
Tools for Large-Scale Parser Development
Natural Language Processing Group

Microsoft Research
One Microsoft Way

Redmond WA 98052 USA

1. Introduction
We demonstrate the tool set available to linguistic
developers in our NLP lab, with a particular
emphasis on the tools for incremental regression
testing and creation of regression suites. These
tools are currently under use in the daily
development of broad-coverage language analysis
systems for 7 languages (Chinese, English, French,
German, Japanese, Korean and Spanish). The
system is modular, with the parsing engine and
debugging environments shared by all languages.
Linguistic rules are written in a proprietary
language (called G) whose features are uniquely
suited to linguistic tasks (Heidorn, in press). The
engine underlying the system, as well as the user
interface for linguistic developers, is
unicode-enabled thus supporting both European
and non-Indo-European languages.

2. Tools for regression testing
The purpose of this class of tools is to build
regression suites, which is a collection of what we
call master files. The master files take the form of
stored output trees, and keep a record of the state
of development at any point in time.
The linguistic developer builds a set of regression
files over the course of grammar development,
thus developing annotated corpora. Because the
system is intended to cover a broad range of input
including ungrammatical input, and because we
are very open to letting real text dictate grammar
structures rather than theory, we find that
annotated structures output by the system are
more useful for development than manually
tagged corpora.
The standard practice of parser development
within our group is schematically shown in Figure
1. As grammar work progresses, developers can
run regression tests against the regression suites to
examine the consequences of the changes to the

grammar. When differences are found, the system
gives a color-coded display of the differences
(new changes in green, what is in the master file
in red, and unchanged part in gray). If the change
is an improvement, the developer can choose to
update the master file by simply double-clicking
on the sentence number on the display, and add
the sentences that are newly accommodated to the
regression suite. If the change is evaluated as
negative, the linguistic developer reworks the
rules that caused the regression.
Since we run regression tests many times a day in
the grammar development, the processing speed
of the systems is a vital issue. Current
performance estimates for regression testing are
20 to 30 sentences per second on a 550 MHz
Pentium III machine with 512MB RAM across
languages (average sentence length = 16.51 words
in English, 49.02 chars in Japanese, for example).
We also have means to distribute the processing
of regression testing onto multiple CPUs:
currently, 3 machines with 4 CPUs each (500
MHz, 768MB RAM) regress 27,000 sentences in
less than 100 seconds or about 275 sentences per
second (English, on the same corpus as above).

3. References
Heidorn, George. In press. Intelligent Writing

Assistance. To appear in Robert Dale, Hermann
Moisl and Harold Somers (eds.), Handbook of
Natural Language Processing. Chapter 8.

54

Change
Grammar

Regression
testing

Diffs?

Regression
suite

Improvem
ents?

update master file
add new sent

NO

YES

YES

NO

Figure 1. Flow diagram of daily grammar development process

