
Integrat ing a Large-scale, Reusable Lexicon wi th a Natural
Language Generator

Hongyan 3 i n g
Depa r tmen t of Compu te r Science

Co lumbia Universi ty
New York, NY 10027, USA

hjing@cs.columbia.edu

Yael Dahan Netzer
Depar tmen t of C o m p u t e r Science

Ben-Gur ion Universi ty
Be'er-Sheva, 84105, Israel

yaeln@cs.bgu.ac. i l

Michael Elhadad
D e p a r t m e n t of Compu te r Science

Ben-Gur ion University
Be'er-Sheva, 84105, Israel

elhadad@cs.bgu.ac. i l

Kathleen R. McKeown
Depar tmen t of C o m p u t e r Science

Co lumbia Universi ty
New York, NY 10027, USA

kathy@cs.columbia .edu

A b s t r a c t

This paper presents the integration of a large-
scale, reusable lexicon for generation with the
FUF/SURGE unification-based syntactic realizer.
The lexicon was combined from multiple existing re-
sources in a semi-automatic process. The integra-
tion is a multi-step unification process. This inte-
gration allows the reuse of lexical, syntactic, and
semantic knowledge encoded in the lexicon in the
development of lexical chooser module in a genera-
tion system. The lexicon also brings other benefits
to a generation system: for example, the ability to
generate many lexical and syntactic paraphrases and
the ability to avoid non-grammatical output.

1 I n t r o d u c t i o n

Natural language generation requires lexical, syn-
tactic, and semantic knowledge in order to produce
meaningful and fluent output. Such knowledge is
often hand-coded anew when a different application
is developed. We present in this paper the integra-
tion of a large-scale, reusable lexicon with a natural
language generator, FUF/SURGE (Elhadad, 1992;
Robin, 1994); we show that by integrating the lexi-
con with FUF/SURGE as a tactical component, we
can reuse the knowledge encoded in the lexicon and
automate to some extent the development of the lex-
ical realization component in a generation applica-
tion.

The integration of the lexicon with FUF/SURGE
also brings other benefits to generation, including
the possibility to accept a semantic input at the
level of WordNet synsets, the production of lexical
and syntactic paraphrases, the prevention of non-
grammatical output, reuse across applications, and
wide coverage.

We present the process of integrating the lexicon
with FUF/SUR(;E. including how to represenl the

lexicon in FUF format, how to unify input with the
lexicon incrementally to generate more sophisticated
and informative representations, and how to design
an appropriate semantic input format so that the
integration of the lexicon and FUF/SURGE can be
done easily.

This paper is organized as follows. In Section 2,
we explain why a reusable lexical chooser for gen-
eration needs to be developed. In Section 3, we
present the large-scale, reusable lexicon which we
combined from multiple resources, and illustrate its
benefits to generation by examples. In Section 4, we
describe the process of integrating the lexicon with
FUF/SURGE, which includes four unification steps,
with each step adding additional lexical or syntac-
tic information. Other applications and comparison
with related work are presented in Section 5. Finally,
we conclude by discussing future work.

2 B u i l d i n g a r e u s a b l e l e x i c a l c h o o s e r
for g e n e r a t i o n

While reusable components have been widely used in
generation applications, the concept of a "reusable
lexical chooser" for generation remains novel.

There are two main reasons why such a lexical
chooser has not been developed in the past:

1. In the overall architecture of a generator, the
lexical chooser is an internal component that
depends on the semantic representation and for-

.:malism and onthe syntactic realizer used by the
application.

2. The lexical chooser links conceptual elements to
lexical items. Conceptual elements are by defi-
nition domain and application dependent (they
are the primitive concepts used in an applica-
tion knowledge base). These primitives are not
easily ported from application to application.

209

The emergence of s tandard architectures for gen-
erators (RAGS, (Reiter, 1994))and the possibility
to use a standard syntactic realizer answer the first
issue.

To address the second issue, one must realize that
if the whole lexical chooser can not be made domain-
independent, major par ts can be made reusable.
The main argument is tha t lexical knowledge is mod-
ular. Therefore, while choice of words is constrained
by domain-specific conceptual knowledge (what in-
formation the sentences are to represent) on the one
hand, it is also affected by several other dimensions:

* inter-lexical constraints: collocations among
words

o pragmatic constraints: connotations of words

o stylistic constraints: familiarity of words

* syntactic constraints: government pat terns of
words, e.g., thematic structure of verbs.

We show in this paper how the separation of the
syntactic and conceptual interfaces of lexical i tem
definitions allows us to reuse a large amount of lex-
ical knowledge across appli.cations.

3 T h e l e x i c o n a n d i t s b e n e f i t s t o
g e n e r a t i o n

3 . 1 A l a rge - sca le , r e u s a b l e l ex icon for
g e n e r a t i o n

Natural Language generation starts from semantic
concepts and then finds words to realize such seman-
tic concepts. Most existing lexical resources, how-
ever, are indexed by words rather than by semantic
concepts. Such resources, therefore, can not be used
for generation directly. Moreover, generation needs
different types of knowledge, which typically are en-
coded in different resources. However, the different
representation formats used by these resources make
it impossible to use them simultaneously in a single
system.

To overcome these limitations, we built a large-
scale, reusable lexicon for generation by combining
multiple existing resources. The resources that are
combined include:

o Tile WordNet Lexical Database (Miller et al.,
1990). WordNet is the largest lexical database
to date, consisting of over 120,000 unique words
(version 1.6). It also encodes many types of
lexical relations between words, including syn-
onytny, antonymy, and many more.

o English Verb Classes and Alternations
(EVCA) (Levin, 1993). It categorized 3.104
verbs into classes based on their syntactic
properties and studied verb alternations. An
alternation is a variation in the realization of
verb arguments. For example, the alternation

"there-insertion" transforms A ship appeared
~-on..the horizon_to There,appeared a ship..o~....the
horizon. A total of 80 alternations for 3,104
verbs were studied.

The COMLEX syntax dictionary (Grishman et
al., 1994). COMLEX contains syntactic infor-
mation for over 38,000 English words.

The Brown Corpus tagged with WordNet senses
(Miller et al., 1993). We use this corpus for
frequency measurement. .

In combining these resources, we focused on verbs,
since they play a more important role in deciding
sentence structures. The combined lexicon includes
rich lexical and syntactic knowledge for 5,676 verbs.
It is indexed by WordNet synsets(which are at the
semantic concept level) as required by the generation
task. The knowledge in the lexicon includes:

Q A complete list of subcategorizations for each
sense of a verb.

o A large variety of alternations for each sense of
a verb.

o Frequency of lexical items and verb subcatego-
rizations in the tagged Brown corpus

Rich lexicat relations between words

The sample entry for the verb "appear" is shown
in Figure 1. It shows that the verb appear has eight
senses (the sense distinctions come from WordNet).
For each sense, the lexicon lists all the applicable
subcategorization for that particular sense of the
verb. The subcategorizations are represented using
the same format as in COMLEX. For each sense,
the lexicon also lists applicable alternations, which
we encoded based on the information in EVCA. In
addition, for each subcategorization and alternation,
the lexicon lists the semantic category constraints on
verb arguments. In the figure, we omitted the fre-
quency information derived from Brown Corpus and
lexical relations (the lexical relations are encoded in
WordNet).

The construction of the lexicon is semi-automatic.
First, COMLEX and EVCA were merged, produc-
ing a list of syntactic subcategorizations and alter-
nations for each verb. Distinctions in these syntac-
tic restrictions according to each sense of a verb
are achieved in the second stage, where WordNet
is merged with the result of the first step. Finally,
the corpus information is added, complementing the
static resources with actual usage counts for each
syntactic pattern. For a detailed description of the
combination process, refer to (Jing and Mchieown,
1998).

210

appear:
s e n s e 1 g ive an i m p r e s s i o n

((PP-TO-INF-gS :PVAL ("to") :SO ((sb , -)))
(TO-INF-RS :S0 ((sb, --)))
(NP-PRED-RS :S0 ((sb , --)))
(ADJP-PRED-RS :SO ((sb , -) (s th , - -)))))

s ense 2 b e c o m e v i s i b l e
((PP-T0-INF-KS :PVAL ("to")

:S0 ((sb, -) (sth, -)))

(INTRANS TIIERE-V-SUB J
._

: ALT there-insertion
:S0 ((sb, --) (s th , --))))

sense 8 have an ou tward e x p r e s s i o n
((NP-PRED-RS :SO ((sth, --)))
(ADJP-PRED-RS :S0 ((sb, --) (sth, --))))

Figure I: Lexicon entry for the verb appear

3.2 T h e benef i ts o f t h e l e x i c o n

There are a number of benefits that this combined
lexicon can bring to language generation.

First, the use of synsets as semantic tags can
help map an application conceptual model to lexi-
cal items. Whenever application concepts are repre-
sented at the abstraction level of a WordNet synset,
they can be directly accepted as input to the lexi-
con. By this way, the lexicon can actually lead to
the generation of many lexical paraphrases. For ex-
ample, (look, seem, appear} is a WordNet synset; it
includes a list of words that can convey the seman-
tic concept ' ' g i v e an impress ion o f ' ' . We can
use synsets to find words that can lexicalize the se-
mantic concepts in the semantic input. By choosing
different words in a synset, we can therefore gen-
erate lexical paraphrases. For instance, using the
above synset, the system can generate the following
paraphrases:

"He seems happy. "
"He looks happy. "
"He appears happy.'"

Secondly, the subcategorization information in the
lexicon prevents generating a non-grammatical out-
put. As shown in Figure 1, the lexicon lists appli-
cable subcategorizations for each sense of a verb. It
will not allow the generation of sentences like

"*He convinced me in his innocence"
(wrong preposition)

"*He convinced to go to the party"
(missing object)

"*Th.e bread cuts"
(missing adverb (e.g., "'easily"))

"*The book consists three parts"
(m issing t)reposit.ion)

In addition, alternation information can help gen-
erate .syntactic paraphrases. For instance, using
the "simple reciprocal intransitive" alternation, the
system can generate the following syntactic para-
phrases: • ,

"Brenda agreed with Molly."
"Brenda and Molly agreed•"
"Brenda and Molly agreed with each other."

Finally, the corpus frequency information can help
............... _the.lexicat.. -~ice.proeesa~.,When:multiple .words can

be used to realize a semantic concept, the system
can use corpus frequency information in addition
to other constraints to choose the most appropriate
word.

The knowledge encoded in the lexicon is general,
thus it can be used in different applications. The
lexicon has wide coverage: the final lexicon consists
of 5,676 verbs in total, over 14,100 senses (on average
2.5 senses/verb), and over 11,000 semantic concepts
(synsets). It uses 147 patterns to represent the sub-
categorizations and includes 80 alternations.

To exploit the lexicon's many benefits, its format
must be made compatible with the architecture of a
generator. We have integrated the lexicon with the
FUF/SURGE syntactic realizer to form a combined
lexico-grammar.

4 Integration Process
In this section, we first explain how lexical choosers
are interfaced with FUF/SURGE. We then describe
step by step how the lexicon is integrated with
FUF/SURGE and show that this integration pro-
cess helps to automate the development of a lexical
realization component.

4.1 F U F / S U R G E and the lexical choose r

FUF (Elhadad, 1992) uses a functional unification
formalism for generation. It unifies the input that a
user provides with a grammar to generate sentences.
SURGE (Elhadad and Robin, 1996) is a comprehen-
sive English Grammar written in FUF. Tile role of
a lexical realization component is to map a semantic
representation drawn from the application domain
to an input format acceptable by SURGE, adding
necessary lexical and syntactic information during
this process.

Figure 2 shows a sample semantic input (a), the
lexicalization module that is used to map this se-
mantic input to SURGE input (b), and ' thefinal
SURGE input (c) - - taken from a real application
system(Passoneau et al., 1996). The functions of the
lexicalization module include selecting words that
can be used to realize the semalltic concepts in the
input, adding syntactic features, and mapping tile
arguments in tile semantic input to the thematic
roles in SURGE.

211

S e n t e n c e : / t has 24 activities, including 20 tasks and four decisions.

concept

args

total-node-count

theme concept
ref
concept

rheme
args

pronounPr°cess-fl°wgraph]

elaboration
concept

theme
args

expansion concept
args

cardinality]
[theme [1]] /
t value [21 l -I. s.ubset-node-countJ

concept flownode]
[1] = ref full

concept

proc

partic

c a t

proc

partic

[2] =
concept cardinal]
cardinal 24
ref full

(a) The semantic input (i.e., input of lexicalization module)

(u n d e r total-node-count)
type possessive]

possessor cat pronoun /
i

cat common
cardinal [value
definite no

head

possessed

qualifier

[,l]

lex "activity"]
cat clause
mood present-participle

type locative
proc lex "include"

part ic location [cat
k

(b) Tile lexicalization module

]

clause
type possessive]

possessor cat pronoun /
I

c a t C O n l l l l o n

cardinal [value 24]
definite no
head lex "activhy"]

possessed cat clause
mood present-participle

type locative]
qualifier proc lex "include"

(c) Tile SURGE input (ie., ou tput of lexicalization module)

1
I
I
I

I

I

Figure 2: A samph~ lexicalization component

212

The development of the lexicalizer component was
done by hand in the past. Furthermore, for. e ach
new application, a new lexicatizer component had
to be written despite the fact that some lexical and
syntactic information is repeatedly used in different
applications. The integration process we describe,
however, partially automates this process.

4.2 T h e i n t e g r a t i o n s t e p s

The integration of the lexicon with FUF/SURGE
is done through incremental unification, using four
unification steps as shown in Figure 3. E a c h step
adds information to the semantic input, and at the
end of the four unification steps, the semantic input
has been mapped to the SURGE input format.

(1) The semantic input
Different generation systems usually use different

representation formats for semantic input. Some
systems use case roles ; some systems use flat
attribute-value representation (Kukich et al., 1994).
For the integrated lexicon and FUF/SURGE pack-
age to be easily pluggable in applications, we need to
define a standard semantic input format. It should
be designed in such a way that applications can eas-
ily adapt their particular semantic inputs to this
standard format. It should also be easily mapped
to the SURGE input format.

In this paper, we only consider the issue of seman-
tic input format for the expression of the predicate-
argument relation. Two questions need to be an-
swered in the design of the standard semantic input
format: one, how to represent semantic concepts;
and two, how to represent the predicate-argument
relation.

We use WordNet synsets to represent semantic
concepts. The input can refer to synsets in several
ways: either using a globally unique synset num-
ber I or by specifying a word and its sense number
in WordNet.

The representation of verb arguments is a more
complicated issue. Case roles are frequently used in
generation systems to represent verb arguments in
semantic inputs. For example, (Dorr et al., 1998)
used 20 case roles in their lexical conceptual struc-
ture corresponding to underlying positions in a com-
positional lexical structure. (Langkilde and Knight.
1998) use a list of case roles in their interlingua rep-
resentations.

We decided to use numbered arguments (similar to
the DSyntR in M T T (Mel'cuk and Perstov, 1987))
instead of case roles. The difference between the two

1Since there are a huge number of synsets in WordNet, we
will provide a searchable d a t a b a s e of synsets so tha t users can
look up a synse t and its index number easily. For a par t icu lar
appl ica t ion , users can a d a p t the synsets to their specific do-
main , such as removing non-relevant synsets, merging synsets.
and re labe l ing the synse t s for convenience, as discussed in
(,ling, 1998).

is not critical but the numbered argument approach
• avoids the need• to commit: the: lexicon to a specific
ontology and seems to be easier to learn 2.

Figure 4 shows a sample semantic input. For easy
understanding, we refer t o the semantic concepts
using their definitions rather than numerical index
numbers. There are two arguments in the input.
The intended output sentence for this semantic in-
put is "A boat appeared on the horizon" or its para-
phrases.

(2) Lexical unification
In this step, we map the semantic concepts in the "

semantic input to concrete words. To do this, we use
the synsets in WordNet. All the words in the same
synset can be used to convey the same semantic con-
cept. For the above example, the semantic concepts
"become visible" and "a small vessel for travel on
water" can be realized by the the verb appear and
the noun boat respectively. This is the step that can
produce lexical paraphrases. Note that when the
system chooses a word, it also determines the par-
ticular sense number of the word, since a word as
it belongs to a synset has a unique sense number in
WordNet.

We represented all the synsets in Wordnet in FUF
format. Each synset includes its numerical index
number and the list of word senses included in the
synsets. This lexical unification, works for both
nouns and verbs.

(3) Structural unification
After the system has chosen a verb (actually a

particular sense of a verb), it uses that information
as an index to unify with the subcategorization and
alternations the particular verb sense has. This step
adds additional syntactic information to the origi-
nal input and has the capacity to produce syntactic
paraphrases using alternation information.

(4) Constraints on the number of arguments
Next, we use the constraints that a subcategoriza-

tion has on the number of arguments it requires to
restrict unification with subcategorization patterns.
\~k~ use 147 possible patterns. For example, the in-
put in Figure 4 has two arguments. Although IN-
T R A N S (meaning intransitive) is listed as a possi-
ble subcategorization pat tern for "appear" (see sense
2 in Figure 1), the input will fail to unify with it
since I N T R A N S requires a single argument only.
This prevents the generation of non-grammatic'A
sentences. This step adds a feature which specifies
the transit ivity of the verb to FUF/SURGE input,
selecting one from the lexicon when there is more
than one possibility for the given verb.

2The difference between numbered arguments and labeled
roles is s imi l a r to tha t between named semantic pr imi t ives and
synse ts in \.VordNet. Verb classes share the same definit ion
of which a rgumen t is denoted by l, 2 etc. if they share some
syn tac t i c proper t ies as far as a rgument taking proper t ies a r e

concerned.

213

Semantic input Synsets verbs lexicon si~ucts Input for SURGE

Figure 3: The integration process

[rel-- i--ept --evisible J 1]
1 [c o n c e p t " a s m a l l v e s s e l f o r t r a v e l o n w a t e r ' ']

args 2 [concept ' ' t h e l i n e a t which the sky and Ear th appear t o meet ' ']

Figure 4: The semantic input using numbered arguments

(5) Mapping structures to SURGE input
In the last step, the subcategorization and alter-

nations are mapped to SURGE input format. The
mapping from subcategorizations to SURGE input
was manually encoded in the lexicon for each one
of the 147 patterns. This mapping information can
be reused for all applications, which is more effi-
cient than composing SURGE input in the lexical-
ization component of each different application. Fig-
ure 5 shows how the subcategorization NP-WITH-
NP (e.g., The clown amused the children with his
antics) is mapped to the SURGE input format. This
mapping mainly involves matching the numbered ar-
guments in the semantic input to appropriate lexical
roles and syntactic categories so that FIJF/SURGE
can generate them in the correct order.

The final SURGE input for the sentence ",4 boat
appeared on the horizon" is shown in Figure 6. Us-
ing the "THERE-INSERTION" alternation that the
verb "appear" (sense 2) authorizes, the system can
also generate the syntactic paraphrase "There ap-
peared a boat on the hor i zon" . The SURGE input
the system generates for "There appeared a boat on
the horizon" is very different .from that for "A boat
appeared on the hor i zon" .

It is possible that for a given application some
generated paraphrases are not appropriate. In this
case, users can edit the synsets and the alternations
to filter out tile paraphrases tile) do not want.

Tile four unification steps are completely auto-
matic. Tile system can send feedback upon failure

s t ruct
relation

args

proc

lex-roles

np-with-np

1 [21<...>
2 [al<...>
3 [41<...>
type lexical
lex Ill

t

1

2
subcat 2

3

[1 [all 2 [3]
3 [41

cat np]
121
[rat .p]
[al

cat i p
prep lex
np [41

"with"] 1

Figure 5: Mapping subcategorization "NP-\VITH-
NP" to SURGE input

of unification.

5 R e l a t e d W o r k

The lexicon, after it is integrated with
FUF/SURGE, can also be used for other tasks in
language generation. For example, revision (Robin,
1994) is a technique for building semantic inputs
incrementally. The revision process decides whether
it is appropriate to attach a new constituent to the
current semantic input, for example, by adding an

214

relation

args

struct

a rg l

cat

lexical-roles

concept
word
1 concept

word
concept

2
word

ppb

2 ~ given
c l a u s e c

d

c 'become ~isible' ']

] "appear"a
'a small vessel for travel on water'']

J "boa~"a
' C t h e l i n e a t which the sky and Ear th appear to meet]
"hor,izon ''a]

"Enriched in first step
bEnriched in second step
CEnriched in third step
dEnriched in fourth step

Figure 6: SURGE input for "A boat appeared on the horizon"

object or an adverb. Such decisions are constrained
by syntactic properties of verbs. The integrated
lexicon is useful to verify these properties.

Nitrogen (Langkilde and Knight, 1998), a natural
language generation system developed at ISI, also
includes a large-scale lexicon to support the genera-
tion process. Given that Nitrogen and F U F / S U R G E
use very different methods for generation, the way
that we integrate the lexicon with the generation sys-
tem is also very different. Nitrogen combines sym-
bolic rules with statistics learned from text corpora,
while FUF/SURGE is based on Functional Unifica-
tion Grammar. Other related work includes (Stede,
1998), which suggests a lexicon structure for multi-
lingual generation in a knowledge-based generation
system. The main idea is to handle multilingual gen-
eration in the same way as paraphrasing of the same
language. Stede's work concerns mostly the lexical
semantics of the transitivity alternations.

6 C o n c l u s i o n

We have presented in this paper the integration of
a large-scale, reusable lexicon for generation with
FUF/SURGE, a unification-based natural language
generator. This integration makes it possible to
reuse major parts of a lexical chooser, which is tile
component in a generation system that is responsi-
ble for mapping semantic inputs to surface genera-
tor inputs. We show that although the whole lexical "
chooser can not be made domain-independent, it is
possible to reuse a large amount of lexical, syntactic,
and semantic knowledge across applications.

In addition, tile lexicon other benefits to a genera-
tion system, inchiding the abilities to generate nlany
lexical paraphrases automatically, generate s y n t a c -

tic paraphrases, av(fid n(m-grammatical output, and

choose the most frequently used word when there is
more than one candidate words. Since the lexical,
syntactic, and semantic knowledge encoded in t h e
lexicon is general and the lexicon has a wide cover-
age, it can be reused for different applications.

In the future, we plan to validate the paraphrases
the lexicon can generate by asking human subjects to
read the generated paraphrases and judge whether
they are acceptable. We would like to investigate
ways that can systematically filter out paraphrases
tha t are considered unacceptable. We are also inter-
ested in exploring the usage of this system in multi-
lingual generation.

R e f e r e n c e s

B. J. Doff, N. Habash,
A thematic hierarchy
from lexical-conceptual.

and D. Traum. 1998.
for efficient generation

Technical Report CS-
TR-3934, Insti tute for Advanced Computer Stud-
ies, Department of Computer Science, University
of Maryland, October.

M. Elhadad and J. Robin. 1996. An overview of
SURGE: a re-usable comprehensive syntactic re-
alization component. In INLG'96, Brighton, UK.
(demonstration session).

M. Elhadad. 1992. Using Argumentation to Control
Lezical Choice: A Functional Unification-Based
Approach. Ph.D. thesis, Department of Computer
Science, Columbia University.

R. Grishman, C. Macleod, and A. Meyers. 1994.
COMLEX syntax: Building a computational
lexicon. In Proceedings of COLING'94, Kyoto,
,Japan.

H. . l ing and K. McKeown. 1998. Combining mul-
tiple, large-scale resources in a reusable lexicon
for natural language generation. In Proceedings

215

of the 36th Annual Meeting of the Association for
Computational Linguistics and the .17th Interna-
tional Conference on Computational Linguistics,
volume 1, pages 607-613, Universit(~ de MontrEal,
Quebec, Canada, August.

H. Jing. 1998. Applying wordnet to natural lan-
guage generation. In Proceedings of COLING-
ACL'98 workshop on the Usage of WordNet in
Natural Language Processing Systems, University
of Montreal, Montreal, Canada, August.

K. Kukich, K. McKeown, J. Shaw, J. Robin, N. Mor-
gan, and J. Phillips. "1994. User-needs analysis
and design methodology for an automated doc-
ument generator. In A. Zampolli, N. Calzolari,
and M. Palmer, editors, Current Issues in Com-
putational Linguistics: In Honour of Don Walker.
Kluwer Academic Press, Boston.

I. Langkilde and K. Knight. 1998. The practical
value of n-grams in generation. In INLG'98, pages
248-255, Niagara-on-the-Lake, Canada, August.

B. Levin. 1993. English Verb Classes and Alterna-
tions: A Preliminary Investigation. University of
Chicago Press, Chicago, Illinois.

I.A. Mel'cuk and N.V. Perstov. 1987. Surface-
syntax of English, a formal model in the
Meaning Text Theory. Benjamins, Amster-
dam/Philadelphia.

G. Miller, R. Beckwith C. Fellbaum, and D. Gross K.
Miller. 1990. Introduction to WordNet: An on-
line lexical database. International Journal of
Lexicography (special issue), 3 (4) :235-312.

G.A. Miller, C. Leacock, R. Tengi, and R.T. Bunker.
1993. A semantic concordance. Cognitive Science
Laboratory, Princeton University.

R. Passoneau, K. Kukich, J. Robin, V. Hatzivas-
siloglou, L. Lefkowitz, and H. Jing. 1996. Gen-
erating summaries of workflow diagrams. In Pro-
ceedings of the International Conference on Nat-
ural Language Processing and Industrial Appli-
cations (NLP-IA'96), Moncton, New Brunswick,
Canada.

E. Reiter. 1994. Has a consensus nl generation ar-
chitecture appeared, and is it psyeholinguistically
plausible? In Proceedings of the Seventh Interna-
tional Workshop on Natural Language Generation
(INLGW-1994), pages 163-170, Kennebunkport,
Maine, USA. available from the cmp-lg archive as
paper cmp-lg/9411032.

J. Robin. 1994. Revision-Based Generation of Nat-
.ural Language Summaries Providing Historical
Background: Corpus-Based Analysis, Design, Im-
plementation, and Evaluation. Ph.D. thesis, De-
partment of Computer Science, Cohnnbia Univer-
sity. Also Technical Report CU-CS-034-94.

M. Stede. 1998. A generative l)ersl}ective on vert} al-
ternations. Computational Lin.quistics. 24(3):4{}1-

_430-,September"

216

