
Semi-supervised learning of geographical gazetteers from the internet

Olga Uryupina
Computational Linguistics, Saarland University

Building 17
Postfach 15 11 50

66041 Saarbrücken, Germany
ourioupi@coli.uni-sb.de

Abstract

In this paper we present an approach to the ac-
quisition of geographical gazetteers. Instead of
creating these resources manually, we propose
to extract gazetteers from the World Wide Web,
using Data Mining techniques.

The bootstrapping approach, investigated in
our study, allows us to create new gazetteers
using only a small seed dataset (1260 words).
In addition to gazetteers, the system pro-
duces classifiers. They can be used online to
determine a class (CITY, ISLAND, RIVER,
MOUNTAIN, REGION, COUNTRY) of any
geographical name. Our classifiers perform
with the average accuracy of 86.5%.

1 Introduction

Reasoning about locations is essential for many NLP
tasks, such as, for example, Information Extraction.
Knowledge on place names comes normally from a
Named Entity Recognition module. Unfortunately, most
state-of-the-art Named Entity Recognition systems sup-
port very coarse-grained classifications and thus can dis-
tinguish only between locations and non-locations.

One of the main components of a Named Entity Recog-
nition system is a gazetteer — a huge list of preclas-
sified entities. It has been shown in (Mikheev et al.,
1999) that a NE Recognition system performs reason-
ably well for most classes even without gazetteers. Lo-
cations, however, could not be reliably identified (51,7%
F-measure without gazetteers compared to 94,5% with a
full gazetteer). And obviously, when one needs more so-
phisticated classes, including various types of locations,
gazetteers should become even more important.

One possible solution would be to create gazetteers
manually, using World atlases, lists of place names on
the Web, and already existing digital collections, such as
(ADL, 2000). This task is only feasible, of course, when
those resources have compatible formats and, thus, can be

merged automatically. Otherwise it becomes very time-
consuming.

Manually compiled gazetteers can provide high-
quality data. Unfortunately, these resources have some
drawbacks. First, some items can simply be missing. For
example, the atlases (Knaur, 1994), (Philip, 2000), and
(Collins, 2001), we used in our study, do not list small
islands, rivers, and mountains. Such gazetteers contain
only positive information: if � is not classified as an
ISLAND, we cannot say whether there is really no is-
land with the name � , or simply the gazetteer is not
complete. Another problem arises, when one wants to
change the underlying classification, for example, subdi-
viding CITY into CAPITAL and NON-CAPITAL. In this
case it might be necessary to reclassify all (or substantial
part of) the items. When done manually, it again becomes
a very time-consuming task. Finally, geographical names
vary across languages. It takes a lot of time to adjust a
French gazetteer to German, moreover, such a resource
can hardly bring a lot for languages with non-Latin al-
phabets, for example, Armenian or Japanese. Even col-
lecting different variants of proper names in one language
is a non-trivial task. One possible solution was proposed
in (Smith, 2002).

At least some information on almost any particular lo-
cation already exists somewhere on the Internet. The
only problem is that this knowledge is highly distributed
over millions of web pages and, thus, difficult to find.
This leads us to a conclusion that one can explore stan-
dard Data Mining techniques in order to induce gazetteers
from the Internet (semi-)automatically. As it has been
shown recently in (Keller et al., 2002), Internet counts
produce reliable data for linguistic analysis, correlating
well with corpus statistics and plausibility judgments.

In this paper we present an approach for learning ge-
ographical gazetteers using very scarce resources. This
work is a continuation of our previous study (Ourioupina,
2002), described briefly in Section 3. In the previous
work we obtained collocational information from the In-
ternet, using a set of manually precompiled patterns. The
system used this information to learn six binary classi-



fiers, determining for a given word, whether it is a CITY,
ISLAND, RIVER, MOUNTAIN, REGION, and COUN-
TRY. Although the previous approach helped us to reduce
hand-coding drastically, we still needed some manually
encoded knowledge. In particular, we spent a lot of time
looking for a reasonable set of patterns. In addition, we
had to compile a small gazetteers (see Section 2 for de-
tails) to be able to train and test the system. Finally, we
were only able to classify items, provided by users, and
not to get new place names automatically. Classifiers, un-
like gazetteers, produce negative information (X is not an
ISLAND), but they are slower due to the fact that they
need Internet counts. A combination of classifiers and
gazetteers would do the job better.

In our present study we attempt to overcome these
drawbacks by applying bootstrapping, as described in
(Riloff and Jones, 1999). Bootstrapping is a new ap-
proach to the machine learning task, allowing to combine
efficiently small portion of labeled (seed) examples with
a much bigger amount of unlabeled data. E. Riloff and
R. Jones have shown, that even with a dozen of preclassi-
fied items, bootstrapping-based algorithms perform well
if a reasonable amount of unlabeled data is available.

It must be noted, however, that Riloff and Jones run
their algorithm on a carefully prepared balanced corpus.
It is not a priori clear, whether bootstrapping is suitable
for such noisy data as the World Wide Web. S. Brin de-
scribes in (Brin, 1998) a similar approach aiming at min-
ing (book title, author) pairs from the Internet. Although
his system was able to extract many book pairs (even
some very rare ones), it needed a human expert for check-
ing its results. Otherwise the books list could quickly get
infected and the system’s performance deteriorate. This
problem is extremely acute when dealing with huge noisy
datasets.

In our approach we apply bootstrapping techniques to
six classes.1 Comparing obtained results we are able
to reduce the noise substantially. Additionally, we use
Machine Learning to select the most reliable candidates
(names and patterns). Finally, we used the seed exam-
ples and learned classifiers not only to initialize and con-
tinue the processing, but also as another means of control
over the noise. This allows us to avoid expensive manual
checking.

The approach is described in detail in Section 4 and
evaluated in Section 5.

2 Data

Our system subclassifies names of locations. At the
moment, the following classes are distinguished: CITY,
REGION, COUNTRY, ISLAND, RIVER, MOUNTAIN.

1Riloff and Jones also had several classes, but they were pro-
cessed rather separately.

Toronto CITY
Totonicapan CITY, REGION
Trinidad CITY, RIVER, ISLAND

Table 1: Gazetteer example

However, incorporating additional classes is not problem-
atic. As the classes may overlap (for example, Washing-
ton belongs to the classes CITY, REGION, ISLAND and
MOUNTAIN), the problem was reformulated as six bi-
nary classification tasks.

Our main dataset consists of 1260 names of locations.
Most of them were sampled randomly from the indexes
of the World Atlases (Knaur, 1994), (Collins, 2001), and
(Philip, 2000). However, this random sample contained
mostly names of very small and unknown places. In or-
der to balance it, we added a list of several countries
and well-known locations, such as, for example, Tokyo
or Hokkaido. Finally, our dataset contains about 10%
low-frequency names (��� Web pages pro name), 10%
high-frequency names (�������� pages pro name, the
most frequent one (California) was found by AltaVista
in about 25000000 pages), and 80% medium-frequency
ones.

These names were classified manually using the above
mentioned atlases and the Statoids webpage (Law, 2002).
The same dataset was used in our previous experiments as
well. An example of the classification is shown in table 1.

For the present study we sampled randomly 100 items
of each class from this gazetteer. This resulted in six
lists (of CITIES, ISLANDS,. . . ). As many names re-
fer to several geographical objects, those lists overlap
to some extent (for example, Victoria is both in the IS-
LAND and MOUNTAIN lists). Altogether the lists con-
tain 520 different names of locations. The remaining part
of the gazetteer (740 items) was reserved for testing. Both
training and testing items were preclassified by hand: al-
though Washington is only in the MOUNTAIN list, the
system knows that it can be a CITY, a REGION, or an
ISLAND as well (we also tried to relax this requirement,
consider section 5.2 for details).

3 The initial system

Below we describe a system we developed for our pre-
vious study. We use it as a reference point in our cur-
rent work. However, we do not expect our new approach
to perform better than the initial one — the old system
makes use of intelligently collected knowledge, whereas
the new one must do the whole work by itself.

The initial algorithm works as follows. For each class
we constructed a set of patterns. All the patterns have the
form “KEYWORD+of+X” and “X+KEYWORD”. Each
class has from 3 (ISLAND) up to 10 (MOUNTAIN) dif-
ferent keywords. For example, for the class ISLAND we



have 3 keywords (“island”, “islands”, “archipelago”) and
5 corresponding patterns (“X island”, “island of X”, “X
islands”, “islands of X”, “X archipelago”). Keywords and
patterns were selected manually: we tested many differ-
ent candidates for keywords, collected counts (cf. bellow)
for the patterns associated with a given candidate, then
filtered most of them out using the t-test. The remaining
patterns were checked by hand.

For each name of location to be classified, we construct
queries, substituting this name for the X in our patterns.
We do not use morphological variants here, because mor-
phology of proper names is quite irregular (compare, for
example, the noun phrases Fijian government and Mali
government — in the first case the proper name is used
with the suffix -an, and in the second case — without it).
The queries are sent to the AltaVista search engine. The
number of pages found by AltaVista for each query is
then normalized by the number of pages for the item to
be classified alone (the pattern “X”, without keywords).

Obtained queries (normalized and raw) are then pro-
vided to a machine learner as features. In our previ-
ous work we compared two machine learners (C4.5 and
TiMBL) for this task.

In our present study we use the Ripper machine learner
(Cohen, 1995). The main reasons for this decision are
the following: first, Ripper selects the most important
features automatically, and the classifier usually contains
less features than, for example, the one from C4.5. This is
very important when we want to classify many items (that
is exactly what happens at the end of each bootstrapping
loop in our approach), because obtaining values for the
features requires much time.

We use our training set (520 items, cf. above) to train
Ripper. The testing results (on remaining 740 items)
are summarized in table 2. Compared to our original
system as it was described in (Ourioupina, 2002), Rip-
per performed better than C4.5 and TiMBL on a smaller
(320 words) training set, but slightly worse than the same
learners in leave-one-out (i.e. on 1259-words training
sets). Although the comparison was not performed on ex-
actly the same data, it is nevertheless clear that Ripper’s
performance for this task is not worse than the results of
C4.5.

4 The bootstrapping approach

We start the processing from our 100-words lists. For
each name on each list we go to AltaVista, ask for this
name, and download pages, containing it. Currently, we
only download 100 pages for each word. However, it
seems to be enough to obtain reliable patterns. In future
we plan to download much more pages. We match the
pages with a simple regular expression, extracting all the
contexts up to 2 words to the left and 2 words to the right
of the given name. We substitute “X” for the name in

Class Ripper, C4.5, C4.5,
trained on trained on leave-one-
520 items 320 items out test

CITY 74.3% 66.3% 78.4%
ISLAND 95.8% 92.8% 93.1%
RIVER 88.8% 86.5% 89.3%
MOUNTAIN 88.7% 68.7% 87.8%
COUNTRY 98.8% 98.1% 97.9%
REGION 82.3% 88.1% 87.9%
average 88.1% 83.4% 89.1%

Table 2: The initial system’s accuracy
Before After Extraction

rescoring rescoring patterns
“of X” 70 “X island” 17 “X island”

“the X” 60 “island of X” 9 “and X islands”
“X and” 58 “X islands” 8 “insel X”
“X the” 55 “island X” 7
“to X” 53 “islands X” 7
“in X” 52 “insel X” 7

“and X” 47 “the island X” 6
“X is” 45 “X elects” 5
“X in” 45 “of X islands” 5
“on X” 45 “zealand X” 4

Table 3: 10 Best patterns for ISLAND, with scores

the contexts to produce patterns. Afterwards, we compile
for each class separately a list of patterns used with the
names of this class. We score them by the number of the
names they were extracted by. The left column of table
3 shows the best patterns for the class ISLAND after this
procedure. Overall we had 27190 patterns for ISLANDS.

Obviously, such patterns as “of X” cannot really help
in classifying something as �ISLAND, because they are
too general. Usually the most general patterns are dis-
carded with the help of stopwords-lists. However, this
approach is not feasible, when dealing with such a huge
noisy dataset as the Internet. Therefore we have cho-
sen another solution: we rescore the patterns, exploiting
the idea that general patterns should originally have high
scores for several classes. Thus, we can compare the re-
sults for all the lists and penalize the patterns appearing
in more than one of them. Currently we use a very sim-
ple formula for calculating new scores – the penalties for
all the classes, except the one we are interested in, are
summed up and then subtracted from the original score:

����� ��� � ���� ����
�

� ���

���� ������� � ����

where ���� �� stays for the original score of pattern � for
class �, ����� �� — for the new one, and � � � at the first
bootstrapping loop.

The second column of table 3 shows the best patterns



for ISLAND after rescoring. From the 27190 patterns
collected, only 250 have new scores above 1. As it can be
seen, our simple rescoring strategy allows us to focus on
more specific patterns.

In future we plan to investigate patterns’ distributions
over classes in more detail, searching for patterns that
are common for two or three classes, but appear rather
rare with the items of other classes, for example, CITIES,
REGIONS, COUNTRIES, and some ISLANDS (but not
RIVERS and MOUNTAINS) appear often in such con-
structions as “population of X”. This would allow us to
organize classes in hierarchical way, possibly leading to
useful generalizations.

As the third step, we take the best patterns (currently
20 best patterns are considered) and use them in the same
way we did it with the manually preselected patterns for
the initial system: for each name in the training set, we
substitute this name for X in all our patterns, go to the Al-
taVista search engine and collect corresponding counts.
We normalize them by the count for the name alone. Nor-
malized and raw counts are provided to the Ripper ma-
chine learner.

We use Ripper to produce three classifiers, varying the
parameter “Loss Ratio” (ratio of the cost of a false neg-
ative to the cost of a false positive). In future we plan to
do a better optimization, including more parameters.

Changing the loss ratio parameter, we get three clas-
sifiers. We can chose from them the ones with the best
recall, precision, and overall accuracy. Recall, precision
and accuracy are measured in the common way:

� �
�	
�� ���	����

�	
�� ���	����������� ����	����
�

� �
�	
�� ���	����

�	
�� ���	����������� ���	����
�

� �
�	
�� ����	������	
�� ���	����

����
�

Table 4 shows the classifiers, learned for the class IS-
LAND (#� stays for the AltaVista count for � ).

The classifier with the best precision values usually
contains less rules, than the one with the best recall. So,
we take all the patterns from the best recall classifier. We
are, of course, only interested in patterns, providing pos-
itive information (���� or �������), leaving aside
such patterns as “X geography” in our high-accuracy IS-
LAND classifier. The right column of table 3 shows the
final set of extraction patterns for the class ISLAND.

At this stage we swap the roles of patterns and names.
We go to the Internet and download web pages, contain-
ing our extraction patterns. Currently we use only 2000
pages pro pattern, because we want to be able to check

BEST RECALL:

if ��“X island”�
��

�� �����	
�

classify X as +ISLAND
if ��“and X islands”�

��
�� ��������

classify X as +ISLAND
if ��“insel X”�

��
�� ����
���

classify X as +ISLAND

otherwise
classify X as -ISLAND

BEST ACCURACY:

if ��“X island”�
��

�� ��������

classify X as +ISLAND
if ��“and X islands”�

��
�� �������� and

��“X sea”�
��

�� �������� and
��“X geography”� �� ��
classify X as +ISLAND

if ��“X islands”�
��

�� ������� and
��“pacific islands X”�

��
�� ��������

classify X as +ISLAND

otherwise
classify X as -ISLAND

BEST PRECISION:

if ��“X island”�
��

�� �������	

classify X as +ISLAND
if ��“X island”�

��
�� �������� and

��“pacific islands X”�
��

�� ��������

classify X as +ISLAND

otherwise
classify X as -ISLAND

Table 4: Classifiers for ISLAND (1st bootstrapping loop)

the results (at least for some classes) to evaluate the ap-
proach. Technically, this step goes as follows: each pat-
tern has the form “LEFT X RIGHT”, where LEFT and
RIGHT contain from 0 to 2 words. We ask AltaVista for
all the pages, containing LEFT and RIGHT simultane-
ously. Then we check whether our pattern occurs in the
returned files, and, if so, how exactly � is realized. As
we are looking for place names, only words, beginning
with capital letters, are included.

After this step we have a big list of candidate names for
each class. We have a small list of stop-words (“A(n)”,
“The”, “Every”,. . . ). These items are discarded. It must
be noted that stop list is not really necessary — at the next
step all those candidates would anyway be discarded, but,
as they appear very often, the stop list saves some pro-
cessing time. For the class ISLAND we have got 573



items (recall, that we download only first 2000 pages).
Afterwards we take the high-precision classifier and

run it on the items collected. The names, that the clas-
sifier rejects, are discarded. After this procedure we’ve
got 134 new names for the class ISLAND.

The remaining items are added to the temporary lexi-
con. They are used for the next iteration of the bootstrap-
ping loop. All the following iterations resemble the first
one (described above). There are only minor differences
to be mentioned. After the first loop, word lists for differ-
ent classes have different size (at the beginning they all
contained 100 items). Therefore we must adjust � in our
rescoring formula:

����� ��� �
���� � ���	 �
 ���������

���� � ���	 �
 ���������
�

It must also be mentioned, that we use new items only
for extraction, but not for machine learning. This helps us
to control the system’s performance. We do not have any
stopping criteria: even when classifiers do not improve
anymore, the system can still extract new place names.

The whole approach is depicted on figure 1.

5 Evaluation

We have run two experiments evaluating our approach.
First, we used the system exactly as it was described
above. In the second experiment, we tried to relax the
requirement that training data should be fully classified.
If possible, that would allow us to have a true knowledge-
poor approach, because currently the only manually en-
coded knowledge in our system is the initial gazetteer —
if the system can work without these data, it does not
need any precompiled resources or human intervention
while processing.

Our system produces two types of resources: classi-
fiers and world lists for each class separately. When the
lists collected are big enough, one can compile them, ob-
taining a gazetteer. We evaluate mainly our classifiers
using the accuracy measure. Recall, that the system out-
puts three classifiers: with the best recall, precision and
overall accuracy. The latter one is taken for the evalua-
tion.

We also want to estimate the quality of learned names
lists. The measure, we are interested in, is the precision
rather than the recall: when false positives manage to
penetrate into the lists, the lexicon gets infected and the
performance may decrease. Moreover, it is not clear, how
to estimate the recall in our task, as we do not know the
total number of names on the Internet for each class. It
does not make much sense either, as the system produces
more and more entities, and thus improves its own recall
continuously. So, we simply took one of the lists (for
ISLANDS) and checked all the items manually.

Class Manually After After
collected the 1st the 2nd
patterns loop loop

CITY 74.3% 51.2% 62.0%
ISLAND 95.8% 91.4% 96.4%
RIVER 88.8% 91.5% 89.6%
MOUNTAIN 88.7% 89.1% 88.8%
COUNTRY 98.8% 99.2% 99.6%
REGION 82.3% 80.4% 82.6%
average 88.1% 83.8% 86.5%

Table 5: The system’s accuracy after the first two
bootstrapping iterations, training on the precompiled
gazetteer

Below we describe the results of both evaluating the
classifiers and checking the ISLAND list.

5.1 Bootstrapping with the initial gazetteer

The system’s performance after the first two bootstrap-
ping loops is shown in table 5, the initial system is added
for comparison.

The most surprising fact is that three classes (RIVER,
MOUNTAIN, and COUNTRY) outperformed the initial
system already after the first bootstrapping iteration. Un-
fortunately, RIVER and MOUNTAIN performed worse
after the second loop, but they were still better than the
system without bootstrapping.

ISLANDS improved significantly at the second boot-
strapping iteration, outperforming the initial system as
well.

The REGION class was problematic. One of the pat-
terns the system extracted was “departments of X”. It pro-
duced new regions, but, additionally, many other names
were added to the lexicon (such as Ecology or Eco-
nomics). Some of them were filtered out by the high-
precision classifier, but, unfortunately, many mistakes re-
mained. This might have been dangerous, as those items,
in turn, extracted wrong patterns and tried to infect the
REGION class. However, due to our very cautious re-
checking strategy, this did not happen: all the dangerous
patterns were discarded at the second loop and the sys-
tem was even able to produce a better classifier, slightly
outperforming the initial system.

The only class that performed badly was CITY. It was
the most difficult task for both the initial and the new
system. The problem is that city names can be used in
much more different constructions than, for example, is-
lands. Moreover, many cities were named after loca-
tions of other types, people, or different objects. Such
homonyms make looking for CITIES collocations very
complicated. There was only one good pattern, “streets
of X” in the 20-best set at the first bootstrapping iteration.
The system was able to pick it up and construct a classi-



Discarding 
most general

 patterns

Learning
classifiers

Extraction
items

Learned
high−precision

gazetteer

Collecting 

Collecting 
patterns

Classifyng 
items

items

common names

Extraction
patterns

Initial
gazetteer

Discarding 

Figure 1: The bootstrapping approach

fier with a very high precision (92.5%) and a very low
recall (26.2%). This pattern in turn extracted new candi-
dates. They helped to get two more reliable patterns — at
the second bootstrapping iteration the system produced
“km from X” and “ort X” (“place/city X” in German).
These new patterns increased the performance by 10.8%.
We expect the CITY class to get significantly improved
after the next 3-5 iterations and, hopefully, reach the ini-
tial performance as well.

On average, our bootstrapping system performs not
much worse than the initial one. Moreover, if one does
not take CITIES into account, the new system performs
even slightly better — 90.9% the initial vs. 91.4% the
bootstrapping system after the second loop. As CITIES
are improving, we hope the new system will outperform
the initial one soon.

When one wants to use the system online, for classi-
fying items in real time, a second issue becomes impor-
tant. In that case the number of queries sent to AltaVista
plays a very important role: each query slows the pro-
cessing down dramatically. On average, the classifiers,
produced by the no-bootstrapping system, send about six
queries per class in the worst case. In our previous study
we managed to reduce this number to 5 (for the C4.5 ma-
chine learner) by selecting features manually.

The new system found more effective patterns: the
classifiers require on average 4-5 queries in the worst
case. Although after the second bootstrapping itera-
tion there are twice more patterns available, the system

Class Initial After After
system the 1st the 2nd

loop loop
CITY 6 3 6
ISLAND 4 2 4
RIVER 3 7 4
MOUNTAIN 9 4 2
COUNTRY 5 3 2
REGION 9 7 9
average 6 4.3 4.5

Table 6: Number of queries to be sent to AltaVista in the
worst case

still produces classifiers requiring only few queries. For
MOUNTAIN and COUNTRY the new system outper-
forms the initial one using two or even four times less
patterns. Details are given in table 6.

5.2 Bootstrapping with positive examples only

Although the current approach allows us to reduce the
amount of hand-coding dramatically, we still need a pre-
compiled gazetteer to train on. In fact, preparing even a
small dataset of fully classified geographical names was
a very hard and time-consuming task. On the other side,
one can easily and quickly obtain a big dataset of par-
tially classified names — there are many lists of various
locations on the Web. Unfortunately, these lists can only
tell us, that some items belong to the class C, but not that
they do not belong to it. Exploring the possibility of using



Class Training on Training on
the gazetteer positives

CITY 74.3% 50.3%
ISLAND 95.8% 94.1%
RIVER 88.8% 91.0%
MOUNTAIN 88.7% 89.3%
COUNTRY 98.8% 99.6%
REGION 82.3% 86.9%
average 88.1% 85.2%

Table 7: The initial system’s accuracy, training on the
precompiled gazetteer and on positive examples only

such lists, we attempted to learn classifiers from positive
examples only.

The experiment was organized as follows. We take our
100-words lists and use them as a source of positive data:
we eliminate all the classification labels and reclassify a
training item X as +C, if it appears on the list for the class
C, otherwise it is classified as –C. For example, Wash-
ington is represented as [+MOUNTAIN, –. . . ], compared
to [+MOUNTAIN, +CITY, +ISLAND, +REGION, –. . . ]
for the first experiment. Testing items remain unchanged,
as we still want to learn the full classification. Of course,
this sampling strategy (obtain negative examples merging
all the unknown items) is too simple. In future we plan to
investigate another ways of sampling.

To start with, we ran our initial system in this new,
“positives-only” mode. Table 7 shows the results. At
first glance, they look a bit surprising, as several classes
perform better when trained on deliberately spoiled data.
However, this fact can be explained if one takes into ac-
count homonymy.

In particular, quite often a city has the same name as,
for example, a nearby mountain. This name, however,
is used much more often to refer to the city, than to the
mountain — apart from some special ones, mountains
are usually of less interest to authors of web pages, than
cities. Therefore, when the full gazetteer is used, this
name produces noisy data for the class MOUNTAIN, in-
fecting it with CITY patterns at the extraction step (rele-
vant for the bootstrapping system only, not for the initial
one) and creating a CITY bias during the training. To
sum up, allowing only positive information, we discard
a few MOUNTAINS, that could potentially decrease the
performance.

The most significant improvement was shown by the
REGION class. Our dataset contains many names of
U.S. cities or towns, that can also refer to counties. In
the first experiment they were all classified as [+CITY,
+REGION], making the REGION data very noisy. In the
second experiment we were able to increase the perfor-
mance by 4.6%, classifying some of them as [+CITY, –
REGION].

Class After After
the 1st loop the 2nd loop

CITY 39.3% 44.1%
ISLAND 94.5% 95.8%
RIVER 91.2% 91.1%
MOUNTAIN 90.1% 91.2%
COUNTRY 98.7% 99.6%
REGION 86.5% 81.6%
average 83.4% 83.9%

Table 8: The system’s accuracy, training on positive ex-
amples only

CITIES, on the contrary, suffered a lot from the new
learning strategy. First, about a half of names in the
dataset are CITIES. Second, there are only few items,
belonging to CITY and some other class, that are used
rather seldom as [+CITY] (one of few examples is China
— [+CITY, +COUNTRY]). This resulted in a very poor
performance for CITIES, when the classifier is trained on
positives only.

We also ran our bootstrapping system using only posi-
tive example for learning. The results are summarized in
table 8.

For the easier classes (ISLAND, RIVER, MOUN-
TAIN, COUNTRY) the system performs very well.
Moreover, the classifiers are almost always better than
those we’ve got at the first experiment. However, one big
problem arises — with this setup the system has much
less control over the noise, as there are no completely
correct data available at all. In particular, the system can
not overcome two difficulties. First, it is not able to ex-
tract reliable patterns for CITY at the second loop and,
thus, make such an improvement as we have seen in the
previous section. Second, the system can not defeat the
“departments” items, appeared on the REGION list after
the first bootstrapping iteration. As a result, REGIONS’
performance decreases dramatically and it seems to be no
way to repair the situation later.

Overall, when trained on the gazetteer, the system im-
proved significantly (2.7% on average) between the first
and the second loops, the improvement affecting mainly
two most difficult classes. On the contrary, when trained
on positive examples only, the system improved only
slightly (0.6% on average), and in rather useless manner.

5.3 Names lists

Finally, we estimated the quality of learned names. For
this purpose, we took the ISLAND list, mainly because
it contained not too many names, and the classifier’s per-
formance was satisfactory.

Downloading the first 2000 pages for each extraction
pattern (cf. table 3) and then applying the high-precision
gazetteer, we’ve got 134 new names, 93 of them are des-



ignated as islands in the atlases we used for reference.
Additionally, 28 names refer to small islands, simply not
listed in this resources. The list also contains 13 items,
not referring to any particular island. However, not all
of them are full mistakes. Thus, 3 items (Juan, Layang,
and Phi) are parts of legitimate ISLAND names. And
five more items are islands descriptions, such as Mediter-
ranean islands.

The remaining 5 items are mistakes. They all come
from different proper names exploiting the ISLAND idea.
For example, “Monkey island” is not an island, but a com-
puter game.

6 Conclusion and future work

We described an approach to the automatic acquisition
of geographical gazetteers from the Internet. By apply-
ing bootstrapping techniques, we are able to learn new
gazetteers starting from a small set of preclassified exam-
ples. This approach can be particularly helpful for the
Named Entity Recognition task in languages, where no
manually collected geographical resources are available.

Apart from gazetteers, our system produce classifiers.
They use Internet counts (acquired from the AltaVista
search engine) to classify any entity online. Unlike
gazetteers, classifiers also provide negative information:
the fact, that Washington is not a RIVER, can be obtained
from a classifier, whereas gazetteers can only tell us, that
they do not contain any Washington river, but still, there
is a chance that such a river exists.

The bootstrapping approach performed reasonably
well on this task — 86.5% accuracy on average after the
second iteration. Moreover, high control over the noise
allow the system to improve exactly on the classes with
originally poor performance (CITY and REGION).

There is still a lot of work to be done. First, we plan
to include new classes, such as, for example, SEA, and
organize them in a hierarchy. In this case we will have to
investigate patterns’ distributions over classes more care-
fully and elaborate our rescoring strategy.

Second, we plan to extend our approach to cover multi-
words expressions. A half of this problem is already
solved — our classifiers can deal with such names as Sri
Lanka. So, we need to adjust our items extraction step to
this task.

We also plan to investigate more sophisticated sam-
pling techniques to get rid of initial fully classified data.
Although our first experiments with the learning from
positive examples only were not very successful, we still
hope to solve this problem. It would allow us to sim-
ply download seed datasets from the Internet and start
processing with these partially classified data, instead of
compiling a high-quality seed gazetteer manually.

Finally, we plan two related experiments. The same
approach can be used for classifying names into loca-

tions instead of time (for example, Edmonton is in Al-
berta/Canada). We also want to try the same algorithm
in another language, preferably with a non-Latin alpha-
bet. The output may be quite useful, as there are not
so many geographical knowledge bases available for lan-
guages other than English.

References

ADL. 2000. Alexandria digital library gazetteer
server. http://fat-albert.alexandria.
ucsb.edu:8827/gazetteer/.

Sergey Brin. 1998. Extracting patterns and relations
from the world wide web. In Proceedings of the
WebDB Workshop at EDBT ’98, pages 172–183.

William W. Cohen. 1995. Fast effective rule induction.
In Proceedings of the 12th International Conference
on Machine Learning, pages 115–123.

Collins. 2001. Collins New World Atlas. Harper-
sCollinsPublishers, London.

Frank Keller, Maria Lapata, and Olga Ourioupina. 2002.
Using the web to overcome data sparseness. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 230–237.

Knaur. 1994. Knaurs Atlas der Welt. Droemer Knaur,
München.

Gwillim Law. 2002. Administrative divisions of coun-
tries (“statoids”). http://www.mindspring.
com/˜gwil/statoids.html.

Andrei Mikheev, Marc Moens, and Claire Grover. 1999.
Named entity recognition without gazetteers. In Pro-
ceedings of the Ninth Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 1–8.

Olga Ourioupina. 2002. Extracting geographical knowl-
edge from the internet. In Proceedings of the ICDM-
AM International Workshop on Active Mining.

Philip. 2000. Atlas of the World. George Philip Limited,
London.

Ellen Riloff and Rosie Jones. 1999. Learning dictionar-
ies for information extraction by multi-level bootstrap-
ping. In Proceedings of the Sixteenth National Confer-
ence on Artificial Intelligence, pages 474–479.

David A. Smith. 2002. Mining gazetteer data from dig-
ital library collections. In NKOS Workshop, JCDL
2002, on Digital gazetteers.


