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Abstract
Temiar reduplication is a difficult piece of prosodic
morphology. This paper presents the first com-
putational analysis of Temiar reduplication, us-
ing the novel finite-state approach of One-Level
Prosodic Morphology originally developed by
Walther (1999b, 2000). After reviewing both the
data and the basic tenets of One-level Prosodic Mor-
phology, the analysis is laid out in some detail,
using the notation of the FSA Utilities finite-state
toolkit (van Noord 1997). One important discovery
is that in this approach one can easily define a regu-
lar expression operator which ambiguously scans a
string in the left- or rightward direction for a cer-
tain prosodic property. This yields an elegant ac-
count of base-length-dependent triggering of redu-
plication as found in Temiar.

1 Introduction
Temiar is an Austroasiatic language of the Mon-
Khmer group spoken by a variety of tribal people in
West Malaysia (Benjamin, 1976). Its intricate mor-
phological system has received some attention in the
theoretical literature. The main focus has been on
the aspectual morphology of verbs, where an inter-
esting pattern of partial reduplication emerges that
is sensitive to the size of the verbal root. For exam-
ple, in the active continuative, ‘to eat’ redu-
plicates both the initial /g/ and the final /l/ of its
monosyllabic base . In contrast, bisyllabic
‘to shoot’ comes out as , where only the final
/h/ is copied, this time as an infix.
Temiar reduplication thus appears to be a suitably

rich testing ground for a novel approach to redu-
plication developed by (Walther, 1999b; Walther,
2000) within a finite-state framework. Even though
that approach, One-Level Prosodic Morphology,
was presented from the outset as being generally
applicable, it has been proven time and time again
that only concrete empirical application of a par-

ticular approach to computational morphology and
phonology will fully reveal its inherent virtues and
weaknesses. As an example, (Beesley, 1998) re-
ports that it was actual experimentation with gram-
mars of word-formation in Arabic and Hungarian
which fully revealed the negative effects of mod-
elling long-distance circumfixional dependencies in
purely finite-state terms, subsequently leading to
some suggestions for improvement.
It is perhaps worth emphasizing that (Walther,

1999b)’s solution for reduplication in a finite-state
context is preferrable for cross-linguistic validation
precisely because it is the first that solves the prob-
lem in the general case. Because reduplication of-
ten involves copying of a strictly bounded amount
of material, the bounded case could in principle be
modelled as a finite-state process by enumerating all
possible forms of the copy and then making sure
each was matched to the proper stem. To solve this
simplified problem, no new techniques are needed
in theory. In practice however, the brute-force enu-
meration approach apparently has not been pursued
further, apart from isolated examples (see Antworth
(1990), p.157f for a fixed-size case in Tagalog). This
is probably because such an approach is awkward
to specify in actual grammars and because it will
inevitably lead to an explosion of the state space
(Sproat (1992), p.161). Finally and in contrast to
(Walther, 1999b), it would clearly break down for
productive total reduplication, which is isomorphic
to the context-sensitive language .
A second motivation for choosing Temiar is that

all prior analyses of its data are heavily under-
formalized and incomplete, irrespective of whether
they are situated in the older rule paradigm (Mc-
Carthy, 1982; Broselow andMcCarthy, 1983; Sloan,
1988; Shaw, 1993) or an optimality-theoretic setting
(Gafos, 1995; Gafos, 1996; Gafos, 1998b; Gafos,
1998a). Hence a formalized and computationally
tested analysis that strives to keep a healthy balance
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with respect to linguistic adequacy would represent
significant progress on its own.
In the rest of the paper I will attempt to provide

just such an analysis, beginning in 2 with a presen-
tation of the relevant data. Next, section 3 reviews
the core of One-Level Prosodic Morphology, which
will be used as formal background. Using that back-
ground, the analysis is then fully developed in 4.
The paper concludes with some discussion in 5.

2 Temiar reduplication
All data on Temiar reduplication in this section
come from (Benjamin, 1976), the main source on
the subject.1 According to Benjamin, the charac-
teristic aspectual paradigms of “monosyllabic and
schewa-form verbs” (B:168) are as follows (B:169):

(1) ‘to call’ ‘to lie down/sleep/marry’

‘monosyllabic’ ‘schewa-form’
a
c
t
i
v
e

perfective
k simulfactive
k w g continuative

c
a
u
s
a
t.

perfective
simulfactive

w g continuative

We have inferred syllabifications in (1) from the
statement that “only two types of syllables occur:
open syllables of canonical form CV, and closed syl-
lables of canonical form CVC” (B:141). Note that
Benjamin abstracts from vowel length here. Word-
level stress, which is “falling regularly on the final
syllable” (B:139), is likewise inferred in (1). Ob-
serve that only monosyllabic roots like redu-
plicate their initial consonant in the non-perfective
aspectual forms of the active, while longer roots like

do not. This contrasts with obligatory redupli-
cation of the root-final consonant in the continua-
tive.
An important further generalization is that all

extra segmental material beyond the bare root is
inserted immediately before the stressed syllable,
leading to prefixation for monosyllabic roots, but in-
fixation in polysyllabic ones (Gafos, 1998b). From
this point of view we can also see a correlation be-
tween the fact that causative forms of monosyllabic
roots – which must be at least bisyllabic – begin

1We will abbreviate further references to this work with
“(B: page number )” in the text. Moreover, to highlight
reduplicated parts in the data they will often be printed in bold.

with a fixed /t/2 and the restriction that words must
“always begin and end with a consonant” (B:141).
In triconsonantal roots like that restriction is
taken care of by the first root consonant itself, so no
fixed segment needs to appear.
According to Benjamin, prefinal syllables –

which are unstressed – can show alternation of their
vocalic quality: “In prefinal closed syllables the in-
ner vowels /e o/ are replaced by the outer vowels /i
u/ respectively” (B:144). This descriptive general-
ization accounts for the remaining contrasts in (1),
witness e.g. versus .
It is interesting to see that Temiar even exhibits

phonological modifications between base and redu-
plicant, affecting consonants in the continuative:

(2) y m ‘to cry’ (B:143)
p n ‘to long for’ (B:146)

‘to hunt successfully’ (B:146)

Benjamin explains that medial coda consonants
from the class of oral voiceless stops turn into their
voiced nasal equivalents in Northern Temiar (and to
plain voiced stops in the Southern dialect; B:143).
It is of some importance to clarify a number

of further aspects of the data and their interpreta-
tion. First, theorists have frequently employed the
stronger term ‘minor syllables’ for Benjamin’s pre-
final syllables, reflecting their alleged special status
by means of an impoverished representation (e.g.
empty syllable nuclei in (Gafos, 1998b)) and/or fur-
ther formal mechanisms (e.g. a ban on full vowels
in prefinal position *PREFINAL-V (Gafos, 1998a)).
We do not follow this move here, because empiri-
cally it is neither true that penultimate vowels are
categorically restricted to schwa-like vowels (

‘to go downriver’, ‘to float’, etc.) nor
are there any solid statistics of a presumed tendency
to vowel reduction in unstressed syllables, nor can
the variable quality of prefinal vowels be consis-
tently derived from flanking consonants. Hence,
such penultimative vowels are to be lexically speci-
fied as alternating.
Second, Benjamin’s subclass restriction of (1)

to “monosyllabic and schewa-form verbs” correctly
excludes polysyllabic roots like the already men-
tioned and , where prefinal open syl-
lables with vowels outside of / / occur. These
roots undergo “very few morphological changes”
(B:170), basically proclitization.

2Or /b/, if the root starts in /c,t/: / / ‘to eat’ gives
/ / ‘to feed’ (B:169).
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Third, paradigms for a given root are hardly
ever complete, with various irregularities and non-
productive patterns also occuring (B:169f). Again, a
good deal of lexicalization would seem necessary to
correctly describe Temiar verbs in a realistic gram-
mar fragment.
Given this descriptive summary, our goals for

the upcoming analysis are, first, to treat the full
paradigm of (1). As a second goal, we would like
to reflect the emergent formal desiderata in a trans-
parent way, in particular referring to the need to
account for repetition, truncation, infixation and
phonological modification. Thirdly, we will attempt
a compositional analysis of the morphological ex-
ponency of aspect.

3 One-Level Prosodic Morphology
In order to provide the necessary background for
the Temiar analysis in 4, this section briefly re-
views the finite-state approach to prosodic morphol-
ogy developed in (Walther, 1999b),
That work itself was presented as an extension

to (Bird and Ellison, 1994)’s One-Level Phonol-
ogy framework, where phonological representa-
tions, morphemes and more abstract generalizations
are all finite-state automata that express surface-true
constraints on word forms, and constraint combina-
tion is by automata intersection.
In a nutshell, the extension comprises three main

components. We (i) represent phonological strings
differently for purposes of modelling prosodic mor-
phology, (ii) implement reduplicative coyping by
automata intersection, and (iii) introduce a resource-
conscious variant of automata.
For (i), operators are provided that construct en-

riched automata from a simple string automaton, in
particular giving it a kind of doubly-linked structure
so that the symbol repetition inherent in redupli-
cation translates into following backwards-pointing
technical transitions. The individual enrichments in-
volve only local computation per state or transition,
so that on-the-fly implementation is easy if desired.
In other words, one does not necessarily have to en-
rich the entire lexicon in advance.
Enriched representations In a bit more de-
tail, the enrichments of (i) are as follows. The
three aspects of reduplication or symbol repeti-
tion, truncation or symbol skipping and infixation
or transitive, non-immediate precedence of sym-
bols are reflected in three regular expression op-
erators, .

Each takes the underlying automaton of a regular
language as its only argument. Formally, they
can be defined as follows:

(3) Let be the minimal -
free3 finite-state automaton for , with a
finite set of states, finite alphabet , transition
function , start state
and set of final states .

a. Assume .
,

where ,
and

b. Assume .
,

where ,
and

c. ,
where

An example enrichment of Temiar is shown
in figure 1. One can imagine how and
transitions allow, figuratively speaking, forward and
backward movement within a string, while self
loops will absorb infixal morphemes that are inter-
sected with fig. 1. Finally, so-called synchronization
bits :1, :0 were introduced in (Walther, 1999b) to
define the extent of a reduplicative base constituent
in a segment-independent way. Bit value :1 marks
the edges and :0 the interior segments of a base, as
shown in fig. 1 for a hypothetical whole-root redu-
plication pattern. In actual practive, synchronization

0 1 2 3s:1 4

skip skip skip skip

l:0 o:0e:0

repeat repeat repeat repeat

Σ ΣΣΣΣ

repeat

skip

Σ

g:1 5

Figure 1: add repeats(add skips(add self loops(selog)))

bits are sets of symbols, just like the rest of the al-
phabet. Sets as transition labels improve over tra-
ditional automata in terms of automata compact-
ness, were already proposed for phonology in (Bird

3Minimality prevents non-(co)-accessible transitions from
getting enriched, while lack of transitions keeps positional

‘movement’ in lockstep with segmental positions.
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and Ellison, 1992) and do not increase mathematical
expressivity beyond regular languages.4 Hence, the
segmental part of fig. 1 may be defined in a modular
fashion through the intersection of strings of sym-
bol sets that mention only certain dimensions (here:
phonemes and synchronisation bits), being under-
specified for the unmentioned dimensions. We will
again follow (Walther, 1999b) in conceiving of sets
as types arranged in a type hierarchy that is struc-
tured by set inclusion, and also in allowing arbitrary
boolean combinations of types.
Copying as intersection Given enriched repre-
sentations as in fig. 1, various patterns of redupli-
cation are now easy to define. We can denote a syn-
chronised abstract string by the regular expression

where is the type subsuming all phonological
segments. Then hypothetical total reduplication –
unattested in Temiar, but wellknown from Indone-
sian and many other languages – is described by

A variant slightly more akin to Temiar – and actu-
ally attested in the neighbouring language Semai –
that s the interior of the base in a prefixed redu-
plicant is just as easy:

Ignoring self loops for the moment, all we need
now to apply a reduplication pattern to an enriched
base representation is simply to intersect the former
with the latter: automata intersection has sufficient
formal power to implement reduplicative copying!
Here is an example, using the abbreviation

for perspicuous display:

As pointed out in (Walther, 2000), generaliz-
ing to a set of bases involves nothing more than
enriching each base separately, then forming the
union of the resulting automata. The opposite or-
der would produce unwanted cross-string repetition,
since does not distribute over union.
However, an unpublished experiment shows that
on-demand implementation of a slightly modified

4Of course, the identity requirement for matching transi-
tions in traditional automata intersection must be replaced by
a non-empty intersection requirement for set-based matching.

can help to preserve the memory ef-
ficiency of building a minimized base lexicon as the
union of individual base strings first. Due to lack of
space, the details will be reported elsewhere.
Resource consciousness As much as we need the
formal means provided by self loops for infixations
like Temiar , the resulting automata over-
generate massively. What’s missing according to
(Walther, 1999b) is a distinction between explic-
itly contributed, independent information (e.g. the
infix itself) and contextual, dependent informa-
tion that is tolerated but must be provided by other
constraints (e.g. the self loop that hosts the
infix). Therefore, a parallel distinction between two
kinds of symbols – producers and consumers – was
introduced. In that scenario a symbol represents an
information resource that needs to be produced at
least once, then can be consumed arbitrarily often.
To utilize the distinction, an additional P/C bit ac-
companies symbols, with P/C = 1 for producers. All
symbols introduced by the three enrichment oper-
ators are consumers. Furthermore, automata inter-
section is made aware of these resource-conscious
notions by splitting it into two variants: In open
interpretation mode, P/C bits of matching symbols
are combined by logical OR, so that a result transi-
tion will be marked as a producer whenever at least
one argument transition is a producer. In closed in-
terpretation mode, combination is by logical AND
instead, allowing only producer-producer matches.
Grammatical evaluation can then be characterized
as follows:

Lexicon Constraint Constraint

Here and elsewhere, producers are in bold print.
Note the final intersection with the universal pro-
ducer language, which eliminates unused consumer
transitions, the main source of overgeneration.

4 The analysis
We have assembled enough background now to pro-
ceed to the actual analysis of the Temiar data in (1).
The analysis is implemented using FSA Utilities, a
finite-state toolbox written in Prolog which encour-
ages rapid prototyping (van Noord, 1997). Figure 2
shows a relevant fragment of its syntax (extensions
and modifications in italics).
In displaying the grammar, we will take liberty

in suppressing certain definitions in the interest
of conciseness, relying on the mnemonic value of
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{} empty language
[E1,E2, ,En] concatenation
{E1,E2, ,En} union

E* Kleene closure
Eˆ optionality

E1 & E2 intersection
A ( B / C) monotonic rules

S set complement
Head(arg1, , argN) := Body macro def.

Figure 2: Regular expression operators

their names instead. A case in point is producer(T),
consumer(T): since the names are self-explanatory,
it suffices to note that the only argument T con-
tains type formulae that denote the symbol sets, as
explained before. Allowable type-combining opera-
tors are conjunction &, disjunction ; and negation .
The same goes for monotonic rules, which – unlike
rewrite rules – can only specialize their focussed
segmental position A to B. They exist in two variants,
where A -r-> B/C notates the case where context C
is right-adjacent to the focus ( ), and
vice versa for A -l-> B/C.
Syllabification To define the reduplicant in
prosodic terms later on, we need syllabification

in the first place. Here a simplified finite-state ver-
sion of a proposal by (Walther, 1999a) is employed.
Its key idea is to allow incremental assignment of
syllable roles to segmental positions via a featural
decomposition of the three traditional roles, using
two binary-valued features ons and cod:

(4)
Onset ons cod
Nucleus ons cod
Coda ons cod
CodaOnset ons cod

As a side-effect, one gets the fourth role CO,
a monosegmental prosodic representation of
true geminates. The subcomponent sbs, for
sonority-based syllabification, itself rests on
the computation of sonority differences be-
tween adjacent segmental positions (not shown),
where sonority may either go up or down. To-
gether with some self-explanatory constraints
obligatory wordinternal onsets and no geminates,
prosodic surface wellformedness is then wellde-
fined. Only if doubly synced edge then stressed

may seem slightly odd, since it has a purely
technical character: it rules out certain illformed
alternatives in wordforms. Note, however, that the

necesssity of such technical constraints, which are
certainly implicit in informal analyses as well, can
only be reliably detected in computerized analyses
such as the present one, which allow for mechanical
enumeration of a grammar’s denotation.

sbs := [ { [consumer(down&˜ons),
consumer(segment&˜’Nuc’)],
[consumer(up&˜’Nuc’),
consumer(segment&˜cod)

} *, no_final_onset ˆ].

no_initial_coda := consumer(segment&˜cod).
no_final_onset := consumer(segment&˜ons).

syllabification := sonority_differences&
sbs&[no_initial_coda, sbs].

% -- further constraints ---
obligatory_wordinternal_onsets :=
( segment -r-> ons / ’Nuc’ ). % _ ’N’

no_geminates := consumer(˜’CO’)*.

prosodic_constraints := obligatory_word-
internal_onsets & no_geminates &
if_doubly_synced_edge_then_stressed.

if_doubly_synced_edge_then_stressed :=
[( {consumer(˜’:1’),

[consumer(’:1’),consumer(˜’:1’)],
[consumer(’:1’),consumer(’:1’),
consumer(stressed)]
} *), consumer(’:1’) ˆ].

Stress Given the assignment of syllable roles to
segmental positions, we are now ready to define
Temiar word stress. A possibly empty sequence
of prefinal syllables, each of which is constrained
to be of shape and unstressed, is fol-
lowed by a final stressed syllable. The macro
ends before last syll makes sure that the dividing
line between the penultimate and ultimate syllable
is drawn correctly.

stress := [prefinal_syllables &
ends_before_last_syll,
syllable].

prefinal_syllables :=
([consumer(’Ons’), consumer(’Nuc’),
(consumer(’Cod’) ˆ) ]*) &
consumer(unstressed)*.

ends_before_last_syll:=([consumer(segment)*,
consumer(segment&˜ons)]ˆ).

syllable := [consumer(ons)+,consumer(’Nuc’),
consumer(cod)*] &
(consumer(stressed)*).
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Stems We proceed towards the definition of a stem
by noting that – as described in 2 – both the extent
of a base’s phonological material and its stress pat-
tern are necessary prior knowledge for adding as-
pectual morphemes in the appropriate way. Hence,
we impose the respective constraints onto the iso-
lated base string in stem0, before wrapping the re-
sult in the usual enrichments. However, the addi-
tion of self loops for infixation this time is a pri-
ori restricted to the position immediately before a
stressed onset, in accordance with the descriptive
generalization stated in 2. Experiments have shown
that using the unrestricted of (3.c)
would cause much unnecessary hassle in a posteri-
ori restriction of the possible infix locations to the
actually attested ones. It thus appears that Temiar
provides a first case for further parametrization of
at least one of the original operators from (Walther,
1999b):

base := [consumer(’:1’),consumer(’:0’)*,
consumer(’:1’)].

stem0(StemMaterial) :=
add_self_loop_before(stressed&’Ons’,
add_repeats(add_skips(StemMaterial &
base & syllabification &
prosodic_constraints & stress))).

stem(Segments) :=
stem0(stringToSegments(Segments)).

Definitions for the actual stem entries of selog,

koow, yaap are shown below, using the ASCII-IPA
mapping @ , E , O . In eval-
uating the first entry, the schwa actually trans-
lates into a producer-type disjunction ( ; ) with
the help of stringToSegments. It thus makes sense
to constrain this free alternation further, which
is the purpose of has prefinal syllable. While
the monosyllable koow needs no extra treatment,
yaap is an example of a stem ending in an
alternating labial, whose definition however is
straightforward (medial, final refer to a positional
classification of the word that is defined later):

selog := stem("s@lOg") &
has_prefinal_syllable.

koow := stem("kOOw").
yaap := stem0([stringToSegments("yaa"),

alternating_labial]).

alternating_labial := {producer(p&final),
producer(m&medial&cod)}.

If we now define has prefinal syllable itself, we
have completed the components that make up
stem. While the definition really targets the prefinal
vowel, its preceding onset and the stretch of arbi-
trary material after it must also be mentioned. To
tolerate interspersed technical symbols, the ignore

operator is used (Kaplan and Kay, 1994).
The purpose of prefinal V is to control the al-

ternation between ‘outer’ and ‘inner’ vowel, here
parametrized for only. It does so by referenc-
ing the next syllable role: if it is consistent with
ons, that vowel resides in an open syllable, hence
the close mid variant ( ) will be selected. Two else-
where cases deal with closed syllables and the pos-
sible presence of a technical symbol:

has_prefinal_syllable :=
ignore([consumer(’Ons’),

prefinal_V((’E’;’@’),
’:0’&unstressed),

consumer(anything) *],
technical_symbols).

technical_symbols :=
(consumer((skip;repeat)) *).

prefinal_V(Quality, Common) :=
{ [producer(Quality&close_mid&Common),

consumer(ons)],
[producer(Quality&˜close_mid&Common),
consumer(cod)],
[consumer((skip;repeat))]

} ).

Aspectual affixes It is time to concentrate on the
most interesting part, and that is how to define the
affixes. Again the general picture will be to see them
as constraints on word forms which are imposed by
intersection. We begin with the simulfactive. The
claim here is that its characteristic pattern is the real-
ization of the initial base segment (:1), followed by
the infixed melodic element /a/, and then the entire
string that begins with the stressed onset. Phrasing
the pattern this way already suffices to capture the
difference in reduplication behaviour between
and : if we have inserted the after the ini-
tial consonant in the first base, the stressed onset is
to the left of /a/’s position, whereas in the second
base that onset is found to the right. Thus, repeti-
tion of segments is necessary to avoid ungrammat-
icality due to constraint violation in the first case
( ), but not in the second ( ).
This behaviour is most naturally modelled by

defining a new operator seek(X), which allows for
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ambiguous movement either to the left (repeat) or
to the right (skip) before imposing the restriction
X. This operator is applied to infixal /a/ because
it is precisely the infix which needs to ‘seek’ its
prosodically defined unique insertion point, i.e. self
loop. Finally, to ensure that the other aspectual mor-
phemes can play their part later on, the entire pat-
tern is wrapped in align to tolerate further material
before (align right) and after it (align left):

simulfactive :=
align([consumer(’:1’),

seek([producer(a&’:0’&unstressed),
consumer(stressed&’Ons’)])]).

seek(X) :=
[{producer(skip)*,producer(repeat)*},X].

align_left(X):=[X,consumer(anything)*].
align_right(X):=[consumer(anything)*,X].
align(X) := align_right(align_left(X)).

Moving on to the continuative, we can see that the
relevant formal generalization is a bit more com-
plex. Again we start off with the initial base segment
(:1), but then seek a place to infix the constant / /,
before we skip to the next synchronised base posi-
tion (:1), which inevitably will be the final one. The
pattern is completed by again seeking the stressed
onset, from which realization of the string proceeds
uninterrupted due to the licensing of extra material
that the align wrapper provides. This produces a
similar contrast with respect to (non-)reduplication
of the first base position, but makes both the rep-
etition of the last base segment and the truncation
of its interior material obligatory in both base types
( oo vs. lo ):

continuative :=
align([consumer(’:1’),

seek([producer(’E’&’:0’&unstressed)]),
skip_to(consumer(’:1’)),
seek(consumer(stressed&’Ons’))]).

skip_to(X) := [producer(skip)+, X].

What is left now is the proper definition of the
causative. Here we observe from (1) that the
causative morphology always starts word-initial,
hence the use of align left. We have a default con-
sonant /t/ whose realization wemust somehow force
in the monosyllabic roots. Next comes a vowel,
whose quality – or – is again regulated by the

familiar has prefinal syllable. Finally, the charac-
teristic fixed element /r/ is specified. Upon second
thought, the /t/ is guaranteed to appear in mono-
syllable roots, because prefinal syllables always re-
quire an onset. The default absence of the /t/ – when
not needed on prosodic grounds – is again encoded
by the producer/consumer distinction, which con-
trasts the two disjuncts of the parametrized macro
default:

causative :=
align_left([default(t&unstressed,’:1’),

producer(vowel),
producer(r&’:1’&unstressed)])&
has_prefinal_syllable.

default(Optional, Common) :=
{ producer(Common&Optional),
consumer(Common) }.

Entire words We can put the pieces together now
by first defining the word constraint as the con-
junction of syllabification and related prosodic con-
straints plus a classification of the word’s segmental
positions into initial,medial,final ones. Again,
this is modulo interspersed or sym-
bols. This actually means that base syllabification
and word syllabification must match up, but fortu-
nately this is indeed a property of our Temiar data.
Second, wordform conjoins the previous constraint

with its parameter X – which will contain the con-
junction of stem and aspect morphemes –, before
eliminating leftover consumer symbols with the
help of closed interpretation:

word := ignore(syllabification &
prosodic_constraints &
positional_classification,
technical_symbols).

positional_classification :=
[consumer(initial),consumer(medial)*,
consumer(final)].

wordform(X):=closed_interpretation(X&word).

These definitions have removed the last barrier
to evaluating expressions like wordform(selog &

simulfactive & causative) or even suitable dis-
junctive combinations of such expressions which
define entire paradigms. Figure 3 shows an example
automaton for three forms. We refrain from describ-
ing a final automaton operation called Bounded Lo-
cal Optimization in (Walther, 1999b) that was put
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[s−Ons−up−:1

[ ‘k−Ons−up−:1

[ ‘y−Ons−up−:1

 @−Nuc−down−:0

repeat

repeat

r−Ons−up−:1

a−Nuc−down−:0

E−Nuc−down−:0

a−Nuc−down−:0

 ‘k−Ons−up−:1

skip

 ‘l−Ons−up−:0

 ‘O−Nuc−down−:0

skip

 ‘O−Nuc−down−:0

 ‘O−Cod−down−:0

skip

] ‘g−Cod−down−:1

] ‘w−Cod−down−:1

 ‘m−Cod−down−:1

repeat
repeat

repeat
repeat

 ‘y−Ons−up−:1

 ‘a−Nuc−down−:0

 ‘a−Cod−down−:0

] ‘p−Cod−down−:1

Figure 3: Temiar reduplications , ,

to use here to filter harmless spurious ambiguities
from the original version of fig. 3. The kind of am-
biguity involved in our Temiar grammar is one of al-
ternative distribution of technical symbols in strings
of the same segmental-content yield. Suffice to say
that a simple parametrization of Bounded Local Op-
timization, which could only look at length-1 transi-
tion paths emerging from any given state, was able
to prune the unwanted alternatives by considering
technical transitions costlier in weight than segmen-
tal transitions.

5 Conclusion
The present paper has provided further support for
(Walther, 1999b)’s finite-state conception of One-
Level Prosodic Morphology by formulating – for
the first time – a fully formalized and computa-
tional analysis of a complicated piece of reduplica-
tive morphology found in the Mon-Khmer language
of Temiar. Compared to the initial proposal, all
three core components of enriched representations,
namely technical transitions for repeating or skip-
ping segmental symbols and the ability to perform
infixation by using self loops, were again found
necessary in the course of this analysis. However,
in Temiar the last enrichment – –
needed to be parametrized for a prosodic condition
to narrow down the insertion site to a unique posi-
tion per base.
The prosodic condition of ‘stressed onset’ proved

crucial to define that position, and accounted for the
variation between infixing aspectual morphology in
longer bases and descriptively prefixing morphol-
ogy in monosyllabic ones. Temiar thus underscores
the utility of computing with real prosodic informa-
tion in finite-state morphology, a frequently miss-
ing desideratum according to (Sproat, 1992, p.170).
Also, the symmetry of having both forward and

backward-pointing technical transitions in enriched
automata representations was exploited in a novel
regular expression operator called seek(X), which
encapsulated an interesting kind of ambiguous di-
rectional movement (or: movement underspecified
for direction) towards a position satisfying property
X. This operator could rather directly be motivated
from the data. In particular, it facilitated an insight-
ful account of the base-length-dependent triggering
of reduplication in the active simulfactive aspect.
Finally, in contrast to even the most recent anal-

yses in the theoretical linguistic literature, the full
paradigm including the causative forms was cap-
tured in this fairly complete analysis, together with
phonological modifications that sometimes occur
between base and reduplicant, as exemplified by

. Apart from an optional filtering step
for some technical spurious ambiguities that could
make use of local optimization, neither global op-
timization nor violable or soft constraints of the
type argued for in Optimality Theory (Prince and
Smolensky, 1993) were found necessary.
For future research, the empirical base of Temiar

should be broadened to include further reduplica-
tion patterns, in particular those found in expres-
sives. Also, the grammar should be amended to al-
low for words containing geminates, which were
initially excluded to simplify the overall analysis at
the cost of what is at best a peripheral aspect of it.
Because the finite-state constraints employed in this
work are all surface-true, the potential of machine-
learning techniques to acquire them automatically
from surface-oriented corpora should be explored.
Finally, it would be very interesting to broaden to
Temiar the ongoing experiments with efficiency-
oriented computational variants of the One-Level
Prosodic Morphology framework that were already
alluded to in the text.
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