
Logical Form Equivalence:
the Case of Referring Expressions Generation

Kees van Deemter
ITRI

University of Brighton
Brighton BN2 4GJ
United Kingdom

Kees.van.Deemter@itri.brighton.ac.uk

Magnús M. Halldórsson
Computer Science Dept.

University of Iceland,
Taeknigardur, 107 Reykjavik, Iceland

and Iceland Genomics Corp., Reykjavik
mmh@hi.is

Abstract

We examine the principle of co-
extensivity which underlies current al-
gorithms for the generation of referring
expressions, and investigate to what ex-
tent the principle allows these algo-
rithms to be generalized. The discus-
sion focusses on the generation of com-
plex Boolean descriptions and sentence
aggregation.

1 Logic in GRE

A key question regarding the foundations of Nat-
ural Language Generation (NLG) is the problem
of logical form equivalence (Appelt 1987). The
problem goes as follows. NLG systems take se-
mantic expressions as input, usually formulated
in some logical language. These expressions are
governed by rules determining which of them
count as ‘equivalent’. If two expressions are
equivalent then, ideally, the NLG program should
verbalize them in the same ways. (Being equiv-
alent, the generator would not be warranted in
distinguishing between the two.) The question
is: what is the proper relation of equivalence?
Appelt argued that classical logical equivalence
(i.e., having the same truth conditions) is not a
good candidate. For example, ��� � is logi-
cally equivalent with � ��� � � , yet – so the argu-
ment goes – an NLG system should word the two
formulas differently. Shieber (1993) suggested
that some more sophisticated notion of equiva-
lence is needed, which would count fewer seman-

tic expressions as equivalent.1 In the present pa-
per, a different response to the problem is ex-
plored, which keeps the notion of equivalence
classical and prevents the generator from distin-
guishing between inputs that are logically equiva-
lent (i.e., inputs that have the same truth condi-
tions). Pragmatic constraints determine which
of all the logically equivalent semantic expres-
sions is put into words by the NLG program.
Whereas this programme, which might be called
‘logic-oriented’ generation, would constitute a
fairly radical departure from current practice if
applied to all of NLG (Krahmer & van Deemter
(forthcoming); Power 2000 for related work), the
main aim of the present paper is modest: to show
that logic-oriented generation is standard prac-
tice in connection with the generation of referring
expressions (GRE). More specifically, we show
the semantics of current GRE algorithms to be
guided by a surprisingly simple principle of co-
extensivity, while their pragmatics is guided by
Gricean Brevity.

Our game plan is as follows. In section 2, we
illustrate the collaboration between Brevity and
co-extensivity, focussing on ‘simple’ referring ex-
pressions, which intersect atomic properties (e.g.,
‘dog’ and ‘black’). Section 3 proceeds by show-
ing how other algorithms use the principle to le-
gitimize the creation of more elaborate structures
involving, for example, complex Boolean combi-
nations (e.g., the union of some properties, each
of which is the intersection of some atomic prop-

1See also van Deemter (1990) where, on identical
grounds, a variant of Carnap-style intensional isomorphism
was proposed as an alternative notion of equivalence.

erties). This part of the paper will borrow from
van Deemter (2001), which focusses on compu-
tational aspects of GRE. Section 4 asks how the
principle of co-extensivity may be generalized be-
yond GRE and questions its validity.

2 Intersective reference to sets of
domain objects

The Knowledge Base (KB) forming the input to
the generator will often designate objects using
the jargon of computerized databases, which is
not always meaningful for the reader/hearer. This
is true, for example, for an artificial name (i.e.,
a database key) like ‘

���������
	�����
’ when a per-

son’s proper name is not uniquely distinguishing;
it is also true for objects (e.g., furniture, trees,
atomic particles) for which no proper names are
in common usage. In all such cases, the NLG pro-
gram has to ‘invent’ a description that enables the
hearer to identify the target object. The program
transforms the original semantic structure in the
KB into some other structure.

Let us examine simple references first. Assume
that the information used for interpreting a de-
scription is stored in a KB representing what
properties are true of each given object. In ad-
dition to these properties, whose extensions are
shared between speaker and hearer, there are
other properties, which are being conveyed from
speaker to hearer. For example, the speaker may
say ‘The white poodle is pregnant’, to convey the
new information that the referent of ‘the white
poodle’ is pregnant. GRE ‘sees’ the first, shared
KB only. We will restrict attention to the prob-
lem of determining the semantic content of a de-
scription, leaving linguistic realization aside. (Cf.
Stone and Webber 1998, Krahmer and Theune
1999, which interleave linguistic realization and
generation.) Accordingly, ‘Generation of Refer-
ring Expressions’ (GRE) will refer specifically to
content determination. We will call a GRE algo-
rithm complete if it is successful whenever an in-
dividuating description exists. Most GRE algo-
rithms are limited to individual target objects (for
an exception, Stone 2000), but we will present
ones that refer to sets of objects (Van Deemter
2000); reference to an individual � will equal ref-
erence to the singleton set ����� .

2.1 The Incremental Algorithm

Dale and Reiter (1995) proposed an algorithm
that takes a shared KB as its input and delivers a
set of properties which jointly identify the target.
Descriptions produced by the algorithm fullfill
the criterion of co-extensivity. According to this
principle, a description is semantically correct if
it has the target as its referent (i.e., its extension).
The authors observed that a semantically correct
description can still be unnatural, but that natural-
ness is not always easy to achieve. In particular,
the problem of finding a (‘Full Brevity’) descrip-
tion that contains the minimum number of prop-
erties is computationally intractable, and human
speakers often produce non-minimal descriptions.
Accordingly, they proposed an algorithm that ap-
proximates Full Brevity, while being of only lin-
ear complexity. The algorithm produces a finite
set � of properties ����������������� such that the inter-
section of their denotations � � �"!�!$# ����� # � � �%!�!
equals the target set & , causing � to be a ‘dis-
tinguishing description’ of & . The properties in
� are selected one by one, and there is no back-
tracking, which is why the algorithm is called In-
cremental. As a result, some of the properties in
� may be logically superfluous.

For simplicity, we will focus here on properties,
without separating them into Attributes and Val-
ues (see also Reiter and Dale 2000, section 5.4.5).
Accordingly, reflecting the fact that not all prop-
erties are equally ‘preferred’, they are ordered lin-
early in a list IP, with more preferred ones preced-
ing less preferred ones. We also simplify by not
taking the special treatment of head nouns into ac-
count. Suppose & is the target set, and ' is the
set of elements from which & is to be selected.2

The algorithm iterates through IP; for each prop-
erty, it checks whether it would rule out at least
one member of ' that has not already been ruled
out; if so, the property is added to � . Members
that are ruled out are removed from ' . The pro-
cess of expanding � and contracting ' continues
until ')()& ; if and when this condition is met, �
is a distinguishing set of properties.

2We have chosen a formulation in which * is a superset
of + , rather than a ‘contrast set’, from whose elements those
of + must be distinguished (Dale and Reiter 1995). The dif-
ference is purely presentational.

��� �������
is initialized to the empty set 	

For each
��� IP do

If +������
�������� *�������
������ �
�� removes dis-
tractors from * but keeps all elements of +�	
Then do��� ��� �!�
��"	 � Property
�� is added to� 	* � � *�#$���
 � ��� � All elements outside���
 � ��� are removed from *%	

If * � + then Return
�&�

Success 	
Return Failure

�
All properties in IP have been

tested, yet *��� +'	
This algorithm, D&RPlur, constructs better and
better approximations of the target set & . Assum-
ing (cf. Dale and Reiter 1995) that the tests in the
body of the loop take some constant amount of
time, the worst-case running time is in the order
of

��(
(i.e.,)+* ��(-,) where

�.(
is the total number

of properties.

3 Reference using Boolean descriptions

Based on co-extensivity, the algorithms discussed
construct an intersective Boolean expression (i.e.,
an expression of the form � � # ����� # � � , where
� ����������� � are atomic) that has the target set as its
extension. But, intersection is not the only oper-
ation on sets. Consider a KB whose domain is a
set of dogs (/ �10��32��34 � �) and whose only Attributes
are TYPE and COLOUR:

TYPE: dog �5/ �10��32��34 � � � , poodle �5/ �10
�
COLOUR: black �5/ �10��32�� , white �54 � � �

In this situation, D&R 687�9;: does not allow us to
individuate any of the dogs. In fact, however, the
KB should enable one to refer to dog 2 , since it is
the only black dog that is not a poodle:

�52�� (<0>=?/�2A@ # � � � 4B= �
A similar gap exists where disjunctions might be
used. For example, D&R 687�95: does not make the
set of dogs that are either white or poodles refer-
able, whereas it is referable in English, e.g., ‘The
white dogs and the poodles’.

Presently, we will investigate how GRE can take
negation and disjunction into account. Section
3.1 will ask how GRE algorithms can achieve
Full Boolean Completeness; section 3.2, which
follows Van Deemter (2001), adds Brevity as a

requirement. Boolean descriptions do the same
thing that intersective descriptions do, except in
a more dramatic way: they ‘create’ even more
structure. As a result, the problem of optimizing
these structures with respect to constraints such as
Brevity becomes harder as well.

As a first step, we show how one can tell which
targets are identifiable given a set of properties
and set intersection. We calculate, for each el-
ement 4 in the domain, the ‘Satellite set’ of 4 ,
that is, the intersection of the extensions of all the
properties that are true of 4 . Taking all extensions
from our example,

&C/BD � =?="EFD �
	 *?/ , (
4 �-G # � ��� 4H= � # 0I=?/H2A@ (�5/ �10
�
&C/BD � =?="EFD �
	 *J0 , (
4 �-G # � ��� 4H= � # 0I=?/H2A@ (�5/ �10
�
&C/BD � =?="EFD �
	 *?2 , (
4 �-G # 0I=?/�2K@�()�5/ �10��32��
&C/BD � =?="EFD �
	 *?4 , (
4 �-G #MLON EFD � (�54 � � �
&C/BD � =?="EFD �
	 * �-, (
4 �-G #MLON EFD � (�54 � � �

If two objects occur in the same Satellite set then
no intersective description can separate them: any
description true of one must be true of the other. It
follows, for example, that no object in the domain
is uniquely identifiable, since none of them occurs
in a Satellite set that is a singleton.

3.1 Boolean descriptions (i): generate and
simplify

Boolean completeness is fairly easy to achieve
until further constraints are added. Suppose the
task is to construct a description of a target set & ,
given a set IP of atomic properties, without any fur-
ther constraints. We will discuss an algorithm that
starts by calculating a generalized type of Satel-
lite sets, based on all atomic properties and their
negations.

Construction of Satellite sets:

IP �QPSROT (IP U � �WVCT���VYX IP �
For each 4ZX & do

&\[OT (�5]^TB]^X IP �QPSR_T`4MX �] !�! �
&C/HD � =?=aEbD ��	 *?4 , (dcfe.gih;jB*" �] !�! ,

First, the algorithm adds to IP the properties whose
extensions are the complements of those in IP.
Then it calculates, for each element 4 in & ,
&C/HD � ="="EFD �
	 *?4 , by lining up all the properties in
IP � PbR that are true of 4 , then taking the intersec-
tion of their extensions. Satellite sets may be
exploited for the construction of descriptions by
forming the union of a number of expressions,
each of which is the intersection of the elements
of &8[(for some 4ZX &).

Description By Satellite sets (DBS):

Description T (��&8[_T`4MX & �
Meaning T (� [gih.* &C/HD � =?=aEbD ��	 *?4 , ,

If Meaning = &
then Return Description
else Fail

(Note that Description is returned instead of
Meaning, since the latter is just the set & .) De-
scription is a set of sets of sets of domain ob-
jects. As is made explicit in Meaning, this third-
order set is interpreted as a union of intersections.
A Description is successful if it evaluates to
the target set & ; otherwise the algorithm returns
Fail. If Fail is returned, no Boolean descrip-
tion of & is possible:

Full Boolean Completeness: For any set + ,

+ is obtainable by a sequence of boolean op-

erations on the properties in IP if and only if� j������ +���	�
������	�
�� ������� equals + .

Proof: The implication from right to left is ob-

vious. For the reverse direction, suppose + ��� j������ +���	�
������	�
�� ������� . Then for some
� + ,

Satellites �
 � contains an element
�� that is not in

+ . But
���
 � Satellites �
 � implies that every

set in IP must either contain both of
 and
�� , or

neither. It follows that + , which contains only

one of
���
 � , cannot be obtained by a combina-

tion of Boolean operations on the sets in IP.

DBS is computationally cheap: it has a worst-
case running time of)+* � � � , , where

�
is the num-

ber of objects in & , and � the number of atomic
properties. Rather than searching among all the
possible unions of some large set of sets, a set
& (� 	 ��������� 	 � � is described as the union of

�

Satellites sets, each of which equals the intersec-
tion of those (at most � �) sets in IP �QPSR that contain	 V . Descriptions can make use of the Satellite sets
computed for earlier descriptions, causing a fur-
ther reduction of time. Satellites sets can even
be calculated off-line, for all the elements in the
domain, before the need for specific referring ex-
pressions has arisen.3

Unfortunately, the descriptions produced by DBS

tend to be far from brief:

&�� (�54 �-G �10I="/�2A@ � � � � 4B= � � L N EFD � � .
&C/BD � =?="EFD �
	 *?2 , (�52��
&\[(�54 �-G � LON EFD � � � ��� 4H= � � 0>=?/�2A@ � .
&C/BD � =?="EFD �
	 *?4 , (�54 � � �
&\P (�54 �-G � L N EFD � � � � � 4B= � � 0I=?/H2A@ � .
&C/BD � =?="EFD �
	 * �-, (�54 � � �

To describe the target set & (�52��34 � � � , for exam-
ple, the algorithm generates the Description
��&�� � &8[� &\P�� . Consequently, the boolean expres-
sion generated is

*?4 �-G # 0I=?/�2K@ # � � � 4B= � # LON EFD � , U
*?4 �-G #MLON EFD � # � � � 4B= � # 0>=?/�2A@ , U
*?4 �-G #MLON EFD � # � � � 4B= � # 0>=?/�2A@ , .

But of course, a much shorter description, �
� � 4B= � ,

would have sufficed. What are the prospects for
simplifying the output of DBS? Unfortunately,
perfect simplification (i.e., Full Brevity) is incom-
patible with computational tractibility. Suppose
brevity of descriptions is defined as follows: 4 �
is less brief than 4 � if either 4 � contains only
atomic properties while 4�� contains non-atomic
properties as well, or 4 � contains more Boolean
operators than 4 � . Then the intractability of Full
Brevity for intersections of atomic properties log-
ically implies that of the new algorithm:

Proof: Suppose an algorithm, BOOL, produced

a maximally brief Boolean description when-

ever one exists. Then whenever a target set +
can be described as an intersection of atomic

properties, BOOL(+) would be a maximally

brief intersection of atomic properties, and this

is inconsistent with the intractability of Full

Brevity for intersections of atomic properties.

3Compare Bateman (1999), where a KB is compiled into
a format that brings out the commonalities between objects
before the content of a referring expression is determined.

This negative result gives rise to the question
whether Full Brevity may be approximated, per-
haps in the spirit of Reiter (1990)’s ‘Local
Brevity’ algorithm which takes a given intersec-
tive description and tests whether any set of prop-
erties in it may be replaced by one other property.
Unfortunately, however, simplification is much
harder in the Boolean setting. Suppose, for exam-
ple, one wanted to use the Quine-McCluskey al-
gorithm (McCluskey 1965), known from its appli-
cations to electronic circuits, to reduce the num-
ber of Boolean operators in the description. This
would go only a small part of the way, since
Quine-McCluskey assumes logical independence
of all the properties involved. Arbitrarily com-
plex information about the extensions of prop-
erties can affect the simplification task, and this
reintroduces the spectre of computationally in-
tractability.4 Moreover, the ‘generate and sim-
plify’ approach has other disadvantages in addi-
tion. In particular, the division into two phases,
the first of which generates an unwieldy descrip-
tion while the second simplifies it, makes it psy-
chologically unrealistic, at least as a model for
speaking. Also, unlike the Incremental algorithm,
it treats all properties alike, regardless of their
degree of preferedness. For these reasons, it is
worthwhile to look for an alternative approach,
which takes the Incremental algorithm as its point
of departure. This does not mean that DBS is use-
less: we suggest that it is used for determining
whether a Boolean description exists; if not, the
program returns Fail; if a Boolean description
is possible, the computationally more expensive
algorithm of the following section is called.

3.2 Boolean descriptions (ii): extending the
Incremental algorithm

In this section, we will explore how the Incre-
mental algorithm may be generalized to take all
Boolean combinations into account. Given that
the Incremental algorithm deals with intersections

4For example, the automatic simplificator at
http://logik.phl.univie.ac.at/chris/qmo-
uk.html.O5 can only reduce our description to
� ��� # � ��� � �
 if it ‘knows’ that being black, in this
KB, is tantamount to not being white. To reduce even
further, the program needs to know that all elements in the
domain are dogs. In more complex cases, equalities between
complex intersections and/or unions can be relevant.

between sets, Full Boolean Completeness can be
achieved by the addition of set difference. Set
difference may be added to D&RPlur as follows.
First we add negations to the list of atomic proper-
ties (much like the earlier DBS algorithm). Then
D&RPlur runs a number of times: first, in phase
1, the algorithm is performed using all positive
and negative literals; if this algorithm ends before
' (& , phase 2 is entered in which further dis-
tractors are removed from ' using negations of
intersections of two literals, and so on, until ei-
ther ' (& (Success) or all combinations have
been tried (Failure). Observe that the nega-
tion of an intersection comes down to set union,
because of De Morgan’s Law: ��� # ����� # � � (
� ��U �����SU � � . Thus, phase 2 of the algorithm deals
with disjunctions of length 2, phase 3 deals with
disjunctions of length 3, etcetera.

A schematic presentation will be useful, in which
�����
	 stands for any positive or negative literal.
The length of a property will equal the number
of literals occurring in it. We will say that a D&R
phase uses a set of properties � if it loops through
the properties in � (i.e., � takes the place of IP in
the original D&RPlur).

D&R ��� 7 P (� :

1. Perform a D&R phase using all prop-
erties of the form � ���
	 ;
if this phase is successful then stop, oth-
erwise go to phase (2).

2. Based on the Values of � and ' com-
ing out of phase (1),
perform a D&R phase using all proper-
ties of the form � ���
	 # � ���
	 ;
if this phase is successful then stop, oth-
erwise go to phase (3).

3. Based on the Values of � and ' com-
ing out of phase (2),
perform a D&R phase using all proper-
ties of the form �����
	 # �����
	 # �����
	 ;
if this phase is successful then stop, oth-
erwise go to phase (4).

Etcetera.

One can require without loss of generality that
no property, considered at any phase, may have

different occurrences of the same atom.5 Since,
therefore, at phase

�
, there is room for properties

of length
�

, the maximal number of phases equals
the total number of atomic properties in the lan-
guage.

Note that D&R ��� 7 P (� is incremental in two dif-
ferent ways: within a phase, and from one phase
to the next. The latter guarantees that shorter dis-
junctions are favoured over longer ones. Once a
property has been selected, it will not be aban-
doned even if properties selected during later
phases make it superfluous. As a result, one may
generate descriptions like L N EFD � # * 2K/HD # 4 �-G ,
(i.e., ‘white (cats and dogs)’) when 2I/HD # 4 �-G
(i.e., ‘cats and dogs’) would have sufficed. The
empirical correctness of this type of incremen-
tality is debatable, but repairs can be made if
needed.6 Unfortunately, however, the algorithm
is not tractable as it stands. To estimate its run-
ning time as a function of the number of proper-
ties (

� (
) in the KB and the number of properties

used in the description (
� 7), note that the maximal

number of properties to be considered equals

� ��
V�� � �

� � (
E�� (

� ��
V�� � �

� (��
E � * � (
	 E , �

(The factor of � derives from inspecting both each
atom and its negation.) If

� 7��� � (
then this

is in the order of
� � �(.7 To avoid intractability,

the algorithm can be pruned. No matter where
this is done, the result is polynomial. By cut-
ting off after phase (1), for example, we gener-
ate negations of atomic properties only, produc-
ing such descriptions as ‘the black dog that is
not a poodle’, while disregarding more complex
descriptions. As a result, Boolean completeness
is lost, but only for references to non-singleton
sets.8 The number of properties to be considered

5For example, it is useless to consider the property

���#f
���#
�� , which must be true of any element in the do-
main, or the property
 � #
 � #
 � , which is equivalent to
the earlier-considered property
�� #
�� .

6E.g., phases might run separately before running in
combination: first phase 1, then 2, 1&2, 3, 1&3, 2&3,
1&2&3, etc. (Suggested by Richard Power.)

7Compare an analogous argument in Dale and Reiter
(1995, section 3.1.1).

8If
�� ��� ��� � #!
�� individuates the individual � then
either
 � # � #
 � or
 � # � #f
 � does. Where singletons
are concerned, set union does not add descriptive power.

by this simpler algorithm equals * � (, ��� � � (�	�� .
If one wanted to produce more complex descrip-
tions like LON EFD � # 4 �-G # � ��� 4H= � (‘the white dogs
and the poodles’), the algorithm might be cut off
one phase later, leading to a worst-case running
time of)�* ���(, .
4 Discussion

Hybrid algorithms, which make use of elements
of both algorithms, are possible. In particular,
the idea of incrementality can be injected into the
generate and simplify algorithm of section 3.1,
firstly, at the level of the construction of Satel-
lite sets (i.e., by letting &�[take into account only
those properties from IP � PSR that are necessary for
singling out 4) and, secondly, where the union of
the &Y/BD � =?="EFD �
	 is formed in DBS (i.e., by taking
only those &C/HD � ="="EFD �
	 into account that change the
resulting Meaning). Instead of offering any de-
tails on this, we choose to discuss a more general
problem relating to the problem of Logical Form
Equivalence that was noted in section 1.

GRE algorithms exploit a principle of coexten-
sivity for determining what are semantically cor-
rect ways of referring to an entity. Thus, consis-
tent with the idea of logic-oriented generation, the
structure of the description is not prejudged by
the syntactic form of the input to the generator
(i.e., by the fact that the input contains an indi-
vidual constant rather than a description). As a
result, GRE can ‘create’ substantial amounts of
new semantic structure containing, for example,
any number of Boolean operators. In section 1,
it was suggested that the processes of structure
transformation used in GRE might have wider ap-
plicability. The present section questions the va-
lidity of coextensivity as a general principle, first
for GRE (section 4.1), then for sentence aggrega-
tion (section 4.2).

4.1 Descriptions in intensional contexts

The principle of co-extensivity is not valid in in-
tensional contexts. For example, consider

(a) John knows that [the red button] is
dangerous
(b) John knows that [the rocket launch-
ing button] is dangerous.

(a) and (b) have different truth conditions even if
speaker and hearer share the information that the
red button is the rocket launching button. In other
words, the two descriptions are not interchange-
able, even if reader and hearer know them to be
coextensive; what would be necessary is for John
to know that they are coextensive. Extending cur-
rent GRE algorithms to the generation of referring
expressions in intensional contexts is likely to be
a difficult enterprise.

Failiure of substitutivity in intensional contexts
is, of course, a well-known problem, for which
various solutions are available on the theoreti-
cal market (e.g., Montague 1973, Barwise and
Perry 1983). But one has to wonder whether co-
extensivity is ever really sufficient. Consider ex-
tensional truncations of (a) and (b), such as may
be generated from an input I(1) (where the seman-
tic predicate ‘dangerous’ is abbreviated as

�
and

/ is a constant referring to the button):

I(1)
� *?/ ,

(a �) [The red button] is dangerous
(b �) [The rocket launching button] is
dangerous

Suppose (a) and (b) are semantically interchange-
able (e.g., when said to someone who knows the
colours and functions of all objects in the do-
main), so a choice between them can only be mo-
tivated by an appeal to pragmatic principles. Even
then, it is difficult to accept that the same choice
must be made regardless whether the input to the
generator is I(1), I(2) or I(3): (Here �i= *�� , says
that � is for launching rockets; � is the Russellian
description operator.)

I(2) �*���� , * � � 4�*�� ,�� 0
	�DSD ��� *�� , , ! T � *�� ,
I(3) �*���� , * �i= *�� ,�� 0
	�DSD ��� *�� , , ! T � *�� , .

Co-extensivity, after all, does not allow the gen-
erator to distinguish between I(1), I(2) and I(3),
because these three have the same extension!
Perhaps a weakened version of co-extensivity is
needed which allows the generator to add new
structure (e.g., when the input is I(1)), but not to
destroy existing structure (e.g., when the input is
I(2) or I(3)). It is, however, unclear what the the-
oretical justification for such a limitation of co-
extensivity might be.

Note that these problems become more dramatic
as GRE is able to ‘invent’ more structure (e.g.,
elaborate Boolean structure, as discussed in sec-
tion 3). Crucially, we have to assume that, in
an ideal generator, there are many other prag-
matic constraints than Brevity. One description
can be chosen over another, for example, because
it fullfills some additional communicative goal
(Dale and Reiter 1995, section 2.4; also Stone
and Webber 1998). Depending on the commu-
nicative goal, for example, (b) might be chosen
over (a) because the properties that identify the
button also explain why it is dangerous. Brevity
will then have to be interpreted as ‘Brevity pro-
vided all the other constraints are fullfilled’.

4.2 Logic in sentence aggregation

GRE algorithms are sometimes presented as if
the principles underlying them were unrelated to
those underlying other components of an NLG
system.9 This is especially true for the logic-
based structure transformations on which this pa-
per has focused. In what follows, however, we
will suggest that analogous transformations moti-
vate some of the key operations in sentence aggre-
gation (Reiter and Dale 2000, p.133-144). To ex-
emplify, (and limiting the discussion to distribu-
tive readings only) the choice between the (a) and
(b) variants of (1)-(3) involves a decision as to
whether information is expressed in one or more
sentences:

1a. John is eating; Mary is eating; Car-
los is eating.
1b. John, Mary and Carlos are eating.
2a. John is eating; John is drinking;
John is taking a rest
2b. John is eating and drinking and tak-
ing a rest.
3a. If John is eating then Mary is eat-
ing; If Bill is eating then Mary is eating.
3b. If either John or Bill is eating then
Mary is eating.

Writing �!/HD� * & , for ��� X & *���/BDA*�� , , (Kamp
and Reyle 1993), the linguistic equivalence of
(1a) and (1b) rests on the logical equivalence

9But see Bateman (2000), where GRE and aggregation
are linked.

1 � . *���/BDA* � ,�� �!/HDK*�� ,�� ��/BDA*?2 , ,��
��/BD� * � � ��� �32�� ,

Analogous to uses of Brevity in GRE, a prefer-
ence for (1b) over (1a) might be motivated by
a preference for a semantic structure with fewer
logical operations. Examples (2)-(3) are not dis-
similar to what we see in (1). For example, the
following logical equivalences support the lin-
guistic equivalence of (2a)/(2b) and (3a)/(3b):

2 � . *�� / �	� / ��
 *?/ , ,��
*� ��T�� � �	� � ��
 � , *?/ ,
3 � . * * � � � � ,�� * � � � � , ,��
* * � ��� � � , � � ,

In (� �), three properties, � � � and

, are aggre-
gated into ��T�� � �	� � ��
 � (i.e., to have each
of the three properties � � � and

). In (

� �),
two antecedents � � and � � are aggregated into
� ��� � � .10 As before, a generator might prefer
the (b) versions because they are structurally sim-
pler than the logically equivalent (a) versions. In
sentence aggregation, however, co-extensivity is
not enough. For example, we expect ‘Eat(j)’ to
be worded differently from ‘Eat(m)’, even if both
propositions are true and consequently have the
same extension. Unlike GRE, therefore, aggrega-
tion requires at least logical equivalence.11

5 Acknowledgment

Thanks are due to Emiel Krahmer for discussion
and comments.

6 References

Appelt 1987. D.E. Appelt. Bidirectional Grammars and the

Design of Natural Language Generation systems. In Theo-

retical Issues in Natural Language Processing-3, p.185-191.

New Mexico State University, Las Cruces.

Barwise and Perry 1983. J. Barwise and J. Perry. Situations

and Attitudes. MIT Press.

Bateman 1999. J.A. Bateman. Using Aggregation for Se-

lecting Content when Generating Referring Expressions. In

Procs. ACL-99, Univ. Maryland.

10Note the disjunction, which would be difficult to get if
the transformation was performed at a syntactic level.

11In some (e.g., epistemic) contexts, even logical equiv-
alence is not enough. This mirrors the problems with co-
extensivity that were noted in connection with GRE.

Dale 1992. R. Dale. Generating Referring Expressions:

Constructing Descriptions in a Domain of Objects and Pro-

cesses. MIT Press, Cambridge.

Dale and Reiter 1995. R. Dale and E. Reiter. Computational

Interpretations of the Gricean Maximes in the Generation of

Referring Expressions. Cognitive Science 18: 233-263.

Grice 1975. P. Grice. Logic and Conversation. In P. Cole

and J. Morgan (Eds.), “Syntax and Semantics: Vol 3, Speech

Acts”: 43-58. New York, Academic Press.

Kamp and Reyle 1993. From Discourse to Logic. Kluwer

Academic Publishers, Dordrecht.

Krahmer and Theune 1999. E. Krahmer and M. Theune.

Generating Descriptions in Context. In R. Kibble and K.

van Deemter (Eds.), Procs. of ws. Generation of Nominal

Expressions, ESSLLI’99.

McCluskey 1965. McCluskey, Jr., E.J. Introduction to the

Theory of Switching. New York. McGraw-Hill.

Montague 1973. R. Montague. The Proper treatment of

Quantification in Ordinary English. In R.H.Thomason (ed.)

Formal Philosophy. Yale University Press, New Haven.

Power 2000. R.J.D. Power. Planning texts by constraint sat-

isfaction. Procs of the 18th Int. Conf. on Computational

Linguistics (COLING-2000), Saarbruecken, pp. 642-648.

Reiter 1990. E. Reiter. The Computational Complexity of

Avoiding Conversational Implicatures. In Proc. ACL-1990,

Pittsburgh.

Reiter and Dale 2000. E. Reiter and R. Dale. Building Nat-

ural language Generation Systems. Cambridge University

Press, Cambridge, UK.

Shieber 1993. S. Shieber. The Problem of Logical-Form

Equivalence. Squib in Computational Linguistics 19, 1.

Stone 2000. M. Stone. On Identifying Sets. In Procs. of

INLG-2000, Mitzpe Ramon.

Stone and Webber 1998. M. Stone and B. Webber. Textual

Economy through Close Coupling of Syntax and Semantics.

In Procs. of INLG-1998, p.178-187.

van Deemter 1990. Structured Meanings in Computational

Linguistics. In Procs. of COLING-1990, Helsinki.

van Deemter 2000. K. van Deemter. Generating Vague De-

scriptions. In Procs. of INLG-2000, Mitzpe Ramon.

van Deemter 2001. Generating Referring Expressions: Be-

yond the Incremental Algorithm. In Procs. of Int. Workshop

on Computational Semantics (IWCS-4), Tilburg.

