
Use of Description logic and SDRT in an NLG system

Adil El Ghali
LATTICE

Denis Diderot University - Paris
adil@linguist.jussieu.fr

1 Introduction

The standard architecture of an NLG system pro-
posed in (Reiter and Dale, 2000) is schematized in
Figure 1.1. The tool used by a module and the data
structure of its output are not defined precisely. Ac-
cording to Reiter and Dale, they vary from one au-
thor to the other one. However, we believe that cer-
tain tools broadly used by the AI or NLU community
are appropriate for NLG tasks. So, we reformulate
more precisely Figure 1.1 as Figure 1.2.

Micro−planner

 Surface
realiser

representation
 Semantic

Text Text

Document
structuring
à la SDRT

Communicative
goals

Content
Determination

Document
Structuring

description logic
with a

Determination
Content

Communicative
goals

D
oc

um
en

t
P

la
nn

er

Figure 1.1

Standard architecture of an NLG system

T
ac

ti
ca

l c
om

po
ne

nt

SDRS

Lexicalized
Micro−planner

realiser Surface
Lexicalized

 Semantic
 Dependency tree

Figure 1.2

Architecture of an NLG system

Document plan

message logical form

with data structures

The paper follows this Figure 1.2: section 3 jus-
tifies the use of a description logic for the content
determination task and its ouput, a “message”; sec-
tion 4 justifies the use ofSDRT for the document
structuring task and its output, a “document plan”;

section 5 briefly exposes the use of a lexicalized for-
malism in the tactical component. Each section is
illustrated by means ofGePhoX, a generator which
produces texts explaining the steps taken by a proof
assistant,PhoX. So we start by presentingGePhoX.

2 GePhoX

PhoX is an extensible proof assistant based on
higher order logic, which was developped to help
mathematicians building proofs and teaching math-
ematics (Raffalli and Roziere, 2002). Like other
proof assistants,PhoX works in an interactive way.
The user (a mathematician) gives first the theorem
to be proved (a goal).PhoX returns a list of sub-
goals which should be easier to prove than the initial
goal. The user enters a command to guidePhoX in
choosing or achieving a subgoal. The proof is thus
computed top-down fromgoals to evidences. The
user’s commands form aProof script. PhoX output
is a list of successive goals equivalent to aProof tree.

Both theProof script and PhoX output are dif-
ficult to read (even for a mathematician), as the
reader can see for him/herself in Table 1 and Table
2. Hence, the necessity of an NLG system to get an
easy to read version of the proof.

GePhoX is given as input both theProof script
and thesuccesive goalsof PhoX output. It can
produce texts during the interactive session (from
an incomplete proof). This is quite useful to help
the mathematician user: before entering a new com-
mand in theProof script, he/she can read a text re-
minding him/her what he/she has been doing so far.

Taking into account theProof script in GePhoX
input is one of the main originalities of our generator

goal∀p, d : N(d 6= N0 → ∃q, r : N(r < d ∧ p = q ∗ d + r))
1. intros.
2. elim−4 H well founded.N.
3. intros.
4. elim−1 d−3 a lesseq.case1.N.
5. next.
6. intros∃ ∧.
7. next−3.
8. instance?1 N0.
9. instance?2 a.
10. intro.
11. trivial.
12. local a′ = a - d.
13. elim−1 a′ H3.
14. trivial.
15. elim lesseq.Srsub.N.
16. elim−1 [case] H0.
17. trivial =H1 H5.
18. trivial.
19. lefts H5∧ ∃.
20. intros∧ ∃.
21. next−3.
22. instance?4 r.
23. instance?3 S q.
24. rewrite mul.lS.N−r add.associative.N−r H8.
25. intro.
26. trivial.
27. save euclideexists.

Table 1:Proof scriptfor Euclidian division

Here is the goal:
goal 1/1

|- /\p,d:N (d != N0 ->
\/q,r:N (r < d & p = q * d + r))

End of goals.
%PhoX% intros.
1 goal created.

New goal is:
goal 1/1
H := N p
H0 := N d
H1 := d != N0

|- \/q,r:N (r < d & p = q * d + r)

End of goals.

. . .

Table 2:PhoX output for Euclidian division

(similar generators, such as PROVERB (Huang and
Fiedler, 1997), take as input only theProof tree). It
makes it possible forGePhoX to start from an in-
complete proof and to identify the reasoning strate-
gies that have been used (reasoning by contradiction,
by induction), while it is very hard (if not impossi-
ble) to retrieve this information from aProof tree
with its quite numerous deduction steps.

Another originality ofGePhoXis that it takes into
account the knowledge of the user who can be ei-
ther a mathematician usingPhoX or a person more
or less novice in mathematics. For the same proof,
GePhoX can generate several texts according to a
(GePhoX) user model.

3 Using a descrition logic (DL)

The knowledge representation systemKl-ONE
(Branchman et al., 1979), was the first DL. It was
created to formalize semantic networks and frames
with the introduction of T-Boxes and A-Boxes (re-
spectively for terminological and assertional knowl-
edge).Kl-ONE has been broadly used in the NLG
community to formalize the domain model. On the
other hand, this is not the case for the more recent
DLs. Nevertheless, they present at least two ad-
vantages compared toKl-ONE : 1) for a large va-
riety of DLs, sound and complete algorithms have
been developped for main inference problems such
as subsumption, concepts satisfiabilityand consis-
tency(Donini et al., 1996); 2) the relations between
instances and classes are well defined for all the con-
structors and their mathematical and computational
properties have been studied in detail. So we believe
that DLs are appropriate for the content determina-
tion task as shown in 3.2. Let us first present DLs
briefly.

3.1 A brief Introduction to DL

The three fundamental notions of DLs areindivid-
uals (representing objects in the domain),concepts
(describing sets of individuals), androles (repre-
senting binary relations between individuals). A
description logicis characterized by a set ofcon-
structors that allow us to build complex concepts
and roles from atomic ones. The set of constructors
which seem useful forGePhoXand their syntax are
shown in Table 3; examples of concepts and roles
with their semantic are shown underneath Table 3.

Constructor (abbreviation) Syntax
atomic concept A
top >
bottom ⊥
conjonction C ∧ D
disjonction (U) C ∨ D
complement (C) qC
univ. quant. ∀R.C
exist. quant. (E) ∃R.C
numeral restrictions (N) >n R.C,≤n R.C
collection of individuals (O) {a1,. . .,an}
atomic role P
roles conjonction (R) Q ∧R
inverse role R−1

role composition Q ◦ R

Table 3: Syntax of standard constructors

Examples of concepts with their semantic
Theorem, Variable, {H1}, ∃CHOOSE.User
{ x / Theorem (x) } : Theorem concept
{ x / Variable (x) } : Variable concept
{ H1} : concept constructed by theO constructor on individual
H1

{ x / ∃ u : User, CHOOSE(u,x) }

Examples of roles with their semantic
IMPLIES, PROVE

{ x,y / IMPLIES (x,y) } : x implies y

{ x,y / PROVE(x,y) } : x prove y

Let us underline that the choice of constructors
is domain dependent. Constructors other than those
used inGePhoX (e.g. temporal extension) can be
used for other domains (e.g. domain with non trivial
temporal information), without altering the mathe-
matical and computational properties.

3.2 Content determination in DL

The Domain modelis the set of concepts and roles
necessary to express the input of the generator. More
formally, let TD be a TBox, such that each input
I can be descibed by means of an ABoxAD cor-
responding toTD. The knowledge baseΣD =
(TD,AD) is called knowledge base for the domain
(or domain model) and notedDKB. TheUser model
is a knowledge baseΣU = (TU ,AU) such thatTU
andAU are respectivly subsets ofTD andAD. ΣU

is notedUKB. Table 4 shows a part of theDKB for
GePhoX.

Goal MathObj
Subgoal Axiom
Hypothese Theorem

Rules well_founded
Intro lesseq.case1
Elim add.associative
Rewrite Operator
Trivial LogicalOper
Left Exist

ReasonningStrategy Forall
ByInduction LAnd
ByContradiction ArithOper
. . . Add
. . . Multi

Table 4:GePhoXDomain model

The content determination module performs four
tasks as schematized in Figure 2.

Translation: The input of the generator (asser-
tional information) is first translated into concepts
of the TBox. For that purpose, a correspondancy
between the elements of the input and concepts and

roles in theDKB is established. TheO constructor
is used to keep information about the individuals oc-
curring in the input. For example, command 2 in Ta-
ble 1 with individual H is translated into the concept
C0

.= ∃EliminationWell founded.Hypothese
{H}, and commands 8 to 11 are translated into
C1

.= ∃ByInduction {p}.

Selection: The selection task consists in choosing
the relevant concepts among those constructed in the
translation phase in regard of theUKB. For example,
if C0 is an unknown concept for the user, a concept
C must be looked up in theUKB such asC approxi-
matesC0.

TBox
Concepts

Concepts

Translation

Selection

Verification

Instanciation

Terminological Assertional

Logical Form

ABox

Input

Figure 2: Content Determination Tasks

Verification: At this point, thecoherenceof all the
concepts of the selection is verified. For example if
the user tries to reason by induction on a real num-
ber,GePhoXtells him/her that it is not possible.

Instanciation: Thanks to the informations about
individuals which have been kept in the translation
phase (with the use of theO constructor), the instan-
ciation task is straightforward. Table 5 shows some
instanciated concepts for the Euclidian division.

1. ∃p1 ∈ Entier
named(p1, p)
choose(user, p1)

2. ∃d1 ∈ EntierNonNul
named(d1, d)
choose(user, d1)

3. ∃f1 ∈ Formula
constant(f1,∃q,r: N (r < d ∧ p = q.d + r))

4. prove(user, f1)
induction(f1, p1)
. . .

Table 5: DL-Message for Euclidian division

As it is well known, designing knowledge bases
(DKB andUKB) and translating the input of the gen-
erator into concepts and roles of the DL is an heavy
task which has to be achieved for each generator.
However, with a DL, the selection, verification and
instanciation tasks are domain independent: algo-
rithms and their implementation are reusable. More-
over, when using a DL for the content determination
task, the “message” is a first order logic formula (a
standard representation shared by a large commu-
nity) which takes into account the user knowledge
and whose coherence has been checked.

4 Using SDRT for document structuring

We adoptSDRT (Segmented Discourse Representa-
tion Theory (Asher, 1993; Asher and Lascarides,
1998)). The reasons for this choice can be found
in (Danlos et al., 2001). Let us presentSDRT briefly.

4.1 A brief introduction to SDRT

SDRT which was designed first for text understand-
ing, was introduced as an extension ofDRT (Dis-
course Representation Theory, (Kamp and Reyle,
1993)) in order to account for specific properties of
discourse structure.SDRT can be viewed as a super-
layer onDRT whose expressiveness is enhanced by
the use of discourse relations. Thus theDRT struc-
tures (Discourse Representation Structures orDRS)
are handled as basic discourse units inSDRT.

DRSs are ”boxed” first order logic formulae. For-
mally, a DRS is a couple of sets〈U,Con 〉. U (the
universe) is the set of discourse referents.Con con-
tains the truth conditions representing the meaning
of the discourse.

A SDRS is a pair〈U,Con〉, see Figure 3.U is a
set of labels ofDRS or SDRS which can be viewed
as “speech act discourse referents” (Asher and Las-
carides, 1998).Con is a set of conditions on labels
of the form:

• π : K, whereπ is a label fromU andK is a (S)DRS

• R(πi, πj), whereπi andπj are labels andR a discourse
relation. Discourse relations are inferred non-monotically
by means of a defeasible glue logic exploiting lexical and
world knowledge.

4.2 Building a SDRS

Starting from a “message” encoded into a logical
form, the document structuring module builds a

�������

���
	�����

�����

���
���
������� ���
 �"!#!$� �
%&�'�

���'�
(*)�� �
+�,.-0/1� (2�
30465 -7� � � %8(6%8)9�
);:<�

=�>.?�@BA�C9A2D�E�FC1� � % ��� �

G�H��JI�KML'NJ�O�PNJ�RQS�NJ�T6UJ�

�V����W 	7�M�XH�IYG�H��JI�KML'NJ�J�
I�KMT��XUXHBUXL��T6UJ�[Z

I�KMT�G�HBUXH�KMT��
W I�KMT6UJ�T\U[]�^��"�
T'HBT'_6Z

G�H��JI�KML'NJ�O�PNJ����
UXH�KMT

Figure 3:SDRSfor Max fell. John pushed him.

SDRS. In a first step, the logical form is translated
into a DRS. In case of a purely existential formula1,
this could just amount to putting all the variables
into the universe of theDRS and split the formula
into elementary conjoined conditions. However,
there is an important difference betweenSDRSs and
logical forms.SDRSs represent discourses and their
variables are discourse referents. Logical forms rep-
resent meanings and their variables are pure logical
variables. Therefore, it has to be decided which vari-
ables in the logical form become discourse referents
(the linguistic consequences of this decision are ex-
plained in section 5). For that purpose, logically
equivalent formulae are computed through two op-
erations calledreificationanddereification. From a
formula such as∃e1, e2 cause(e1, e2), the causal re-
lation can bereified to get∃f, e1, e2 cause(f, e1, e2).
Thenf appears in the finalSDRSas a discourse refer-
ent. Conversely, from∃f, e1, e2 cause(f, e1, e2), the
causal relation can bedereifiedif no other condition
thancause(f, e1, e2) hasf as an argument. It is not in
the scope of this paper to explain when thereifica-
tion anddereificationoperations should be applied.

After this first step, the document structuring task
amounts to building aSDRSfrom aDRSand to go on
recursively on each embedded (S)DRSs. This pro-
cess is schematized below.

universe
condition1
condition2
condition3
condition4
condition5
condition6
condition7

−→

π1 π2 π3

π1 :
universe1
condition1
condition7

π2 :
universe2
condition2
condition5

π3 :
universe3
condition4

R1(π1, π2)↔ condition3
R2(π2, π3)↔ condition6

Let us first examine the principles governing the
splitting of the conditions. All the conditions in the

1More complex formulas are not considered here.

DRS have to be expressed in theSDRS. Two cases
arise:

• either a condition in theDRS appears as a condition in
one of the sub-DRS; that is the case forcondition1 which
appears in the sub-DRS labelledπ1;

• or it is expressed through a discourse relation; that is
the case forcondition3 with R1(π1, π2) ↔ condition3,
which means thatR1(π1, π2) must have condition3
among its consequences: no other element is in charge
of expressing condition3.

To establish discourse relations, theSDRT condi-
tions are reversed. As an illustration, inSDRT for
text understanding, there is the Axiom forNarration
2. This axiom states that ifNarration holds between
two SDRSs π1 andπ2, then the main event (me) of
π1 happens before the main event ofπ2.

For text generation, this axiom is reversed in the
rule below (Roussarie, 2000, p. 154).

• If k1 andk2 areDRS the main eventualities of which are
not states,

• and if themeof k1 occurs before themeof k2,

• thenNarration(π1, π2) is valid whenπ1 andπ2 respec-
tively labelk1 andk2.

As another example, the conditioncause(e1, e2)
can be expressed throughResult(π1, π2) or Expla-
nation(π2, π1) whenπ1 andπ2 label the sub-DRSs
that contain the descriptions ofe1 and e2 respec-
tively.

Let us now examine how we determine the uni-
verses of sub-DRSs, i.e. discourse referents, while
observing two technical constraints, namely:

• the arguments of any condition in a sub-DRS

must appear in the universe of thisDRS;

• the universes of all the sub-DRSs have to be dis-
joint. This constraint is the counterpart of the
following constraint in understanding: “partial
DRSs introduce new discourse referents”

These two constraints are not independent. As-
suming that the first constraint is respected, the sec-
ond one can be respected with the following mech-
anism: if a variablex already appears in a preced-
ing sub-DRS labelledπx, then a brand new variable
y is created in the universe of the current sub-DRS

labelledπy and the conditiony = x is added into
the conditions ofπy. The discourse referenty will

22(Narration(π1, π2) → me(π1) < me(π2))

be generated as an anaphora ifπx is availableto πy

(Asher, 1993), otherwise it will be generated as a
definite or demonstrative NP.

Document structuring modulèa la SDRT base on
the principles we have just exposed can be used for
any generator (whose “message” is first order logic
formula). The algorithm and the rules to establish
discours relations (obtained by reversing the rules in
NLU) are generic. Below an example ofSDRS in
GePhoX.

π3π4

π3 :

π1π2

π1 :

x u e1
user(u)
entier(x)
named(x,p)
choose(e1,x,y)

π2 :

y v e2
entier-non-nul(y)
named(y,’d’)
choose(e2,u,y)
v = u

Parallel(π1,π2)

π4 :

x1 f w e3
formula(f)
constant(f,∃q,r:N . . .)
prove(e3,v,f)
induction(e3,x’)
w=u
x1 = x

Narration(π3,π4)

Table 6:SDRSfor Euclidian division

5 Generating a text from a SDRS

A SDRScan be given as the input of existing tacti-
cal components. Here, we illustrate the process of
generating a text from aSDRSusing G-TAG (Dan-
los, 2000) whose architecture is represented at the
bottom of Figure 1.2.

The microplanner is based on a lexicalized
conceptual-semantic interface. This interface is
made up ofconcepts; each concept is associated
with a lexical data base. In our model, a concept
is either a term in the T-Box or a discourse relation.
A lexical data base for a given concept records the
lexemes lexicalizing it with their argument structure,
and the mappings between the conceptual and se-
mantic arguments. The process of generating a se-
mantic dependency tree from aSDRS〈U,Con〉 is re-
cursive:

- an elementπi in U is generated as a clause ifπi

labels aDRS and recursively as a text (possibly
a complex sentence) ifπi labels aSDRS.

- a conditionR(πi, πj) in Con is generated as a
text “Si. Cue Sj .” or as a complex sentence
“Si Cue Sj .”, where Si generatesπi, Sj πj ,

andCue is a cue phrase which is encoded in
the lexical data base associated withR (Cue
may be empty).

- a conditionπ : K in Con where K is a DRS

〈U,Con〉 is generated as a clause according to
the following constraints (which are the coun-
terpart of constraints in understanding)3:

• a discourse referent is generated as an NP or a tensed verb.

• conditions guide lexical choices. Conditions such asx =
John correspond to proper names. Equality conditions
between discourse referents (e.g.x = y) give rise to
(pronominal or nominal) anaphora. The other conditions,
e.g. prove(e1, x, y), are lexicalized through the lexical
data base associated with the concept (prove).

The surface realizer is based on a TAG grammar
which is a set of lexical data bases. A data base for a
given lexical entry encodes the syntactic structures
realizing it with their syntactic arguments. With
such a TAG grammar and a morphological module,
the text is computed in a deterministic way from the
semantic dependency tree.

6 Conclusion

We have shown in this paper how to integrate DL,
SDRT, and a lexicalized grammar into an NLG sys-
tem. Moreover,GePhoX illustrates the applicabilty
of our system, which is currently being implemented
in Java. The development of the document planner
of GePhoX is work in progress. The goal is to in-
terface this module with CLEF (Meunier and Reyes,
1999), an implementation of G-TAG. We intend to
produce a text as shown in Table 7.

References

N. Asher and A. Lascarides. 1998. The semantics and
pragmatics of presupposition.Journal of Semantics,
15(3):239–300.

N. Asher. 1993.Reference to Abstract Objects in Dis-
course. Kluwer, Dordrecht.

R. Branchman, R. Bobrow, P. Cohen, J. Klovstad,
B. Webber, and W. Woods. 1979. Research in nat-
ural language understanding. Technical Report 4274,
Bolt. Beranek and Newman, Cambridge MA.

3With these constraints, an element which isreified, e.g.
cause(f, e1, e2), gives rise to an NP or a verb (the cause of, pro-
voke) and an element which is notreified, e.g.cause(e1, e2),
gives rise to a modifier one1 or e2 with e1 ande2 generated
either as verbs or NPs.

Theorem.

∀p,d:IN (d 6= 0 → ∃q,r:IN (r < d ∧ p = q.d + r))

Proof. Let us choosep, d two natural numbers with
d 6= 0. We prove the following by induction on p:
∃q,r:IN (r < d ∧ p = q.d + r). Let takea a strictly positive
natural. We assume

∀b:IN (b < a → ∃q,r:IN (r < d ∧ b = q.d + r))

and we must prove∃q,r:IN (r < d ∧ a = q.d + r). We dis-
tinguish two cases:a < d and d ≤ a. In the first case,
we chooseq = 0 and r = a. In the second case, we take
a′ = a− d. Using the induction hypothesis on a′, we find
two naturalsq, r such thatr < d and a′ = q.d + r. We take
Sq andr as quotient and remaining for the division ofa. We
must provea = Sq.d + r which is immediate.

Table 7: A Text of proof for Euclidian division

L. Danlos, B. Gaiffe, and L. Roussarie. 2001. Document
structringà la SDRT. InACL’2001 Toulouse Proceed-
ing.

L. Danlos. 2000. G-TAG: A lexicalized formalism for
text generation inspired by Tree Adjoining Grammar.
In A. Abeillé and O. Rambow, editors,Tree Adjoining
Grammars: formalisms, linguistics analysis and pro-
cessing, pages 343–370. CSLI Publications, Stanford.

F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. 1996.
Reasoning in description logics. In G. Brewka, edi-
tor, Principles of Knowledge Representation and Rea-
soning, Studies in Logic, Language and Information.
CLSI Publications.

X. Huang and A. Fiedler. 1997. Proof verbalization as
an application of NLG. InIJCAI (2), pages 965–972.

H. Kamp and U. Reyle. 1993.From Discourse to Logic.
Kluwer Academic Publishers, Dordrecht, The Nether-
lands.

F. Meunier and R. Reyes. 1999. La plate forme de
développement de géńerateurs de textes CLEF. In
Actes du 2̀e Colloque Francophone sur la Géńeation
Automatique de Textes, GAT’99, Grenoble.

C. Raffalli and P. Roziere, 2002.The PhoX Proof checker
documentation. LAMA, Université de Savoie / Uni-
versit́e Paris 7.

E. Reiter and R. Dale. 2000.Building Natural Language
Generation Systems. Cambridge University Press.

L. Roussarie. 2000.Un mod̀ele th́eorique d’inf́erences
de structures śemantiques et discursives dans le cadre
de la ǵeńeration automatique de textes. Thèse de doc-
torat en linguistique, Université Denis Diderot, Paris 7.

