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A b s t r a c t  

We present two measures for compar- 
ing corpora based on infbrmation the- 
ory statistics such as gain ratio as well 
as simple term-class ~equency counts. 
We tested the predictions made by these 
measures about corpus difficulty in two 
domains - -  news and molecular biol- 
ogy - -  using the result of two well-used 
paradigms for NE, decision trees and 
HMMs and found that gain ratio was the 
more reliable predictor. 

made by these measures against actual system 
performance. 

Recently IE systems based on supervised learn- 
ing paradigms such as hidden Markov models 
(Bikel et al., 1997), maximum entropy (Borth- 
wick et al., 1998) and decision trees (Sekine et 
al., 1998) have emerged that should be easier to 
adapt to new domains than the dictionary-based 
systems of the past. Much of this work has taken 
advantage of smoothing techniques to overcome 
problems associated with data sparseness (Chen 
and Goodman, 1996). 

The two corpora we use in our NE experiments 
represent the following domains: 

1 I n t r o d u c t i o n  

With the advent of the information society and 
increasing availability of large m o u n t s  of infor- 
mation in electronic form, new technologies such 
as information extraction are emerging to meet 
user's information access needs. Recent evalu- 
ation conferences such as TREC (Voorhees and 
Harman, 2000) showed the feasibility of this task 
and highlighted the need to combine information 
r e t r i e d  (m) and extraction (IE) to go beyond 
simply offering the user a long ranked list of in- 
teresting documents to providing facts for user's 
questions. 

The problem of domain dependence remains a 
serious one and in fact there has been very little 
work so far to compare the difllculty of IE tasks for 
different domaln~ and their corpora. Such knowl- 
edge is useful for developing IE systems that are 
portable between domains. This paper begins to 
address this issue, in particular the lowest level of 
IE task, defined in the TIPSTER sponsored MUC- 
6 conference (MUC, 1995) as named entity (NE). 
This is emerging as a key technology in several 
other IF-related tasks such as question answer- 
ing. We seek here to show theoretically motivated 
measures for comparing the ditficulty of corpora 
for the NE task in two domains, newswire and 
molecular-biology. We then test the predictions 

• Newswire: acquisition of names of people, or- 
ganizations and monetary units etc., from the 
MUC-6 data set. 

• Molecular-biology: acquisition of proteins, 
DNAs, RNAs etc. from a subset of the MED- 
LINE database (MEDLINE, 1999). 

Information extraction in the molecular-biology 
domain (Seldmlzu et al., 1998) (Craven and Kum- 
lien, 1999) (Rindflesch et al., 2000) has recently 
become a topic of interest to the NLP community. 
This is a result of the need to formalise the huge 
number of research results that  appear in free-text 
form in online collections of journal abstracts and 
papers such as MEDLINE for databases such as 
Swissprot (Ban:och and Apwefler, 1997) and also 
to search such collections for facts in an intelligent 
way. 

The purpose of our study is not to show a high 
level of absolute system performance. In fact since 
we use only the MUC-6 executive succession data 
set of 60 articles and a new MEDLINE data set 
of 100 articles we cannot hope to achieve perfor- 
mance limits. What  we aim to do is to compare 
model performance against the predictions of cor- 
pus difficulty made by two different methods. In 
the rest of this paper we firstly introduce the NE 
models used for evaluation, the two corpora we 
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examined and then the difficulty comparison met- 
rics. Predictive scores from the metrics are ex- 
amined against the actual performance of the NE 
models. 

2 M o d e l s  

Recent studies into the use of supervised learning- 
based modeels for the NE task in the molecular- 
biology domain have shown that  models based on 
hidden Markov models (HMMs) (Collier et al., 
2000) and decision trees (Nobata et al., 1999) are 
not only adaptable to this highly technical do- 
main, but are also much more generalizable to new 
classes of words than systems based on traditional 
hand-built heuristic rules such as (Fukuda et al., 
1998). We now describe two models used in our 
experiments based on the decision trees package 
C4.5 (Quiuian, 1993) and HMMs (Rabiner and 
Juang, 1986). 

2.1 Decision tree named entity 
recogniser:NE-DT 

A decision tree is a type of classifier which 
has "leaf nodes" indicating classes and "decision 
nodes" that specify some test to be carried out, 
with one branch or subtree for each possible out- 
come of the test. A decision tree can be used 
to classify an object by starting at  the root of 
the tree and moving through it until a leaf is en- 
countered. When we can define suitable features 
for the decision tree, the system can achieve good 
performance with only a small amount of training 
data. 

The system we used is based on one that  was 
originally created for Japanese documents (Se ine  
et al., 1998). It has two phases, one for creating 
the decision tree from training da ta  and the other 
for generating the class-tagged text  based on the 
decision tree. When generating decision trees, tri- 
grams of words were used. For this system, words 
are considered to be quadruple features. The fol- 
lowing features are used to generate conditions in 
the decision tree: 

P a r t - o f - s p e e c h  i n f o r m a t i o n :  There are 45 
part-of-speech categories, whose definitions 
are based on Pennsylvania Treebank's cat- 
egories. We use a tagger based on Adwait 
Ratnaparkhi 's  method (Ratnaparkhi, 1996). 

Character type i n f o r m a t i o n :  Orthographic 
information is considered such as upper case, 
lower case, capitalization, numerical expres- 
sions, symbols. These character features 
are the same as those used by NEHMM 

described in the next section and shown in 
Tab le  1. 

W o r d  l i s ts  spec i f ic  t o  t h e  d o m a i n :  Word 
lists are made from the training corpus. 
Only the 200 highest fxequency words are 
used. 

2.2 H i d d e n  M a r k o v  m o d e l  n a m e d  e n t i t y  
r e c o ~ . i s e r :  N E H M M  

HMMs are a widely u ~ d  class of learning algo- 
rithms and can be considered to be stochastic fi- 
nite state machines. In the following model, sum- 
marized here from the full description given in 
(Collier et al., 2000), we consider words to be or- 
dered pairs consisting of a surface word, W, and 
a word feature, F ,  given as < W, F >. The word 
features themselves are discussed below. As is 
common practice, we need to calculate the prob- 
abilities for a word sequence for the first word's 
name class and every other word differently since 
we have no initial name-class to make a transition 
from. Accordingly we use the following equation 
to calculate the initial name class probability, 

Pr(NC~[ < Wf~,t  , Flli,,~ > ) =  
aof(NC$,,s,[ < Wf,,, , ,Ffi,,t  > ) +  
o~f(gcs~,,,I < -,Ff~,,, >) + 
a~f(NCfi,.,,) (i) 

and for all other words and their name classes 
as follows: 

Fr(NCT~ I < Wt,Ft > , <  W~-,,Ft-, >,NC~-i) = 
Aof(NGtl < W~,F~ > , <  Wt-,,Ft-1 >,NG~-,)  + 
Alf(NCtI < .,F~ > , <  W~-I,F~-i > , N C ~ - i ) +  
A2f(NC~I < W,,F~ >, < .. F,-, >,NCt-x) + 
AsI(NG, I < .,Ft >,< _, F~-, >,NG,-,)+ 
A4f(NC, INC,-,) + 
Asf(NC,) (2) 

where f(I)  is calculated with maximum- 
likelihood estimates from counts on training data. 

In our current system we set the constants Ai 
and al  by hand and let ~ ai  = 1.0, ~ Ai = 1.0, 
ao _> a l  > ~ ,  ~o >_ A , . . .  >_ As. The cur- 
rent name-class NCt  is conditioned on the cur- 
rent word and feature, the previous name-class, 
NCt-1,  and previous word and feature. 

Equations 1 and 2 implement a linear- 
interpolating HMM that  incorporates a number of 
sub-models designed to reduce the effects of data 
sparseness. 



Table 1: Word features v~ith examples 

Word Feature Example 
T w o D i g i t N ~  25 
FourDigitNumber 2000 
DigitNumber 15012 
SingleCap M 
GreekLetter alpha 
CapsAndDigits 12 
TwoCaps RalGDS 
LettersAnd.Digits p52 
InitCap Interleukin 
LowCaps kappaB 
Lowercase kinases 
Hyphon 
Backslash / 

Feature Ex. 

CloseSquare ] 
Colon 
SemiColon ; 
Percent % 
OpenParen ( 
CloseParen ) 
Comma 
FullStop . 
Determiner the 
Conjunction and 
Other *+~ 

Once the state transition probabilities have 
been calculated according to Equations 1 and 2, 
the Viterbi algorithm (Viterbi, 1967) is used to 
search the state space of possible name class as- 
signments in linear t ime to find the highest prob- 
ability path, i.e. to maximise Pr (W,  NC). The fi- 
nal stage of our algorithm that  is used after narae- 
class tagging is complete is to use a clean-up mod- 
ule called Unity. This creates a frequency list 
of words and name-classes and then re-tags the 
text using the most frequently used name class 
assigned by the HMM. We have generally found 
that  this improves F-score performance by be- 
tween 2 and 4%, both for re-tagging spuriously 
tagged words and for finding untagged words in 
unknown contexts that  had been correctly tagged 
elsewhere in the text. 

Table 1 shows the cha r~ t e r  features that  we 
used in both NEHMM and NE-DT. Our intuition 
is that such features will help the model to find 
similarities between known words tha t  were found 
in the training set and unknown words and so 
overcome the unknown word problem. 

3 C o r p o r a  

We used two corpora in our experiments repre- 
senting two popular domains in IE, molecular- 
biology (from MEDLINE) and newswire texts 
(from MUC-6). These are now described. 

3.1 M U C - 6  

The corpus for MUC-6 (MUC, 1995) contains 60 
articles, from the test corpus for the dry and for- 
malruns.  An example canbe  seenin Figure 1. We 
can see several interesting features of the domain 
such as the focus of NF.,s on people and organiza- 
tion profiles. Moreover we see that  there are many 
pre-name clue words such as "Ms." or "Rep." indi- 

cating that a Republican politician's name should 
follow. 

3.2 Biology 

In our tests in the domain of molecular-biology 
we are using abstracts available from PubMed's 
MEDLIhrE. The MEDLINE database is an online 
collection of abstracts for published journal arti- 
cles in biology and medicine and contains more 
than nine million articles. Currently we have ex- 
tracted a subset of MEDLINE based on a search 
using the keywords human AND blood cell AND 
transcription .factor yielding about 3650 abstracts. 
Of these 100 docmnents were NE tagged for our 
experiments using a human domain expert. An 
example of the annotated abstracts is shown in 
Figure 2. In contrast to MUC-6 each article is 
quite short and there are few pre-class clue words 
making the task much more like terminology iden- 
tification and classification than pure name find- 
ing. 

4 A f i r s t  a t t e m p t  a t  c o r p u s  

c o m p a r i s o n  b a s e d  o n  s i m p l e  

t o k e n  f r e q u e n c y  

A simple and intuitive approach to NE task dif- 
ficulty comparison used in some previous studies 
such as (palmer and Day, 1997) who studied cor- 
pora in six different languages, compares class to 
term-token ratios on the assumption that rarer 
classes are more difficult to acquire. The relative 
frequency counts from these ratios also give an in- 
direct measure of the granularity of a class, i.e. 
how wide it is. While this is appealing, we show 
that this approach does not necessarily give the 
best metric for comparison. 

Tables 2 and 3 show the ratio of the number of 
different words used in NEs to the total number 
of words in the NE class vocabulary. The num- 
ber of different tokens is influenced by the corpus 
size and is not a suitable index that can uniformly 
show the difficulty for different NE tasks, there- 
fore it should be normalized. Here we use words 
as tokens. A value close to zero indicates little 
variation within the class and should imply that  
the class is easier to acquire. We see tha t  the NEs 
in the biology domain seem overall to be easier 
to acquire than those in the MUC-6 domain given 
hxical variation. 

The figures in the second columns of Tables 2 
and 3 are normalized so that  all numerals are re- 
placed by a single token. I t  still seems though 
that  MUC-6 is a considerably more eheJlenging 
domain than biology. This is despite the fact that  
the ratios for ENAMEX expressions such as Date, 
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A graduate of <ENAMEX TYPE=" ORGANIZATION" >Harvard Law SChooI</ENAMEX>, Ms. 
<ENAMEX TYPE="PERSON'>Washington</ENAMEX> worked as a laywer for the corporate fi- 
nance division of the <ENAMEX TYPE='ORGANIZATION~>SEC</ENAMEX> in the late <TIMEX 
TYPE='DATE">1970s</TIMEX>. She has been a congressional staffer since <TIMEX TYPE= 
"DATE'>1979</TIMEX>. Separately, <ENAMEX TYPE='PERSON'>Clintou</ENAMEX> transi- 
tion officials said that <ENAMEX TYPE='PERSON">Frank Newman</ENAMEX>, 50, vice chairman 
and chief financial officer of <ENAMEX TYPE=" ORGANIZATION" >BankAmerica Corp.</ENAMEX>, 
is expected to be nominated as assistant <ENAMEX TYPE="ORGANIZATION~>Treasury</ENAMEX> 
secretary for domestic finance. 

Figure 1: Example sentences taken from the annotated MUC-6 NE text 

<PROTEIN>SOX-4</PROTEIN>, an <PROTEIN>Sty-like HMG box protein</PROTEIN>, is 
a transcriptional activator in <SOLrRCE.cell-type>lymphocytes</SOUl:tCE>. Previous studies in 
<SOURCE.cell-type>lymphocytes</SOUB.CE> have described two DNA-binding <PROTEIN>HMG 
bax proteins</PROTEIN>, <PROTEIN>TCF-I</PROTEIN> and <PROTEIN>LEF-I</PROTEIN>, 
with affinity for the <DNA>A/TA/TCAAAG motif</DNA> found in several <SOURCE.cell-type>T 
cell</SOUl~CE>-specific enhancers. Evaluation of cotransfection experiments in <SOURCE.cell-type>non- 
T cells</SOURCE> and the observed inactivity of an <DNA>AACAAAG concatamer</DNA> in the 
<PROTEIN>TCF-1 </PROTEIN> / <PROTEIN>LEF-1 </PROTEIN>-expressing <SOURCE.cell-line>T 
cell line BW5147</SOURCE>, led us to conclude that these two proteins did not mediate the observed 
enhancer effect. 

Figure 2: Example sentences taken from the annotated biology text 

Table 2: Frequency values for words in the MUC-6 
test corpus 

Class 
Org. 
Person 
Loc. 
Date 
Time 
Money 
Percent 
Al l  

Original 
0.28(=507 / 1783) 
0.45(=381 / 838) 
0.38(=148 / 390) 
0.23(=123 / 542) 
1.00(= 3 / 3) 
0.33(=138 / 423) 
0.39(= 42 / 108) 
0.33(=1342/4087) 

Table 3: Frequency values for words in the biology 
corpus 

Norm. numerals Class Original 
0.28(=507 / 1783) DNA 0.21(=245 / 1140) 
0.45(=381 / 838) Protein 0.15(=631 / 4125) 
0.38(=148 / 390) RNA 0.43(= 30 / 70) 
0.11(= 60 / 542) Source 0.16(=248 / 1533) 
1.00(= 3 / 3) All 0.17(=1'154/6868) 
0.05(= 20 / 423) 
0.03(= 3 / 108) 
0.27(=1122/4087) 

Money and Percent all fall significantly. Expres- 
sions in the Time class are so rare however that  it  
is d i~cul t  to make any sort of meaningftfl compar- 
ison. In the biology corpus, the ratios are not sig- 
nificantly changed and the NE classes defined for 
biology documents seem to have the same chuj-- 
acteristics as non-numeric ENAMEX classes in 
MUCC-6 documents. 

Comparing between the biology documents and 
the MUC-6 documents, we may say that  identify- 
ing entities in biology docmnents is easier than 
identifying ENAMEX entities in MUC-6 docu- 
ments. 

5 E x p e r i m e n t s  

We evaluated the performance of our two systems 
using a cross validation method. For the MUC- 
6 corpus, 6-fold cross validation was performed 
on the 60 texts and 5-fold cross validation was 
performed for the 100 texts in the biology corpus. 

Norm. numerals 
0.20(=228 / 1140) 
0.13(=540 / 4125) 
0.43(= 30 / 70) 
0.16(=242 / 1833). 
0.15(=I040/6868) 

We use "F-scores ~ for evaluation of our experi- 
ments (Van Rijsbergen, 1979). "F-score" is a mea- 
surement combining "Recall" and "Predsion" and 
defined in Equation 3. "Recall" is the percent- 
age of answers proposed by the system that  corre- 
spond to those in the human-made key set. "Pre- 
cision" is the percentage of correct answers among 
the answers proposed by the system. The F-scores 
presented here are automatically calculated using 
a scoring program (Chinchor, 1995). 

2 x Precision x Recall 
F-score = Precision + Recall (3) 

In Table 4 we show the actual performance 
of our term recognition systems, NE-DT and 
NEHMM. We can see tha t  corpus comparisons 
based only on class-token ratios are inadequate to 
explain why both systems' performance was about 
the same in both domains or why NEHMM did 
better in both test corpora than NE-DT. The dif- 
ference in performance is despite there being more 
training examples in biology (3301 NEs) than in 
MUC-6 (2182 NEs). Part of the reason for this is 
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Table 4: Performance of the NE systems 

NEHMM with Unity 7&4 75.0 
NEHMM w/o Unity 74.2: 73.1 
NE-DT 68:~-" 69.4 

that the class-token ratios ignore individual sys- 
tem knowledge, i.e. the types of features that 
can be captured and useful in the corpus domain. 
Among other considerations they also fail to con- 
sider the overlap of words and features between 
classes in the same corpus domain. 

6 C o r p u s  c o m p a r i s o n  b a s e d  o n  
i n f o r m a t i o n  t h e o r e t i c a l  m e a s u r e s  

In this section we attempt to present measures 
that overcome some of the limitations of the class- 
token method. We evaluate tbe contribution from 
each feature used in our NE recognition systems 
by calculating its entropy. There are t h e e  types of 
feature information used by our two systems: lexo 
ical information, character type information, and 
part-of-speech information. 

The entropy for NE classes H(C) is defined by 

= - E p(c) log 2 p(c) H(C) 
c E C  

where: 
n(O 

p(c) = "N  

n(c): the number of words in class c 

N: the total number of words in text 

We can calculate the entropy for features in the 
same way. 

When a feature F is given, the conditional en- 
tropy for NE classes H(CIF) is defined by 

- ~ ~ p(~, f) logs p(cll) H(C]F) 
cEC f E F  

where: 

p(c, I) = .(c, I) 
N 

n(c, I) p(cll) = n(l) 

n(c, f ) :  the number of words in class c 

with the feature value f 

n( / ) :  the number of words 

with the feature value f 

Using these entropies, we can calculate infor- 
mation gain (Breiman et al., 1984) and gain ra- 
tio (Quinlan, 1990). Information gain for NE 
classes and a feature I(C; F) is given as follows: 

I(C; F) = H(C) - H(CIF ) 

The information gain I(C; F) shows how the fea- 
ture F is related with NE classes C. When F is 
completely independent of C, the value of I(C; F) 
becomes the minimum value O. The maximum 
value of I(C;_F) is equivalent to that of H(C),  
when the feature F gives sufficient information to 
recognize named entities. Information gain can 
also be calculated by: 

I (C;  F)  = H(C) + H(F) - H(C, F) 

We show the values of the above three entropies 
in Table 5,6, and 7. In these tables, F is replaced 
with single letters which represent each of the 
model's features, i.e. character types (T), part- 
of-speech (P), and hxical information (W). 

Gain ratio is the normalized value of in.forma- 
tion gain. The gain ratio GR(C; F) is defined by 

GR(C; F) = I(C; F) 
H(C) 

The range of the gain ratio GR(C; F) is 0 < 
GR(C; F) _~ 1 even when the class entropy is 
different in various corpora, so we can compare 
the values directly in the different NE recognition 
tasks. 

6.1 Character types 

Character type features are used to identify 
named entities in the MUCC-6 and biology corpus. 
However, the distribution of the character types 
are quite different between these two types of doc- 
uments as we can see in Table 5. We see through 
the gain-ratio score that character type informa- 
tion has a greater predictive power for classes in 
MUC~ than biology due to the higher entropy 
of character type and class sequences in the bi- 
ology corpus, i.e. the greater disorder of this in- 
formation. The result partially shows why iden- 
tification and classification is harder in biological 
documents than in newspaper articles such as the 
MUC-6 corpus. 

6 . 2  Par t -o f - speech  

Table 6 shows the entropy scores for part-of- 
speech (POS) sequences in the two corpora. We 
see through the gain ratio scores that POS infor- 
mation is not so powerful for acquiring NEs in the 
biology domain compared to the MUC-6 domain. 
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Table 5: Values of Entropy for character type 

Entropy MUC-6 Biology 
H(T) [[ 1.880 2.013 
H(C) II 0.890 1.264 
H(C,T) II 2.345 2.974 
I(C;T) [I .0.425 0.302 
GR(C;T) H 0.478 0.239 

Table 6: Values of Entropy for POSs 

Entropy MUC-6 Biology 
"H(P) 4.287 4.037 
H(C) 0.890 1.264 
H(C,P) 4.750 5.029 
I(C;P) 0.426 0.272 
GR(C;P) 0.479 0.216 

In fact POS information for biology is far less use- 
ful than character information when we compare 
the results in Tables 5 and 6, whereas POS has 
about the same predictive power as character in- 
formation in the MUC-6 domain. One likely ex- 
planation for this is that  the POS tagger we use in 
NE-DT is trained on a corpus based on newspaper 
articles, therefore the assigned POS tags are often 
incorrect in biology documents. 

6.3 Lexical information 

Table 7 shows the entropy statistics for the two 
domains. Although entropy for words in biology 
is lower than MUC-6, the entropy for classes is 
higher leading to a lower gain ratio in biology. We 
also note that,  as we would expect, in comparison 
to the other two types of knowledge, surface word 
forms are by far the most useful type of knowledge 
with a gain ratio in MUC-6 of 0.897 compared to 
0.479 for POS and 0.478 for character types in the 
same domain. However, such knowledge is also 
the least generalizable and runs the risk of data- 
sparseness. It therefore has to be complemented 
by more generalizable knowledge such as character 
features and POS. 

Table 7: Values of Entropy for words 

--Entropy MUC-6 Biology 
H(W) 9.570 8.89O 
H(C) 0.890 1.264 
H(C,W) 9.662 9.232 
I(C;W) 0.798 0.921 

~R(C;W) 0.897 0.729 

Table 8: Values of Entropy for NEHMM features 
in the MUC-6 corpus 

GR 
0.994 
0.898 
0.967 
0.798 
0.340 
0.806 
0.461 
0.558 
0.221 
0.806 
0.563 
0.971 
0.633 

Cross Entropy 
5.38(4.08-9.68) 
7.69(6.97-9.32) 
7.73(7.07-9.30) 
4.38(4.12-.-4.82) 
1.62(1.32-1.90) 
7.65(7.11-8.65) 
2.64(2.41-2.97) 
7.91(7.25--8.99) 
2.94(2.70-3.25) 
7.65(7.11-6.65) 
7.92(7.26-9.03) 
5.42(4.10-9.70) 
4.18(3.91-4.60) 

Coverage 
o.44(o.34-o.78) 
O. 77(0.72-0.90) 
0.79(0.73-0.90) 
0.99(0.98-1.00) 
L00(1.00-L00) 
0.65(0.81-0.93) 
1.00(0.99-1.00) 
0.83(0.79-0.92) 
1.00(1.00-1.00) 
0.85(0.81,-0.93) 
0.83(0.79-0.92) 
0.44 (0.34-O.75) 
0.99(0.99--1.00) 

Features. 
for A0 
for Al 
for A2 
for As 
Ct-1 
Wt 
Ft 
Wt-I 
F~-x 
Wt Fz 
W~-l F=-i 
Wt-l,~ 
F~-Lt 

Table 
in the biology corpus 

GR Cross Entropy 
0.977 5.83(5.66-6.14) 
0.793 7.93(7.77-8.08) 
0.929 7.79(7.65-7.85) 
0.643 5.07(4.95-5.21) 
0.315 2.26(2.24--2.28) 
0.694 7.64(7.52-7.78) 
0.257 3.12(3.06--3.19) 
0.423 7.99(7.62-8.08) 
0.093 3.33(3.27-3,43) 
0.694 7.64(7.52-7.78) 
0.424 7.98(7.82-8.04) 
0.904 5.96(5.78-6.24) 
0.339 4.66(4.53-4,78) 

9: Values of Entropy for NEHMM features 

Coverage 
0.49(0.48--0.52) 
o.6o(o.79-o.61) 
o.so(o.70-o.81) 
0.98(0.98-0.98) 
1.00(1.00-I.00) 
0.89(0.87-0.89) 
1.oo(1.OO-l.OO) 
0.87(0.86-0.88) 
1.00(1.00-1.00) 
0.89(0.87-0,89) 
o.87(0.85-0.86) 
0.50(0.49-0.52) 
0.99(0.98-0.99) 

Features 
for ~to 
for A1 
for ~t2 
for As 
Ct- I 
W= 
Fe 

Wt Ft 
Wt-1  F,-z 
Wz-l,t  
F~-l,t 

6.4 Comparison between the 
comblnutlon of features 

In this section we show a comparison of gain ra- 
tio for the features used by both systems in each 
corpus. Values of gain ratio for each feature set 
are shown on the 'GR' column in Tables 8, 9, 10 
and 111. The values of GR show that surface 
words have the best contribution in both corpora 
for both systems. We can see that gain ratio for 
all features in NE-DT is actually lower than the 
top level model for NEHMM in biology, reflecting 
the actual system performance that we observed. 

We also see that in the biology corpus, the com- 
bination of all features in NE-DT has a lower con- 
tribution than in the MUC-6 corpus. This indi- 
cates the limitation of the current feature set for 
the biology corpus and shows that we need to uti- 
lize other types of features in this domain. 

Values for cross entropy between training and 
test sets are shown in Tables 8, 9, 10 and 11 to- 

IOn the 'Features' col, mn~ "(Features) for A#" 
means the features used in each HMM sub- 
model which corresponds with the A# in Eclua- 
tion 2. And also, 'ALL' in Tables 10 and 11 
means all the features used in decision tree, i.e. 
{P~-l,~,,+l,F~-l,t,t+l,W,-1,~,~+l). 



Table 10: Values of Entropy for NE-DT features 
in the MUC-6 corpus 

0.G91~8 ! Cross Entropy 
1.59(1.38-1.77) 

0.402 5.22(5.09..-5.32) 
0.4681 2.66(2.51-2.87) 
0.844 7.36(7.19-7.57) 
0.670 7.89(7.81-7.97) 
0.6691 3.87(3.67-4.07) 
0.977 4.42(4.10-4.88) 
0.822 9.25(9.10-9.40) 
0.807 4.92(4.72-5.08) 
0.998 1.89(1.67-2.16) 

Coverage 
0.12(0.10-0.13) 
1.00(0.99-:t.00) 
L00(0.99-1.00) 
o.81(o.8o~.83) 
0.98(0.96--0.98) 
0.99(0.98-1.00) 
0.36(0.34--0.40) 
0.89(0.87~0.91) 
0.96(0.95--0.96) 
0.15(0.13-9.17) 

Features 
ALL 
Pt 
Ft 
Wt 
Pt-l,$ 
F t - l . t  
Wt--l,t 
Pt- l , t , t+l  
F¢-1.:.~+1 
W~-l.t .t+l 

Table 11: Values of Entropy for NE-DT features 
in the biology corpus 

GR Cross Entropy 
0.937 2.31(2.00-2.50) 
0.23"/ 5.31(5.21-5.38) 
0.262 3.27(3.14-3.41) 
0.416 7.63(7.50-7.79) 
0.370 7.78(7.69.-7.86) 
0.363 4.57(4.38-4.67) 
0.586 5.71(5.37-5.93) 
0.541 8.92(8.82-9.02) 
0.502 5.46(5.26-5.64) 
0.764 2.56(2.25-2.76) 

Coverage Features 
0.18(0.15-0.19) ALL 
1.00(0.99-1.00) P,  
1.00(1.00-1.00) Ft 
0.87(0.85--0.68) wt 
0.97(0.96-0.97) P~-a.= 
0.98(0.98-.0.99) F~-I,~ 
0.48(0.45--0.50) Wt -  s,~ 
0.88(0.87--0.89) Pt-x.~t.t +a 
0.96(0.94--0,96) Ft-l.t.~+a 
0.20(0.17--0.21) Wt_L¢,t+t 

gether with error bounds in parentheses. These 
values are calculated for pairs of an NE class and 
features, and averaged for the n-fold experiments. 
In the MUC-6 corpus, 60 texts are separated into 
6 subsets, and one of them is used as the test set 
and the others are put together to form a train- 
ing set. Similarly, 100 texts are separated into 5 
subsets in the biology corpus. We also show the 
coverage of the pairs on the 'Coverage' col,,mn. 
Coverage means that  how many pairs which ap- 
peared in a test set also appear in a trainlug set. 

In these columns, the greater the cross entropy 
between features and a class, the more different 
their occurrences between tr~iuing and test sets. 
On the other hand, as the coverage for class- 
features pairs increases, so does the par t  of the 
test set that  is covered with the given feature set. 

The results in both corpora for both  systems 
show a drawback of surface words, since their cov- 
erage for a test set is lower than that  of features 
like POSs and character types in both corpora  
Also, the coverage of surface words in the biol- 
ogy corpus is higher than in the MUC6 corpus 
as opposed to other features. The result matches 
our intuition that  vocabulary in the biology corpus 
is relatively restricted but  has a variety of types 
other than normal English words. 

7 C o n c l u s i o n  

The need for soundly-motivated metrics to com- 
pare the usefulness of corpora for specific tasks 

and systems is dear ly  necessary for the develop- 
ment of robust and portable information extrac- 
tion systems. 

In this paper we have shown that  measures for 
comparing corpora based just  on class-token ratios 
have difficulty predicting system performance and 
cannot adequately explain the difficulty of the NE 
task either generally or for specific systems. 

While we should be cautious in m a ~ n g  sweep- 
ing conclusions due to the small size of corpora in 
our study, our results from gain rat io and cross 
entropy indicate tha t  counts from the features of 
both  systems will be more useful in the MUC6 cor- 
pus than in the biology corpus. We can also see 
that  while the coverage is limited, surface words 
play a leading role for both systems. Gain ra- 
tio statistics for surface words in the two domains 
were far closer than for any other type of feature, 
and given that  this is also the dominant knowl- 
edge type this seems to be one likely reason that  
the performance of systems is about the same in 
both  domains. 

We have presented the results of applying two 
supervised learning based models to the named 
entity task in two widely different domains and 
explained the performance through class-token ra- 
tios, entropy and gain ratio. Measures such as 
entropy and gain ratio have been found to have 
the best predictive power, although the features 
used to calculate gain ratio are not sufficient to 
describe all the information that  is necessary for 
the named entity task. In future work we intend 
to extend our study to  new and larger NE corpora 
in various domains and to try to reduce the error 
factor in our calculations that  is a result of corpus 
size. 
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