available for other NLP tasks.  Each target 
predicate, for example, has on average only 30 sen-
tences tagged.  This data sparsity makes the task of 
learning a semantic classifier formidable, and in-
creases the importance of the modeling framework 
that is employed. 

2 Related Work 

To our knowledge, Gildea and Jurafsky (2002) 
is the only work to use FrameNet to build a statis-
tically based semantic classifier.  They split the 
problem into two distinct sub-tasks: frame element 
identification and frame element classification.  In 
the identification phase, syntactic information is 
extracted from a parse tree to learn the boundaries 
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of the frame elements in a sentence.  In the classi-
fication phase, similar syntactic information is 
used to classify those elements into their semantic 
roles.   

In both phases Gildea and Jurafsky (2002) 
build a model of the conditional probabilities of the 
classification given a vector of syntactic features.  
The full conditional probability is decomposed into 
simpler conditional probabilities that are then in-
terpolated to make the classification.  Their best 
performance on held out test data is achieved using 
a linear interpolation model: 

where r is the class to be predicted, x is the vector 
of syntactic features, xi is a subset of those fea-
tures, αi is the weight given to that subset condi-
tional probability (as determined using the EM 
algorithm), and m is the total number of subsets 
used.  Using this method, they report a test set ac-
curacy of 78.5% on classifying semantic roles and 
precision/recall scores of .726/.631 on frame ele-
ment identification.  

We extend Gildea and Jurafsky (2002)’s initial 
effort in three ways.  First, we adopt a maximum 
entropy (ME) framework in order to learn a more 
accurate classification model.  Second, we include 
features that look at previous tags and use previous 
tag information to find the highest probability se-
mantic role sequence for a given sentence.  Finally, 
we examine sentence-level patterns that exploit 
more global information in order to classify frame 
elements.  We compare the results of our classifier 
to that of Gildea and Jurafsky (2002) on matched 
test sets of both human annotated and automati-
cally identified frame elements.  
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Semantic Role Classification 

Training (36,993 sentences / 75,548 frame ele-
ments), development (4,000 sentences / 8,167 
frame elements), and held out test sets (3,865 sen-
tences / 7,899 frame elements) were obtained in 
order to exactly match those used in Gildea and 
Jurafsky (2002)1 .  In the experiments presented 
below, features are extracted for each frame ele-
ment in a sentence and used to classify that ele-

ment into one of 120 semantic role categories.  The 
boundaries of each frame element are given based 
on the human annotations in FrameNet.  In Section 
4, experiments are performed using automatically 
identified frame elements. 

 

3.1 

                                                          

1 Data sets (including parse trees) were obtained from Dan 
Gildea via personal communication. 

Features 

For each frame element, features are extracted 
from the surface text of the sentence and from an 
automatically generated syntactic parse tree 
(Collins, 1997).  The features used are described 
below: 
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= α • Target predicate (tar): Although there may 
be many predicates in a sentence with associ-
ated frame elements, classification operates on 
only one target predicate at a time.  The target 
predicate is the only feature that is not ex-
tracted from the sentence itself and must be 
given by the user.  Note that the frame which 
the target predicate instantiates is not given, 
leaving any word sense ambiguities to be han-
dled implicitly by the classifier.2 

• Phrase type (pt):  The syntactic phrase type of 
the frame element (e.g. NP, PP) is extracted 
from the parse tree of the sentence by finding 
the constituent in the tree whose boundaries 
match the human annotated boundaries of the 
element.  In cases where there exists no con-
stituent that perfectly matches the element, the 
constituent is chosen which matches the largest 
text span of the element and has the same left-
most boundary.  

• Syntactic head (head): The syntactic heads of 
the frame elements are extracted from the 
frame element’s matching constituent (as de-
scribed above) using a heuristic method de-
scribed by Michael Collins. 3   This method 
extracts the syntactic heads of constituents; 
thus, for example, the second frame element in 
Figure 1 has head “hands,” while the third 
frame element has head “in.” 

• Logical Function (lf): A simplification of the 
grammatical function annotation (see section 
1) is extracted from the parse tree.  Unlike the 

 
2 Because of the interaction of head word features with the 
target predicate, we suspect that ambiguous lexical items do 
not account for much error.  This question, however, will be 
addressed explicitly in future work. 
3 http://www.ai.mit.edu/people/mcollins/papers/heads 



Table 1.  Feature sets used in ME frame element classifier.  Shows individual feature sets, example feature 
function from that set, and total number of feature functions in the set.  Examples taken from frame element 
“in inspiration,” shown in Figure 1. 
 Number Feature Set Example function Number of Functions 

in Feature Set 
0 f(r, tar) f(CAUSE, ”clap”)=1 6,518 
1 f(r, tar, pt) f(CAUSE, ”clap”, PP)=1 12,030 
2 f(r, tar, pt, lf) f(CAUSE, ”clap”, PP, other)=1 14,615 
3 f(r, pt, pos, voice) f(CAUSE, NP, ”clap”, active)=1 1,215 
4 f(r, pt, pos, voice ,tar) f(CAUSE, PP, after, active, ”clap”)=1 15,602 
5 f(r ,head) f(CAUSE, ”in”)=1 18,504 
6 f(r, head, tar) f(CAUSE, ”in”, ”clap”)=1 38,223 
7 f(r, head, tar, pt) f(CAUSE, ”in”, ”clap”, PP)=1 39,740 
8 f(r, order, syn) f(CAUSE, 2, 

[NP-Ext,Target,NP-Obj,PP-other])=1 
13,228 

9 f(r, tar, order, syn) f(CAUSE, ”clap”, 2, 
[NP-Ext,Target,NP-Obj,PP-other])=1 

40,580 

10 f(r,r_-1) f(CAUSE, BODYPART)=1 1,158 
11 f(r,r_-1,r_-2) f(CAUSE, BODYPART, AGENT)=1 2,030 
Total Number of Features:  203,443 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
full grammatical function, the lf can have only 
one of three values: external argument, object 
argument, other.  A node is considered an ex-
ternal argument if it is an ancestor of an S 
node, an object argument if it is an ancestor of 
a VP node, and other for all other cases.  This 
feature is only applied to frame elements 
whose phrase type is NP.  

• Position (pos): The position of the frame ele-
ment relative to the target (before, after) is ex-
tracted based on the surface text of the 
sentence. 

• Voice (voice): The voice of the sentence (ac-
tive, passive) is determined using a simple 
regular expression passed over the surface text 
of the sentence. 

• Order (order): The position of the frame ele-
ment relative to the other frame elements in the 
sentence.  For example, in the sentence from 
Figure 1, the element “She” has order=0, while 
“in inspiration” has order=2. 

• Syntactic pattern (pat): The sentence level 
syntactic pattern of the sentence is generated 
by looking at the phrase types and logical 
functions of each frame element in the sen-
tence.  For example, in the sentence: “Alexan-
dra bent her head;” “Alexandra” is an external 
argument Noun Phrase, “bent” is a target 
predicate, and “her head” is an object argu-
ment Noun Phrase.  Thus, the syntactic pattern 
associated with the sentence is [NP-ext, target, 
NP-obj].   

These syntactic patterns can be highly in-
formative for classification.  For example, in 
the training data, a syntactic pattern of [NP-
ext, target, NP-obj] given the predicate bend 
was associated 100% of the time with the 
Frame Element pattern: “AGENT TARGET 
BODYPART.“ 

• Previous role (r_n): Frame elements do not 
occur in isolation, but rather, depend very 
much on the other elements in a sentence.  
This dependency can be exploited in classifica-
tion by using the semantic roles of previously 
classified frame elements as features in the 
classification of a current element.  This strat-
egy takes advantage of the fact that, for exam-
ple, if a frame element is tagged as an AGENT 
it is highly unlikely that the next element will 
also be an AGENT. 

The previous role feature indicates the 
classification that the n-previous frame ele-
ment received.  During training, this informa-
tion is provided by simply looking at the true 
classes of the frame element occurring n posi-
tions before the target element.  During testing, 
hypothesized classes of the n elements are used 
and Viterbi search is performed to find the 
most probable tag sequence for a sentence. 

3.2 Maximum Entropy 

ME models implement the intuition that the best 
model will be the one that is consistent with the set 
of constrains imposed by the evidence, but other-



wise is as uniform as possible (Berger et al., 1996).  
We model the probability of a semantic role r 
given a vector of features x according to the ME 
formulation below: 

3.3 

3.4 

Experiments 

We present three experiments in which different 
feature sets are used to train the ME classifier.  The 
first experiment uses only those feature combina-
tions described in Gildea and Jurafsky (2002) (fea-
ture sets 0-7 from Table 1).  The second 
experiment uses a super set of the first and incor-
porates the syntactic pattern features described 
above (feature sets 0-9).  The final experiment uses 
the previous tags and implements Viterbi search to 
find the best tag sequence (feature sets 0-11). 
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Here Zx is a normalization constant, fi(r,x) is a fea-
ture function which maps each role and vector 
element (or combination of elements) to a binary 
value, n is the total number of feature functions, 
and λi is the weight for a given feature function.  
The final classification is just the role with highest 
probability given its feature vector and the model. 

We further investigate the effect of varying two 
aspects of classifier training: the standard deviation 
of the Gaussian priors used for smoothing, and the 
number of sentences used for training.  To examine 
the effect of optimizing the standard deviation, a 
range of values was chosen and a classifier was 
trained using each value until performance on a 
development set ceased to improve.   

The feature functions that we employ can be 
divided into feature sets based upon the types and 
combinations of features on which they operate.  
Table 1 lists the feature sets that we use, as well as 
the number of individual feature functions they 
contain.  The feature combinations were chosen 
based both on previous work and trial and error.  In 
future work we will examine more principled fea-
ture selection techniques. 

To examine the effect of training set size on 
performance, five data sets were generated from 
the original set with 36, 367, 3674, 7349, and 
24496 sentences, respectively.  These data sets 
were created by going through the original set and 
selecting every thousandth, hundredth, tenth, fifth, 
and every second and third sentence, respectively.  

It is important to note that the feature functions 
described here are not equivalent to the subset 
conditional distributions that are used in the Gildea 
and Jurafsky model.  ME models are log-linear 
models in which feature functions map specific 
instances of syntactic features and classes to binary 
values (e.g., if a training element has head=”in” 
and role=CAUSE, then, for that element, the feature 
function f(CAUSE, ”in”) will equal 1).  Thus, ME is 
not here being used as another way to find weights 
for an interpolated model.  Rather, the ME ap-
proach provides an overarching framework in 
which the full distribution of semantic roles given 
syntactic features can be modeled. 

 
 
 
 
 
 
 
 
 
 
 We train the ME models using the GIS algo-

rithm (Darroch and Ratcliff, 1972) as implemented 
in the YASMET ME package (Och, 2002).  We 
use the YASMET MEtagger (Bender et al., 2003) 
to perform the Viterbi search.  The classifier was 
trained until performance on the development set 
ceased to improve.  Feature weights were 
smoothed using Gaussian priors with mean 0 
(Chen and Rosenfeld, 1999).  The standard devia-
tion of this distribution was optimized on the de-
velopment set for each experiment. 

 

Classifier Performance on Test Set
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Figure 2.  Performance of models on test data using 
hand annotated frame element boundaries.  G&J refers 
to the results of Gildea and Jurafsky (2002).  Exp 1 in-
corporates feature sets 0-7 from Table 1; Exp 2 feature 
sets 0-9; Exp 3 features 0-11.  

Results  

Figure 2 shows the results of our experiments 
alongside those of (Gildea and Jurafsky, 2002) on 
identical held out test sets.  The difference in per-
formance between each classifier is statistically 
significant at (p<0.01) (Mitchell, 1997), with the 



exception of Exp 2 and Exp 3, whose difference is 
statistically significant at (p<0.05).   
 
Table 2.  Effect of different smoothing parameter (std. 
dev.) values on classification performance. 

Std. Dev. % Correct 
1 79.9 
2 82.1 
4 81.9 

 
Table 2 shows the effect of varying the stan-

dard deviation of the Gaussian priors used for 
smoothing in Experiment 1.  The difference in per-
formance between the classifiers trained using 
standard deviation 1 and 2 is statistically signifi-
cant at (p<0.01). 
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Figure 3.  Effect of training set size on semantic role 
classification. 

 
Figure 3 shows the change in performance as a 

function of training set size.  Classifiers were 
trained using the full set of features described for 
Experiment 3. 

Table 3 shows the confusion matrix for a subset 
of semantic roles.  Five roles were chosen for pres-
entation based upon their high contribution to clas-
sifier error.  Confusion between these five account 
for 27% of all errors made amongst the 120 possi-
ble roles.  The tenth role, other, represents the sum 
of the remaining 115 roles.  Table 4 presents ex-
ample errors for five of the most confused roles.   

3.5 Discussion 

It is clear that the ME models improve perform-
ance on frame element classification.  There are a 
number of reasons for this improvement. 

First, for this task the log-linear model employed 
in the ME framework is better than the linear 
interpolation model used by Gildea and Jurafsky.  
One possible reason for this is that semantic role 

classification benefits from the ME model’s bias 
for more uniform probability distributions that sat-
isfy the constraints placed on the model by the 
training data.   

Another reason for improved performance comes 
from ME’s simpler design.  Instead of having to 
worry about finding proper backoff strategies 
amongst distributions of features subsets, ME al-
lows one to include many features in a single 
model and automatically adjusts the weights of 
these features appropriately. 

 
Table 3.  Confusion matrix for five roles which contrib-
ute most to overall system error. Columns refer to ac-
tual role.  Rows refer to the model’s hypothesis.  Other 
refers to combination of all other roles. 

  Area Spkr Goal Msg Path Other Prec. 

Area 98  6  18 16 0.710 

Spkr  373  23  41 0.853 

Goal 11  431  28 50 0.828 

Msg  18 1 315  33 0.858 

Path 32  36  415 41 0.791 

Other 15 21 26 24 33 5784 0.979 

Recall 0.628 0.905 0.862 0.87 0.84 0.969   
 
Also, because the ME models find weights for 

many thousands of features, they have many more 
degrees of freedom than the linear interpolated 
models of Gildea and Jurafsky.  Although many 
degrees of freedom can lead to overfitting of the 
training data, the smoothing procedure employed 
in our experiments helps to counteract this prob-
lem.  As evidenced in Table 2, by optimizing the 
standard deviation used in smoothing the ME 
models are able to show significant increases in 
performance on held out test data. 

Finally, by including in our model sentence-
level pattern features and information about previ-
ous classes, global information can be exploited for 
improved classification.  The accuracy gained by 
including such global information confirms the 
intuition that the semantic role of an element is 
much related to the entire sentence of which it is a 
part. 

Having discussed the advantages of the models 
presented here, it is interesting to look at the errors 
that the system makes.  It is clear from the confu-
sion matrix in Table 3 that a great deal of the sys-
tem error comes from relatively few semantic 



roles.4  Table 4 offers some insight into why these 
errors occur.  For example, the confusions exem-
plified in 1 and 2 are both due to the fact that the 
particular phrases employed can be used in multi-
ple roles (including the roles hypothesized by the 
system).  Thus, while “across the counter” may be 
considered a goal when one is talking about a per-
son and their head, the same phrase would be con-
sidered a path if one were talking about a mouse 
who is running.   
 
Table 4.  Example errors for five of the most often con-
fused semantic roles 
 Actual Proposed Example Sentence 
1 Goal Path The barman craned his head 

across the counter. 
2 Area Path Mr. Glass began hallucinating, 

throwing books around the 
classroom. 

3 Message Speaker Debate lasted until 20 Septem-
ber, opposition being voiced 
by a number of Italian and 
Spanish prelates. 

4 Addressee Speaker Furious staff claim they were 
even called in from holiday to 
be grilled by a specialist secu-
rity firm 

5 Reason Evaluee We cannot but admire the 
efficiency with which she 
took control of her own life. 

 
Examples 3 and 4, while showing phrases with 

similar confusions, stand out as being errors caused 
by an inability to deal with passive sentences.  
Such errors are not unexpected; for, even though 
the voice of the sentence is an explicit feature, the 
system suffers from the paucity of passive sen-
tences in the data (approximately 5%). 

Finally, example 5 shows an error that is based 
on the difficult nature of the decision itself (i.e., it 
is unclear whether “the efficiency” is the reason for 
admiration, or what is being admired).  Often 
times, phrases are assigned semantic roles that are 
not obvious even to human evaluators.  In such 
cases it is difficult to determine what information 
might be useful for the system. 

Having looked at the types of errors that are 
common for the system, it becomes interesting to 
examine what strategy may be best to overcome 
such errors.  Aside from new features, one solution 
is obvious: more data.  The curve in Figure 2 
shows that there is still a great deal of performance 
to be gained by training the current ME models on 

more data.  The slope of the curve indicates that 
we are far from a plateau, and that even constant 
increases in the amount of available training data 
may push classifier performance above 90% accu-
racy.   

Having demonstrated the effectiveness of the 
ME approach on frame element classification 
given hand annotated frame element boundaries, 
we next examine the value of the approach given 
automatically identified boundaries. 

                                                           

4 

4.1 

Frame Element Identification 

Gildea and Jurafsky equate the task of locating 
frame element boundaries to one of identifying 
frame elements amongst the parse tree constituents 
of a given sentence.  Because not all frame element 
boundaries exactly match constituent boundaries, 
this approach can perform no better than 86.9% 
(i.e. the number of elements that match constitu-
ents (6864) divided by the total number of ele-
ments (7899)) on the test set.   

Features 

Frame element identification is a binary classifica-
tion problem in which each constituent in a parse 
tree is described by a feature vector and, based on 
that vector, tagged as either a frame element or not.  
In generating feature vectors we use a subset of the 
features described for role tagging as well as an 
additional path feature. 
 

 
Figure 4.  Generation of path features used in frame 

element tagging.  The path from the constituent “in in-
spiration” to the target predicate “clapped” is repre-
sented as the string PP↑VP↓VBD.  

 
Gildea and Jurafsky introduce the path feature 

in order to capture the structural relationship be-
tween a constituent and the target predicate.  The  4 44% of all error is due to confusion between only nine roles. 



Table 5.  Results of frame element identification.  G&J represents results reported in (Gildea and Jurafsky, 2002), 
ME results for the experiments reported here.  The second column shows precision, recall, and F-scores for the task 
of frame element identification, the third column for the combined task of identification and classification.   

FE ID only FE ID + FE Classification Method 
Precision Recall F-Score Precision Recall F-Score 

G&J Boundary id + baseline role labeler .726 .631 .675 .67 .468 .551 
ME Boundary id + ME role labeler .736 .679 .706 .6 .554 .576 

 
path of a constituent is represented by the nodes 
through which one passes while traveling up the 
tree from the constituent and then down through 
the governing category to the target.  Figure 4 
shows an example of this feature for a frame ele-
ment from the sentence presented in Figure 1. 

4.2 

4.3 

Experiments 

We use the ME formulation described in Section 
3.2 to build a binary classifier.  The classifier fea-
tures follow closely those used in Gildea and Juraf-
sky.  We model the data using the feature sets: f(fe, 
path), f(fe, path, tar), and f(fe, head, tar), where fe 
represents the binary classification of the constitu-
ent.  While this experiment only uses three feature 
sets, the heterogeneity of the path feature is so 
great that the classifier itself uses 1,119,331 unique 
binary features. 

With the constituents having been labeled, we 
apply the ME frame element classifier described 
above.  Results are presented using the classifier of 
Experiment 1, described in section 3.3. We then 
investigate the effect of varying the number of 
constituents used for training on identification per-
formance.  Five data sets of approximately 100,000 
10,000, 1,000, and 100 constituents were generated 
from the original set by random selection and used 
to train ME models as described above. 

Results 

Table 5 compares the results of Gildea and Juraf-
sky (2002) and the ME frame element identifier on 
both the task of frame element identification alone, 
and the combined task of frame element identifica-
tion and classification.  In order to be counted cor-
rect on the combined task, the constituent must 
have been correctly identified as a frame element, 
and then must have been correctly classified into 
one of the 120 semantic categories.   

Recall is calculated based on the total number 
of frame elements in the test set, not on the total 
number of elements that have matching parse con-
stituents.  Thus, the upper limit is 86.9%, not 

100%.  Precision is calculated as the number of 
correct positive classifications divided by the num-
ber of total positive classifications.  

The difference in the F-scores on the identifica-
tion task alone and on the combined task are statis-
tically significant at the (p<0.01) level 5 .  The 
accuracy of the ME semantic classifier on the 
automatically identified frame elements is 81.5%, 
not a statistically significant difference from its 
performance on hand labeled elements, but a statis-
tically significant difference from the classifier of 
Gildea and Jurafsky (2002) (p<0.01). 
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Figure 5.  Effect of training set size on frame element 
boundary identification. 
 

Figure 5 shows the results of varying the train-
ing set size on identification performance.  For 
each data set, thresholds were chosen to maximize 
F-Score. 

4.4 

                                                          

Discussion 

It is clear from the results above that the perform-
ance of the ME model for frame element classifica-
tion is robust to the use of automatically identified 
frame element boundaries.  Further, the ME 

 
5 G&J’s results for the combined task were generated with a 
threshold applied to the FE classifier (Dan Gildea, personal 
communication).  This is why their precision/recall scores are 
dissimilar to their accuracy scores, as reported in section 3.  
Because the ME classifier does not employ a threshold, com-
parisons must be based on F-score. 



framework yields better results on the frame ele-
ment identification task than the simple linear in-
terpolation model of Gildea and Jurafsky.  This 
result is not surprising given the discussion in Sec-
tion 3.   

What is striking, however, is the drastic overall 
reduction in performance on the combined 
identification and classification task.  The 
bottleneck here is the identification of frame 
element boundaries.  Unlike with classification 
though, Figure 5 indicates that a plateau in the 
learning curve has been reached, and thus, more 
data will not yield as dramatic an improvement for 
the given feature set and model.   

5 Conclusion 

The results reported here show that ME models 
provide higher performance on frame element clas-
sification tasks, given both human and automati-
cally identified frame element boundaries, than the 
linear interpolation models examined in previous 
work.  We attribute this increase to the benefits of 
the ME framework itself, the incorporation of sen-
tence-level syntactic patterns into our feature set, 
and the use of previous tag information to find the 
most probable sequence of roles for a sentence.   

But perhaps most striking in our results are the 
effects of varying training set size on the perform-
ance of the classification and identification models.  
While for classification, the learning curve appears 
to be still increasing with training set size, the 
learning curve for identification appears to have 
already begun to plateau.  This suggests that while 
classification will continue to improve as the Fra-
meNet database gets larger, increased performance 
on identification will rely on the development of 
more sophisticated models. 

In future work, we intend to apply the lessons 
learned here to the problem of frame element iden-
tification.  Gildea and Jurafsky have shown that 
improvements in identification can be had by more 
closely integrating the task with classification (they 
report an F-Score of .719 using an integrated 
model).  We are currently exploring a ME ap-
proach which integrates these two tasks under a 
tagging framework.  Initial results show that sig-
nificant improvements can be had using techniques 
similar to those described above. 
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