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Abstract 

This paper proposes a new error-driven HMM- 
based text chunk tagger with context-dependent 
lexicon. Compared with standard HMM-based 
tagger, this tagger uses a new Hidden Markov 
Modelling approach which incorporates more 
contextual information into a lexical entry. 
Moreover, an error-driven learning approach is 
adopted to decrease the memory requirement by 
keeping only positive lexical entries and makes 
it possible to further incorporate more context- 
dependent lexical entries. Experiments show 
that this technique achieves overall precision 
and recall rates of 93.40% and 93.95% for all 
chunk types, 93.60% and 94.64% for noun 
phrases, and 94.64% and 94.75% for verb 
phrases when trained on PENN WSJ TreeBank 
section 00-19 and tested on section 20-24, while 
25-fold validation experiments of PENN WSJ 
TreeBank show overall precision and recall 
rates of 96.40% and 96.47% for all chunk types, 
96.49% and 96.99% for noun phrases, and 
97.13% and 97.36% for verb phrases. 

Introduction 

Text chunking is to divide sentences into non- 
overlapping segments on the basis of fairly 
superficial analysis. Abney(1991) proposed this 
as a useful and relatively tractable precursor to 
full parsing, since it provides a foundation for 
further levels of analysis, while still allowing 
more complex attachment decisions to be 
postponed to a later phase. 

Text chunking typically relies on fairly 
simple and efficient processing algorithms. 
Recently, many researchers have looked at text 
chunking in two different ways: Some 

researchers have applied rule-based methods, 
combining lexical data with finite state or other 
rule constraints, while others have worked on 
inducing statistical models either directly from 
the words and/or from automatically assigned 
part-of-speech classes. On the statistics-based 
approaches, Skut and Brants(1998) proposed a 
HMM-based approach to recognise the syntactic 
structures of limited length. Buchholz, Veenstra 
and Daelemans(1999), and Veenstra(1999) 
explored memory-based learning method to fred 
labelled chunks. Ratnaparkhi(1998) used 
maximum entropy to recognise arbitrary chunk 
as part of a tagging task. On the rule-based 
approaches, Bourigaut(1992) used some 
heuristics and a grammar to extract 
"terminology noun phrases" from French text. 
Voutilainen(1993) used similar method to detect 
English noun phrases. Kupiec(1993) applied.  
finite state transducer in his noun phrases 
recogniser for both English and French. 
Ramshaw and Marcus(1995) used 
transformation-based learning, an error-driven 
learning technique introduced by Eric 
Bn11(1993), to locate chunks in the tagged 
corpus. Grefenstette(1996) applied finite state 
transducers to fred noun phrases and verb 
phrases. 

In this paper, we will focus on statistics- 
based methods. The structure of this paper is as 
follows: In section 1, we will briefly describe 
the new error-driven HMM-based chunk tagger 
with context-dependent lexicon in principle. In 
section 2, a baseline system which only includes 
the current part-of-speech in the lexicon is 
given. In section 3, several extended systems 
with different context-dependent lexicons are 
described. In section 4, an error=driven learning 
method is used to decrease memory requirement 
of the lexicon by keeping only positive lexical 
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entries and make it possible to further improve 
the accuracy by merging different context- 
dependent lexicons into one after automatic 
analysis of the chunking errors. Finally, the 
conclusion is given. 

The data used for all our experiments is 
extracted from the PENN" WSJ Treebank 
(Marcus et al. 1993) by the program provided 
by Sabine Buchholz from Tilbug University. 
We use sections 00-19 as the training data and 
20-24 as test data. Therefore, the performance is 
on large scale task instead of small scale task on 
CoNLL-2000 with the same evaluation 
program. 

For evaluation of our results, we use the 
precision and recall measures. Precision is the 
percentage of predicted chunks that are actually 
correct while the recall is the percentage of 
correct chunks that are actually found. For 
convenient comparisons of only one value, we 
also list the F~= I value(Rijsbergen 1979): 

(/32 + 1). precision, recall 
, with/3 = 1. 

/3 2. precision + recall 

1 HMM-based Chunk Tagger 

The idea of using statistics for chunking goes 
back to Church(1988), who used corpus 
frequencies to determine the boundaries of 
simple non-recursive noun phrases. Skut and 
Brants(1998) modified Church's approach in a 
way permitting efficient and reliable recognition 
of structures of limited depth and encoded the 
structure in such a way that it can be recognised 
by a Viterbi tagger. This makes the process run 
in time linear to the length of the input string. 

Our approach follows Skut and Brants' way 
by employing HMM-based tagging method to 
model the chunking process. 

Given a token sequence G~ = g~g2 ""g , ,  
the goal is to fred a stochastic optimal tag 

sequence Tin = tlt2...t n which maximizes 

log P(T~" I Of ) : 

e(:q",G?) 
log P(Ti n [ G? ) = log P(Ti n ) + log P(Ti n )" P(G? ) 

The second item in the above equation is the 
mutual information between the tag sequence 

Tin and the given token sequence G~. By 

assuming that the mutual information between 
G~ and T1 ~ is equal to the summation of  mutual 

information between G~ and the individual tag 

ti(l_<i_<n ) : 
n 

log P(TI"' G?) = ~ log P(t,, G~) 
e(Tln ). P(G~) i=1 P(t,). P(G? ) 

o r  

n 
n MI(T~ ~ , G~ ) = ~ MI( t , ,  G? ) , 

i = l  

we have: 

log P(T~ n I G~) 

= log P(T1 n ) + ~ ,  log P(ti' G? )_ 
P(t i). P(G?) 

rl n 

= log P(T1 ~ ) - Z log P(t, ) + ~ log P(t, [ G? ) 
i = 1  i = 1  

The first item of above equation can be 
solved by using chain rules. Normally, each tag 
is assumed to be probabilistic dependent on the 
N-1 previous tags. Here, backoff bigram(N=2) 
model is used. The second item is the 
summation of log probabilities of all the tags. 
Both the first item and second item correspond 
to the language model component of the tagger 
while the third item corresponds to the lexicon 
component of the tagger. Ideally the third item 
can be estimated by using the forward-backward 
algorithm(Rabiner 1989) recursively for the 
first-order(Rabiner 1989) or second-order 
HMMs(Watson and Chunk 1992). However, 
several approximations on it will be attempted 
later in this paper instead. The stochastic 
optimal tag sequence can be found by 
maxmizing the above equation over all the 
possible tag sequences. This is implemented by 
the Viterbi algorithm. 

The main difference between our tagger and 
other standard taggers lies in our tagger has a 
context-dependent lexicon while others use a 
context-independent lexicon. 

For chunk tagger, we haveg 1 = piwi where 

W~ n = w~w2---w n is the word-sequence and 

P~ = PiP2 "" P~ is the part-of-speech 
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sequence. Here, we use structural tags to 
representing chunking(bracketing and labelling) 
structure. The basic idea of representing the 
structural tags is similar to Skut and 
Brants(1998) and the structural tag consists of 
three parts: 

1) Structural relation. The basic idea is simple: 
structures of limited depth are encoded using a 
finite number of flags. Given a sequence of 
input tokens(here, the word and part-of-speech 
pairs), we consider the structural relation 
between the previous input token and the 
current one. For the recognition of chunks, it is 
sufficient to distinguish the following four 
different structural relations which uniquely 
identify the sub-structures of depth l(Skut and 
Brants used seven different structural relations 
to identify the sub-structures of depth 2). 

00 the current input token and the previous one 
have the same parent 

90 one ancestor of the current input token and 
the previous input token have the same parent 

09 the current input token and one ancestor of 
the previous input token have the same parent 

99 one ancestor of the current input token and 
one ancestor of the previous input token have 
the same parent 

For example, in the following chunk tagged 
sentence(NULL represents the beginning and 
end of the sentence): 

NULL [NP He/PRP] [VP reckons/VBZ] [ NP 
the/DT current/JJ account/NN deficit/NN] [VP 
will/MD narrow/VB] [PP to/TO] [NP only/RB 
#/# 1.8/CD billion/CD] [PP in/IN] [NP 
September/NNP] [O ./.] NULL 

the corresponding structural relations between 
two adjacent input tokens are: 

90(NULL He/PRP) 
99(He/PRP reckons/VBZ) 
99(reckons/VBZ the/DT) 
00(the/DT current/JJ) 
00(current/JJ account/NN) 
00(account/NN deficit/NN) 
99(deficit/NN will/MD) 
00(will/MD narrow/VB) 
99(narrow/VB to/TO) 
99(to/TO only/RB) 
O0(only/RB #/#) 

00(#/# 1.8/CD) 
00(1.8/CD billion/CD) 
99(billion/CD in/IN) 
99(in/IN september/NNP) 
99(september/NNP ./.) 
09(./. NULL) 

Compared with the B-Chunk and I-Chunk 
used in Ramshaw and Marcus(1995), structural 
relations 99 and 90 correspond to B-Chunk 
which represents the first word of the chunk, 
and structural relations 00 and 09 correspond to 
I-Chunk which represnts each other in the chunk 
while 90 also means the beginning of the 
sentence and 09 means the end of the sentence. 

2)Phrase category. This is used to identify the 
phrase categories of input tokens. 

3)Part-of-speech. Because of the limited 
number of structural relations and phrase 
categories, the part-of-speech is added into the 
structural tag to represent more accurate models. 

For the above chunk tagged sentence, the 
structural tags for all the corresponding input 
tokens are: 

90 PRt~NP(He/PRP) 
99_VB Z_VP(reckons/VBZ) 
99 DT NP(the/DT) 
O0 JJ NP(currentJJJ) 
00_N/'~NP(account/NN) 
00 N1NNP(deficiffNN) 
99_MDSVP(will/MD) 
00 VB_VP(narrow/VB) 
99_TO PP(to/TO) 
99_RB~,IP(only/RB) 
oo_# NP(#/#) 
00 CD_NP(1.8/CD) 
0(~CD~qP(billion/CD) 
99_IN PP(in/IN) 
99~lNP~,lP(september/NNP) 
99_._0(./.) 

2 The Baseline System 

As the baseline system, we assume 

P(t i I G?)= P(t i I pi ). That is to say, only the 
current part-of-speech is used as a lexical entry 
to determine the current structural chunk tag. 
Here, we define: 

• • is the list of lexical entries in the 
chunking lexicon, 

73 



• [ @ [ is the number  of lexical entries(the size 
of the chunking lexicon) 

• C is the training data. 

For the baseline system, we have : 

• @={pi,p~3C}, where Pi is a part-of- 

speech existing in the tra]Lning data C 

• ]@ [=48 (the number of  part-of-speech tags 

in the training data). 

Table 1 gives an overview of the results of 
the chunking experiments. For convenience, 
precision, recall and F#_ 1 values are given 

seperately for the chunk types NP, VP, ADJP, 
ADVP and PP. 

Type Precision Recall Fa__~ 

Overall 87.01 89.68 88.32 
NP 90.02 90.50 90.26 
VP 89.86 93.14 91.47 
ADJP 70.94 63.84 67.20 
ADVP 57.98 80.33 I 67.35 
PP 85.95 96.62 90.97 
Table 1 : Results of chunking experiments with 
the lexical entry list : ~ = { pi ,  p~3C} 

3 Context-dependent Lexicons 

In the last section, we only use current part-of- 
speech as a lexical entry. In this section, we will 
attempt to add more contextual information to 

approximate P(t i/G~). This can be done by 
adding lexical entries with more contextual 
information into the lexicon ~ .  In the 
following, we will discuss five context- 
dependent lexicons which consider different 
contextual information. 

3.1 Context o f  current part-of-speech and 
current word 

Here, we assume: 

e(t i I G~) = I P(ti I p~wi) 

[ P(tl I Pi) 

where 

piwi ~ dp 

PiWi ~ dp 

~={piwi,piwi3C}+{pi,pi3C } and piwi is a 
part-of-speech and word pair existing in the 
training data C .  

In this case, the current part-of-speech and 
word pair is also used as a lexical entry to 
determine the current structural chunk tag and 
we have a total of  about 49563 lexical 
entries([ • ]=49563). Actually, the lexicon used 
here can be regarded as context-independent. 
The reason we discuss it in this section is to 
distinguish it from the context-independent 
lexicon used in the baseline system. Table 2 
give an overview of  the results of the chunking 
experiments on the test data. 

Type [Precision 

Overall 90.32 
NP 90.75 
VP 90.88 
ADJP 76.01 
ADVP 72.67 
PP 94.96 
Table 2 : Results of chunking experiments 
the lexical entry 

= {piwi , Piwi3C} "1" {Pi" Pi 3C} 

Recall Fa~.l 

92.18 9i .24 
92.14 91.44 
92.78 91.82 
70.00 72.88 
88.33 79.74 
96.48 95.71 

with 
list : 

Table 2 shows that incorporation of current 
word information improves the overall F~=~ 

value by 2.9%(especially for the ADJP, ADVP 
and PP chunks), compared with Table 1 of the 
baseline system which only uses current part-of- 
speech information. This result suggests that 
current word information plays a very important 
role in determining the current chunk tag. 

3.2 Context of previous part-of-speech and 
current part-of-speech 

Here, we assume : 

P(t i / G~) 

I P(ti / pi-lPi ) Pi-lPi E 

= [ P(ti I Pi) Pi-! Pi ~ ~ 

where 

= {Pi-l Pi, P~-1Pi 3C} + { Pi, pi3C} and Pi-lPi 
is a pair of previous part-of-speech and current 
part-of-speech existing in the training data C .  

In this case, the previous part-of-speech and 
current part-of-speech pair is also used as a 
lexical entry to determine the current structural 
chunk tag and we have a total of  about 1411 
lexical ent r ies( l~]=1411) .  Table 3 give an 
overview of the results of the chunking 
experiments. 
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Type 

Overall 

Precision 

88.63 
NP 90.77 
VP 92.46 
ADJP 74.93 60.13 66.72 
ADVP 71.65 73.21 72.42 
PP 87.28 91.80 89.49 
Table 3: Results of chunking experiments with 
the lexical entry list : • = 

{Pi-lPi, Pi-lPi 3C} + {Pi, Pi 3C} 

Recall F#= I 

89.00 88.82 
91.18 90.97 
92.98 92.72 

Compared with Table 1 of the baseline 
system, Table 3 shows that additional contextual 
information of previous part-of-speech improves 
the overall F/~_~ value by 0.5%. Especially, 

F/3_ ~ value for VP improves by 1.25%, which 

indicates that previous part-of-speech 
information has a important role in determining 
the chunk type VP. Table 3 also shows that the 
recall rate for chunk type ADJP decrease by 
3.7%. It indicates that additional previous part- 
of-speech information makes ADJP chunks 
easier to merge with neibghbouring chunks. 

3.3 Context of  previous part-of-speech, 
previous word and current part-of-speech 

Here, we assume : 

P(t, / G~) 

IP(ti / pi_lwi_lpi) pi_lwi_lpl ~ dp 
I 

[ P(ti [ Pi ) Pi-lWi-I Pi ~ ~ 
where 

= { Pi-i wi-l Pi, Pi-l wi-I Pi3 C} + { Pi,  Pi 3 C },  

where pi_lwi_lp~ is a triple pattern existing in 

the training corpus. 
In this case, the previous part-of-speech, 

previous word and current part-of-speech triple 
is also used as a lexical entry to determine the 
current structural chunk tag and } • 1=136164. 

Table 4 gives the results of the chunking 
experiments. Compared with Table 1 of the 
baseline system, Table 4 shows that additional 
136116 new lexical entries of format 
Pi-lw~-lPi improves the overall F#= l value by 

3.3%. Compared with Table 3 of the extended 
system 2.2 which uses previous part-of-speech 
and current part-of-speech as a lexical entry, 
Table 4 shows that additional contextual 
information of previous word improves the 
overall Fa= 1 value by 2.8%. 

Type Precision Recall F~=l 
Overall 91.23 92.03 91.63 
NP 92.89 93.85 93.37 
VP 94.10 94.23 94.16 
ADJP 79.83 69.01 74.03 
ADVP 76.91 80.53 78.68 
PP 90.41 94.77 92.53 
Table 4 : Results of chunking experiments with 
the lexical entry list : 

={p,_lw~_~ p,, p,_~ w,_ip,3C } + {Pi , p~3C} 

3.4 Context of  previous part-of-speech, current 
part-of-speech and current word 

Here, we assume : 

P(t i I G~ ) 

IP(tt I Pi-i PiWi) Pi-I piwi E dp 

[ P(ti / Pi ) Pi-I Pi Wi ~ 1I) 

where 

= {Pi-lPiWi, Pi-lP~W~ 3C} + {Pi, Pi3C}, 

where pi_lpiw~ is a triple pattern existing in 

the training and ] • [=131416. 

Table 5 gives the results of the chunking 
experiments. 

Type Precision Recall F/3= 1 

Overall 92.67 93.43 93.05 
NP 93.35 94.10 93.73 
VP 93.05 94.30 93.67 
ADJP 80.65 72.27 76.23 
ADVP 78.92 84.48 81.60 
PP 95.30 96.67 95.98 
Table 5: Results of chunking experiments with 
the lexical entry list : 

={Pi-lPiWi, P,-iP, w,3C} + {pi , Pi 3C} 

Compared with Table 2 of the extended 
system which uses current part-of-speech and 
current word as a lexical entry, Table 5 shows 
that additional contextual information of 
previous part-of-speech improves the overall 
Fa= 1 value by 1.8%. 

3.5 Context of previous part-of-speech, 
previous word, current part-of-speech and 
current word 

Here, the context of previous part-of-speech, 
current part-of-speech and current word is used 
as a lexical entry to determine the current 
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structural chunk tag and qb = 

{Pi-l wi-lPiWi, Pi-lwi-~piwi 36'} + {Pi,  P i 3 C }  , 
where p~_lWi_~P~W~ is a pattern existing in the 

training corpus. Due to memory limitation, only 
lexical entries which occurs :more than 1 times 
are kept. Out of 364365 possible lexical entries 
existing in the training data, 98489 are kept( 
1~ 1=98489). 

= I P(ti/Pi-]wi-,PiWli) 
[ P(t, lp,) pi_lwi_lpiwi ~ 

Table 6 gives the results of the chunking 
experiments. 

Type 

Overall 
NP 
VP 
ADJP 
ADVP 
PP 

Precision 

92.28 
93.50 
92.62 
81.39 
75.09 
94.12 

Recall 

93.04 
93.53 
94.07 
72.17 
86.23 
97.12 

F~=l 
92.66 
93.52 
93.35 
76.50 
80.27 
95.59 

Table 6: Results of chunking experiments with 
the lexical entry list : • = 

{Pi-l wi-]PiWi, Pi-lwi-lpiwi3C} + {Pi,  p~3C} 

Compared with Table 2 of the extended 
system which uses current part-of-speech and 
current word as a lexical entry, Table 6 shows 
that additional contextual information of 
previous part-of-speech improves the overall 

Ft3=l value by 1.8%. 

3.6 Conclusion 

Above experiments shows that adding more 
contextual information into lexicon significantly 
improves the chunking accuracy. However, this 
improvement is gained at the expense of a very 
large lexicon and we fred it difficult to merge all 
the above context-dependent lexicons in a single 
lexicon to further improve the chunking 
accurracy because of memory limitation. In 
order to reduce the size of lexicon effectively, 
an error-driven learning approach is adopted to 
examine the effectiveness of lexical entries and 
make it possible to further improve the 
chunking accuracy by merging all the above 
context-dependent lexicons in a single lexicon. 
This will be discussed in the next section. 

4 Error-dr iven Learning  

In section 2, we implement a basefine system 
which only considers current part-of-speech as a 
lexical entry to dete,  ufine the current chunk tag 
while in section 3, we implement several 
extended systems which take more contextual 
information into consideration. 

Here, we will examine the effectiveness of 
lexical entries to reduce the size of lexicon and 
make it possible to further improve the 
chunking accuracy by merging several context- 
dependent lexicons in a single lexicon. 

For a new lexical entry e i, the effectiveness 

F~ (e i) is measured by the reduction in error 

which results from adding the lexical entry to 
- -  ~ E r r o r  (e,).  the lexicon : F~ (e  i ) = F :  rr°r ( e  i ) - o+Ao 

Here, F,~ r~°r (el) is the chunking error number 

of the lexical entry e i for the old lexicon 
r ~  E r r o r  / x 

and r~,+~ te i) is the chunking error number of 

the lexical entry e i for the new lexicon 

+ AO where e~ e A ~  ( A ~  is the list of 

new lexical entries added to the old lexicon ~ ). 

If F o (e i ) > 0, we define the lexical entry ei as 

positive for lexicon ~ .  Otherwise, the lexical 

entry e i is negative for lexicon ~ .  

Tables 7 and 8 give an overview of the 
effectiveness distributions for different lexicons 
applied in the extended systems, compared with 
the lexicon appfied in the baseline system, on 
the test data and the training data, respectively. 

Tables 7 and 8 show that only a minority of 
lexical entries are positive. This indicates that 
discarding non-positive lexical entries will 
largely decrease the lexicon memory 
requirement while keeping the chunking 
accurracy. 

Context Positive 
1800 
209 

Negative 
314 
136 

Total 

4083 I 155 
Table 7 : The effectiveness of lexical 
the test data ..... 

49515 
1363 

2876 229 136116 
2895 193 131368 

98441 
entries on 
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Context Positive i Negative 
6724l 

Type i Precision Recall Fa=l 

Overall 91.02 92.21 91.61 
NP 92.36 93.69 93.02 
VP 93.68 94.94 94.30 
ADJP 78.28 71.46 74.71 
ADVP 76.77 81.79 79.20 
PP 90.67 95.37 92.96 

Total 
vos,w, 719 49515 
eos,_,Pos, 357 196 1363 
POS,.~w,.,eos,, 13205 582 136116 
POS,_,eos,w, 14186 325 131368 
POS,.,w,_leos,,w, 15516 144 98441 
Table 8 : The effectiveness of lexical entries on 
the training data 

Tables 9-13 give the performances of the 
five error-driven systems which discard all the 
non-positive lexical enrties on the training data. 
Here, ~ '  is the lexicon used in the baseline 

system, dP'={pi ,pi3C } and A ~ = ~ - ~ ' .  It 

is found that Ffl_~ values of error driven 

systems for context of current part-of-speech 
and word pak and for context of previous part- 
of-speech and current part-of-speech increase by 

1.2% and 0.6%. Although F~= 1 values for other 

three cases slightly decrease by 0.02%, 0.02% 
and 0.19%, the sizes of lexicons have been 
greatly reduced by 85% to 97%. 

Type Precision Recall F#=l 

Overall 91.69 93.28 92.48 

NP 92.64 93.48 93.06 

VP 92.16 93.66 92.90 

ADJP 78.39 71.69 74.89 

ADVP 73.66 87.80 80.11 

PP 95.18 97.38 96.27 

Table 9 : Results of chunking experiments with 
error-driven lexicon : dp= 

{ p~w~, p,w,3C & F~,. (p~w i ) > O} + { p~, p~3C} 

Type Precision Recall F~=l 

Overall 88.68 90.28 89.47 

NP 90.61 91.57 91.08 

VP 91.80 94.08 92.90 

ADJP 72.20 62.72 67.13 

ADVP 70.53 78.90 74.48 

PP 86.55 96.34 91.19 

Table 10: Results of chunking experiments 
with error-driven lexicon : • = 

{ P,-~ Pi, Pi-1 Pi ~C & F~. (p,_~ p, ) > 0} 

+ { Pi, Pi 3C} 

Table 11: Results of chunking experiments 
with error-driven lexicon : • = 

{ pi_l Wi_lPi , pi_l wi_lpi3C & V~,(Pi_l Wi_iPi ) > O} 

+ { p i , P i ~ C }  

Type 

Overall 92.84 
NP 
VP 

Precision 

93.35 
93.97 
79.49 

95.19 

Recall 

93.21 
93.65 
94.67 
72.94 

Ffl=l 
93.03 
93.50 
94.32 
76.07 ADJP 

ADVP 79.47 85.91 82.57 
PP 

77 

96.29 95.74 
Table 12: Results of chunking experiments 
with error-driven lexicon : • = 

{ Pi-I P~W~, p~_~ Piw,3C & F.. (pi_~ p ,w i ) > 0} 

+ { p i , P i 3 C }  

Type Precision Recall F~_ 1 

Overall 91.99 92.95 92.47 
NP 93.35 93.39 93.37 
VP 92.89 94.36 93.62 
ADJP 80.01 71.70 75.63 
ADVP 73.40 87.32 79.76 
PP 93.42 97.33 95.33 
Table 13: Results of chunking experiments 
with error-driven lexicon : • = 

{Pi-l Wi-lPiWi' Pi-lWi-lpiWi3C+{pi ' Pi3C} 
& F®.(p~_~w~_~p~w~) > O} 

After discussing the five context-dependent 
lexicons separately, now we explore the 
merging of context-dependent lexicons by 
assuming : 
CI~ .~ { Pi-lWi-I PiWi, Pi-lWi-I PiwigC 

& Fa,. (pi-lwi-t piwi ) > 0} 

+ { Pi-I PiW~, Pi-l piwi ~C & Fa" (Pi-l piwi ) > O} 

+ { Pi-lWi-I Pi" Pi-lWi-1Pi 3C & F~. (pi_lWi_l Pi ) > 0} 
+ { Pi-1 Pi, Pi-I Pii ~C & F~, (Pi-l Pi )>  O} 

+ { piw~, Piw~3C & F~,. (PiWi) > 0} + { Pi, p~3C} 



and P(t  i /G~) is approximatl~ by the following 
order : 
1. if Pi_lWi_iPiWi E fI~, 

P(ti / G ~ ) = P ( t  i / p i _ l w i _ l P i W i )  

2. if p~_lp~wi E cb, 

P(ti / G ~ ) = P ( t  i / p i _ l w i _ l P i W i )  

3. if Pi-twi-lPi E ~ ,  

P(t i/G~) = P(t i / pi_l wi_l: pi ) 

4. if PiWi E ~ ,  P(t i / G~ ) = P(t i / piwi ) 

5. if Pi-I Pi E ~ ,  P(t i / G~ ) = P(t i / Pi-1Pi) 

6. P(t i l G : ) = P ( t  i lpi_lpi)  

Table 14 gives an overview of the chunking 
experiments using the above assumption. It 
shows that the F:=i value for the merged 

context-dependent lexicon inreases to 93.68%. 
For a comparison, the F/~=i value is 93.30% 

when all the possible lexical entries are included 
in ~ (Due to memory limitation, only the top 
150000 mostly occurred lexical entries are 
included). 

Type Precision Recall F#=i 

Overall 93.40 93.95 93.68 
NP 93.60 94.64 94.12 
VP 94.64 94.75 94.70 
ADJP 77.12 74.55 75.81 
ADVP 82.39 83.80 83.09 
PP 96.61 96.63 96.62 
Table 14: Results of chunking experiments 
with the merged context-dependent lexicon 

For the relationship between the training 
corpus size and error driven learning 
performance, Table 15 shows that the 
performance of error-driven learning improves 
stably when the training corpus size increases. 
Training Sections I ~ I Accuracy i FB 1 

0-1 
0-3 
0-5 
0-7 
0-9 

0-11 
0-13 
0-i5 
0-17 
0-19 

14384 94.78% 91.95 
24507 95.19% i 92.51 
32316 95.28%1 92.77 
38286 95.41% 93.00 
39876 95.53% i 93.12 
43372 95.65% 93.31 
46029 95.62% 93.29 
47901 95.66% 93.34 
48813 95.74% i 93.41 
49988 95.92% 93.68 

Table 15: The performance of error-driven 
learning with different training corpus size 

For comparison with other chunk taggers, 
we also evaluate our chunk tagger with the 
merged context-dependent lexicon by cross- 
validation on all 25 partitions of the PENN WSJ 
TreeBank. Table 16 gives an overview of such 
chunking experiments. 

Type Precision Recall Fa=l 

Overall 96.40 96.47 96.44 
NP 96.49 96.99 96.74 
VP 97.13 97.36 97.25 
ADJP 89.92 88.15 89.03 
ADVP 91.52 87 .57  89.50 

97.13 97.36 PP 97.25 
Table 16: Results of 25-fold cross-validation 
chunking experiments with the merged 
context-dependent lexicon 

Tables 14 and 16 shows that our new chunk 
tagger greatly outperforms other reported chunk 
taggers on the same training data and test data 
by 2%-3%.(Buchholz S., Veenstra J. and 
Daelmans W.(1999), Ramshaw L.A. and 
Marcus M.P.(1995), Daelemans W., Buchholz 
S. and Veenstra J.(1999), and Veenstra 
J.(1999)). 

Conclusion 

This paper proposes a new error-driven HMM- 
based chunk tagger with context-dependent 
lexicon. Compared with standard HMM-based 
tagger, this new tagger uses a new Hidden 
Markov Modelling approach which incorporates 
more contextual information into a lexical entry 

n 

by assuming MI(Tqn,G~)= 2 M l ( t , , G f ) .  
i=1 

Moreover, an error-driven learning approach is 
adopted to drease the memeory requirement and 
further improve the accuracy by including more 
context-dependent information into lexicon. 

It is found that our new chunk tagger 
singnificantly outperforms other reported chunk 
taggers on the same training data and test data. 

For future work, we will explore the 
effectivessness of considering even more 
contextual information on approximation of 
P(T~"IG ~) by using the forward-backward 
algodthm(Rabiner 1989) while currently we 
only consider the contextual information of 
current location and previous location. 
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