
The MATE Markup Framework

Laila DYBKJ2,ER and Niels Ole BERNSEN
Natural Interactive Systems Laboratory, University of Southern Denmark.

Science Park 10, 5230 Odense M, Denmark
laila@nis.sdu.dk, nob@nis.sdu.dk

Abstract

Since early 1998, the European Telematics
project MATE has worked towards
facilitating re-use of annotated spoken
language data, addressing theoretical issues
and implementing practical solutions which
could serve as standards in the field. The
resulting MATE Workbench for corpus
annotation is now available as licensed open
source software.
This paper describes the MATE markup
framework which bridges between the
theoretical and the practical activities of
MATE and is proposed as a standard for the
definition and representation of markup for
spoken dialogue corpora. We also present
early experience from use of the framework.

1. Introduction

Spoken language engineering products
proliferate in the market, commercial and
research applications constantly increasing in
variety and sophistication. These developments
generate a growing need for tools and standards
which can help improve the quality and
efficiency of product development and
evaluation. In the case of spoken language
dialogue systems (SLDSs), for instance, the
need is obvious for standards and standard-based
tools for spoken dialogue corpus annotation and
automatic infomaation extraction. Information
extraction from annotated corpora is used in
SLDSs engineering for many different purposes.
For several years, annotated speech corpora have
been used to train and test speech recognisers.
More recently, corpus-based approaches are
being applied regularly to other levels of
processing, such as syntax and dialogue. For
instance, annotated corpora can be used to
construct lexicons and grammars or train a
grammar to acquire preferences for frequently

used rules. Similarly, programs for dialogue act
recognition and prediction tend to be based on
annotated corpus data. Evaluation of user-
system interaction and dialogue success is also
based on annotated corpus data. As SLDSs and
other language products become more
sophisticated, the demand will grow for corpora
with multilevel and cross-level annotations, i.e.
annotations which capture information in the
raw data at several different conceptual levels or
mark up phenomena which refer to more than
one level. These developments will inevitably
increase the demand for standard tools in
support of the annotation process.

The production (recording, transcription,
annotation, evaluation) of corpus data fer spoken
language applications continues to be time-
consuming and costly. So is the construction of
tools which facilitate annotation and information
extraction. It is therefore desirable that already
available annotated corpora and tools be used
whenever possible. Re-use of annotated data and
tools, however, confronts systems developers
with numerous problems which basically derive
from the lack of common standards. So far,
language engineering projects usually have
either developed the needed resources from
scratch using homegrown formalisms and tools,
or painstakingly adapted resources from
previous projects to novel purposes.

In recent years, several projects have addressed
annotation formats and tools in support of
annotation and information extraction (for an
overview, see http://www.ldc.uperm.edu/-
annotation/). Some projects have addressed the
issue of markup standardisation from different
perspectives. Examples are the Text Encoding
Initiative (TEI) 0attp://www-tei.uic.edu/orgs/tei/
and http://etext.virginia.eduffEI.html), the
Corpus Encoding Standard (CES)
(http://www.cs.vassar.edu/CES/), and the
European Advisory Group for Language
Engineering Standards (EAGLES) (http://www.-

19

ilc.pi.cnr.it/EAGLES96/home.hurd). Whilst
these initiatives have made good progress on
written language and current coding practice,
none of them have focused on the creation of
standards and tools for cross-level spoken
language corpus annotation. It is only recently
that there has been a major effort in this domain.
The project Multi-level ~anotafion Tools
Engineering (M A T E) (http://mate.nis.sdu.dk)
was launched in March 1998 in response to the
need for standards and tools in support of
creating, annotating, evaluating and exploiting
spoken language resources. The central idea of
MATE has been to work on both annotation
theory and practice in order to connect the two
through a flexible framework which can ensure a
common and user-friendly approach across
annotation levels. On the tools side, this means
that users are able to use level-independent tools
and an interface representation which is
independent of the internal coding file
representation.

This paper presents the MATE markup
framework and its use in the MATE Workbench.
In the following, Section 2 briefly reviews the
MATE approach to annotation and tools
standardisafion. Section 3 presents the MATE
markup framework. Section 4 concludes the
paper by reporting on early experiences with the
practical use of the markup framework and
discussing future work. "

2 The MATE Approach

This section first briefly describes the creation of
the MATE markup framework and a set of
example best practice coding schemes in
accordance with the markup framework. Then it
describes how a toolbox (the MATE
Workbench) has been implemented to support
the markup framework by enabling annotation
on the basis of any coding scheme expressed
according to the framework.

2.1 Theory

The theoretical objectives of MATE were to
specify a standard markup framework and to
identify or, when necessary, develop a series of
best practice coding schemes for implementation
in the MATE Workbench. To these ends, we
began by collecting information on a large
number of existing annotation schemes for the
levels addressed in the project, i.e. prosody,

(morpho-)syntax, co-reference, dialogue acts,
communication problems, and cross-level issues.
Cross-level issues are issues which relate to
more than one annotation level. Thus, for
instance, prosody may provide clues for a
variety of phenomena in semantics and
discourse. The resulting report (Klein et al.,
1998) describes more than 60 coding schemes,
giving details per scheme on its coding book, the
number of annotators who have worked with it,
the number of annotated dialogues/segments/
utterances, evaluation results, the underlying
task, a list of annotated phenomena, and the
markup language used. Annotation examples are
provided as well.

We found that the amount of pre-existing work
varies enormously from level to level. There
was, moreover, considerable variation in the
quality of the descriptions of the individual
coding schemes we analysed. Some did not
include a coding book, others did not provide
appropriate examples, some had never been
properly evaluated, etc. The differences in
description made it extremely difficult to
compare coding schemes even for the same
annotation level, and constituted a rather
confused and incomplete basis for the creation
of standard re-usable tools within, as well as
across, levels.

The collected information formed the starting
point for the devebpment of the MATE markup
framework which is a proposal for a standard for
the definition and representation of markup for
spoken dialogue corpora (Dybkjmr et al., 1998).
Analysis of the collected information on existing
coding schemes as regards the information
which came with the schemes as well as the
information which was found missing, provided
input to our proposal for a minimal set of
information items which should be provided for
a coding scheme to make it generally
comprehensible and re-usable by others. For
instance, a prescriptive coding procedure was
included among the information items in the
MATE markup framework despite the fact that
most existing coding schemes did not come with
this information. This list of information items
which we call a coding module, is the core
concept of the MATE markup framework and
extends and formalises the concept of a coding
scheme. The ten entries which constitute a
coding module are shown in Figure 4. Roughly

20

speaking, a coding module includes or describes
everything that is needed in order to perform a
certain kind of markup of spoken language
corpora. A coding module prescribes what
constitutes a coding, including the representation
of markup and the relations to other codings.
Thus, the MATE coding module is a proposal
for a standardised description of coding
schemes.

The above-mentioned five annotation levels
and the issues to do with cross-level annotation
were selected for consideration in MATE
because they pose very different markup
problems. If a common framework can be
established and shown to work for those levels
and across them, it would seem likely that the
framework will work for other levels as well.
For each annotation level, one or more existing
coding schemes were selected to form the basis
of the best practice coding modules
implemented in the MATE Workbench (Mengel
et al., 2000). Common to the selected coding
schemes is that these are among the most widely
used coding schemes for their respective levels
in current practice, each having been used by
several annotators and for the annotation of
many dialogues. Since all MATE best practice
coding schemes are expressed in terms of coding
modules, they should contain sufficient
information for use by other annotators. Their
uniform description in terms of coding modules
makes it easy for the annotator to work on
multiple coding schemes and/or levels, and to
compare schemes since these all contain the
same categories of information. The use of
coding modules also facilitates use of the same
set of software tools and enables the same
interface look-and-feel independently of level.

2.2 Tooling

The engineering objective of MATE has been to
specify and implement a genetic annotation tool
in support of the markup framework and the
selected best practice coding schemes. Several
existing annotation tools were reviewed early on
to gather input for MATE workbench
specification (Isard et al., 1998). Building on
this specification, the MATE markup framework
and the selected coding schemes, a java-based
workbench has been implemented (Isard et al.,
2000) which includes the following major
functionalities:

The MATE best practice coding modules are
included as working examples of the state of the
art. Users can add new coding modules via the
easy-to-use interface of the MATE coding
module editor.

An audio tool enables listening to speech files
and having sound files displayed as a waveform.

For each coding module, a default stylesheet
defines how output to the user is presented
visually. Phenomena of interest in the corpus
may be shown in, e.g., a certain colour or in
boldface. Users can modify style sheets and
define new ones.

The workbench enables information extraction
of any kind from annotated corpora. Query
results are shown as sets of references to the
queried corpora. Extraction of statistical
information from corpora, such as the number of
marked-up nouns, is also supported.
Computation of important reliability measures,
such as kappa values, is enabled.

Import of files from XLabels and BAS Partitur
to XML format is supported in order to
demonstrate the usefulness of importing widely
used annotation formats for further work in the
Workbench. Similarly, a converter from
Transcriber format (http://www.etca.fr/CTA/-
gip/Projets/Transcriber/) to MATE format
enables transcriptions made using Transcriber to
be annotated using the MATE Workbench.
Other converters can easily be added. Export to
file formats other than XML can be achieved by
using style sheets. For example, information
extracted by the query tool may be exported to
HTML to serve as input to a browser.

On-line help is available at any time.
The first release of the MATE Workbench

appeared in November 1999 and was made
available to the +80 members of the MATE
Advisory Panel from across the world. Since
then, several improved versions have appeared
and in May 2000 access to executable versions
of the Workbench was made public. The MATE
Workbench is now publicly available both in an
executable version and as open source software
at http://mate.nis.sdu.dk. The Workbench is still
being improved by the MATE consortium, so
new versions will continue to appear. A
discussion forum has recently been set up at the
MATE web site where colleagues are invited to
ask questions and provide information from their
experience with the Workbench, including the

21

new tools they have added to the MATE
Workbench to enhance its functionality. •

We have no exact figures on]how many users
are now using the workbench but we know that
the MATE workbench is already being used by
and is being considered for use in several
European and national research projects.

3 The M A T E Markup Framework

The MATE markup framework is a conceptual
model which basically prescribes (i) how files
are structured, for instance to enable multi-level
annotation, (ii) how tag sets arc; represented in
terms of elements and attributes, and (iii) how to

provide essential information on markup,
semantics, coding purpose etc.

3.1 Files, elements and attr ibutes

When a coding module has been applied to a
corpus, the result is a coding file. The coding file
has a header which documents the coding
context, such as who annotated the file, when,
and the experience of the annotator, and a body
which lists the coded elements. Figure 1 shows
an example of how annotated communication
problems are displayed to the user in the MATE
Workbench. Figure 2 shows an excerpt of the
internal representation of the file.

~Clirl'rlilu i r u l o n licil:dlllrn ; : oomph : l i t i~r l~,~l~zloguo

~.I -,idlor iz ~ ~ pongll l
+r

"r

~s lhem are e llm~...r.,,~ at pt~o!21e ~ ~etll~i l l : t I st ~oil l , ' lGG3t

~l,ri It

{:
M11
!

O n I'~ W'~t~/~ili '~tll i lt l ~ l'l~Sl~t'll IOhra~ 0 l IS II l l l l t!l if'PIG
I I i l l l r ~ i l l l l l r f i inl l 'l'l~ ~ l l m ~ a l i lo l ~ l l r l l i l o l , t t l l i l ~
azlmd i : r i n Izt'l_ 5 l ~ s ~ "ll'izl o I~ ti,1~"e: 2 lllrOl..l:ls o r ll~l~lile Crom
I.~mdus I~mo ~mr,,t,d:
!'.~.. O I l t t ' ~ r ' l ~ ",i~'11~ l idP ~<31~'r,l10ihrg~llz ~ i le tr l ie !~ l f ?~
t~i I I I It'll, (ll}lth] ilfflll 1 t $ I'4~15 fi'l hl l$ l ioi lPl$~ie~: l~fl~l~l~ +.'lJ~ i

IYCIrY~ E:~lmdUl h i linllald ; l l t i i ~ ll~lt~li ~ t t o t ! l l l I~,toiYI

NIO

N l l

commilr~, i , , expiml~t.
Prc~nde Jrnrri~:llale " I I ~ llai:ll,

Donl ~.:~, qoo mt i4 .
DOnl l la,

os m l r t ~ .

in ~..Yfi rierfl inNrrnnton p~ . ided t o ~ u~er on ~
• ~ o i e n { gloup~s o[pl~opk~ ~l'~ 10¢~1t~ d+l~in IrlOl C ! e i ~ ' ~ . Ojlly b

l f l P ~ i ' + l t l l ~ t l l + ¢ I f l l t (l Ou l !e~ IC l lOf l~ t ld l i+ l i l l ~ e r I~s~

Ilffll n' lIolcl ' l ~lor oiql~li~cl II1 i ~ pl'~%(llll~ I l i l~ranl~.

:

Figure 1. A screen shot from the MATE Workbench showing a dialogue annotated with
communication problems (top left-hand panel). Guidelines for cooperative dialogue behaviour are

shown in the top fight-hand panel. Communication problems are categonsed as types of violations of
the coopemtivity guidelines. Violation types are shown in the bottom fight-hand panel. Notes may be

added as part of the annotation. Notes are shown in the bottom left-hand panel.

!¢t, r r i ~ b iti- 'Ct?.l~ hqa-'!~JO.tl_m~llttr..~-7~. :-
',c'¢1t"I~ t ~J.,.'CT'1117 i " r~, , , ' , ,~ l ~ 9,~;~ IK 14¢. ~t 01 . ' 1 ~

!~Y.,OTllpt Oh-

~¢cm'ri0vo~ I it=" C~= 317" t-~+~,,ASt~l.,.+ +;iI,l,,'t4r;67)" ~ ,
,e4*'~?i~=%'17~ 0 • l-vc .~,llbly p~l_11~ alil< O.O~l - ' i ~

-Rompi, oo* •

Figure 2. Excerpt of the internal XML
representation of the annotated dialogue shown

in Figure 1. The tags will be explained in
Section 3.1.1 below.

As shown in Figure 2, the annotated file
representation is simply a list of references to
the transcription file. The underlying file
structure idea is depicted in Figure 3 which
shows how coding files (bottom layer) refer to a
transcription file and possibly to other coding
files, cf. entry 5 in the coding module in Figure
4. A transcription (which is also regarded as a
coding file) refers to a resource file listing the
mw data resources behind the corpus, such as
sound files and log files. The resource file
includes a description of the corpus: purpose of
the dialogues, dialogue participants,
experimenters, recording conditions, etc. A
basic, sequential tirneline representation of the

22

spoken language data is defined. The firneline
may be expressed as real time, e.g. in

milliseconds, or as numbers indicating, e.g., the
sequence of utterance starts.

Raw data

Resource file

Transcriptions
(coding files)

Coding files

Sound files I ~ video or pictures [

Orthographic Phonetic

[pCr°o~e~iCafi°n~----~ [Dialogue acts ~-----~[Prosody

I

Figure 3. The raw corpus data are listed in the resource file to which transcriptions refer. Coding files
at levels other than transcription refer to a transcription and only indkectly to the raw data. Coding

files may refer to each other.

Given a coding purpose, such as to identify all
communication problems in a particular corpus,
and a coding module, the actual coding consists
in using syntactic markup to encode the relevant
phenomena found in the data. A coding is
defined in terms of a tag set. The tag set is
conceptually specified by, and presented to, the
user in terms of elements and attributes, el. entry
6 in the coding module in Figure 4. Importantly,
workbench users can use this markup directly
without having to know about complex formal
standards, such as SGML, XML or TEI.

3.1.1 Elements

The basic markup primitive is the dement (a
term inherited from TEI and SGML) which
represents a phenomenon such as a particular
phoneme, word, utterance, dialogue act, or
communication problem. Elements have
attributes and relations to each other both within
the cu~ent coding module and across coding
modules. Considering a coding module M, the
markup specification language is described as:

* El ...E,: The non-empty list of tag elements.

• For each element t~, the following properties
may be defined:

1. Ni: The name of El.
Example: <u>

2. Ei may contain a list o f elements ~ from
M.
Example: <u> may contain <t>:
<u><t>Exarnple</t></u>

3. Ei has ~ attributes Aij, where j = 1 .. n~.
Example: <u> has attributes who and id,
among others.

4. Ei may refer to elements in coding module
Mj, implying that M references Mj.
Example: a dialogue act coding may refer
to phonetic or syntactic cues.

A concrete example is the coding module for
communication problems which, i.a., has the
element <eomprob>, el. the XML representation
in Figure 2. <eomprob> has, i.a., the attributes id
uref and vtype, uref is a reference to an utterance
in the transcription coding, xtype is a reference
to a type of violation of a guideline in the
violation type coding. Due to the inflexibility of
XML, this logical structure has to be represented
slightly differently internally in the workbench.
Thus, the urcf corresponds to the first href in

23

Figure 2 while vtype is wrapped up in a new
element and corresponds to the second href.

3.1.2 Attributes

Attributes are assigned values during coding.
For each attribute Aij the type of its values must
be defined. There are standard attributes, user-
defined attributes, and hidden attributes, as
follows.

Standard attributes are attributes prescribed by
MATE.

o id [mandatory]: ID. The element id is
composed of the element name and a machine-
generated number.
Example: id=r~123

Time start and end are optiorml. Elements must
have time information, possibly indirectly by
referencing other elements (in the same coding
module or in other modules) which have time
information.

• TimeStart [optional]: TIME. Start of event.

• YimeEnd [optional]: TIME. End of event.

User-defined attributes are used to parametrise
and extend the semantics of the elements they
belong to. For instance, who is an attribute of
element <u> designating by whom the utterance
is spoken. There will be many user-defined
attributes (and elements), el., e.g., the uref and
vtype mentioned above.

Hidden attributes are attributes which the user
will neither define nor see but Which are used for
internal representation purposes. An example is
the following of coding elements which may
refer to utterances in a transcription but which
depend on the technical programming choice of
the underlying, non-user related representation:

ModuleRefs CDATA 'href:transcription#u'
See Figure 2 for a concrete example from the

MATE Workbench.

3.1.3 Attribute standard types

The MATE markup framework proposes a set of
predefined attribute value types (attributes are
typed) which are supported by the workbench.
By convention, types are written in capitals. The
included standard types are:

*TIME: in milliseconds, as a sequence of
numbers, or as named points on the timeline.
Values are numbers or identifiers, and the
declaration of the timeline states how to
interpret them.

Example: tirne=123200 dur=1280 (these are
derived values, with time = TimeStart, and dur =
TimeEnd- TirneStart).

• HREF[MODULE, ELEMENTLIST]: Here
MODULE is the name of another coding
module, and ELEMENTLIST is a list of names
of elements from MODULE. When applied as
concrete attribute values, two parameters must
be specified:

The name o f the referenced coding file which
is an application of the declared MODULE
coding module.

- The id of the element occurrence that is
referred to.

The values o f this attribute are of the form:
...... CodeFileName"#'Elementld'

Example: The declaration Occursln:
href(lxanscription, u) allows an attribute used as,
e.g., Occursln="base~_123", where base is a
coding file using the transcription module and
u_123 is the value o f the id attribute o f a t~
element in that file.

Example: For the declaration who:
HREF[transcription, participant] an actual
occurrence may look like who="#participant2 ''
where the omitted coding file name by
convention generically means the current
coding file.

The concept o f hyper-references together with
parameters referencing coding modules (see
point 5 in Figure 4) is what enables ccoding
modules to handle cross-level markup.

• ENUM: A finite closed set o f values.
Values are of the form: "(" Identifier ("1"
Identifier)* ")"
Example: t ime (yearlmonthldaylhour) allows
attributes such as time--day.
The user may be anowed to extend the set, but
never to change or delete values from the set.

• TEXT: Any text not containing (which is
used to delimit the attribute value).
Example: The declaration dese TEXT allows
uses such as: <event desc="Door is slammed">.

• I13: Automatically generated id for the element.
Only available in the automatically added
attribute id.

24

3.2 Coding modules

In order for a coding module and the dialogues
annotated using it to be usable and
understandable by people other than its creator,
some key information must be provided. The
MATE coding module which is the central part
of the markup framework, serves to capture this
information. A coding module consists of the ten
items shown in Figure 4.

1. Name of the module.

2. Coding purpose of the module.

3. Coding level.

4. The type of data source scoped by the
module.

5. References to other modules, if any. For
transcriptions, the reference is to a resource.

6. A declaration of the markup elements and
their attributes. An element is a feature, or type
of phenomenon, in the corpus for which a tag is
being defined.

7. A supplementary informal description of
the elements and their attributes, including:

a. Purpose of the element, its attributes,
and their values.

b. Informal semantics describing how to
interpret the element and attribute values.

c. Example of each element and attribute.

8. An example of the use of the elements and
their attributes.

9. A coding procedure.

10. Creation notes.

Figure 4. Main items of the MATE coding
module.

Some coding module items have a formal role,
i.e. they can be interpreted and used by the
MATE workbench. Thus, items (1) and (5)
specify the coding module as a named
parametrised module or class which builds on
certain other predefined modules (no cycles
allowed). Item (6) specifies the markup to be
used in the coding. All elements, attribute
names, and ids have a name space restricted to
their module and its coding files, but are
publicly referrable by prefixing the name of the
coding module or coding file in which they

occur. Other items provide directives and
explanations to users. Thus, (2), (3) and (4)
elaborate on the module itself, (7) and (8)
elaborate on the markup, and (9) recommends
coding procedure and quality measures. (10)
provides information about the creation of the
coding module, such as by whom and when.

In the following, we show an abbreviated
version of a coding module for communication
problems to illustrate the 10 coding module
entries.

Name: Communication_problems.
Coding purpose: Records the different ways in
which generic and specific guidelines are
violated in a given corpus. A communication
problems coding file refers to a problem type
coding file as well as to a transcription.
Coding level: Communication problems.
Data sources: Spoken human-machine dialogue
corpora.
Module references: Module Basic orthogra-
phic transcription; Module Violation types.
Markup declaration:
ELEMENT eornprob
ATTRIBUTES

vtype: REFERENCE(Violation_types, vtype)
wref: REFERENCE(Basic_orthographic
transcription, (w,w)+)
uref: REFERENCE(Basic_orthographic
transcription, u+)
caused by: REFERENCE(this, eomprob)
temp: TEXT

ELEMENT note
ATTRIBUTES

wref: REFERENCE(Basic_orthographic_
transcription, (w,w)+)
uref: REFERENCE(Basic_orthographic_
transcription, u+)

Description: In order to annotate
communication problems produced by
inadequate system utterance design we use the
element eomprob. It refers to some kind of
violation of one of the guidelines listed in Figure
1, top fight-hand panel. The comprob element
may be used to mark up any part of the dialogue
which caused, or might cause, a communication
problem. Thus, cornprob may be used to annotate
one or more words, an entire utterance, or even
several utterances in which an actual or potential
communication problem was detected. The
eomprob element has five attributes in addition to
the automatically added id.

25

The attribute vtype is mandatory, vtype is a
reference to a description of a guideline
violation in a file which contains the different
kinds of violations of the individual guidelines.

Either wref or uref must be indicated. Both
these attributes refer to an orthographic
transcription, wref delimits the word(s) which
caused or might cause a communication
problem, and uref refers to one or more entire
utterances which caused or might cause a
problem.

We stop the illustration here due to space
limitations. The full description is available in
(Mengel et al. 2000).
Example:
In the following snippet of a transcription from
the Sundial corpus:

<u id="Sl:7-1-sun" who="S">flight information
british airways good day can I help you</u>

communication problems are marked up as
follows:
<comprob id="Y ' vtype="Sundial_problems#SG4-1"
uref=" Sundial#S 1:7-1 -sun '7>

We do not exemplify note here and do not
show the violation type coding file due to space
limitations. However, note that once a coding
module is specified in the MATE workbench,
the user does not have to bother about the
markup shown in the example above. The user

just selects the utterance to nark up and then
clicks on the violation type palette, or, in case it
is a new type, clicks on the violated
cooperafivity guideline which means that a new
violation type is added and text can be entered to
describe it, el. Figure 1.
Coding procedure: We recommend to use the
same coding procedure for markup of
cornrnunicafion problems as for violation types
since the two actions are tightly connected. As a
minimum, the following procedure should be
followed:

1. Encode by coders 1 and 2.
2. Check and merge codings (performed by

coders 1 and 2 until consensus).
Creation notes:
Authors: Hans Dybkj~er and Laila Dybkj~er.
Version: 1 (25 November 1998), 2 (19 June
1999).
Comments: For guidance on how to identify
communication problems and for a collection of
examples the reader is invited to look at
(Dybkj~er 1999).
Literature: (Bernsen et al. 1998).

The MATE Workbench allows its users to
specify a coding module via a coding module
editor. A screen shot of the coding module editor
is shown in Figure 5.

Figure 5. The MATE coding module editor.

26

4 Early Experience and Future Work

The MATE markup framework has been well
received for its transparency and flexibility by
the colleagues on the MATE Advisory Panel.
The framework has been used to ensure a
common description of coding modules at the
MATE coding levels and has turned out to work
well for all these levels. We therefore conclude
that the framework is likely to work for other
annotation levels not addressed by MATE. The
use of a common representation and a common
information structure in all coding modules at
the same level as well as across levels facilitates
wilhin-level comparison, creation and use of
new coding modules, and working at multiple
levels.

On the tools side, the markup framework has
not been fully exploited as intended, i.e. as an
intermediate layer between the user interface
and the internal representation. This means that
the user interface for adding new coding
modules, in particular for the declaration of
markup, and for defining new visualisations is
still sub-optimal from a usability point of view.

The coding module editor which is used for
adding new coding modules, represents a major
step forward compared to requiring users to
write DTDs. The coding module editor
automatically generates a DTD from the
specified markup declaration. However, the
XML format used for the underlying file
representation has not been hidden completely
from the editor's interface. Peculiarities and lack
of flexibility in XML have been allowed to
influence the way in which users must specify
elements and attributes, making the process less
logical and flexible than it could have been. It is
high on our wish list to repair this shortcoming.

As regards coding visualisation, XSLT-like
style sheets are used to define haw codings are
displayed to the user. Writing style sheets,
however, is cumbersome and definitely not
something users should be asked to do to define
how codings based on a new coding module
should be displayed. We either need a style sheet
editor comparable to the coding module editor as
regards ease of use, or, alternatively, a
completely new iraerface concept should be
implemented to replace the style sheets and
enable users to easily define new visualisations.
It is high on our wish-hst to better exploit the

markup framework in the Workbench
implementation in order to achieve a better user
interface.

Other frameworks have been proposed but to
our knowledge the MATE markup framework is
still the more comprehensive framework around.
An example is the annotation framework
recently proposed by Bird and Liberrnan (1999)
which is based on annotation graphs. These are
now being used in the ATLAS project (Bird et
al., 2000) and in the Transcriber tool (Geoffrois
et al., 2000). The annotation graphs serve as an
intermediate representation layer in agreement
with the argument above for having an
intermediate layer of representation between the
user interface and the intemal representation.
Whilst Bird and Liberman do not consider
coding modules or discuss the interface from a
usability point of view, they present detailed
considerations concerning time line
representation and time line reference. The two
frameworks may, indeed, tuna out to
complement each other nicely.

Acknowledgements

We gratefully acknowledge the support for the
MATE project provided by the European
Commission's Telematics/Language
Engineering Programme. We would also like to
thank all MATE partners. Without the very
considerable joint efforts of the project
consortium it would not have been possible to
build the MATE Workbench.

References

Note on MATE deliverables: like the MATE
Workbench, these are all obtainable from
http://mate.nis.sdu.dk

Annotation formats and tools:
http://www.ldc.upenn.edu/annotation/

Bemsen, N. O., Dybkjmr, H. and Dybkj~er, L., 1998.
Designing Interactive Speech Systems. From First
Ideas to User Testing. Springer Verlag.

Bird, S. and Liberrnan, M., 1999. A Formal
Framework for Linguistic Annotation. Technical
Report MS-CIS-99-01. Department of Computer
and Information Science, University of
Pennsylvania.

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun,
C. and Liberman, M., 2000. ATLAS: A Flexible
and Extensible Architecture for Linguistic
Annotation. Proceedings of the 2 ~d International

27

Conference on Language Resources and
Evaluation (LREC 2000), Athens, 1699-1706.

CES: http://www.cs.vassar.edu/CES/
Dybkkjj~er, L., 1999. CODIAL, a Tool in Support of

Cooperative Dialogue Design. DISC Deliverable
D2.8, April 1999. http://www.disc2.dk/tools/codial

Dybkj2er, L., Bemsen, N. O., Dybk.ja~r, H., McKelvie,
D. and Mengel, A., 1998. The MATE Markup
Framework. MATE Deliverable D1.2.

EAGLES:
http://www.ilc.pi.cnr.it/EAGLE S/home.html

Geoffrois, E., Barras, C., Bird, S. and Wu, Z., 2000.
Transcribing with Annotation Graphs. Proceedings
of the 2 ~d International Conference on Language
Resources and Evaluation (LKEC 2000), Athens,
1517-1521.

Isard, A., McKelvie, D., Cappelli, B., Dybkj~er, L.,
Evert, S., Fitschen, A., Heid, U, Kipp, M., Klein,
M., Mengel, A., Moiler, M. B. and Reithinger, N.,
1998. Specification o f Workbench Architecture.
MATE Deliverable D3.1.

Isard, A., McKelvie, D., Mengel, A., Moiler, M. B.,
Grosse, M. and Olsen, M. V., 2000. Data
Structures and APls for the MATE Workbench.
MATE Deliverable D3.2.

Klein, M., Bemsen, N. O., Davies, S., Dybkj~er, L.,
Garrido, J., Kasch, H., Mengel, A., Pirrelli, V.,
Poesio, M., QuaT~a, S. and Soda, S., 1998.
Supported Coding Schemes. MATE Deliverable
DI.1.

MATE: http://mate.nis.sdu.dk
Mengel, A., Dybkj~er, L., Garrido, Jr., Heid, U., Klein,

M., Pirrelli, V., Poesio, M., Qoa~a, S., Schiffrin,
A. and Soda, C., 2000. MATE Dialogue
Annotation Guidelines. MATE Deliverable D2.1.

T E I : http://etext.virginia.edu/TEI.htrrd and
http://www-tei.uic.edu/orgs/tei/

Transcriber:
http://www.etea.fr/CTA/gip/Proj ets/Transeribe#

28

