
BUFFERED SHIFT-REDUCE PARSING
*

Bing Swen (Sun Bin)
Dept. of Computer Science, Peking University, Beijing 100871, China

bswen@cs.pku.edu.cn

Abstract A parsing method called buffered shift-reduce parsing is presented, which adds an intermediate

buffer (queue) to the usual LR parser. The buffer’s usage is analogous to that of the wait-and-see parsing, but it

has unlimited buffer length, and may serve as a separate reduction (pruning) stack. The general structure of its

parser and some features of its grammars and parsing tables are discussed.

1. Introduction

It is well known that the LR parsing is hitherto the most general shift-reduce method of bottom-up parsing

[1], and is among the most widely used. For example, almost all compilers of mainstream programming

languages employ the LR-like parsing (via an LALR(1) compiler generator such as YACC or GNU Bison [2]),

and many NLP systems use a generalized version of LR parsing (GLR, also called the Tomita algorithm [3]).

In some earlier research work on LR(k) extensions for NLP [4] and generalization of compiler generator [5],

an idea naturally occurred that one can make a modification to the LR parsing so that after each reduction, the

resulting symbol may not be necessarily pushed onto the analysis stack, but instead put back into the input,

waiting for decisions in the following steps. This strategy postpones the time of some reduction actions in

traditional LR parser, partly deviating from leftmost pruning (Leftmost Reduction). This may cause performance

loss for some grammars, with the gained opportunities of earlier error detecting and avoidance of false

reductions, as well as later handling of ambiguities, which is significant for the processing of highly ambiguous

input strings like natural language sentences. This also partly emulates the “Wait-and-See” strategy (with a 3-unit

buffer) in deterministic parsing (Determinism Hypothesis)[6,7], but is not limited by predefined number of

lookahead symbols.

Based on these work and improvements, the author presented a new parsing method [8] called Buffered

Shift-Reduce parsing (or BSR parsing for short), which systematically delays reduction actions by employing an

intermediate buffer queue, providing the maximum opportunity of ambiguity lookup, whereas the previous

reduce-and-putback approach provides only one production scope of lookup. In this paper we present the basic

idea of this technique, describe the general structure of its parser, and discuss some features of its grammars and

parsing tables.

2. Shift-reduce parsing with an intermediate buffer

To enable more control of the reduction nodes within the parse, we add a symbol buffer to the traditional

shift-reduce parser, as shown in the following figure, where # stands for the end of input string, and pi, pbh/pbt

and ps for pointers to input, buffer and parsing stack respectively. The parsing stack here includes both states and

syntactical symbols. In practical parses, syntactical symbols are not necessarily maintained in the stack, for they

can be deduced quickly from the top state of the state stack together with the production used in the reduction.

The basic flow of input tokens is that instead of being directly moved onto the symbol stack, they are first

shifted into the buffer queue, where they may be reduced to other symbols and may also result other sequential

reductions in the buffer and/or on the parsing stack. Symbols contained in the buffer are not limited to a fixed

number, and will be finally shifted onto the symbol stack, where they are to be reduced to other symbols. Since

the parser can look ahead any number of symbols before making shift/reduce decisions, and make reductions at

tow separate nodes in the parse tree, it gets more control to handle conflicts and ambiguities.

* This work is supported by National Natural Science Foundation of China, project No. 69973005.

3. Actions and parsing algorithm

The general form of a BSR parser’s configuration would be determined by 4 items, that is, a quadruple [s, Z,

A, a], as shown in the above figure. And correspondingly, a production would be divided into more specific cases

of the form A → α ⋅ X β Y ∗ Z γ, where ‘⋅’ and ‘∗ ’ correspond to boundaries of buffer and input respectively. Here

we will only discuss triple configurations [s, A, a], where the parser can make shift-reduce decisions in the buffer

using the tail symbol at a given stack state. The parser has the following categories of actions:
Buffer-shift: Action[s, A, a] = { *pbt++ = *pi++; *ps++ = s'; }
Stack-shift: Action[s, A, a] = { *p_symbol_stack++ = *pbh++; *ps++ = s'; } // pbh!=pbt
Stack-reduce: Action[s, A, a] = { symbol stack top replaced by A→β, *ps++ = s'; }
Buffer-reduce: Action[s, A, a] = { buffer tail replaced by A→β, *ps++ = s'; }
Accept: Action[s, A, a] = { *ps++ = ACCEPT; output “accept”; }
Error: Action[s, A, a] = { *ps++ = ERROR; output “error”; }

With the above discussion, we establish the following algorithm for the buffered shift-reduce parsing (which is a

linear algorithm).

Input: an input token string w and a buffered shift-reduce parsing table Action[] of grammar G!
Output: if w belongs to language L(G), then output a BSR parse of w; otherwise an error indication.
Steps:

Initialization: push s0 to the bottom of state stack, read w into the input buffer, set ps to the top of state
stack, buffer queue to be empty pbh=pbt, and pi to the beginning of imput;

main_loop:
 repeat forever begin

 s := *ps++; /* current state */
 a := *pi++; /* points to the next input token */

if pbh = pbt then begin

 A := 0;
else begin
 A := *pbt; Z := *pbh;

 end

 if Action[s, A, a] = (buffer-shift, s') then begin
 *pbt++ := a; *ps := s';
 end

 if Action[s, A, a] = (stack-shift, s') then begin
/* shift Z onto the top of symbol stack – actually no need */
/* Assert(pbh <= pbt); */

 pbh++; *ps := s';
 end

 else if Action[s, A, a] = (stack-reduce A→β , s') then begin
 /* pop |β| symbols from top of the symbol stack, and push A – actually no need */
 /* pop |β| states from top of the state stack, and push s' onto: */
 ps -= |β|; *ps := s';

end

else if Action[s, A, a] = (buffer-reduce A→β , s') then begin

 /* pop |β| symbols from top of the symbol stack, and push A: */
pbt -= |β|; /* Assert(pbh <= pbt); */
*pbt++ := A; *ps := s';

end

 else if Action[s, A, a] = ACCEPT and a= ‘#’ then

return SUCCESS;
 else return ERROR;
 end

As pointed above, this method may postpone some reduction actions as in LR parsing, with more shift

actions being applied. This may help avoid some false reductions. Depending on the actual construction of action

tables, the scope to deviate the leftmost pruning in buffered shift-reduce parsing may vary in a wide range.

4. BSR grammars and simplified parsing tables

Similarly to LR parsing, there would be 4 different ways to construct a buffered shift-reduce parsing table

for a given grammar G, which correspond to 4 buffered shift-reduce parsers of different acceptance capability.

The grammars accepted by all these parsers are called buffered LR grammar, or BLR grammar for short. The 4

categories of BLR are BLR(0), SBLR, BLR(k) and LABLR(k) respectively. The buffered shift-reduce parsing

may also be applied to some precedence parsing methods. For example, we can construct an operator-precedence

parser (with weak OP grammars) based on the buffered shift-reduce parsing. Those will, however, not be

discussed here.

When constructing a BSR parsing table, both the input symbols and buffered symbols are significant for

parsing decisions. Since we consider only one tail buffer symbol, we can further simply the construction of

parsing tables by noticing that for this simplified parsing, the lookahead symbol may be nonterminals besides

terminals. The dotted productions of corresponding parsing tables also take the usual form A → α ⋅ X β, and

parser configuration the binary form [s, X], where X may represent A (when buffer is not empty) or a (when

buffer empty). In this regarding, we redefine the First and Follow sets in LR parsing as the following.

First set:

 Given any string of grammar symbols ()*

NT VV ∪∈α ,)(αFirst is defined as

 ⇒∪

 ∪∈⋅⋅⋅⇒= φεεααα :}?{,)(

**

NT VVVVVFirst .

Follow set:

 Given any grammar symbol
NT VVX ∪∈ ,)(XFollow is defined as

 .:}?{#,)(
**

 ⋅⋅⋅⇒∪

 ∪∈⋅⋅⋅⋅⋅⋅⇒= φXSVVVXVSVXFollow NT

Thus, in this case both First() and Follow() may include nonterminals. The algorithms to compute these two sets

can be easily constructed according to the above definitions.

As an example, we briefly discuss the construction of SBLR (Simple BLR) parsing tables. Similarly to SLR

parsing, for a given grammar G, by introducing an augmented grammar G', effective item sets, Closure(), go()

function and regular group of item sets C = {I0, I1, I2, …, In }, and using the First() and Follow() sets defined

above, we have the following algorithm of constructing an SBLR parsing table.

Algorithm of SBLR(0) parsing table construction

Input: an augmented grammar G';
Output: a parsing table of G' Action[];

Steps:
 for each effective item set Ii of C do begin
 if A →α ⋅ X β ∈ Ii, X ∈ VT ∪ VT and go(Ii, X)= Ij then begin
 Action[i , X] := shift j ;
 end
 else if A →α ⋅ ∈ Ii, A<>S' then begin

 for all X ∈ Follow(A) do begin
 Action[i , X] := reduce A →α;
 end
 end
 else if S' →S ⋅ ∈ Ii then begin

 Action[i , #] := ACCEPT ;
 end

 else Action[i , X] := ERROR ;
 end

If we redefine the Closure() set to include nonterminals as lookahead symbols and extend the go() function

accordingly, we can further improve the above parsing tables with lookahead parsing, which is similar to the

improvement from SLR to LR(1) parsing. Furthermore, by introducing the closure kernels of those items sets, an

LALR like parsing table may also be constructed for the same grammar. (See [8] for more details.)

5. Use of the parsing technique

The parsing method proposed here can be used to handle many grammatical ambiguities that may introduce

LR conflicts. As a typical example case, if a grammar G has the segments of productions: S → AC | BD, A → xy,

B → xy | …, where first(C) and first(D) have some common terminals, then the usual shift-reduce parsing would

encounter conflicts, since the parser has to make decision to either reduce to A or B, or to shift the input. In BSR

parsing, the parser can have the third choice to postpone the decision of xy reduction, and go on to handle the

sequential tokens, and then to make decision of reduction to A or B based on whether the latest result is C or D.

To achieve this controllability, the parsing table needs to be properly constructed. Currently only

construction of simplified parsing tables is used, as discussed above. Nevertheless, with appropriate use of the

intermediate buffer, many nontrivial grammatical ambiguities can be handled in a systematical way, providing

efficient parsing compared to corresponding LR parsers.

6. Summary and future work

Buffered shift-reduce parsing, by postponing the decisions of shift/reduce actions using a symbol buffer,

provides more control and flexibility of ambiguity handling, and is applicable to parsing a class of ambiguous

grammars that may introduce typical conflicts to LR parsing. This paper presents the basic ideas of the technique

and the construction of parsing tables in some simplified cases. There remains some work that is worth further

considerations, including parsing tables of a few more general cases (not necessarily all BSR grammars in

practical use), and the extension of a Tomita algorithm like BSR parsing version, where shared parsing stack and

buffer can be employed for grammars with multiple parsing table entries in a breadth-precedence way.

References

[1] Dick Grune and Ceriel Jacobs, Parsing Techniques – A Practical Guide, Vrije Universiteit, Amsterdam, 1998. (Available
online at ftp://ftp.cs.vu.nl/pub/dick/PTAPG/BookBody.ps.gz)
[2] Bison, the GNU Compiler Compiler (Version 1.28), 1999. Free Software Foundation, Inc. Available at www.gnu.org.
[3] Masaru Tomita, Efficient Parsing for Natural Language – A Fast Algorithm for Practical Systems, Kluwer Academic
Publishers, 1986.
[4] Tao Xiaopeng, Machine translation oriented Chinese syntactical rules and parsing. MA thesis, CS Dept., Peking
University, 1995. ("#$%&'()*+,-./01234567%89:;%<=>?@A(B, 1995C)
[5] Bing Swen, BYACC: Design of a compiler generator. Internal documentation, ICL, Peking Univsersity, 1998. (DE%

BYACCFGHI+JKLMJK,N@%OPQR%<=>?@A.S?TUV%1998C)
[6] M. P. Marcus, A Theory of Syntactic Recognition for Natural Language, P.H. Winston and R.H. Brown (eds), Artificial
Intelligence: An MIT Perspective, Vol. 1, MIT Press, 1979.
[7] Qian Feng, Introduction to computational linguistics. Xuelin Press, 1990. (WX%@A.S?Y:%?Z[\]%1990C)
[8] Bing Swen, Shift-Reduce/Putback Parsing (in Chinese). Technical Report, ICL Jan. 1999, CS Dept., Peking Univsersity.
URL http://icl.pku.edu.cn/bswen/nlp/bsPhdMidExam.html.

