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A b s t r a c t  

The development of natural language inter- 
faces (NLI's) for databases has been a chal- 
lenging problem in natural language process- 
ing (NLP) since the 1970's. The need for 
NLI's has become more pronounced due to the 
widespread access to complex databases now 
available through the Internet. A challenging 
problem for empirical NLP is the automated 
acquisition of NLI's from training examples. 
We present a method for integrating statisti- 
cal and relational learning techniques for this 
task which exploits the strength of both ap- 
proaches. Experimental results from three dif- 
ferent domains suggest that such an approach 
is more robust than a previous purely logic- 
based approach. 

1 I n t r o d u c t i o n  

We use the term semantic parsing to refer 
to the process of mapping a natural language 
sentence to a structured meaning representa- 
tion. One interesting application of semantic 
parsing is building natural language interfaces 
for online databases. The need for such appli- 
cations is growing since when information is 
delivered through the Internet, most users do 
not know the underlying database access lan- 
guage. An example of such an interface that 
we have developed is shown in Figure 1. 

Traditional (rationalist) approaches to con- 
structing database interfaces require an ex- 
pert to hand-craft an appropriate semantic 
parser (Woods, 1970; Hendrix et al., 1978). 
However, such hand-crafted parsers are time 
consllming to develop and suffer from prob- 
lems with robustness and incompleteness even 
for domain specific applications. Neverthe- 
less, very little research in empirical NLP has 
explored the task of automatically acquiring 
such interfaces from annotated training ex- 
amples. The only exceptions of which we 
are aware axe a statistical approach to map- 

ping airline-information queries into SQL pre- 
sented in (Miller et al., 1996), a probabilistic 
decision-tree method for the same task de- 
scribed in (Kuhn and De Mori, 1995), and 
an approach using relational learning (a.k.a. 
inductive logic programming, ILP) to learn a 
logic-based semantic parser described in (Zelle 
and Mooney, 1996). 

The existing empirical systems for this task 
employ either a purely logical or purely sta- 
tistical approach. The former uses a deter- 
ministic parser, which can suffer from some 
of the same robustness problems as rational- 
ist methods. The latter constructs a prob- 
abilistic grammar, which requires supplying 
a sytactic parse tree as well as a semantic 
representation for each training sentence, and 
requires hand-crafting a small set of contex- 
tual features on which to condition the pa- 
rameters of the model. Combining relational 
and statistical approaches can overcome the 
need to supply parse-trees and hand-crafted 
features while retaining the robustness of sta- 
tistical parsing. The current work is based 
on the CHILL logic-based parser-acquisition 
framework (Zelle and Mooney, 1996), retain- 
ing access to the complete parse state for mak- 
ing decisions, but building a probabilistic re- 
lational model that allows for statistical pars- 
ing- 

2 O v e r v i e w  o f  t h e  A p p r o a c h  

This section reviews our overall approach 
using an interface developed for a U.S. 
Geography database (Geoquery) as a 
sample application (ZeUe and Mooney, 
1996) which is available on the Web (see 
hl:tp://gvg, c s .  u t e z a s ,  edu/users/n~./geo .html). 

2.1 S e m a n t i c  R e p r e s e n t a t i o n  
First-order logic is used as a semantic repre- 
sentation language. CHILL has also been ap- 
plied to a restaurant database in which the 
logical form resembles SQL, and is translated 
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Figure 1: Screenshots of a Learned Web-based NL Database Interface 

automatically into SQL (see Figure 1). We 
explain the features of the Geoquery repre- 
sentation language through a sample query: 

Input: "W'hat is the largest city in Texas?" 
Quc~'y: a nswer(C,largest(C,(city(C),loc(C,S), 

const (S,stateid (texas))))). 

Objects are represented as logical terms and 
are typed with a semantic category using 
logical functions applied to possibly ambigu- 
ous English constants (e.g. stateid(Mississippi), 
riverid(Mississippi)). Relationships between ob- 
jects are expressed using predicates; for in- 
stance, Ioc(X,Y) states that X is located in Y. 

We also need to handle quantifiers such 
as 'largest'. We represent these using meta- 
predicates for which at least one argument is a 
conjunction ofliterals. For example, largest(X, 
Goal) states that the object X satisfies Goal 
and is the largest object that does so, using 
the appropriate measure of size for objects of 
its type (e.g. area for states, population for 
cities). Finally, an nn.qpeci~ed object required 
as an argument to a predicate can appear else- 
where in the sentence, requiring the use of the 
predicate const(X,C) to bind the variable X to 
the constant C. Some other database queries 
(or training examples) for the U.S. Geography 
domain are shown below: 

What is the capital of Texas? 
a nswer(C,(ca pital(C,S),const(S,stateid (texas)))). 

What state has the most rivers running through it? 
a nswer(S,most (S,R,(state(S),rlver(R),traverse(R,S)))). 

2.2 Parsing Actions 
Our semantic parser employs a shift-reduce 
architecture that maintains a stack of pre- 
viously built semantic constituents and a 
buffer of remaining words in the input. The 
parsing actions are automatically generated 
from templates given the training data. The 
templates are INTRODUCE, COREF_VABS, 
DROP_CON J, LIFT_CON J, and SttIFT. IN- 
TRODUCE pushes a predicate onto the stack 
based on a word appearing in the input and 
information about its possible meanings in 
the lexicon. COREF_VARS binds two argu- 
ments of two different predicates on the stack. 
DROP_CONJ (or LIFT_CON J) takes a pred- 
icate on the stack and puts it into one of the 
arguments of a meta-predicate on the stack. 
SHIFT simply pushes a word from the input 
buffer onto the stack. The parsing actions are 
tried in exactly this order. The parser also 
requires a lexicon to map phrases in the in- 
put into specific predicates, this lexicon can 
also be learned automatically from the train- 
ing data (Thompson and Mooney, 1999). 

Let's go through a simple trace of parsing 
the request "What is the capital of Texas?" 
A lexicon that maps 'capital' to 'capital(_,_)' 
and 'Texas' to 'const(_,stateid(texas))' su.~ces 
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here. Interrogatives like "what" may be 
mapped to predicates in the  lexicon if neces- 
sary. The parser begins with an initial stack 
and a buffer holding the input  sentence. Each 
predicate on the parse stack has an attached 
buffer to hold the context in which it was 
introduced; words from the input  sentence 
are shifted onto this buffer during parsing. 
The initial parse state is shown below: 

Parse Stack: [answer(_,_):O] 
Input Buffer: [what,is,the,ca pital,of,texas,?] 

Since the first three words in the input  
buffer do not map to any predicates, three 
SHIFT actions are performed. The next is an 
INTRODUCE as 'capital' is at the head of 
the input buffer: 

Parse Stack: [capital(_,_): O, answer(_,_):[the,is,what]] 
Input Buffer: [capital,of,texas,?] 

The next action is a COREF_VARS that 
binds the first argument of capital(_,_) with 
the first argument of answer(_,_). 

Parse Stack: [capital(C,_): O, answer(C,_):[the,is,what]] 
Input Buffer: [capital,of,texas,?] 

The next sequence of steps axe two SHIFT's, 
an INTRODUCE, and then a COR.EF_VARS: 

Parse Stack: [const(S,stateid(texas)): 0' 
ca pital(C,S):[of, ca pital], 
answer(C,_):[the,is,what~ 

Input Buffer: [texas,?] 

The last four steps are two DROP_CONJ's 
followed by two SHIFT's: 

Parse Stack: [answer(C, (capital(C,S), 
const(S,stateld(texas)))): 
[?,texas,of, ca pital,the,is,what]] 

Input Buffer: I] 

This is the final state and the  logical query is 
extracted from the stack. 

2.3 Learning Control Rules 

The initially constructed parser has no con- 
straints on when to apply actions, and is 
therefore overly general and generates n11rner- 
ous spurious parses. Positive and negative ex- 
amples are collected for each action by parsing 
each tralnlng example and recordlng the parse 
states encountered. Parse states to which an 
action should be applied (i.e. the action leads 
to building the  correct semantic representa- 
tion) are labeled positive examples for that  
action. Otherwise, a parse state is labeled a 

negative example for an action if it is a posi- 
tive example for another action below the cur- 
rent one in the  ordered list of actions. Control 
conditions which decide the  correct action for 
a given parse state axe learned for each action 
from these positive and negative examples. 

The initial CHILL system used ILP (Lavrac 
and Dzeroski, 1994) to learn Prolog control 
rules and employed deterministic parsing, us- 
ing the learned rules to decide the appropriate 
parse action for each state. The current ap- 
proach learns a model for estimating the prob- 
ability that  each action should be applied to 
a given state, and employs statistical parsing 
(Manning and Schiitze, 1999) to try to find 
the overall most probable parse, using beam 
search to control the complexity. The advan- 
tage of ILP is that  it can perform induction 
over the logical description of the complete 
parse state without the need to pre-engineer a 
fixed set of features (which vary greatly from 
one domain to another) tha t  are relevant to 
making decisions. We maintain this advan- 
tage by using ILP to learn a committee of 
hypotheses, and basing probability estimates 
on a weighted vote of t hem (Ali and Pazzani, 
1996). We believe that using such a proba- 
bilistic relational model (Getoor and Jensen, 
2000) combines the advantages of frameworks 
based on first-order logic and those based on 
standard statistical techniques. 

3 T h e  TABULATE I L P  Method 

This section discusses the ILP method used to 
build a committee of logical control hypothe- 
ses for each action. 

3.1 The Bas ic  TABULATE Algorithm 

Most ILP methods use a set-covering method 
to learn one clause (rule) at a t ime and con- 
struct clauses using either a strictly top-down 
(general to specific) or bot tom-up (specific to 
general) search through the  space of possi- 
ble rules (Lavrac and Dzeroski, 1994). TAB- 
ULATE, 1 on the other hand,  employs both  
bot tom-up and top-down methods to con- 
struct potential clauses and searches through 
the hypothesis space of complete logic pro- 
grams (i.e. sets of clauses called theories). It 
uses beam search to find a set of alternative 
hypotheses guided by a theory evaluation met- 
ric discussed below. The  search starts with 

aTABULATB stands for Top-doera And Bottom-Up 
cLAuse construction urith Theory Evaluation. 
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Procedure Tabulate 
Input: 
t (X, , . . . ,Xn):  the target concept to learn 
~+: the (B examples 
~-:  the (9 examples 
Output: 
Q: a queue of learned theories 

Theoryo := {E '¢'-I E E ~+} /* the initial theory */ 
T(No) := Theoryo /* theory of node No */ 
C(No) := empty /* the clause being built */ 
Q := [No] /* the search queue */ 
Repeat  

CO ¢ 
Fo_._X each search node Ni E Q D__q 

C(Ni) = empty or C(Ni) = fail T h e n  
Pairs := sampling of S pairs of clauses from T(N~) 
Find LGG G in Pairs with the greatest cover in ~+ 
Ri := Refine_Clause(t(X1,... ,Xn) +-) U 

Refine_Clause( G ~--) 
Else 

R4 := Reflne_Clause(C(Ni)) 
End I f  
I f  Ri ---- ¢ Then 
CQ, := {(T(N,), fail)} 

Else 

CQi := {(Coraplete(T(N,), Gj, ~+), neztj) [ 
for each G~ E ,,~, next~ = empty if Gj 
satisfies the noise criteria; otherwise, G$} 

E n d  I f  
CQ := CQ u CQ~ 

End For 
Q := the B best nodes from Q U CQ 

ranked by metric M 
Unt i l  terminatlon-criteria-satisfied 
Return Q 
End Procedure 

Figure 2: The  TABULATE algorithm 

the most specific hypothesis (the set of posi- 
tive examples each represented as a separate 
clause). Each iteration of the loop at tempts  
to refine each of the hypotheses in the current 
search queue. There are two cases in each it- 
eration: 1) an existing clause in a theory is 
refined or 2) a new clause is begun. Clauses 
are learned using both  top-down specialiT.~- 
tion using a method  similar to FOIL (Quin- 
lan, 1990) and bot tom-up generalization using 
Least General Generalizations (LGG's). Ad- 
vantages of combining both  ILP approaches 
were explored in CHILLIN (ZeUe and Mooney, 
1994), an ILP method  which motivated the  
design of TABULATE. An outline of the TAB- 
ULATE algorithm is given in Figure 2. 

A noise-handling criterion is used to de- 
cide when an individual clause in a hypoth- 
esis is sufficiently accurate to be permanently 

retained. There are three possible outcomes 
in a refinement: 1) the  current clause satisfies 
the noise-handling criterion and is simply re- 
turned (nextj is set to empty), 2) the current 
clause does not satisfy the  noise-handling cri- 
teria and all possible refinements are returned 
(neztj is set to the refined clause), and 3) 
the current clause does not  satisfy the noise- 
handling criterion but  there are no further re- 
finements (neztj  is set to fai O. If  the  refine- 
ment is a new clause, clauses in the current 
theory subs-reed by it are removed. Oth- 
erwise, it is a specialization of an existing 
clause. Positive examples tha t  are not  cov- 
ered by the resulting theory, due to special- 
izing the clause, are added back into theory 
as individual clauses. Hence, the theory is al- 
ways maintained complete (i.e. covering all 
positive examples). These final steps are per- 
formed in the Complete procedure. 

The termination criterion checks for two 
conditions. The first is satisfied if the  next 
search queue does not improve the sum of 
the metric score over all hypotheses in the 
queue. Second, there is no clause currently 
being built  for each theory in the  search queue 
and the last finished clause of each theory sat- 
isfies the noise-handling criterion. Finally, a 
committee of hypotheses found by the  algo- 
r i thm is returned. 

3 . 2  C o m p r e s s i o n  a n d  A c c u r a c y  

The goal of the search is to find accurate 
and yet simple hypotheses. We measure accu- 
racy using the m-estimate (Cestnik, 1990), a 
smoothed measure of accuracy on the training 
data  which in the  case of a two-class problem 
is defined as: 

accuracy(H) s + m .  p+ = (1) 
n ,-I- rrt 

where s is the n- tuber  of positive examples 
covered by the  hypothesis H ,  n is the  total  
number of examples covered, p+ is the prior 
probability of the class (9, and  m is a smooth- 
ing parameter. 

We measure theory complexity using a met- 
ric slmi]ar to that  introduced in (Muggleton 
and Buntine, 1988). The  size of a Clause hav- 
ing a Head and a Body is defined as follows 
( t s=" te rm size" and a r="a r i t y ' ) :  

size(Clause) = 1 + ts(Head) + ts(Body) (2) 
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I 1 T is a variable 
ts(T) = 2 r ~,, ¢ o ~ t  

2 + ts(argi(T)) 
(3) 

The size of a clause is roughly the  n, ,mber of 
variables, constants, or predicate symbols it 
contains. The size of a theory is the  sum of 
the sizes of its clauses. The metric  M(H)  used 
as the search heuristic is defined as: 

M(H)  = accuracy(H) + C 
log 2 size(H) (4) 

where C is a constant used to control the rel- 
ative weight of  accuracy vs. complexity. We 
ass~,me that  the most general hypothesis is as 
good as the most specific hypothesis; thus, C 
is determined to be: 

C = EbSt -- EtSb (5) 
& - &  

where Et, Eb are the accuracy estimates of the 
most general and most specific hypotheses re- 
spectively, and St, Sb are their  sizes. 

3.3 Noise  Handl ing  
A clause needs no fur ther  refinement when it 
meets the following criterion (as in RIPPER 
(Cohen, 1995)): 

P -.__.2_ > (6) 
p + n  

where p is the number  of positive examples 
covered by the clause, n is the  number  of neg- 
ative examples covered and - 1  < / ~  _< 1 is a 
parameter.  The  value of ~ is decreased when- 
ever the sum of the  metr ic  over the  hypotheses 
in the  queue does not  improve al though some 
of them still have ,nflni~hed or failed clauses. 

4 Statistical Semantic Parsing 
4.1 T h e  P a r s i n g  M o d e l  

A parser is a relation Parser C_ Sentences x 
Queries where Sentences and Queries are 
the  sets of natural  language sentences and 
database queries respectively. Given a sen- 
tence I • Sentences, the  set Q(1) = {q • 
Queries I (l, q) • Parser} is the  set of  queries 
that  are correct interpretations of I. 

A parse state consists of a stack of lexical- 
ized predicates and a list of words from the  
input  sentence. S is the  set of  states reach- 
able by the parser. Suppose our learned parser 
has n different parsing actions, the  i th  ac- 
tion a / i s  a function a/(s)  : ISi  -+ OSi where 

ISi G S is the  set of  states to which the  ac- 
tion is applicable and OSi C_ S is the  set of  
states constructed by the  action. The  function 
ao(l) : Sentences ~ IniS maps each sentence l 
to a corresponding unique initial parse state in 
In/S C_ S. A state is called afinalstate if  there 
exists no parsing action applicable to it. The 
partial function a,+l(s) : FS ~ Queries is 
defined as the action tha t  retrieves the query 
from the final state s 6 FS C S if one exists. 
Some final states may not "contain" a query 
(e.g. when the  parse stack contain.q predicates 
with unbound ~rariables) and  therefore it is a 
partial function. When  the  parser meets such 
a final state, it reports a failure. 

A path is a finite sequence of parsing ac- 
tions. Given a sentence 1, a good state  s is 
one such tha t  there exists a pa th  from it to a 
query q 6 Q(1). Otherwise, it is a bad state. 
The set of parse states can be  uniquely divided 
into the set of  good states and the set of bad 
states given l and Parser. S + and S -  are the  
sets of good and bad states respectively. 

Given a sentence l, the  goal is to construct  
the query ~ such that  

= argmqaX P(q • Q(l) [ l  ~ q) (7) 

where I ~ q means a pa th  exists from l to q. 
Now, we need to est imate P(q • Q(1) I l =-~ 

q). First, we notice that:  

P(q • Q(1) [ l  =~. q) ---- (8) 

P(s • FS + I I ~ s and an+l(S) ---- q) 

where FS + = FS N S +. For notational  con- 
venience we drop the conditions and denote 
the above probabilities as P(q • Q(l)) and 
P(s • FS +) respectively, assuming these con- 
ditions in the  following discussion. The  equa- 
tion states tha t  the probabil i ty tha t  a given 
query is a correct meaning for I is the  same as 
the  probability that  the  final state (reached 
by parsing l) is a good state.  We need to de- 
termine in general the probabili ty of having a 
good resulting parse state. Given any parse 
state s i at the  j t h  step of  parsing and an ac- 
tion ai such tha t  si+1 = a/(sj) ,  we have: 

PCsi+1 • (9) 
pCsj+l e o& + I • x&+)pCs  • x& +) + 
P(Si+l  • OSi + I sj ¢ ISi+)P(sj ¢~ ISi +) 

where IS~ = ISi N S + and OS~ = OS~ N S +. 
Since no parsing action can produce a good 
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parse state from a bad one, the  second te rm 
is zero. Now, we are ready to derive P(q • 
Q(l)). Suppose q = an+l(Sm), we have: 

P(q 6 Q(l)) (10) 

= P(s~  • F ~ )  
. . .  

= P(s,n • FS + l sm-1 •/St,_a)... 
P(s~ • OS~_, I sj-1 • I s~_ , ) . . .  

P(s2 • Ob~, Is1 • IS~, ) P ( ' I  • IS~,) 

where ak denotes the index of which action 
is applied at the kth step. We assume that  

= P(s l  • I~aa) ~ 0 (which may not be t rue 
in general). Now, we have 

m--I 

P(q 6 Q(l)) = 7 I I  P(sj+I • O~ l sj • IS~-3). 
i=l 

(11) 
Next we describe how we est imate the proba- 
b i l i~  of the goodness of each action in a given 
state (P(~(s)  • o $  I s • I ~ ) ) .  We n ~  
not estimate 7 since its value does not affect 
the outcome of equation (7). 

4 .2 E s t i m a t i n g  P r o b a b i l i t i e s  for  
P a r s i n g  A c t i o n s  

The  committee of hypotheses learned by TAB- 
ULATE is used to  e s t ima te  the probability that  
a particular action is a good one to apply to a 
given parse state. Some hypotheses are more 
"important" than others in the sense that  they 
carry more weight in the  decision. A weight- 
ing parameter is also included to lower the  
probability estimate of actions that  appear 
fm'ther down the decision list. For actions ai 
where 1 < i < n - 1: 

P(ai(s) • o~ Is • Is7-) = 
.po,(i)-I ~ AkP(~Cs) 6 0 b ~  ~ I h~) 

hk~H~ 

(12) 

where s is a given parse state, pos(i) is the  
position of the action ai in the  list of ac- 
tions applicable to state s, Ak and 0 < /~ < 
1 are weighting parameters, z Hi is the set 
of hypotheses learned for the action ai, and 
~ k  A~ = 1. 

To estimate the probability for the last ac- 
tion an, we devise a simple test that  checks 
if the maximum of the  set A(s) of proba- 
bility estimates for the subset of  the actions 

2p is set t o  0.95 for all the experiments performed. 

{ a l , . . . ,  an- l }  applicable to s is less than or 
equal to a threshold a .  If  A(s) is empty, we 
assume the maxlrn,,rn is zero. More precisely, 

PCa.Cs) • o s~  Is • xs~) = 

{ ,c..(,)~os~) if maxCACs)) < 
~(,~IS~) 

0 otherwise 

(13) 

where a is the  threshold, 3 c(an(s) • Ob~) is 
the count of the  number  of good states pro- 
duced by the  last action, and c(s • IS~) is the 
count of the  number  of good states to which 
the last action is applicable. 

Now, let 's discuss how P(ai(s) • OS~ ~ I hk) 
and Ak are estimated. If hk ~ s (i.e. hk covers 
s), we have 

PCai(s) • o~ I hk) = 
pc + O " nc 

Pc -t- nc 
(14) 

where Pc and ne are the  number of positive 
and negative examples covered by hk respec- 
tively. Otherwise, if h~ ~= s (i.e. hk does not 
cover s), we have 

PCai(s) • OS 7" I hk) -- p" + 8 . n , ,  
Pu + n u  

(15) 

where Pu and nu are the n,,rnber of positive 
and negative examples rejected by hk respec- 
tively. /9 is the  probability that  a negative 
example is mislabelled and its value can be 
estimated given # (in equation (6)) and the 
total nnrnber of positive and negative exam- 
ples. 

One could use a variety of linear combina- 
tion methods  to estimate the  weights Ak (e.g. 
Bayesian combination (Buntine, 1990)). How- 
ever, we have taken a simple approach and 
weighted hypotheses based on their relative 
simplicity: 

size(hk) -1 
Ak = ~.lHd size(hi)_1" (16) 

z-d=l 

4.3 S e a r c h i n g  for  a P a r s e  

To find the  most probably correct parse, the  
parser employs a beam search. At each step, 
the parser finds all of the parsing actions ap- 
plicable to each parse state on the queue and 
calculates the  probability of goodness of each 
of them using equations (12) and (13). It  then  

SThe threshold is set to 0.5 for all the experiments 
performed. 
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computes the probability tha t  the resulting 
state of each possible action is a good state 
using equation (11), sorts the  queue of possi- 
ble next states accordingly, and keeps the best 
B options. The parser stops when a complete 
parse is found on the top of the parse queue 
or a failure is reported. 

5 E x p e r i m e n t a l  R e s u l t s  

5.1 T h e  D o m a i n s  

Three different domains are used to demon- 
strate the performance of the  new approach. 
The first is the U.S. Geography domain. 
The database contains about 800 facts about  
U.S. states like population, area, capital city, 
neighboring states, major rivers, major  cities, 
and so on. A hand-crafted parser, GEOBASE 
was previously constructed for this domain as 
a demo product for Turbo Prolog. The  second 
application is the restaurant query system il- 
lustrated in Figure 1. The database contains 
information about thousands of restaurants 
in Northern California, including the  name of 
the restaurant, its location, its specialty, and a 
guide-book rating. The third domain consists 
of a set of 300 computer-related jobs automat-  
ically extracted from postings to the USENET 
newsgroup a u s t i n . j o b s .  The  database con- 
talus the following information: the  job title, 
the company, the recruiter, the location, the  
salary, the languages and platforms used, and 
required or desired years of experience and de- 
grees. 

5.2 E x p e r i m e n t a l  D e s i g n  

The geography corpus contains 560 questions. 
Approximately 100 of these were collected 
from a log of questions submit ted to the web 
site and the rest were collected in studies in- 
volving students in undergraduate classes at  
our university. We also included results for the  
subset of 250 sentences originally used in the  
experiments reported in (Zelle and Mooney, 
1996). The remaining questions were specif- 
icaUy collected to be more complex than  the  
original 250, and generally require one or more 
meta-predicates. The restaurant corpus con- 
taln~ 250 questions automatically generated 
from a hand-built g r a m m a r  Const ructed  t o  re- 
flect typical queries in this domain. The job 
corpus contains 400 questions automatically 
generated in a similar fashion. The  beam 
width for TABULATE was set~ to five for all the  
domains. The deterministic parser used only 
the  best hypothesis found. The  experiments 

were conducted using 10-fold cross validation. 
For each domain, the average recall (a.k.a. 

accuracy) and precision of the parser on dis- 
joint test data  are reported where: 

of correct queries produced 
Reca l l  = 

of test sentences 

P r e c i s i o n  = # of correct queries produced 
# of complete parses produced" 

A complete parse is one which contains an ex- 
ecutable query (which could be incorrect). A 
query is considered correct if it produces the 
same answer set as the gold-standard query 
supplied with the corpus. 

5.3 R e s u l t s  

The results are presented in Table 1 and Fig- 
ure 3. By switching from deterministic to 
probabilistic parsing, the system increased the 
number of correct queries it produced. Re- 
call increases almost monotonically with pars- 
ing beam width in most of the domains. I_m- 
provement is most apparent in the Jobs do- 
maln where probabilistic parsing signiBcantly 
outperformed the deterministic system (80% 
vs 68%). However, using a beam width of 
one (and thus the probabilistic parser picks 
only the best action) results in worse perfor- 
mance than  using the  original purely logic- 
based determlni~tic parser. This suggests that  
the probability esitmates could be improved 
since overall they are not indicating the sin- 
gle best action as well as a non-probabilistic 
approach. Precision of the system decreased 
with beam width, but  not signi~cantly except 
for the larger Geography corpus. Since the 
system conducts a more extensive search for 
a complete parse, it risks increasing the num- 
ber of incorrect as well as correct parses. The 
importance of recall vs. precision depends on 
the relative cost of providing an incorrect an- 
swer versus no answer at all. Individual ap- 
plications may require emphasizing one or the 
other. 

All of the experiments were run  on a 
167MHz UltraSparc work station under Sic- 
stus Prolog. Although results on the  parsing 
t ime of the  different systems are not formally 
reported here, it was noted that  the difference 
between using a beam width of three and the 
original system was less than  two seconds in 
all domains but  increased to a~r0und twenty 
seconds when using a beam width of twelve. 
However, the current Prolog implementation 
is not highly optimized. 
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Parsers \ Corpora Geo250 Geo560 Jobs400 Rest250 

Prob-Parser(12) 
Prob-Parser(8) 
Prob-Parser(5) 
Prob-Parser(3) 
Prob-Parser(1) 

TABULATE 
Original CHILL 

Hand-Built Parser 

R P 
80.40 88.16 
79.60 86.90 
78.40 87.11 
77.60 87.39 
67.60 90.37 
75.60 92.65 
68.50 97.65 
56.00 96.40 

R P 
71.61 78.94 
71.07 79.76 
70.00 79.51 
69.11 79.30 
62.86 82.05 
69.29 89.81 

I~ P 
80.50 86.56 
78.75 86.54 
74.25 86.59 
70.50 87.31 
34.25 85.63 
68.50 87.54 

R P 
99.20 99.60 
99.20 99.60 
99.20 99.60 
99.20 99.60 
99.20 99.60 
99.20 99.60 

Table 1: Results For All Domains: R = % Recall and P = % Precision. Prob-Parser(B) is 
the probabilistic parser using a beam width of B. TABULATE is CHILL using the TABULATE 
induction algorithm with determ;nistic parsing. 
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Figure 3: The recall and precision of the parser using various beam widths in the different 
domains 

While there was an overall improvement in 
recall using the new approach, its performance 
varied signiGcantly from dom~;~ to domain. 
As a result, the recall did not always improve 
dramatically by using a larger beam width. 
Domain factors possibly affecting the perfor- 
mance are the quality of the lexicon, the rel- 
ative amount of data  available for calculat- 
ing probability estimates, and the problem of 
'~parser incompleteness" with respect to the 
test data  (i.e. there is not a path  from a sen- 
tence to a correct query which happens when 
'7 = 0). The performance of all systems were 
basically equivalent in the restaurant domain, 
where they were near perfect in both recall 
and precision. This is because this corpus is 
relatively easier given the restricted range of 
possible questions due to the limited informa- 
tion available about each restaurant. The sys- 
tems achieved > 90% in recall and precision 
given only roughly 30% of the training data 
in this domain. Finally, GEOBASE per fomed  

the worst on the original geography queries, 
since it is difficult to hand-crat~ a parser that  
handles a sn~cient  variety of questions. 

6 C o n c l u s i o n  

A probabilistic framework for semantic shift- 
reduce parsing was presented. A new ILP 
learning system was also introduced which 
learns multiple hypotheses. These two tech- 
niques were integrated to learn semantic 
parsers for building NLI's to on|ine databases. 
Experimental results were presented that  
demonstrate that  such an approach outper- 
forms a purely logical approach in terms of 
the accuracy of the learned parser. 
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