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Previous stochastic approaches to sentence realization da not include a tree-based representa
tion of syntax. While this may be adequate or even advantageous for some applications, other 
applications profitfrom using as much syntactic knowledge as is available, leaving to a stochas
tic model only those issues that are not determined by the grammar. In this paper, we present 
three results in the context of surface realization: a stochastic tree model derivedfrom a parsed 
corpus outperforms a tree model derivedfrom unannotated corpus; exploiting a hand-crafted 
grammar in conjunction with a tree model outpe1fonns a tree model without a grammar; and 
exploiting a tree model in conjunction with a linear language model outperforms just the tree 
model. 

1. Introduction 
Most sentence realizers (systems that take a fairly shallow semantic or lexico-syntactic repre
sentation and retum a surface string in the target Janguage) are entirely grammar-based, includ
ing quite a few based on TAG (starting with (McDonald and Pustejovsky1985)). Generators 
using hand-crafted grammars are useful for constrained applications, when strict control over 
the output is needed, and when a sufficiently !arge grammar is available. Recently, (Langkilde 
and Knight1998a) and (1998b) have used stochastic techniques in NLG, by mapping semantic 
primitives to a set of possible ordered sequences of tokens, and assembling theses into a Jattice. 
They then use a linear Janguage model to select the best path through the lattice. Stochastic 
generators are useful when a large grammar is not available, or when the range of generated 
utterances is Jarge. 

To date, generators are either fully hand-crafted or entirely syntax-free, and use a stochastic 
model only at the level of linear strings. In this paper we present FERGUS (Flexible Empiri
cist/Rationalist Generation Using Syntax). FERGUS follows Knight and Langkilde's seminal 
work in using an n-gram language model, but we augment it with a tree-based stochastk model 
and a TAG grammar. We argue that the combination of all three key modules of our approach 
- tree model, TAG grammar, linear model - is crucial and improves over models using only a 
subset of these modules. 

The structure of the paper is as follows. In Section 2, we start out by describing a modification 
to standard TAG that we have followed for the sake of generation. In Section 3, we describe the 
architecture of the system, and some of the modules. In Section 4 we discussthree experiments. 
We conclude with a summary of on-going and future work. 
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2. 1-Trees 
We depart from standard TAG practice in our treatment of trees for adjuncts (such as adverbs 
or adjectives), and instead follow (McDonald and Pustejovskyl985) and (Rambow et al.1995). 
While in XTAG the elementary tree for an adjunct contains phrase structure that attaches the 
adjunct to a node in another tree with the specified label (say, VP) from the specified direction 
(say, from the left), in our system the trees for adjuncts simply express their own phrase and 
argument structure (active valency), but not how they connect to the lexical item they modify 
(passive valency). Information about passive valency is kept in the adjunction table which is 
associated with the grammar. We call trees that can adjoin to other trees (and have entries in 
the adjunction table) 'Y-trees, the other trees (which can only be substituted into other trees) are 
a-trees, while (J trees are now restricted to predicative auxiliary trees. Note that each 1 -tree 
corresponds to a set of predicative auxiliary trees in a traditional TAG grammar (which share 
common phrase structure but attach differently). 

3. System Overview 
FERGUS is composed of three modules: the stochastic Tree Chooser, the grammar-based Un
raveler, and the stochastic Linear Precedence (LP) Chooser. The input to the system is a depen
dency tree as shown in Figure 1 on the left. Note that the nodes are labeled only with lexemes, 
not with supertags. The Tree Chooser then uses a stochastic tree model to choose TAG trees for 
the nodes in the input structure. This step can be seen as analogous to supertagging (Bangalore 
and Joshil999), except that now supertags (i.e., names of trees) must be found for words in a 
tree rather than for words in a linear sequence. The Unraveler then uses the XTAG grammar 
(XTAG-Group1999) to produce a Jattice of all possible Jinearizations that are compatible with 
the supertagged tree and the XTAG grammar. The LP Chooser then chooses the most likely 
traversal of this Jattice, given a language model. We discuss the input representation and the 
three components in turn. For a more detailed overview over the system, see (Bangalore and 
Rambow2000b ). 
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3.1. The Input to FERGUS 

As mentioned, the input to FERGUS is a dependency tree. We make three remarks. 
First: we see the task of FERGUS as one of incremental specification. Clearly, a TAG derivation 
tree fully specifies a derivation. lt consists of three types of infonnation for each node: the 
supertag, the lexical anchor, and the address at which this tree is attached at the tree of the 
mother node (except of course for the root). In FERGUS, we assume that the input contains 
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only the lexeme, and the other infonnation is added during the generation process. As a result, 
the input tree is actually semantically underspecified - for example, from the tree on the left in 
Figure 1, we could in theory obtain a sentence such as cost was no estimate for the second phase 
there, by choosing an a-tree for cost and an adverbial auxiliary tree for there. Thus we leave it 
to the corpus to determine how the lexemes relate to each other. Clearly, for many applications, 
we know which role the dependents of a lexeme play in the argument structure of their head, 
and FERGUS allows us to annotate dependents with a role feature (adj for adjuncts, tune for 
function words, or for arguments an integer referring to the numbering of argument slots in the 
XTAG grammar). However, the option of leaving the role underspecified is useful in machine 
translation applications (when the parser cannot fully determine the syntactic roles in the source 
Janguage), and for all applications because often it is difficult to determine whether a dependent 
is an argument or an adjunct (for example, Baton Rouge in he disappearedfrom Baton Rouge). 
In realizers that do not allow for underspecification, it is necessary to consult the linguistic data 
base (lexicon) of the realizer in order to construct valid inputs; FERGUS allows us to leave the 
role of some dependents open. 

Second: in the system that we used in the experiments described in Section 4, all words (in
cluding function words) need tobe present in the input representation, fully inftected. This is of 
course unrealistic for applications. In this paper, we only aim to show that the use of our three 
modules improves performance of a generator. 

Third: as is weil known, because of lexicalization, the derivation tree of TAG is a dependency 
tree. However, because of the definition of adjunction, there are cases in which the derivation 
tree is not the dependency tree as commonly assumed, in particular cases of clausal embedding 
using predicative auxiliary trees (Rambow and Joshi 1996). Because our training corpus is anno
tated with standard dependency trees and not derivation trees, we assume standard dependency 
trees as input, and treat the footnode of predicative auxiliary trees as a substitution node. As a 
consequence, we do not currently exploit the full formal power of TAG and we are not able to 
generate long-distance dependencies. We intend to address this issue in future work. 

3.2. The Tree Chooser 

In general, for a given dependency tree, each node can be given more than one supertag in order 
to turn the tree into a valid derivation tree. If the syntactic roles of the daughter nodes are not 
fixed, then the subcategorization frame of the mother node needs to be chosen, but even if they 
are fixed, choices remain such as voice, and how to realize the arguments (for example, dative 
shift or topicalization). Ideally, we would have .a correct set of rules for each choice and enough 
data in the· generation process so that we can make the decision. (Stone and Doran 1997) have 
shown how to integrate such rules into a TAG framework. However, the required research to 
find the correct rules is nowhere near completed and the data required in order to make such 
decisions is not always available in generation. An alternative is to assume a default ordering 
of choices, as does (Becker1998). This cuts back on the required off-Jine theoretical work and 
on-line data, but represents a rather inflexible solution. We have chosen to use a stochastic tree 
model sensitive to the lexemes of the mother and daughter nodes to make this choice. · 

The Tree Chooser draws on a tree model, which is a representation of an XTAG derivation for 
1,000,000 words of the Wall Street Journal. lt makes the simplifying assumptions that the choice 
of a tree for a node depends only on its daughter nodes, thus allowing for a top-down dynamic 
programming algorithm. Specifically, a node ry in the input structure is assigned a supertag s so 
that the probability of finding the treelet composed of 'fJ with supertag s and all of its daughters 
(as found in the input structure) is maximized, and such that s is compatible with ry's mother 
and her supertag Sm. Here, "compatible" means that the tree represented by s can be adjoined or 
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substituted into the tree represented by Sm, according to the XTAG gramrnar. For our example 
sentence, the input to the system is the tree shown in Figure 1 on the left, and the output frorn 
the Tree Chooser is the tree as shown in Figure 1 on the right. Note that while a derivation 
tree in TAG fully specifies a derivation and thus a surface sentence, the output from the Tree 
Chooser does not, because for us adjunct auxiliary trees are ')'-trees and thus underspecified with 
respect to the adjunction site and/or the adjunction direction (from Jeft or frorn right) in the tree 
of the mother node, and they may be unordered with respect to other adjuncts (for example, the 
farnous adjective ordering problem). (See Section 2 above.) Furthermore, supertags rnay have 
been chosen incorrectly or not at all. 

3.3. The Unraveler 
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Figure 2: Architecture of FERGUS 

The Unraveier takes as input the serni-specified derivation tree (Figure 1 on the right) and pro
duces a word Iattice. Each node in the derivation tree consists of a lexical item and a slipertag. 
The linear order of the daughters with respect to the head position of a supertag is specified in 
the XTAG grammar. This information is consulted to order the daughter nodes with respect to 
the head at each level of the derivation tree. In cases where a daughter node can be attached 
at rnore than one place in the head supertag (as is the case in our example for was andfor), a 
disjunction of all these positions are assigned to the daughter node. A bottom-up algorithm then 
constructs a lattice that encodes the strings represented by each level of the derivation tree. The 
lattice at the root of the derivation tree is the result of the Unraveler. 
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3.4. The Linear Precedence Chooser 

The lattice output from the Unraveler encodes all possible word sequences permitted by the 
derivation structure. Again, it might be possible to develop rules to choose among possible ad
junction sites for adverbs, or for choosing possible orderings of adjuncts at the same adjunction 
site (such as for the notorious adnominal adjective ordering problem). However, such research 
is not completed, and we instead propose to use a stochastic model in order to make this choice. 
We rank the word sequences encoded by the lattice in the order of their likelihood by composing 
the ]attice with a finite-state machine representing a trigram Ianguage model. This model has
been constructed from 1,000,0000 words of Wall Street Journal corpus. We pick the best path
through the lattice resulting from the composition using the Viterbi algorithm, and this top
ranking word sequence is the output of the LP Chooser. 

4. Experiments and Results 
In order to show that the use of a tree model, a grammar, and a linear model does indeed help 
performance, we performed four experiments: 

• For the baseline experiment, we impose a random tree structure for each sentence of the 
corpus and build a Tree Model whose parameters consist of whether a lexeme ld precedes 
or follows her mother lexeme lm. We call this the Baseline Left-Right (LR) Model. This 
model generates There was estimate for phase the second no cost. for our example input. 

• In the second experiment (TM-LM), we derive the parameters for the LR model from 
an annotated corpus, in particular, the XTAG derivation tree corpus. Thus, we use a tree 
model and a linear language model, but not the TAG grarnmar. This model generates 
There no estimate for the second phase was cost. for our example input. 

• In the third experiment (TM-XTAG), we use a tree model which has been trained on a 
corpus annotated with traditional TAG derivation trees (using ß-trees rather than 1-trees). 
Except in very rare cases, this entirely determines linear order. So in this experiment we 
use a tree model and the XTAG grammar, but no linear language model. 1 

• In the fourth experiment (TM-XTAG-LM), we use the system as described in Sec
tion 3. Specifically, we employ the supertag-based tree model whose parameters consist 
of whether a lexeme ld with supertag sd is a dependent of lm with supertag Sm. Fur
thennore we use the supertag information provided by the XTAG grammar to order the 
dependents, but using 1-trees rather than ß-trees. This model generates There was no cost 
estimate for the second phase. for our example input, which is indeed the sentence found 
in the WSJ. 

The test corpus is a randomly chosen subset of 100 sentences from the Section 20 of WSJ. The 
 dependency structures for the test sentences were obtained automatically from convertjng the 
Penn TreeBank phrase structure trees, in the same way as was done to create the trafoing corpus. 
The average length of the test sentences is 16.7 words with a longest sentence being 24 words 
in length . 
/\_s in the case of machine translation, evaluation in generation is a complex issue. We use a 
netric suggested in the MT literature (Alshawi et al.1998) based on string edit distance between 

1 In fact, we use the linear language model in those rare cases when aß trees can be adjoined in more than one 
Position. 
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the output of the generation system and the reference corpus string from the WSJ. This met
ric, generation accuracy, allows us to evaluate without human intervention, automatically and 
objectively. Clearly, the metric does not provide a complete assessment of the quality of a gen
erator since often there is more than one "good" result, but we assume that the requirement is 
to model the corpus as closely as possible (as is the case in some, but not all, applications). We 
have also independently verified the metric by asking human subjects for subjective judgments; 
the judgments show significant correlation with the metrics (Bangalore and Rambow2000a). 
Generation accuracy, shown in Equation (l), is the number of insertion (!), deletion (D) and 
substitutions (S) errors between the target language strings in the test corpus and the strings 
produced by the generation model except that it treats deletion of a token at one Jocation in 
the string and the insertion of the same token at another location in the string as one single 
movement error (M). This is in addition to the remaining insertions (!') and deletions (D'). 

M +I'+D'+S 
GenerationAccuracy = (1 - R ) (1) 

The average generation accuracy for the four experiments are tabulated in Table l. As can be 
seen, the use of a tree model improves results over the baseline, but the use of a linear model 
also improves results if the XTAG grammar is used: the best results are obtained when the tree 
model, the XTAG grammar, and the linear model are used. 

Tree Model Generation Accuracy 
Baseline 56.2% 
TM-LM 66.8% 

TM-XTAG 68.4% 
TM-XTAG-LM 72.4% 

Table 1: Performance results from the three tree models. 

5. Featurization of Supertags 
5.1. Features 

As pointed out by (Canditol996) and (Xia et al.1998), a supertag is a composite representa
tion of a few orthogonal linguistic dimensions such as the subcategorization (argument list) of 
the head (Subcat) and the way in which specific arguments are realized syntactically (Trans
formation). These dimensions can be represented as features that can potentially be assigned 
independently of one another. A featurized representation of supertags helps in a more fine
grained error analysis and may allow for better stochastic supertag assignment models. In this 
section, we will describe our attempt to represent supertags as features and some preliminary 
results of error analysis using featurized supertags. 
Table 2 shows the Iist of features and their values used in representing the supertags. (The Mod
ifiee features only are used if ADJ is T.) Although the set of features are directly based on those 
proposed in (Candito1996) and (Xia et al.1998), we have made a few additions, most notably, 
FRR2, SGPl and SGP2. While FRR (for "Function Reassignment Rule") is used to represent 
changes in the valency of a supertag, FRR2 is used to represent the linear order variations of 
arguments in the supertag such as dative shift and particle shift Note that FRR, FRR2, and 
Transformation are all orthogonal to each other. SGP features are used to represent strongly 
govemed prepositions for supertags that use a preposition in the realization of an argument 
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Features Possible Values 
POS 10 different part-of-speech tags 
Subcat Different argument frames (eg. NP, NP _NP, NP _S ... ) 
Transfonnation Type Declarative, WH, Relative, Resumptive_Relative, Gerund, 

Imperative, Inversion 
Argument NIL,0,1,2 

FRR Type NIL,Ergative,Equative,Passive,Passive_by,Predicative 
Argument NIL,1,2 

Modifiee Type NIL,NP,S,VP,N,Ad,PP,A,D,AP,P,DetP,V 
Direction NIL,left,right 

FRR2 DativeShift, ParticleShift 1,ParticleShift2 
SGPl Strongly Governed prepositions for objects 
SGP2 Strongly Governed prepositions for indirect objects 
ADJ Flag to indicate adjunct status 

Table 2: The set of features and their values used to represent the supertags. 

5.2. Error Analysis 

We replaced the supertags in the TM-XTAG-LM model with the featurized representation 
treated as a single string. Since the featurized representation is just a notational variant for 
supertags, we got the sarne performance figures. However, the feature representation allows us 
to analyze the errors with respect to each of the features. We see that the most error occur in the 
 features ADJ, SUBCAT, and POS (with about equal frequency). Errors also occur in TRANS 
and FRR, but much less frequently, and even less frequently in the other features. A sample of 
 the individual errors with frequency is shown in Table 3. 

Correct FERGUS Assigned Number 
ADJ=NIL ADJ=T 134 
ADJ=T ADJ=NIL 49 
SUBCAT=NP SUBCAT=NIL 46 
SUBCAT=NIL SUBCAT=NP 30 
POS=N POS=D 16 
TRANSARG=NIL TRANSARG=O 16 
POS=V POS=N 14 
POS=G POS=NIL 14 
FRR=NIL FRR=Predicative 14 
TRANS=decl TRANS=REL 13 

Table 3: List of most frequent individual errors by features 

We are work.ing on developing models that better predict each of the individual features using 
modeling techniques from the Machine Learning community such as Bayesian Nets. The use 
of "featurized" supertags also has the advantage that they allow us to use FERGUS even when 
the TAG grammar is much less complete than the English XTAG grammar. 
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6. Future Work 
FERGUS as presented in this paper is not ready tobe used as a module in applications. Specifi
cally, we will add a morphological component. a component that handles function words (aux
iliaries, detenniners), and a component that handles punctuation. In all three cases, we will 
provide both knowledge-based and stochastic components, with the aim of comparing their 
behaviors, and using one type as a back-up for the other type. 
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