
Error-driven HMM-based Chunk Tagger

with Context-dependent Lexicon

GuoDong ZHOU
Kent Ridge Digital Labs

21 Heng Hui Keng Terrace
Singapore 119613
zhougd@krdl.org.sg

Jian SU
Kent Ridge Digital Labs

21 Heng Hui Keng Terrace
Singapore 119613
sujian@krdl.org.sg

Abstract

This paper proposes a new error-driven HMM-
based text chunk tagger with context-dependent
lexicon. Compared with standard HMM-based
tagger, this tagger uses a new Hidden Markov
Modelling approach which incorporates more
contextual information into a lexical entry.
Moreover, an error-driven learning approach is
adopted to decrease the memory requirement by
keeping only positive lexical entries and makes
it possible to further incorporate more context-
dependent lexical entries. Experiments show
that this technique achieves overall precision
and recall rates of 93.40% and 93.95% for all
chunk types, 93.60% and 94.64% for noun
phrases, and 94.64% and 94.75% for verb
phrases when trained on PENN WSJ TreeBank
section 00-19 and tested on section 20-24, while
25-fold validation experiments of PENN WSJ
TreeBank show overall precision and recall
rates of 96.40% and 96.47% for all chunk types,
96.49% and 96.99% for noun phrases, and
97.13% and 97.36% for verb phrases.

Introduction

Text chunking is to divide sentences into non-
overlapping segments on the basis of fairly
superficial analysis. Abney(1991) proposed this
as a useful and relatively tractable precursor to
full parsing, since it provides a foundation for
further levels of analysis, while still allowing
more complex attachment decisions to be
postponed to a later phase.

Text chunking typically relies on fairly
simple and efficient processing algorithms.
Recently, many researchers have looked at text
chunking in two different ways: Some

researchers have applied rule-based methods,
combining lexical data with finite state or other
rule constraints, while others have worked on
inducing statistical models either directly from
the words and/or from automatically assigned
part-of-speech classes. On the statistics-based
approaches, Skut and Brants(1998) proposed a
HMM-based approach to recognise the syntactic
structures of limited length. Buchholz, Veenstra
and Daelemans(1999), and Veenstra(1999)
explored memory-based learning method to fred
labelled chunks. Ratnaparkhi(1998) used
maximum entropy to recognise arbitrary chunk
as part of a tagging task. On the rule-based
approaches, Bourigaut(1992) used some
heuristics and a grammar to extract
"terminology noun phrases" from French text.
Voutilainen(1993) used similar method to detect
English noun phrases. Kupiec(1993) applied.
finite state transducer in his noun phrases
recogniser for both English and French.
Ramshaw and Marcus(1995) used
transformation-based learning, an error-driven
learning technique introduced by Eric
Bn11(1993), to locate chunks in the tagged
corpus. Grefenstette(1996) applied finite state
transducers to fred noun phrases and verb
phrases.

In this paper, we will focus on statistics-
based methods. The structure of this paper is as
follows: In section 1, we will briefly describe
the new error-driven HMM-based chunk tagger
with context-dependent lexicon in principle. In
section 2, a baseline system which only includes
the current part-of-speech in the lexicon is
given. In section 3, several extended systems
with different context-dependent lexicons are
described. In section 4, an error=driven learning
method is used to decrease memory requirement
of the lexicon by keeping only positive lexical

71

entries and make it possible to further improve
the accuracy by merging different context-
dependent lexicons into one after automatic
analysis of the chunking errors. Finally, the
conclusion is given.

The data used for all our experiments is
extracted from the PENN" WSJ Treebank
(Marcus et al. 1993) by the program provided
by Sabine Buchholz from Tilbug University.
We use sections 00-19 as the training data and
20-24 as test data. Therefore, the performance is
on large scale task instead of small scale task on
CoNLL-2000 with the same evaluation
program.

For evaluation of our results, we use the
precision and recall measures. Precision is the
percentage of predicted chunks that are actually
correct while the recall is the percentage of
correct chunks that are actually found. For
convenient comparisons of only one value, we
also list the F~= I value(Rijsbergen 1979):

(/32 + 1). precision, recall
, with/3 = 1.

/3 2. precision + recall

1 HMM-based Chunk Tagger

The idea of using statistics for chunking goes
back to Church(1988), who used corpus
frequencies to determine the boundaries of
simple non-recursive noun phrases. Skut and
Brants(1998) modified Church's approach in a
way permitting efficient and reliable recognition
of structures of limited depth and encoded the
structure in such a way that it can be recognised
by a Viterbi tagger. This makes the process run
in time linear to the length of the input string.

Our approach follows Skut and Brants' way
by employing HMM-based tagging method to
model the chunking process.

Given a token sequence G~ = g~g2 ""g , ,
the goal is to fred a stochastic optimal tag

sequence Tin = tlt2...t n which maximizes

log P(T~" I Of) :

e(:q",G?)
log P(Ti n [G?) = log P(Ti n) + log P(Ti n)" P(G?)

The second item in the above equation is the
mutual information between the tag sequence

Tin and the given token sequence G~. By

assuming that the mutual information between
G~ and T1 ~ is equal to the summation of mutual

information between G~ and the individual tag

ti(l_<i_<n) :
n

log P(TI"' G?) = ~ log P(t,, G~)
e(Tln). P(G~) i=1 P(t,). P(G?)

o r

n
n MI(T~ ~ , G~) = ~ MI(t , , G?) ,

i = l

we have:

log P(T~ n I G~)

= log P(T1 n) + ~ , log P(ti' G?)_
P(t i). P(G?)

rl n

= log P(T1 ~) - Z log P(t,) + ~ log P(t, [G?)
i = 1 i = 1

The first item of above equation can be
solved by using chain rules. Normally, each tag
is assumed to be probabilistic dependent on the
N-1 previous tags. Here, backoff bigram(N=2)
model is used. The second item is the
summation of log probabilities of all the tags.
Both the first item and second item correspond
to the language model component of the tagger
while the third item corresponds to the lexicon
component of the tagger. Ideally the third item
can be estimated by using the forward-backward
algorithm(Rabiner 1989) recursively for the
first-order(Rabiner 1989) or second-order
HMMs(Watson and Chunk 1992). However,
several approximations on it will be attempted
later in this paper instead. The stochastic
optimal tag sequence can be found by
maxmizing the above equation over all the
possible tag sequences. This is implemented by
the Viterbi algorithm.

The main difference between our tagger and
other standard taggers lies in our tagger has a
context-dependent lexicon while others use a
context-independent lexicon.

For chunk tagger, we haveg 1 = piwi where

W~ n = w~w2---w n is the word-sequence and

P~ = PiP2 "" P~ is the part-of-speech

72

sequence. Here, we use structural tags to
representing chunking(bracketing and labelling)
structure. The basic idea of representing the
structural tags is similar to Skut and
Brants(1998) and the structural tag consists of
three parts:

1) Structural relation. The basic idea is simple:
structures of limited depth are encoded using a
finite number of flags. Given a sequence of
input tokens(here, the word and part-of-speech
pairs), we consider the structural relation
between the previous input token and the
current one. For the recognition of chunks, it is
sufficient to distinguish the following four
different structural relations which uniquely
identify the sub-structures of depth l(Skut and
Brants used seven different structural relations
to identify the sub-structures of depth 2).

00 the current input token and the previous one
have the same parent

90 one ancestor of the current input token and
the previous input token have the same parent

09 the current input token and one ancestor of
the previous input token have the same parent

99 one ancestor of the current input token and
one ancestor of the previous input token have
the same parent

For example, in the following chunk tagged
sentence(NULL represents the beginning and
end of the sentence):

NULL [NP He/PRP] [VP reckons/VBZ] [NP
the/DT current/JJ account/NN deficit/NN] [VP
will/MD narrow/VB] [PP to/TO] [NP only/RB
#/# 1.8/CD billion/CD] [PP in/IN] [NP
September/NNP] [O ./.] NULL

the corresponding structural relations between
two adjacent input tokens are:

90(NULL He/PRP)
99(He/PRP reckons/VBZ)
99(reckons/VBZ the/DT)
00(the/DT current/JJ)
00(current/JJ account/NN)
00(account/NN deficit/NN)
99(deficit/NN will/MD)
00(will/MD narrow/VB)
99(narrow/VB to/TO)
99(to/TO only/RB)
O0(only/RB #/#)

00(#/# 1.8/CD)
00(1.8/CD billion/CD)
99(billion/CD in/IN)
99(in/IN september/NNP)
99(september/NNP ./.)
09(./. NULL)

Compared with the B-Chunk and I-Chunk
used in Ramshaw and Marcus(1995), structural
relations 99 and 90 correspond to B-Chunk
which represents the first word of the chunk,
and structural relations 00 and 09 correspond to
I-Chunk which represnts each other in the chunk
while 90 also means the beginning of the
sentence and 09 means the end of the sentence.

2)Phrase category. This is used to identify the
phrase categories of input tokens.

3)Part-of-speech. Because of the limited
number of structural relations and phrase
categories, the part-of-speech is added into the
structural tag to represent more accurate models.

For the above chunk tagged sentence, the
structural tags for all the corresponding input
tokens are:

90 PRt~NP(He/PRP)
99_VB Z_VP(reckons/VBZ)
99 DT NP(the/DT)
O0 JJ NP(currentJJJ)
00_N/'~NP(account/NN)
00 N1NNP(deficiffNN)
99_MDSVP(will/MD)
00 VB_VP(narrow/VB)
99_TO PP(to/TO)
99_RB~,IP(only/RB)
oo_# NP(#/#)
00 CD_NP(1.8/CD)
0(~CD~qP(billion/CD)
99_IN PP(in/IN)
99~lNP~,lP(september/NNP)
99_._0(./.)

2 The Baseline System

As the baseline system, we assume

P(t i I G?)= P(t i I pi). That is to say, only the
current part-of-speech is used as a lexical entry
to determine the current structural chunk tag.
Here, we define:

• • is the list of lexical entries in the
chunking lexicon,

73

• [@ [is the number of lexical entries(the size
of the chunking lexicon)

• C is the training data.

For the baseline system, we have :

• @={pi,p~3C}, where Pi is a part-of-

speech existing in the tra]Lning data C

•]@ [=48 (the number of part-of-speech tags

in the training data).

Table 1 gives an overview of the results of
the chunking experiments. For convenience,
precision, recall and F#_ 1 values are given

seperately for the chunk types NP, VP, ADJP,
ADVP and PP.

Type Precision Recall Fa__~

Overall 87.01 89.68 88.32
NP 90.02 90.50 90.26
VP 89.86 93.14 91.47
ADJP 70.94 63.84 67.20
ADVP 57.98 80.33 I 67.35
PP 85.95 96.62 90.97
Table 1 : Results of chunking experiments with
the lexical entry list : ~ = { pi , p~3C}

3 Context-dependent Lexicons

In the last section, we only use current part-of-
speech as a lexical entry. In this section, we will
attempt to add more contextual information to

approximate P(t i/G~). This can be done by
adding lexical entries with more contextual
information into the lexicon ~ . In the
following, we will discuss five context-
dependent lexicons which consider different
contextual information.

3.1 Context o f current part-of-speech and
current word

Here, we assume:

e(t i I G~) = I P(ti I p~wi)

[P(tl I Pi)

where

piwi ~ dp

PiWi ~ dp

~={piwi,piwi3C}+{pi,pi3C } and piwi is a
part-of-speech and word pair existing in the
training data C .

In this case, the current part-of-speech and
word pair is also used as a lexical entry to
determine the current structural chunk tag and
we have a total of about 49563 lexical
entries([•]=49563). Actually, the lexicon used
here can be regarded as context-independent.
The reason we discuss it in this section is to
distinguish it from the context-independent
lexicon used in the baseline system. Table 2
give an overview of the results of the chunking
experiments on the test data.

Type [Precision

Overall 90.32
NP 90.75
VP 90.88
ADJP 76.01
ADVP 72.67
PP 94.96
Table 2 : Results of chunking experiments
the lexical entry

= {piwi , Piwi3C} "1" {Pi" Pi 3C}

Recall Fa~.l

92.18 9i .24
92.14 91.44
92.78 91.82
70.00 72.88
88.33 79.74
96.48 95.71

with
list :

Table 2 shows that incorporation of current
word information improves the overall F~=~

value by 2.9%(especially for the ADJP, ADVP
and PP chunks), compared with Table 1 of the
baseline system which only uses current part-of-
speech information. This result suggests that
current word information plays a very important
role in determining the current chunk tag.

3.2 Context of previous part-of-speech and
current part-of-speech

Here, we assume :

P(t i / G~)

I P(ti / pi-lPi) Pi-lPi E

= [P(ti I Pi) Pi-! Pi ~ ~

where

= {Pi-l Pi, P~-1Pi 3C} + { Pi, pi3C} and Pi-lPi
is a pair of previous part-of-speech and current
part-of-speech existing in the training data C .

In this case, the previous part-of-speech and
current part-of-speech pair is also used as a
lexical entry to determine the current structural
chunk tag and we have a total of about 1411
lexical ent r ies(l~]=1411) . Table 3 give an
overview of the results of the chunking
experiments.

74

Type

Overall

Precision

88.63
NP 90.77
VP 92.46
ADJP 74.93 60.13 66.72
ADVP 71.65 73.21 72.42
PP 87.28 91.80 89.49
Table 3: Results of chunking experiments with
the lexical entry list : • =

{Pi-lPi, Pi-lPi 3C} + {Pi, Pi 3C}

Recall F#= I

89.00 88.82
91.18 90.97
92.98 92.72

Compared with Table 1 of the baseline
system, Table 3 shows that additional contextual
information of previous part-of-speech improves
the overall F/~_~ value by 0.5%. Especially,

F/3_ ~ value for VP improves by 1.25%, which

indicates that previous part-of-speech
information has a important role in determining
the chunk type VP. Table 3 also shows that the
recall rate for chunk type ADJP decrease by
3.7%. It indicates that additional previous part-
of-speech information makes ADJP chunks
easier to merge with neibghbouring chunks.

3.3 Context of previous part-of-speech,
previous word and current part-of-speech

Here, we assume :

P(t, / G~)

IP(ti / pi_lwi_lpi) pi_lwi_lpl ~ dp
I

[P(ti [Pi) Pi-lWi-I Pi ~ ~
where

= { Pi-i wi-l Pi, Pi-l wi-I Pi3 C} + { Pi, Pi 3 C },

where pi_lwi_lp~ is a triple pattern existing in

the training corpus.
In this case, the previous part-of-speech,

previous word and current part-of-speech triple
is also used as a lexical entry to determine the
current structural chunk tag and } • 1=136164.

Table 4 gives the results of the chunking
experiments. Compared with Table 1 of the
baseline system, Table 4 shows that additional
136116 new lexical entries of format
Pi-lw~-lPi improves the overall F#= l value by

3.3%. Compared with Table 3 of the extended
system 2.2 which uses previous part-of-speech
and current part-of-speech as a lexical entry,
Table 4 shows that additional contextual
information of previous word improves the
overall Fa= 1 value by 2.8%.

Type Precision Recall F~=l
Overall 91.23 92.03 91.63
NP 92.89 93.85 93.37
VP 94.10 94.23 94.16
ADJP 79.83 69.01 74.03
ADVP 76.91 80.53 78.68
PP 90.41 94.77 92.53
Table 4 : Results of chunking experiments with
the lexical entry list :

={p,_lw~_~ p,, p,_~ w,_ip,3C } + {Pi , p~3C}

3.4 Context of previous part-of-speech, current
part-of-speech and current word

Here, we assume :

P(t i I G~)

IP(tt I Pi-i PiWi) Pi-I piwi E dp

[P(ti / Pi) Pi-I Pi Wi ~ 1I)

where

= {Pi-lPiWi, Pi-lP~W~ 3C} + {Pi, Pi3C},

where pi_lpiw~ is a triple pattern existing in

the training and] • [=131416.

Table 5 gives the results of the chunking
experiments.

Type Precision Recall F/3= 1

Overall 92.67 93.43 93.05
NP 93.35 94.10 93.73
VP 93.05 94.30 93.67
ADJP 80.65 72.27 76.23
ADVP 78.92 84.48 81.60
PP 95.30 96.67 95.98
Table 5: Results of chunking experiments with
the lexical entry list :

={Pi-lPiWi, P,-iP, w,3C} + {pi , Pi 3C}

Compared with Table 2 of the extended
system which uses current part-of-speech and
current word as a lexical entry, Table 5 shows
that additional contextual information of
previous part-of-speech improves the overall
Fa= 1 value by 1.8%.

3.5 Context of previous part-of-speech,
previous word, current part-of-speech and
current word

Here, the context of previous part-of-speech,
current part-of-speech and current word is used
as a lexical entry to determine the current

75

structural chunk tag and qb =

{Pi-l wi-lPiWi, Pi-lwi-~piwi 36'} + {Pi, P i 3 C } ,
where p~_lWi_~P~W~ is a pattern existing in the

training corpus. Due to memory limitation, only
lexical entries which occurs :more than 1 times
are kept. Out of 364365 possible lexical entries
existing in the training data, 98489 are kept(
1~ 1=98489).

= I P(ti/Pi-]wi-,PiWli)
[P(t, lp,) pi_lwi_lpiwi ~

Table 6 gives the results of the chunking
experiments.

Type

Overall
NP
VP
ADJP
ADVP
PP

Precision

92.28
93.50
92.62
81.39
75.09
94.12

Recall

93.04
93.53
94.07
72.17
86.23
97.12

F~=l
92.66
93.52
93.35
76.50
80.27
95.59

Table 6: Results of chunking experiments with
the lexical entry list : • =

{Pi-l wi-]PiWi, Pi-lwi-lpiwi3C} + {Pi, p~3C}

Compared with Table 2 of the extended
system which uses current part-of-speech and
current word as a lexical entry, Table 6 shows
that additional contextual information of
previous part-of-speech improves the overall

Ft3=l value by 1.8%.

3.6 Conclusion

Above experiments shows that adding more
contextual information into lexicon significantly
improves the chunking accuracy. However, this
improvement is gained at the expense of a very
large lexicon and we fred it difficult to merge all
the above context-dependent lexicons in a single
lexicon to further improve the chunking
accurracy because of memory limitation. In
order to reduce the size of lexicon effectively,
an error-driven learning approach is adopted to
examine the effectiveness of lexical entries and
make it possible to further improve the
chunking accuracy by merging all the above
context-dependent lexicons in a single lexicon.
This will be discussed in the next section.

4 Error-dr iven Learning

In section 2, we implement a basefine system
which only considers current part-of-speech as a
lexical entry to dete, ufine the current chunk tag
while in section 3, we implement several
extended systems which take more contextual
information into consideration.

Here, we will examine the effectiveness of
lexical entries to reduce the size of lexicon and
make it possible to further improve the
chunking accuracy by merging several context-
dependent lexicons in a single lexicon.

For a new lexical entry e i, the effectiveness

F~ (e i) is measured by the reduction in error

which results from adding the lexical entry to
- - ~ E r r o r (e,). the lexicon : F~ (e i) = F : rr°r (e i) - o+Ao

Here, F,~ r~°r (el) is the chunking error number

of the lexical entry e i for the old lexicon
r ~ E r r o r / x

and r~,+~ te i) is the chunking error number of

the lexical entry e i for the new lexicon

+ AO where e~ e A ~ (A ~ is the list of

new lexical entries added to the old lexicon ~).

If F o (e i) > 0, we define the lexical entry ei as

positive for lexicon ~ . Otherwise, the lexical

entry e i is negative for lexicon ~ .

Tables 7 and 8 give an overview of the
effectiveness distributions for different lexicons
applied in the extended systems, compared with
the lexicon appfied in the baseline system, on
the test data and the training data, respectively.

Tables 7 and 8 show that only a minority of
lexical entries are positive. This indicates that
discarding non-positive lexical entries will
largely decrease the lexicon memory
requirement while keeping the chunking
accurracy.

Context Positive
1800
209

Negative
314
136

Total

4083 I 155
Table 7 : The effectiveness of lexical
the test data

49515
1363

2876 229 136116
2895 193 131368

98441
entries on

76

Context Positive i Negative
6724l

Type i Precision Recall Fa=l

Overall 91.02 92.21 91.61
NP 92.36 93.69 93.02
VP 93.68 94.94 94.30
ADJP 78.28 71.46 74.71
ADVP 76.77 81.79 79.20
PP 90.67 95.37 92.96

Total
vos,w, 719 49515
eos,_,Pos, 357 196 1363
POS,.~w,.,eos,, 13205 582 136116
POS,_,eos,w, 14186 325 131368
POS,.,w,_leos,,w, 15516 144 98441
Table 8 : The effectiveness of lexical entries on
the training data

Tables 9-13 give the performances of the
five error-driven systems which discard all the
non-positive lexical enrties on the training data.
Here, ~ ' is the lexicon used in the baseline

system, dP'={pi ,pi3C } and A ~ = ~ - ~ ' . It

is found that Ffl_~ values of error driven

systems for context of current part-of-speech
and word pak and for context of previous part-
of-speech and current part-of-speech increase by

1.2% and 0.6%. Although F~= 1 values for other

three cases slightly decrease by 0.02%, 0.02%
and 0.19%, the sizes of lexicons have been
greatly reduced by 85% to 97%.

Type Precision Recall F#=l

Overall 91.69 93.28 92.48

NP 92.64 93.48 93.06

VP 92.16 93.66 92.90

ADJP 78.39 71.69 74.89

ADVP 73.66 87.80 80.11

PP 95.18 97.38 96.27

Table 9 : Results of chunking experiments with
error-driven lexicon : dp=

{ p~w~, p,w,3C & F~,. (p~w i) > O} + { p~, p~3C}

Type Precision Recall F~=l

Overall 88.68 90.28 89.47

NP 90.61 91.57 91.08

VP 91.80 94.08 92.90

ADJP 72.20 62.72 67.13

ADVP 70.53 78.90 74.48

PP 86.55 96.34 91.19

Table 10: Results of chunking experiments
with error-driven lexicon : • =

{ P,-~ Pi, Pi-1 Pi ~C & F~. (p,_~ p,) > 0}

+ { Pi, Pi 3C}

Table 11: Results of chunking experiments
with error-driven lexicon : • =

{ pi_l Wi_lPi , pi_l wi_lpi3C & V~,(Pi_l Wi_iPi) > O}

+ { p i , P i ~ C }

Type

Overall 92.84
NP
VP

Precision

93.35
93.97
79.49

95.19

Recall

93.21
93.65
94.67
72.94

Ffl=l
93.03
93.50
94.32
76.07 ADJP

ADVP 79.47 85.91 82.57
PP

77

96.29 95.74
Table 12: Results of chunking experiments
with error-driven lexicon : • =

{ Pi-I P~W~, p~_~ Piw,3C & F.. (pi_~ p ,w i) > 0}

+ { p i , P i 3 C }

Type Precision Recall F~_ 1

Overall 91.99 92.95 92.47
NP 93.35 93.39 93.37
VP 92.89 94.36 93.62
ADJP 80.01 71.70 75.63
ADVP 73.40 87.32 79.76
PP 93.42 97.33 95.33
Table 13: Results of chunking experiments
with error-driven lexicon : • =

{Pi-l Wi-lPiWi' Pi-lWi-lpiWi3C+{pi ' Pi3C}
& F®.(p~_~w~_~p~w~) > O}

After discussing the five context-dependent
lexicons separately, now we explore the
merging of context-dependent lexicons by
assuming :
CI~ .~ { Pi-lWi-I PiWi, Pi-lWi-I PiwigC

& Fa,. (pi-lwi-t piwi) > 0}

+ { Pi-I PiW~, Pi-l piwi ~C & Fa" (Pi-l piwi) > O}

+ { Pi-lWi-I Pi" Pi-lWi-1Pi 3C & F~. (pi_lWi_l Pi) > 0}
+ { Pi-1 Pi, Pi-I Pii ~C & F~, (Pi-l Pi)> O}

+ { piw~, Piw~3C & F~,. (PiWi) > 0} + { Pi, p~3C}

and P(t i /G~) is approximatl~ by the following
order :
1. if Pi_lWi_iPiWi E fI~,

P(ti / G ~) = P (t i / p i _ l w i _ l P i W i)

2. if p~_lp~wi E cb,

P(ti / G ~) = P (t i / p i _ l w i _ l P i W i)

3. if Pi-twi-lPi E ~ ,

P(t i/G~) = P(t i / pi_l wi_l: pi)

4. if PiWi E ~ , P(t i / G~) = P(t i / piwi)

5. if Pi-I Pi E ~ , P(t i / G~) = P(t i / Pi-1Pi)

6. P(t i l G :) = P (t i lpi_lpi)

Table 14 gives an overview of the chunking
experiments using the above assumption. It
shows that the F:=i value for the merged

context-dependent lexicon inreases to 93.68%.
For a comparison, the F/~=i value is 93.30%

when all the possible lexical entries are included
in ~ (Due to memory limitation, only the top
150000 mostly occurred lexical entries are
included).

Type Precision Recall F#=i

Overall 93.40 93.95 93.68
NP 93.60 94.64 94.12
VP 94.64 94.75 94.70
ADJP 77.12 74.55 75.81
ADVP 82.39 83.80 83.09
PP 96.61 96.63 96.62
Table 14: Results of chunking experiments
with the merged context-dependent lexicon

For the relationship between the training
corpus size and error driven learning
performance, Table 15 shows that the
performance of error-driven learning improves
stably when the training corpus size increases.
Training Sections I ~ I Accuracy i FB 1

0-1
0-3
0-5
0-7
0-9

0-11
0-13
0-i5
0-17
0-19

14384 94.78% 91.95
24507 95.19% i 92.51
32316 95.28%1 92.77
38286 95.41% 93.00
39876 95.53% i 93.12
43372 95.65% 93.31
46029 95.62% 93.29
47901 95.66% 93.34
48813 95.74% i 93.41
49988 95.92% 93.68

Table 15: The performance of error-driven
learning with different training corpus size

For comparison with other chunk taggers,
we also evaluate our chunk tagger with the
merged context-dependent lexicon by cross-
validation on all 25 partitions of the PENN WSJ
TreeBank. Table 16 gives an overview of such
chunking experiments.

Type Precision Recall Fa=l

Overall 96.40 96.47 96.44
NP 96.49 96.99 96.74
VP 97.13 97.36 97.25
ADJP 89.92 88.15 89.03
ADVP 91.52 87 .57 89.50

97.13 97.36 PP 97.25
Table 16: Results of 25-fold cross-validation
chunking experiments with the merged
context-dependent lexicon

Tables 14 and 16 shows that our new chunk
tagger greatly outperforms other reported chunk
taggers on the same training data and test data
by 2%-3%.(Buchholz S., Veenstra J. and
Daelmans W.(1999), Ramshaw L.A. and
Marcus M.P.(1995), Daelemans W., Buchholz
S. and Veenstra J.(1999), and Veenstra
J.(1999)).

Conclusion

This paper proposes a new error-driven HMM-
based chunk tagger with context-dependent
lexicon. Compared with standard HMM-based
tagger, this new tagger uses a new Hidden
Markov Modelling approach which incorporates
more contextual information into a lexical entry

n

by assuming MI(Tqn,G~)= 2 M l (t , , G f) .
i=1

Moreover, an error-driven learning approach is
adopted to drease the memeory requirement and
further improve the accuracy by including more
context-dependent information into lexicon.

It is found that our new chunk tagger
singnificantly outperforms other reported chunk
taggers on the same training data and test data.

For future work, we will explore the
effectivessness of considering even more
contextual information on approximation of
P(T~"IG ~) by using the forward-backward
algodthm(Rabiner 1989) while currently we
only consider the contextual information of
current location and previous location.

78

Acknowledgement

We wish to thank Sabine Buchholz
from Tilbug University for kindly providing us
her program which is also used to
extact data for Conll-2000 share task.

References

Abney S. "Parsing by chunks ". Principle-Based
Parsing edited by Berwick, Abney and Tenny.
Kluwer Academic Publishers.

Argamon S., Dagan I. and Krymolowski Y. "A
memory-based approach to learning shallow
natural language patterns." COL1NG/ACL-
1998. Pp.67-73. Montreal, Canada. 1998.

Bod R. "A computational model of language
performance: Data-oriented parsing."
COLING-1992. Pp.855-859. Nantes, France.
1992.

Boungault D. "Surface grammatical analysis for
the extraction of terminological noun
phrases". COLING-92. Pp.977-981. 1992.

Bdll Eric. "A corpus-based approach to
language learning". Ph.D thesis. Univ. of
Penn. 1993

Buchholz S., Veenstra J. and Daelmans W.
"Cascaded grammatical relation assignment."
Proceeding of EMNLP/VLC-99, at ACL'99.
1999

Cardie C. "A case-based approach to knowledge
acquisition for domain-specific sentence
analysis." Proceeding of the 11 'h National
Conference on Artificial Intelligence. Pp.798-
803. Menlo Park, CA, USA. AAAI Press.
1993.

Church K.W. "A stochastic parts program and
noun phrase parser for unrestricted Text."
Proceeding of Second Conference on Applied
Natural Language Processing. Pp.136-143.
Austin, Texas, USA. 1988.

Daelemans W., Buchholz S. and Veenstra J.
"Memory-based shallow parsing." CoNLL-
1999. Pp.53-60. Bergen, Norway. 1999.

Daelemans W., Zavrel J., Berck P. and Gillis S.
"MBT: A memory-based part-of-speech
tagger generator." Proceeding of the Fourth
Workshop on Large Scale Corpora. Pp. 14-27.
ACL SIGDAT. 1996.

Grefenstette G. "Light parsing as finite-state
filtering". Workshop on Extended Finite State
Models of Language at ECAI'96. Budapest,
Hungary. 1996.

Kupiec J. " An algorithm for finding noun
phrase correspondences in bilingual corpora".
ACL'93. Pp17-22. 1993.

Marcus M., Santodni B. and Marcinkiewicz
• M.A. "Buliding a large annotated corpus of
English: The Penn Treebank". Computational
Linguistics. 19(2):313-330. 1993.

Rabiner L. "A tutorial on Hidden Markov
Models and selected applications in speech
recognition". IEEE 77(2), pp.257-285. 1989.

Ramshaw L.A. and Marcus M.P.
"Transformation-based Learning".
Proceeding of 3th ACL Workshop on Very
Large Corpora at ACL'95. 1995.

Rijsbergen C.J.van. Information Retrieval.
Buttersworth, London. 1979.

Skut W. and Brants T. "Chunk tagger: statistical
recognition of noun phrases." ESSLLI-1998
Workshop on Automated Acquisition of Syntax
and Parsing. Saarbruucken, Germany. 1998.

Veenstra J. "Memory-based text chunking".
Workshop on machine learning in human
language technology at A CAI'99. 1999.

Voutilainen A. "Nptool: a detector of English
phrases". Proceeding of the Workshop on
Very Large Corpora. Pp48-57. ACL' 93.
1993

Watson B. and Chunk Tsoi A. "Second order
Hidden Markov Models for speech
recognition". Proceeding of 4 ~ Australian
International Conference on Speech Science
and Technology. Pp. 146-151.1992.

79

