
FAQ Mining via List Detection

Yu-Sheng Lai1,2, Kuao-Ann Fung1, and Chung-Hsien Wu1
1Dept. of Computer Science & Information Engineering, National Cheng Kung University,

1, Ta-Hsueh Rd., Tainan, Taiwan 701, R.O.C.
2Advanced Technology Center,

Computer & Communication Research Laboratories/Industrial Technology Research Institute,
E000, 195-11, Sec. 4, Chung Hsing Rd. Chutung, Hsinchu, Taiwan 310, R.O.C.

laiys@itri.org.tw, p7689151@dec4000.cc.ncku.edu.tw, chwu@csie.ncku.edu.tw

Abstract

This paper presents an approach to FAQ
mining via a list detection algorithm. List
detection is very important for data
collection since list has been widely used for
representing data and information on the
Web. By analyzing the rendering of FAQs
on the Web, we found a fact that all FAQs
are always fully/partially represented in a
list-like form. There are two ways to author
a list on the Web. One is to use some
specific tags, e.g. tag for HTML. The
lists authored in this way can be easily
detected by parsing those special tags.
Another way uses other tags instead of the
special tags. Unfortunately, many lists are
authored in the second way. To detect lists,
therefore, we present an algorithm, which is
independent of Web languages. By
combining the algorithm with some domain
knowledge, we detect and collect FAQs
from the Web. The mining task achieved a
performance of 72.54% recall and 80.16%
precision rates.

Introduction

The World Wide Web has become a fertile area,
storing a vast amount of data and information.
One of them we are interested is the Frequently
Asked Questions (FAQs). For customer services,
message providing, etc., many Websites have
created and maintained their own FAQs.
 A large collection of FAQs is very useful for
many research areas in natural language
processing. Especially in question answering, it
exemplifies many questions and their answers. It
is also a database for the applications of FAQ

retrieval, e.g. AskJeeves (www.ask.com), .faq
finder (members.tripod.com/~FAQ_Home/), and
FAQFinder (www1.ics.uci.edu/~burke/faqfinder/).
 By analysing the rendering of FAQs on the
Web, we divide them into 6 types according to 2
viewpoints. Among these types, we found a fact
that all FAQs are always fully/partially
represented in the form of list as well as much
useful information.
 There are two ways to represent a list in a
Web Page. One is to use some specific tags, e.g.
 tag for HTML. Another one is to use other
tags. The lists authored in the first way can be
easily detected by parsing those specific tags.
However, most of FAQs are authored in the
second way. Therefore, this paper presents an
algorithm for detecting lists in Web Pages. Then,
we verify each detected list whether it
determines a set of FAQs or parts of it by some
constraints of domain knowledge.

1 Web FAQs

An FAQ file is a file gathering a set of
question-answer pairs, QA-pairs for short, with
an identical topic together. A Website may
contain FAQ files with one or more topics. The
FAQ files authored in Web Pages are called
Web FAQs. In the following we will explore
Web FAQs from three aspects : (1) Web
languages used for authoring Web FAQs, (2)
taxonomy of Web FAQs and (3) domain
knowledge.
1.1 Web Languages

Web languages are the languages developed and
used for authoring Web Pages. A popular Web
language – SGML (Standard Generalized
Markup Language) [ISO 8879, Goldfarb 1990]

is a metalanguage developed for tagging text. It
provides the rules for defining a markup
language based on tags. For example, the most
popular markup language used for the Web,
HTML, is an instance of SGML. For simplicity
and clearness, all examples in this paper will be
authored in HTML [Raggett et al. 1998].
Besides, an available metalanguage for Semantic
Web, XML (eXtensible Markup Language)
[Bray et al. 2000], is also a subset of SGML.
 A European alternative to SGML is the ODA
(Office Document Architecture) that is also a
standard [ISO 8613]. However, it is not used
very frequently nowadays.
 Fig. 1 shows the taxonomy of SGML-based
Web languages [Baeza-Yates and Ribeiro-Neto
1999]. Under the definition of SGML, each
instance of SGML describes a text by using the
text itself and tags. Our approach is available for
the Web Pages authored by SGML-based Web
languages [Francis et al. 1999, Pemberton et al.
2000, Raggett et al. 1998].

SGML

XML

SMILMathMLRDFXHTML

HTML

HyTime

TEI Lite

Metalanguages

Languages

Dynamic
HTML

Fig. 1 Taxonomy of SGML-based Web
languages.

1.2 Taxonomy of Web FAQs

Identifying the types of Web FAQs is conducive
to tracing QA-pairs within a Website. We
classify Web FAQs according to the two
viewpoints : (A) the relational position between
a question and its answer and (B) the types of
the hyperlinks from the questions to the answers.
 From the viewpoint of the relational position,
Web FAQs can be divided into the following
two types:
 Type A.1 Side-by-Side QA-pairs – In an
FAQ file, every question is immediately
followed by its answer. Generally speaking, this
type of questions equip no hyperlinks for their

answers due to their closely relational position.
The whole FAQ file looks like a list of QA-pairs.
An example of this type is shown in Fig. 2.

Fig. 2 An example of the FAQ file consisting of

side-by-side QA-pairs.

Fig. 3 An example of the FAQ file consisting of

hyperlinked QA-pairs.

 Type A.2 Hyperlinked QA-pairs – In
an FAQ file, all questions are organized as a list,
but the answers do not follow their questions
immediately. For users’ convenience, in this
type of FAQs, every question always have a
hyperlink to the position of its answer, in which
the hyperlink may direct to a position
inside/outside the listing page containing the

question list. Thus users can find the answers by
simply clicking the hyperlinks. An example of
this type is shown in Fig. 3.
From the viewpoint of the hyperlinks, we divide
Web FAQs into the following four types:
 Type B.1 Without Hyperlinks – The
questions have no hyperlinks to their answers. In
view of humanity design, it reasonably implies
that the questions must be followed by their
answers. In other words, this type is equivalent
to Type A.1.
 Type B.2 With Inside Hyperlinks – In an
FAQ file, every question has an inside hyperlink
to its answer. When a question has the hyperlink
in the form of , its
answer must be the content of an tag, i.e. enclosed by tag
pair
 Type B.3 With Single-Page Outside
Hyperlinks – For a list of questions, all
hyperlinks to their answers direct to a single
outside page. The directed page usually contains
a list of QA-pairs like Type A.1. That is, a
replica of the questions also appears in the
directed page, but probably in different forms.
 Type B.4 With Multi-Page Outside
Hyperlinks – For a list of questions, each of
their answers is directed by a hyperlink to an
outside page. The directed page usually contains
a QA-pair alone, as shown in Fig. 3.
 By the above analysis, we can locate an
answer according to its question and the
information attached. An important discovery
and fact is that at least a portion of a Web FAQ,
namely questions or QA-pairs, is always in the
form of list. The ‘list’ indicates that the
rendering looks like a list, but it does not mean it
should be authored in some specific tags for
authoring lists, such as tag. This paper
emphasizes the detection of visually list-like
segments.
1.3 Domain Knowledge

Except for Web FAQs, some undesirable
segments could be rendered as lists, such as the
categories of portal sites, product categories, etc.
To prevent the redundant segments from being
extracted, we exploit some domain knowledge
as follows:
(1) Chinese linguists traditionally divide

questions into four types of interrogative

forms: question-word, disjunctive, tag, and
particle questions [Li and Thompson 1981].
By identifying the interrogative types for
all questions in the possible FAQ files [Lai
and Wu 2000], we can obtain a ratio of
questions in the possible FAQ files. We
decide it is an FAQ file if the ratio is
greater than a threshold.

(2) In practice, an exceptional type –
declarative questions is possibly appear. It
occupied around 18% in a collection of
18034 QA-pairs. A punctuation mark –
question mark ends some of them.
Question mark is useful for identifying
questions. Besides, some prefix terms,
such as “Q,” and “問”, are also available.

 To achieve better accuracy, some other
domain knowledge is needed, but is not the
emphasis of this paper.

2 List Detection

This section introduces how to detect lists from
Web Pages. We will first define several
important terms for our approach. Then, we will
describe the approach to list detection via a
markup language independent algorithm.
2.1 Terms for Our Approach

In the following we will introduce several
important terms we defined for our approach,
including tag-content pair string, regular
tag-content string, tag string, di-tag, and
markup parse tree.

� Tag-Content pair String
Without losing the correctness of rendering,
each markup language document can be
transformed into a list of tag-content pairs,
TC-pairs for short, and the content is allowed
being empty. Fig. 4 shows the partial source
code of a markup language document extracted
from http://www.infovalue.com/tw/faq_qvs.htm.
 Fig. 5 lists an example source code
transformed from the source code in Fig. 4. In
Fig. 5, there is a TC-pair in line 50, in which its
tag is and its content is “企業

的宗旨為何？”. Besides, line 46 (empty tag)
and line 47 (start tag) list two TC-pairs with
empty content.

 <FONT FACE=”Arial, Helvetica, Sans-serif”
SIZE=2>1.InfoValue
 企業的宗旨為何？

 <FONT FACE=”Arial, Helvetica, Sans-serif”
SIZE=2>2.InfoValue
 的產品有哪些？

………

Fig. 4 Partial source code from an example
markup language document.

46
47
48 <FONT FACE=”Arial, Helvetica, Sans-serif”

SIZE=2>1.InfoValue
49
50 企業的宗旨為何？
51
52
53
54
55 <FONT FACE=”Arial, Helvetica, Sans-serif”

SIZE=2>2.InfoValue
56
57 的產品有哪些？
58
59
60
 ………

Fig. 5 The source code in the form of TC-pairs
transformed from Fig. 4. The italics indicate the

element names and the bolded words are the
contents.

� Regular TC-pair String
To precisely detect the position of a list in a
markup language document, we define a Regular
TC-pair String (RTCS) to be a string of TC-pairs
that meets the regular constraint: “All the tags in
the Regular TC-pair String must be properly
nested and an end tag closes all omitted start
tags up to the matching start tag.” The term
“regular” comes from “regular expressions”
formalism stated in Automata Theory [Hopcroft
and Ullman 1979]. Meeting the regular
constraint implies that:
 Lemma 1. An RTCS must start with a
start-tag and end at an end-tag, in which the
end-tag need not match the start tag.
 Lemma 2. In an RTCS, all the unclosed tags
before the content of a TC-pair influence the
rendering of the content.
The regular language RL , which generates a set
of RTCSs, can be described by regular
expressions as follows:

 *{ | (), , , }R RL x x ay a a a y Lε= = + ∈Σ ∈% % (1)
where Σ denotes a finite set of symbols, i.e.
TC-pairs in this paper, and a are symbols
in

a %
Σ , in which denotes a TC-pair consisting

of a start or empty tag and a content, notated as
a

(,)i ica t= , and denotes a TC-pair consisting
of an end tag corresponding to a ’s and a
content, notated as

a%

(,a t)i jc= %% , and ε denotes
a null and stands for that is a TC-pair with
an empty tag or is omitted.

a
a%

 By Lemma 1, an RTCS may contain one or
more sub-RTCSs. Therefore an elementary
RTCS is well-defined as an RTCS that is
wrapped in a start-tag and its matching end-tag,
in which the start-tag and its matching end-tag is
called a representative of the elementary RTCS.
That is, the final tag must be an end-tag and
match the first tag, or the matching end-tag of
the first tag is omitted if the final tag does not
match the first tag. A single empty tag can be
regarded as an elementary RTCS.

di-tag

di-tag
 While authoring Web Pages, one may
intentionally/unintentionally ommit some tags.
By Lemma 2, the ommited tags can be identified
and recovered.

� Tag String and Di-tag
For a TC-pair string, after removing their
content parts, the remainders are called tag
string. For two consecutive tags, i.e. a tag string
consisting of two tags, we refer to it as di-tag.

� Markup Parse Tree
The two arrowed regions in Fig. 5, lines 46~52
and lines 53~59, are two RTCSs. There are two
differences between them. (1) Their values of
the HREF attributes in the two <A> tags (lines
47 and 54) are different. Since the two values
are hyperlinks to their corresponding answers,
they are certainly different. (2) Their individual
contents (the bolded texts) represent two
different questions. Except for the differences,
the other portions of these two strings are
identical.
 However, not all lists are so regular especially
in those containing answers. Every two answers
in an FAQ file are not only different in the
aspects of the textual content but also in other
aspects, such as the style, the font, etc., which
relate to the interpretation of markups. For

example, Fig. 6 shows the rendering of two
QA-pairs corresponding to the two answers
authored by the source code in Fig. 5.
Comparing the two QA-pairs in Fig. 6, they are
apparently dissimilar in the number of the
paragraphs, the styles, and the fonts. Their own
source codes are almost incomparable.
 As mentioned before, there are always
hyperlinks between the question list and their
corresponding answers for Type A.2. No doubt,
the answers can be detected by the hyperlinks.
However, there are no such relationships for
Type A.1. To solve this problem, we propose a
tree-matching-based method. Summarily, two
segments of markups to be compared are first
parsed into two parse trees, called markup parse
trees (MPTs).
 Transforming an RTCS into an MPT is
described more detailly below.
(1) For an RTCS, it is transformed into a tag

string by purging the content from each
TC-pair, in which the tag string is still
regular since this transformation does not
change its structure. It is also nested.

(2) According to the nested structure of the tag
string, we construct a parse tree, namely the
MPT. The construction obeys the following
principles :
i. An MPT owns a unique vertex, called

root, which virtually stands for the
whole tag string.

ii. Each sub-tree in an MPT is constructed
from an elementary RTCS and the
representative of the elementary RTCS
labels the root of the sub-tree.

iii. Each external vertex is constructed from
an elementary RTCS consisting of either
one pair of matching tags or a single
empty tag.

iv. Suppose one pair of matching tags
wraps another, its corresponding vertex
is an ancestor of another.

v. Suppose two pairs of matching tags are
side by side, their corresponding vertices
are siblings in a fixed order.

vi. A sub-tree of an MPT is still an MPT.
2.2 What is a list?

Before introducing how to detect lists, let us find
out what a list is. Visually, a list consists of two
kinds of components, items and intervals. Each

two consecutive items are separated by an
interval. Our key idea is to detect the intervals
and then compare the consecutive items
separated by the intervals. If we can find a
sequence of similar items separated with the
same interval, it is a list, in which the items are
actually RTCSs.

Fig. 6 The rendering of the QA-pairs

respectively corresponding to the questions
embedded in Fig. 5.

Root

HR P P P

A FONT FONT FONT

B

I

B

I

FONT FONT FONTFONT FONT A FONT

FONT

Fig. 7 An MPT constructed from the first RTCS,

i.e. the part in the first block, in Fig. 6.

Root

HR P P P

A FONT FONT FONT

B

I

B

I

FONT FONT FONTFONT A FONT

FONTB

I

UL

Fig. 8 An MPT constructed from the second

RTCS, i.e. the part in the second block, in Fig. 6.

2.3 Measurement of the Similarity between two
RTCSs

For the term “similar” mentioned above, we
need a measurement for computing the
similarity between two RTCSs. We can measure
their similarity by comparing their own MPTs
even though their RTCSs cannot be compared
directly. Figs. 7 and 8 illustrate two similar
MPTs that are transformed from two RTCSs of
the rendering shown in Fig. 6, namely the two
blocks.
 For each two MPTs and T , we measure
their similarity as follows:

1T 2

 (2)
()

() ()
() ()

() ()

1 2

1 2
1 2

1 2

1 2

0, if

1, if , and
,

 both and are single-vertex trees
1 , , elsewise

MPT

n n sub MPT

root T root T

root T root T
Sim T T

T T
Sim T Tδ δ −

≠

==

 + − ⋅

where returns the root tag of an MPT, ()root

nδ denotes a relational weight of a parent to its
children at level , and is a
function of estimating the similarity between the
two MPTs based on their sub-trees’ similarities,
which is defined as follows:

n ()sub MPTSim −

1 2 , ,

1
(,) max (, ())

AT
A

sub MPT MPT A k A kg kB

T
Sim T T Sim T g T

T−
=

= ∑ (3)

where is one of the two MPTs and T
such that it subsums fewer sub-trees,

AT 1T 2

BT is
another one, and g denotes a one-to-one
function from to AT BT .

2.4 List Detection Algorithm

The algorithm for detecting lists from a
hypertext is briefly described as follows:
Step 1. Transform the hypertext into an RTCS.
Step 2. Transform the RTCS into a tag string.
Step 3. Find all the di-tags in the form of

end-start tags. The positions the di-tags
located are possible intervals. For
example, Fig. 5 shows two identical
di-tags at lines 52-53 and 59-60. In this
case, they are intervals.

Step 4. Cluster all the di-tags. That is, the
identical di-tags with different positions
are clustered together.

Step 5. For each cluster, sort its di-tags. Thus,
the TC-pair string between each two
di-tags in a cluster is a possible item.

Step 6. Find all possible lists in each cluster by
concatenating the consecutive items

whose similarities are greater than a
threshold. Note that the items to be
concatenated must be RTCSs.

Step 7. Some of the possible lists maybe
overlap. For a group of overlapped lists,
we choose the one with the highest
cumulative similarity as an output.

 This algorithm is able to detect lists
embedded in the documents authored in markup
languages. It utilizes the characteristic of the
items in a list being structurally similar. It is
independent of the tags specifically used for
authoring lists. That is, it is markup language
independent.

3 Experimental Results

A Spider [Cho et al. 1998, Introna and
Nissenbaum 2000] was constructed to
automatically collect 14 categories of Websites.
Each category contains 100 Websites. 14 people,
who did not take part in the core task, were
asked to label the Websites. For each Website,
they manually label the number of the FAQ files
and their located pages. After removing the
Websites authored in the languages other than
Traditional Chinese, 30,007 pages in 901
Websites are retained, in which there are 293
FAQ files in 76 Websites.

Table 1 Experimental results of FAQ mining
from 9 categories of Websites consisting of

30,007 pages in 901 Websites.
Categories FAQ

Files
True

Mining
False

Mining
Recall

Rate (%)
Precision
Rate (%)

Medium 22 12 13 54.55 48.00
Leisure 6 4 0 66.67 100.00
Region 8 3 1 37.50 75.00
Society 22 16 21 72.73 43.24
Politics 32 29 9 90.63 76.32
Science 30 15 5 50.00 75.00

Computer 76 72 1 94.74 98.63
Network 38 35 0 92.11 100.00
Medicine 50 20 1 40.00 95.24

Total 284 206 51 72.54 80.16

 Table 1 shows the experimental results, in
which we remove 5 categories with fewer FAQ
files. We evaluate the performance in recall rate,
precision rate, and accuracy rate. Summarily, the
system achieved 72.54% recall rate and 80.16%
precision rate. Since most of the Websites

contain no FAQ files, the average accuracy is
99.42%. It means almost all the redundant lists
can be discarded correctly.
 By error analysis, several main errors are as
follows:

(1) Many news articles are entitled in
inciting questions. It makes some false
mining.

(2) Some Websites place FAQ files nearby
in one page. The nearby FAQ files are
recognized as one FAQ file.

(3) The Spider missed scratching some
pages containing FAQ files.

Conclusion

List is an efficient way to represent information.
Many kinds of lists are widely used on the
Internet, especially for those we are interested –
FAQ. By analysing the Web FAQs, we found a
fact that FAQs are always fully/partially
authored in the form of list. This paper presents
an algorithm to detect lists embedded in Web
Pages. The algorithm is independent of the tags
specifically used for authoring lists. That is, it is
markup language independent. By combining
the algorithm with some constraints of domain
knowledge, we can automatically detect and
collect FAQs from the Web. The mining task
achieved a performance of 72.54% recall rate
and 80.16% precision rate.

Acknowledgements

This paper is a partial result of Project
A311XS1211 conducted by ITRI under
sponsorship of the Ministry of Economic Affairs,
R.O.C.

References

Baeza-Yates R. and Ribeiro-Neto B. (1999)
Modern Information Retrieval, 1st ed., New York:
ACM Press, chap. 6, pp. 149-162.

Bray T., Paoli J., Sperberg-McQueen C. M. and
Maler E. (2000) eXtensible Markup Language
(XML) 1.0 (Second Edition), W3C
Recommendation.

Cho J., Garcia-Molina H. and Page L. (1998)
Efficient Crawling through URL ordering, In Proc.
7th Intl. World Wide Web Conference (WWW 98),
Brisbane, Australia, April 14-18, pp. 161-172.

Francis B., Homer A. and Ullman C. (1999) IE 5
Dynamic HTML Programmer’s Reference, 1st ed.,
Wrox Press Ltd.

Goldfarb C. (1990) The SGML Handbook, Oxford
University Press, Oxford.

Hopcroft J. E. and Ullman J. D. (1979) Introduction
to Automata Theory, Languages, and Computation,
Addison-Wesley Publishing Company, chap. 6, pp.
13-54.

Introna L. and Nissenbaum H. (2000) Defining the
Web: The Politics of Search Engines, Computer,
vol. 33, pp. 54-62.

ISO 8613 (1989) Office Document Architecture
(ODA) and Interchange Format.

ISO 8879 (1986) Information Processing – Text
and Office Systems – Standard Generalized
Markup Language (SGML).

Lai Y. S. and Wu C. H. (2000) Intention Extraction
and Semantic Matching for Internet FAQ Retrieval
Using Spoken Language Query, In Proc. 6th Intl.
Conference on Spoken Language Processing.

Li C. N. and Thompson S. A. (1981) Mandarin
Chinese: A Functional Reference Grammar,
University of California Press, pp. 520-563.

Pemberton S., Altheim M., Austin D., Boumphrey F.,
Burger J., Donoho A. W., Dooley S., Hofrichter K.,
Hoschka P., Ishikawa M., Kate W. ten, King P.,
Klante P., Matsui S., McCarron S., Navarro A.,
Nies Z., Raggett D., Schmitz P., Schnitzenbaumer
S., Stark P., Wilson C., Wugofski T. and Zigmond
D. (2000) XHTMLTM 1.0: The Extensible
HyperText Markup Language, W3C
Recommendation.

Raggett D., Hors A. L. and Jacobs I. (1998) HTML
4.0 Specification, W3C Recommendation, pp.
24-26, April 1998.

	Table of Content
	Workshops
	Authors

