
Automated Construction of Database Interfaces: Integrating
Statistical and Relational Learning for Semantic Parsing

L a p p o o n R . T a n g a n d R a y m o n d J . M o o n e y
Depar tmen t of Computer Sciences

University of Texas at Aust in
Austin, TX 78712-1188

{rupert, mooney}@cs, utexas, edu

A b s t r a c t

The development of natural language inter-
faces (NLI's) for databases has been a chal-
lenging problem in natural language process-
ing (NLP) since the 1970's. The need for
NLI's has become more pronounced due to the
widespread access to complex databases now
available through the Internet. A challenging
problem for empirical NLP is the automated
acquisition of NLI's from training examples.
We present a method for integrating statisti-
cal and relational learning techniques for this
task which exploits the strength of both ap-
proaches. Experimental results from three dif-
ferent domains suggest that such an approach
is more robust than a previous purely logic-
based approach.

1 I n t r o d u c t i o n

We use the term semantic parsing to refer
to the process of mapping a natural language
sentence to a structured meaning representa-
tion. One interesting application of semantic
parsing is building natural language interfaces
for online databases. The need for such appli-
cations is growing since when information is
delivered through the Internet, most users do
not know the underlying database access lan-
guage. An example of such an interface that
we have developed is shown in Figure 1.

Traditional (rationalist) approaches to con-
structing database interfaces require an ex-
pert to hand-craft an appropriate semantic
parser (Woods, 1970; Hendrix et al., 1978).
However, such hand-crafted parsers are time
consllming to develop and suffer from prob-
lems with robustness and incompleteness even
for domain specific applications. Neverthe-
less, very little research in empirical NLP has
explored the task of automatically acquiring
such interfaces from annotated training ex-
amples. The only exceptions of which we
are aware axe a statistical approach to map-

ping airline-information queries into SQL pre-
sented in (Miller et al., 1996), a probabilistic
decision-tree method for the same task de-
scribed in (Kuhn and De Mori, 1995), and
an approach using relational learning (a.k.a.
inductive logic programming, ILP) to learn a
logic-based semantic parser described in (Zelle
and Mooney, 1996).

The existing empirical systems for this task
employ either a purely logical or purely sta-
tistical approach. The former uses a deter-
ministic parser, which can suffer from some
of the same robustness problems as rational-
ist methods. The latter constructs a prob-
abilistic grammar, which requires supplying
a sytactic parse tree as well as a semantic
representation for each training sentence, and
requires hand-crafting a small set of contex-
tual features on which to condition the pa-
rameters of the model. Combining relational
and statistical approaches can overcome the
need to supply parse-trees and hand-crafted
features while retaining the robustness of sta-
tistical parsing. The current work is based
on the CHILL logic-based parser-acquisition
framework (Zelle and Mooney, 1996), retain-
ing access to the complete parse state for mak-
ing decisions, but building a probabilistic re-
lational model that allows for statistical pars-
ing-

2 O v e r v i e w o f t h e A p p r o a c h

This section reviews our overall approach
using an interface developed for a U.S.
Geography database (Geoquery) as a
sample application (ZeUe and Mooney,
1996) which is available on the Web (see
hl:tp://gvg, c s . u t e z a s , edu/users/n~./geo .html).

2.1 S e m a n t i c R e p r e s e n t a t i o n
First-order logic is used as a semantic repre-
sentation language. CHILL has also been ap-
plied to a restaurant database in which the
logical form resembles SQL, and is translated

133

Damba~

QUERY YOU PO~TED:
all a goo~ ~ z ~ c a L ~ ~m ~ o ~.t~o'P

RE~UI.T:

~ o o a ~ e ~ I,~ p . ~ . , . ~ r ~ , ~ o ~ o ~ J
~u~,,o~ ",,~u.,. p~o ~ . ~ . , , ¢ B o ~ ~,.~.o ,~.~o ~.~ I

a ~ o o o ~ z ~ u ~ r ~ ~ ~ r r ~ r ~,~o~.~o ~ I

THE SOL GENERATED:

~n0~t ~ .K~ t ~Fo, LOCAnONS
C ~ * t l ~ r O J t ~ ~ Z3 AgO

Figure 1: Screenshots of a Learned Web-based NL Database Interface

automatically into SQL (see Figure 1). We
explain the features of the Geoquery repre-
sentation language through a sample query:

Input: "W'hat is the largest city in Texas?"
Quc~'y: a nswer(C,largest(C,(city(C),loc(C,S),

const (S,stateid (texas))))).

Objects are represented as logical terms and
are typed with a semantic category using
logical functions applied to possibly ambigu-
ous English constants (e.g. stateid(Mississippi),
riverid(Mississippi)). Relationships between ob-
jects are expressed using predicates; for in-
stance, Ioc(X,Y) states that X is located in Y.

We also need to handle quantifiers such
as 'largest'. We represent these using meta-
predicates for which at least one argument is a
conjunction ofliterals. For example, largest(X,
Goal) states that the object X satisfies Goal
and is the largest object that does so, using
the appropriate measure of size for objects of
its type (e.g. area for states, population for
cities). Finally, an nn.qpeci~ed object required
as an argument to a predicate can appear else-
where in the sentence, requiring the use of the
predicate const(X,C) to bind the variable X to
the constant C. Some other database queries
(or training examples) for the U.S. Geography
domain are shown below:

What is the capital of Texas?
a nswer(C,(ca pital(C,S),const(S,stateid (texas)))).

What state has the most rivers running through it?
a nswer(S,most (S,R,(state(S),rlver(R),traverse(R,S)))).

2.2 Parsing Actions
Our semantic parser employs a shift-reduce
architecture that maintains a stack of pre-
viously built semantic constituents and a
buffer of remaining words in the input. The
parsing actions are automatically generated
from templates given the training data. The
templates are INTRODUCE, COREF_VABS,
DROP_CON J, LIFT_CON J, and SttIFT. IN-
TRODUCE pushes a predicate onto the stack
based on a word appearing in the input and
information about its possible meanings in
the lexicon. COREF_VARS binds two argu-
ments of two different predicates on the stack.
DROP_CONJ (or LIFT_CON J) takes a pred-
icate on the stack and puts it into one of the
arguments of a meta-predicate on the stack.
SHIFT simply pushes a word from the input
buffer onto the stack. The parsing actions are
tried in exactly this order. The parser also
requires a lexicon to map phrases in the in-
put into specific predicates, this lexicon can
also be learned automatically from the train-
ing data (Thompson and Mooney, 1999).

Let's go through a simple trace of parsing
the request "What is the capital of Texas?"
A lexicon that maps 'capital' to 'capital(_,_)'
and 'Texas' to 'const(_,stateid(texas))' su.~ces

134

here. Interrogatives like "what" may be
mapped to predicates in the lexicon if neces-
sary. The parser begins with an initial stack
and a buffer holding the input sentence. Each
predicate on the parse stack has an attached
buffer to hold the context in which it was
introduced; words from the input sentence
are shifted onto this buffer during parsing.
The initial parse state is shown below:

Parse Stack: [answer(_,_):O]
Input Buffer: [what,is,the,ca pital,of,texas,?]

Since the first three words in the input
buffer do not map to any predicates, three
SHIFT actions are performed. The next is an
INTRODUCE as 'capital' is at the head of
the input buffer:

Parse Stack: [capital(_,_): O, answer(_,_):[the,is,what]]
Input Buffer: [capital,of,texas,?]

The next action is a COREF_VARS that
binds the first argument of capital(_,_) with
the first argument of answer(_,_).

Parse Stack: [capital(C,_): O, answer(C,_):[the,is,what]]
Input Buffer: [capital,of,texas,?]

The next sequence of steps axe two SHIFT's,
an INTRODUCE, and then a COR.EF_VARS:

Parse Stack: [const(S,stateid(texas)): 0'
ca pital(C,S):[of, ca pital],
answer(C,_):[the,is,what~

Input Buffer: [texas,?]

The last four steps are two DROP_CONJ's
followed by two SHIFT's:

Parse Stack: [answer(C, (capital(C,S),
const(S,stateld(texas)))):
[?,texas,of, ca pital,the,is,what]]

Input Buffer: I]

This is the final state and the logical query is
extracted from the stack.

2.3 Learning Control Rules

The initially constructed parser has no con-
straints on when to apply actions, and is
therefore overly general and generates n11rner-
ous spurious parses. Positive and negative ex-
amples are collected for each action by parsing
each tralnlng example and recordlng the parse
states encountered. Parse states to which an
action should be applied (i.e. the action leads
to building the correct semantic representa-
tion) are labeled positive examples for that
action. Otherwise, a parse state is labeled a

negative example for an action if it is a posi-
tive example for another action below the cur-
rent one in the ordered list of actions. Control
conditions which decide the correct action for
a given parse state axe learned for each action
from these positive and negative examples.

The initial CHILL system used ILP (Lavrac
and Dzeroski, 1994) to learn Prolog control
rules and employed deterministic parsing, us-
ing the learned rules to decide the appropriate
parse action for each state. The current ap-
proach learns a model for estimating the prob-
ability that each action should be applied to
a given state, and employs statistical parsing
(Manning and Schiitze, 1999) to try to find
the overall most probable parse, using beam
search to control the complexity. The advan-
tage of ILP is that it can perform induction
over the logical description of the complete
parse state without the need to pre-engineer a
fixed set of features (which vary greatly from
one domain to another) tha t are relevant to
making decisions. We maintain this advan-
tage by using ILP to learn a committee of
hypotheses, and basing probability estimates
on a weighted vote of t hem (Ali and Pazzani,
1996). We believe that using such a proba-
bilistic relational model (Getoor and Jensen,
2000) combines the advantages of frameworks
based on first-order logic and those based on
standard statistical techniques.

3 T h e TABULATE I L P Method

This section discusses the ILP method used to
build a committee of logical control hypothe-
ses for each action.

3.1 The Bas ic TABULATE Algorithm

Most ILP methods use a set-covering method
to learn one clause (rule) at a t ime and con-
struct clauses using either a strictly top-down
(general to specific) or bot tom-up (specific to
general) search through the space of possi-
ble rules (Lavrac and Dzeroski, 1994). TAB-
ULATE, 1 on the other hand, employs both
bot tom-up and top-down methods to con-
struct potential clauses and searches through
the hypothesis space of complete logic pro-
grams (i.e. sets of clauses called theories). It
uses beam search to find a set of alternative
hypotheses guided by a theory evaluation met-
ric discussed below. The search starts with

aTABULATB stands for Top-doera And Bottom-Up
cLAuse construction urith Theory Evaluation.

135

Procedure Tabulate
Input:
t (X, , . . . ,Xn): the target concept to learn
~+: the (B examples
~-: the (9 examples
Output:
Q: a queue of learned theories

Theoryo := {E '¢'-I E E ~+} /* the initial theory */
T(No) := Theoryo /* theory of node No */
C(No) := empty /* the clause being built */
Q := [No] /* the search queue */
Repeat

CO ¢
Fo_._X each search node Ni E Q D__q

C(Ni) = empty or C(Ni) = fail T h e n
Pairs := sampling of S pairs of clauses from T(N~)
Find LGG G in Pairs with the greatest cover in ~+
Ri := Refine_Clause(t(X1,... ,Xn) +-) U

Refine_Clause(G ~--)
Else

R4 := Reflne_Clause(C(Ni))
End I f
I f Ri ---- ¢ Then
CQ, := {(T(N,), fail)}

Else

CQi := {(Coraplete(T(N,), Gj, ~+), neztj) [
for each G~ E ,,~, next~ = empty if Gj
satisfies the noise criteria; otherwise, G$}

E n d I f
CQ := CQ u CQ~

End For
Q := the B best nodes from Q U CQ

ranked by metric M
Unt i l terminatlon-criteria-satisfied
Return Q
End Procedure

Figure 2: The TABULATE algorithm

the most specific hypothesis (the set of posi-
tive examples each represented as a separate
clause). Each iteration of the loop at tempts
to refine each of the hypotheses in the current
search queue. There are two cases in each it-
eration: 1) an existing clause in a theory is
refined or 2) a new clause is begun. Clauses
are learned using both top-down specialiT.~-
tion using a method similar to FOIL (Quin-
lan, 1990) and bot tom-up generalization using
Least General Generalizations (LGG's). Ad-
vantages of combining both ILP approaches
were explored in CHILLIN (ZeUe and Mooney,
1994), an ILP method which motivated the
design of TABULATE. An outline of the TAB-
ULATE algorithm is given in Figure 2.

A noise-handling criterion is used to de-
cide when an individual clause in a hypoth-
esis is sufficiently accurate to be permanently

retained. There are three possible outcomes
in a refinement: 1) the current clause satisfies
the noise-handling criterion and is simply re-
turned (nextj is set to empty), 2) the current
clause does not satisfy the noise-handling cri-
teria and all possible refinements are returned
(neztj is set to the refined clause), and 3)
the current clause does not satisfy the noise-
handling criterion but there are no further re-
finements (neztj is set to fai O. If the refine-
ment is a new clause, clauses in the current
theory subs-reed by it are removed. Oth-
erwise, it is a specialization of an existing
clause. Positive examples tha t are not cov-
ered by the resulting theory, due to special-
izing the clause, are added back into theory
as individual clauses. Hence, the theory is al-
ways maintained complete (i.e. covering all
positive examples). These final steps are per-
formed in the Complete procedure.

The termination criterion checks for two
conditions. The first is satisfied if the next
search queue does not improve the sum of
the metric score over all hypotheses in the
queue. Second, there is no clause currently
being built for each theory in the search queue
and the last finished clause of each theory sat-
isfies the noise-handling criterion. Finally, a
committee of hypotheses found by the algo-
r i thm is returned.

3 . 2 C o m p r e s s i o n a n d A c c u r a c y

The goal of the search is to find accurate
and yet simple hypotheses. We measure accu-
racy using the m-estimate (Cestnik, 1990), a
smoothed measure of accuracy on the training
data which in the case of a two-class problem
is defined as:

accuracy(H) s + m . p+ = (1)
n ,-I- rrt

where s is the n- tuber of positive examples
covered by the hypothesis H , n is the total
number of examples covered, p+ is the prior
probability of the class (9, and m is a smooth-
ing parameter.

We measure theory complexity using a met-
ric slmi]ar to that introduced in (Muggleton
and Buntine, 1988). The size of a Clause hav-
ing a Head and a Body is defined as follows
(t s=" te rm size" and a r="a r i t y ') :

size(Clause) = 1 + ts(Head) + ts(Body) (2)

136

I 1 T is a variable
ts(T) = 2 r ~,, ¢ o ~ t

2 + ts(argi(T))
(3)

The size of a clause is roughly the n, ,mber of
variables, constants, or predicate symbols it
contains. The size of a theory is the sum of
the sizes of its clauses. The metric M(H) used
as the search heuristic is defined as:

M(H) = accuracy(H) + C
log 2 size(H) (4)

where C is a constant used to control the rel-
ative weight of accuracy vs. complexity. We
ass~,me that the most general hypothesis is as
good as the most specific hypothesis; thus, C
is determined to be:

C = EbSt -- EtSb (5)
& - &

where Et, Eb are the accuracy estimates of the
most general and most specific hypotheses re-
spectively, and St, Sb are their sizes.

3.3 Noise Handl ing
A clause needs no fur ther refinement when it
meets the following criterion (as in RIPPER
(Cohen, 1995)):

P -.__.2_ > (6)
p + n

where p is the number of positive examples
covered by the clause, n is the number of neg-
ative examples covered and - 1 < / ~ _< 1 is a
parameter. The value of ~ is decreased when-
ever the sum of the metr ic over the hypotheses
in the queue does not improve al though some
of them still have ,nflni~hed or failed clauses.

4 Statistical Semantic Parsing
4.1 T h e P a r s i n g M o d e l

A parser is a relation Parser C_ Sentences x
Queries where Sentences and Queries are
the sets of natural language sentences and
database queries respectively. Given a sen-
tence I • Sentences, the set Q(1) = {q •
Queries I (l, q) • Parser} is the set of queries
that are correct interpretations of I.

A parse state consists of a stack of lexical-
ized predicates and a list of words from the
input sentence. S is the set of states reach-
able by the parser. Suppose our learned parser
has n different parsing actions, the i th ac-
tion a / i s a function a/(s) : ISi -+ OSi where

ISi G S is the set of states to which the ac-
tion is applicable and OSi C_ S is the set of
states constructed by the action. The function
ao(l) : Sentences ~ IniS maps each sentence l
to a corresponding unique initial parse state in
In/S C_ S. A state is called afinalstate if there
exists no parsing action applicable to it. The
partial function a,+l(s) : FS ~ Queries is
defined as the action tha t retrieves the query
from the final state s 6 FS C S if one exists.
Some final states may not "contain" a query
(e.g. when the parse stack contain.q predicates
with unbound ~rariables) and therefore it is a
partial function. When the parser meets such
a final state, it reports a failure.

A path is a finite sequence of parsing ac-
tions. Given a sentence 1, a good state s is
one such tha t there exists a pa th from it to a
query q 6 Q(1). Otherwise, it is a bad state.
The set of parse states can be uniquely divided
into the set of good states and the set of bad
states given l and Parser. S + and S - are the
sets of good and bad states respectively.

Given a sentence l, the goal is to construct
the query ~ such that

= argmqaX P(q • Q(l) [l ~ q) (7)

where I ~ q means a pa th exists from l to q.
Now, we need to est imate P(q • Q(1) I l =-~

q). First, we notice that:

P(q • Q(1) [l =~. q) ---- (8)

P(s • FS + I I ~ s and an+l(S) ---- q)

where FS + = FS N S +. For notational con-
venience we drop the conditions and denote
the above probabilities as P(q • Q(l)) and
P(s • FS +) respectively, assuming these con-
ditions in the following discussion. The equa-
tion states tha t the probabil i ty tha t a given
query is a correct meaning for I is the same as
the probability that the final state (reached
by parsing l) is a good state. We need to de-
termine in general the probabili ty of having a
good resulting parse state. Given any parse
state s i at the j t h step of parsing and an ac-
tion ai such tha t si+1 = a/(sj) , we have:

PCsi+1 • (9)
pCsj+l e o& + I • x&+)pCs • x& +) +
P(Si+l • OSi + I sj ¢ ISi+)P(sj ¢~ ISi +)

where IS~ = ISi N S + and OS~ = OS~ N S +.
Since no parsing action can produce a good

137

parse state from a bad one, the second te rm
is zero. Now, we are ready to derive P(q •
Q(l)). Suppose q = an+l(Sm), we have:

P(q 6 Q(l)) (10)

= P(s~ • F ~)
. . .

= P(s,n • FS + l sm-1 •/St,_a)...
P(s~ • OS~_, I sj-1 • I s~_ ,) . . .

P(s2 • Ob~, Is1 • IS~,) P (' I • IS~,)

where ak denotes the index of which action
is applied at the kth step. We assume that

= P(s l • I~aa) ~ 0 (which may not be t rue
in general). Now, we have

m--I

P(q 6 Q(l)) = 7 I I P(sj+I • O~ l sj • IS~-3).
i=l

(11)
Next we describe how we est imate the proba-
b i l i~ of the goodness of each action in a given
state (P(~(s) • o $ I s • I ~)) . We n ~
not estimate 7 since its value does not affect
the outcome of equation (7).

4 .2 E s t i m a t i n g P r o b a b i l i t i e s for
P a r s i n g A c t i o n s

The committee of hypotheses learned by TAB-
ULATE is used to e s t ima te the probability that
a particular action is a good one to apply to a
given parse state. Some hypotheses are more
"important" than others in the sense that they
carry more weight in the decision. A weight-
ing parameter is also included to lower the
probability estimate of actions that appear
fm'ther down the decision list. For actions ai
where 1 < i < n - 1:

P(ai(s) • o~ Is • Is7-) =
.po,(i)-I ~ AkP(~Cs) 6 0 b ~ ~ I h~)

hk~H~

(12)

where s is a given parse state, pos(i) is the
position of the action ai in the list of ac-
tions applicable to state s, Ak and 0 < /~ <
1 are weighting parameters, z Hi is the set
of hypotheses learned for the action ai, and
~ k A~ = 1.

To estimate the probability for the last ac-
tion an, we devise a simple test that checks
if the maximum of the set A(s) of proba-
bility estimates for the subset of the actions

2p is set t o 0.95 for all the experiments performed.

{ a l , . . . , an- l } applicable to s is less than or
equal to a threshold a . If A(s) is empty, we
assume the maxlrn,,rn is zero. More precisely,

PCa.Cs) • o s~ Is • xs~) =

{ ,c..(,)~os~) if maxCACs)) <
~(,~IS~)

0 otherwise

(13)

where a is the threshold, 3 c(an(s) • Ob~) is
the count of the number of good states pro-
duced by the last action, and c(s • IS~) is the
count of the number of good states to which
the last action is applicable.

Now, let 's discuss how P(ai(s) • OS~ ~ I hk)
and Ak are estimated. If hk ~ s (i.e. hk covers
s), we have

PCai(s) • o~ I hk) =
pc + O " nc

Pc -t- nc
(14)

where Pc and ne are the number of positive
and negative examples covered by hk respec-
tively. Otherwise, if h~ ~= s (i.e. hk does not
cover s), we have

PCai(s) • OS 7" I hk) -- p" + 8 . n , ,
Pu + n u

(15)

where Pu and nu are the n,,rnber of positive
and negative examples rejected by hk respec-
tively. /9 is the probability that a negative
example is mislabelled and its value can be
estimated given # (in equation (6)) and the
total nnrnber of positive and negative exam-
ples.

One could use a variety of linear combina-
tion methods to estimate the weights Ak (e.g.
Bayesian combination (Buntine, 1990)). How-
ever, we have taken a simple approach and
weighted hypotheses based on their relative
simplicity:

size(hk) -1
Ak = ~.lHd size(hi)_1" (16)

z-d=l

4.3 S e a r c h i n g for a P a r s e

To find the most probably correct parse, the
parser employs a beam search. At each step,
the parser finds all of the parsing actions ap-
plicable to each parse state on the queue and
calculates the probability of goodness of each
of them using equations (12) and (13). It then

SThe threshold is set to 0.5 for all the experiments
performed.

138

computes the probability tha t the resulting
state of each possible action is a good state
using equation (11), sorts the queue of possi-
ble next states accordingly, and keeps the best
B options. The parser stops when a complete
parse is found on the top of the parse queue
or a failure is reported.

5 E x p e r i m e n t a l R e s u l t s

5.1 T h e D o m a i n s

Three different domains are used to demon-
strate the performance of the new approach.
The first is the U.S. Geography domain.
The database contains about 800 facts about
U.S. states like population, area, capital city,
neighboring states, major rivers, major cities,
and so on. A hand-crafted parser, GEOBASE
was previously constructed for this domain as
a demo product for Turbo Prolog. The second
application is the restaurant query system il-
lustrated in Figure 1. The database contains
information about thousands of restaurants
in Northern California, including the name of
the restaurant, its location, its specialty, and a
guide-book rating. The third domain consists
of a set of 300 computer-related jobs automat-
ically extracted from postings to the USENET
newsgroup a u s t i n . j o b s . The database con-
talus the following information: the job title,
the company, the recruiter, the location, the
salary, the languages and platforms used, and
required or desired years of experience and de-
grees.

5.2 E x p e r i m e n t a l D e s i g n

The geography corpus contains 560 questions.
Approximately 100 of these were collected
from a log of questions submit ted to the web
site and the rest were collected in studies in-
volving students in undergraduate classes at
our university. We also included results for the
subset of 250 sentences originally used in the
experiments reported in (Zelle and Mooney,
1996). The remaining questions were specif-
icaUy collected to be more complex than the
original 250, and generally require one or more
meta-predicates. The restaurant corpus con-
taln~ 250 questions automatically generated
from a hand-built g r a m m a r Const ructed t o re-
flect typical queries in this domain. The job
corpus contains 400 questions automatically
generated in a similar fashion. The beam
width for TABULATE was set~ to five for all the
domains. The deterministic parser used only
the best hypothesis found. The experiments

were conducted using 10-fold cross validation.
For each domain, the average recall (a.k.a.

accuracy) and precision of the parser on dis-
joint test data are reported where:

of correct queries produced
Reca l l =

of test sentences

P r e c i s i o n = # of correct queries produced
of complete parses produced"

A complete parse is one which contains an ex-
ecutable query (which could be incorrect). A
query is considered correct if it produces the
same answer set as the gold-standard query
supplied with the corpus.

5.3 R e s u l t s

The results are presented in Table 1 and Fig-
ure 3. By switching from deterministic to
probabilistic parsing, the system increased the
number of correct queries it produced. Re-
call increases almost monotonically with pars-
ing beam width in most of the domains. I_m-
provement is most apparent in the Jobs do-
maln where probabilistic parsing signiBcantly
outperformed the deterministic system (80%
vs 68%). However, using a beam width of
one (and thus the probabilistic parser picks
only the best action) results in worse perfor-
mance than using the original purely logic-
based determlni~tic parser. This suggests that
the probability esitmates could be improved
since overall they are not indicating the sin-
gle best action as well as a non-probabilistic
approach. Precision of the system decreased
with beam width, but not signi~cantly except
for the larger Geography corpus. Since the
system conducts a more extensive search for
a complete parse, it risks increasing the num-
ber of incorrect as well as correct parses. The
importance of recall vs. precision depends on
the relative cost of providing an incorrect an-
swer versus no answer at all. Individual ap-
plications may require emphasizing one or the
other.

All of the experiments were run on a
167MHz UltraSparc work station under Sic-
stus Prolog. Although results on the parsing
t ime of the different systems are not formally
reported here, it was noted that the difference
between using a beam width of three and the
original system was less than two seconds in
all domains but increased to a~r0und twenty
seconds when using a beam width of twelve.
However, the current Prolog implementation
is not highly optimized.

139

Parsers \ Corpora Geo250 Geo560 Jobs400 Rest250

Prob-Parser(12)
Prob-Parser(8)
Prob-Parser(5)
Prob-Parser(3)
Prob-Parser(1)

TABULATE
Original CHILL

Hand-Built Parser

R P
80.40 88.16
79.60 86.90
78.40 87.11
77.60 87.39
67.60 90.37
75.60 92.65
68.50 97.65
56.00 96.40

R P
71.61 78.94
71.07 79.76
70.00 79.51
69.11 79.30
62.86 82.05
69.29 89.81

I~ P
80.50 86.56
78.75 86.54
74.25 86.59
70.50 87.31
34.25 85.63
68.50 87.54

R P
99.20 99.60
99.20 99.60
99.20 99.60
99.20 99.60
99.20 99.60
99.20 99.60

Table 1: Results For All Domains: R = % Recall and P = % Precision. Prob-Parser(B) is
the probabilistic parser using a beam width of B. TABULATE is CHILL using the TABULATE
induction algorithm with determ;nistic parsing.

100 ~.

9O

8 0

7 0

60

5 0

4 0

3 0
0

Geo250 ,
Geo560 - - -× - - -

Jobs400 - ~ *
Res t50 -~ -

100

95

90

85

80

i i i i / 75
2 4 6 8 lO 12

B ~ n ,~Ze

Geo250 ,
Geo560 - - -x - - -
Job¢,400 ~ -
Rest250 - - - c - -

~ - ~

x , , . . .

i i i /
2 4 6 8 10 12

Seam S¢~

Figure 3: The recall and precision of the parser using various beam widths in the different
domains

While there was an overall improvement in
recall using the new approach, its performance
varied signiGcantly from dom~;~ to domain.
As a result, the recall did not always improve
dramatically by using a larger beam width.
Domain factors possibly affecting the perfor-
mance are the quality of the lexicon, the rel-
ative amount of data available for calculat-
ing probability estimates, and the problem of
'~parser incompleteness" with respect to the
test data (i.e. there is not a path from a sen-
tence to a correct query which happens when
'7 = 0). The performance of all systems were
basically equivalent in the restaurant domain,
where they were near perfect in both recall
and precision. This is because this corpus is
relatively easier given the restricted range of
possible questions due to the limited informa-
tion available about each restaurant. The sys-
tems achieved > 90% in recall and precision
given only roughly 30% of the training data
in this domain. Finally, GEOBASE per fomed

the worst on the original geography queries,
since it is difficult to hand-crat~ a parser that
handles a sn~cient variety of questions.

6 C o n c l u s i o n

A probabilistic framework for semantic shift-
reduce parsing was presented. A new ILP
learning system was also introduced which
learns multiple hypotheses. These two tech-
niques were integrated to learn semantic
parsers for building NLI's to on|ine databases.
Experimental results were presented that
demonstrate that such an approach outper-
forms a purely logical approach in terms of
the accuracy of the learned parser.

7 A c k ~ n o w l e d g e m e n t s

This research was supported by a grant from
the Daimler-Chrysler Research and Technol-
ogy Center and by the National Science Foun-
dation under grant n~I-9704943.

140

R e f e r e n c e s

K. Ali and M. Pazzani. 1996. Error reduction
through learning multiple descriptions. Ma-
chine Learning Journal, 24:3:100--132.

W. Buntine. 1990. A theory of learning classifica-
tion rules. Ph.D. thesis, University of Technol-
ogy, Sydney, Australia.

B. Cestnik. 1990. Estimating probabilities: A cru-
cial task in machine learning. In Proceedings of
the Ninth European Conference on Artificial In-
teUigence, pages 147-149, Stockholm, Sweden.

W. W. Cohen. 1995. Fast effective rule induc-
tion. In Proceedings of the Twelfth Interna-
tional Conference on Machine Learning, pages
115-123.

L. Getoor and D. Jensen, editors. 2000. Papers
from the AAA1 Workshop on Learning Statis-
tical Models from Relational Data, Austin, TX.
AAAI Press.

G. G. Hendrix, E. Sacerdoti, D. Sagalowicz, and
J. Slocum. 1978. Developing a natural language
interface to complex data. AGM Transactions
on Database Systems, 3(2):105-147.

R. Knhn and R. De Mori. 1995. The application of
semantic classification trees to natural language
understanding. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(5):449-.-
460.

N. Lavrac and S. Dzeroski. 1994. Inductive Logic
Programming: Techniques and Applications.
Ellis Horwood.

C. D. Mauning and H. Sch/itze. 1999. Founda-
tions of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA.

Scott Miller, David StaUard, Robert Bobrow, and
Richard Schwartz. 1996. A fully statistical ap-
proach to natural language interfaces. In Pro-
ceedings of the 34th Annual Meeting of the As-
sociation for Computational Linguistics, pages
55-61, Santa Cruz, CA.

S. Muggleton and W. Buntine. 1988. Machine
invention of first-order predicates by inverting
resolution. In Proceedings of the Fifth Interna-
tional Conference on Machine Learning, pages
339--352, Ann Arbor, MI, June.

J. tL Q,inlan. 1990. Learning logical definitions
from relations. Machine Learning, 5(3):239-
266.

C. A. Thompson and R. J. Mooney. 1999. Au-
tomatic construction of semantic lexicons for
learning natural language interfaces. In Pro-
ceedings of the Sixteenth National Conference
on Artificial Intelligence, pages 487-493, Or-
lando, FL, July.

W. A. Woods. 1970. Transition network gram-
mars for natural language analysis. Communi-
cations of the Association for Computing Ma-
chinery, 13:591-606.

J. M. Zelle and R. J. Mooney. 1994. Combin-
ing top-down and bottom-up methods in indue-

tive logic programming. In Proceedings of the
Eleventh International Conference on Machine
Learning, pages 343--351, New Brunswick, NJ,
July.

J. M. Zelle and tL J. Mooney. 1996. Learning
to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence,
pages 1050--1055, Portland, OR, August.

141

