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A b s t r a c t  

We present ongoing work on prosody predic- 
tion for speech synthesis. This approach con- 
siders sentences as tree structures and infers 
the prosody from a corpus of such structures 
using machine learning techniques. The predic- 
tion is achieved from the prosody of the closest 
sentence of the corpus through tree similarity 
measurements, using either the nearest neigh- 
bour algorithm or an analogy-based approach. 
We introduce two different tree structure rep- 
resentations, the tree similarity metrics consid- 
ered, and then we discuss the different predic- 
tion methods. Experiments are currently under 
process to qualify this approach. 

1 I n t r o d u c t i o n  

Natural prosody production remains a problem 
in speech synthesis systems. Several automatic 
prediction methods have already been tried for 
this, including decision trees (Ross, 1995), neu- 
ral networks (Traber, 1992), and HMMs (Jensen 
et al., 1994). The original aspect of our pre- 
diction approach is a tree structure representa- 
tion of sentences, and the use of tree similar- 
ity measurements to achieve the prosody pre- 
diction. We think that  reasoning on a whole 
structure rather than on local features of a sen- 
tence should better reflect the many relations 
influencing the prosody. This approach is an 
at tempt  to achieve such a goal. 

The data used in this work is a part of the 
Boston University Radio (WBUR) News Cor- 
pus (Ostendorfet  al., 1995). The prosodic infor- 
mation consists of ToBI labeling of accents and 
breaks (Silverman et al., 1992). The syntactic 
and part-of-speech informations were obtained 

from the part  of the corpus processed in the 
Penn Treebank project (Marcus et al., 1993). 

We firstly describe the tree structures defined 
for this work, then present the tree metrics that  
we are using, and finally discuss how they are 
manipulated to achieve the prosody prediction. 

2 T r e e  S t r u c t u r e s  

So far we have considered two types of struc- 
tures in this work: a simple syntactic structure 
and a performance structure (Gee and Grosjean, 
1983). Their comparison in use should provide 
some interesting knowledge about the usefulness 
or the limitations of the elements of information 
included in each one. 

2.1 Syntactic Structure 

The syntactic structure considered is built ex- 
clusively from the syntactic parsing of the given 
sentences. This parsing, with the relative syn- 
tactic tags, constitute the backbone of the struc- 
ture. Below this structure lie the words of the 
sentence, with their part-of-speech tags. Addi- 
tional levels of nodes can be added deeper in 
the structure to represent the syllables of each 
word, and the phonemes of each syllable. 

The syntactic structure corresponding to the 
sentence "Hennessy will be a hard act to follow" 
is presented in Figure 1 as an example (the syl- 
lable level has been omit ted for clarity). 

2.2 P e r f o r m a n c e  Structure 

The performance structure used in our approach 
is a combination of syntactic and phonological 
informations. Its upper part is a binary tree 
where each node represents a break between the 
two parts of the sentence contained into the sub- 
trees of the node. This binary structure defines 
a hierarchy: the closer to the root the node is, 
the more salient (or stronger) the break is. 
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S 

Hennessy [NNP] a [ D ~ j j ]  act ~ 

I 
vP 

to [ T O ~ o w  [VB] 

Figure 1: Syntactic structure for the sentence 
"Hennessy will be a hard act to follow". (Syn- 
tactic labels: S: simple declarative clause, NP: 
noun phrase, VP: verb phrase. Part-of-speech 
labels: NNP: proper noun, MD: modal, VB: 
base form verb, DT: determiner, J J: adjective, 
NN: singular noun, TO: special label for "to"). 

The lower part  represents the phonological 
phrases into which the whole sentence is divided 
by the binary structure, and uses the same rep- 
resentation levels as in the syntactic structure. 
The only difference comes from a simplification 
performed by joining the words into phonolog- 
ical words (composed of one content word - 
noun, adjective, verb or adverb - and of the 
surrounding function words). Each phonologi- 
cal phrase is labeled with a syntactic category 
(the main one), and no break is supposed to 
occur inside. 

A possible performance structure for the same 
example: "Hennessy will be a hard act to fol- 
low" is shown in Figure 2. 

I 
Hennessy [NNP] P ~ N P  

I 
will be [VB] a hard[J J] act [NNI 

Figure 2: Performance structure for the sen- 
tence "Hennessy will be a hard act to follow". 
The syntactic and part-of-speech labels have the 
same meaning as in Figure 1. B1, B2 and B3 
are the break-related nodes. 

Unlike the syntactic structure, a first step of 
prediction is done in the performance structure 
with the break values. This prosody informa- 
tion is known for the sentences in the corpus, 
but has to be predicted for new ones (to put  

our system in a full synthesis context where 
no prosodic value is available). The currently 
used method (Bachenko and Fitzpatrick, 1990) 
provides rules to infer a default phrasing for 
a sentence. Not only the effects of this esti- 
mation will have to be quantified, but we plan 
to develop a more accurate solution to predict 
this structure accordingly to any corpus speaker 
characteristics. 

3 T r e e  M e t r i c s  

Now that the tree structures are defined, we 
need the tools to predict the prosody. We have 
considered two similarity metrics to calculate 
the "distance" between two tree structures, in- 
spired from the Wagner and Fisher's editing dis- 
tance (Wagner and Fisher, 1974). 

3.1 P r i n c i p l e s  

Introducing a small set of elementary transfor- 
mation operators upon trees (insertion or dele- 
tion of a node, subst i tut ion of a node by an- 
other one) it is possible to determine a set of 
specific operation sequences that  transform any 
given tree into another one. Specifying costs 
for each elementary operation (possibly a func- 
tion of the node values) allows the evaluation 
of a whole transformation cost by adding the 
operation costs in the sequence. Therefore the 
tree distance can be defined as the cost of the 
sequence minimizing this sum. 

3.2 C o n s i d e r e d  M e t r i c s  

Many metrics can be defined from this princi- 
ple. The differences come from the application 
conditions which can be set on the operators. In 
our experiments, two metrics are tested. They 
both preserve the order of the nodes in the trees, 
an essential condition in our application. 

The first one (Selkow, 1977) allows only sub- 
stitutions between nodes at the same depth level 
in the trees. Moreover, the insertion or deletion 
of a node involves respectively the insertion or 
deletion of the whole subtree depending of the 
node. These strict conditions should be able to 
locate very close structures. 

The other one (Zhang, 1995) allows the sub- 
stitutions of nodes whatever theirs locations are 
inside the structures. It also allows the insertion 
or deletion of lonely nodes inside the structures. 
Compared to the previous metric, these less rig- 
orous stipulations should not only retrieve the 
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very close structures,  but  also other ones which 
wouldn't  have been found. 

Moreover, these two algorithms also provide 
a mapping between the nodes of the trees. This 
mapping illustrates the operations which led to 
the final distance value: the parts of the trees 
which were inserted or deleted, and the ones 
which were subst i tuted or unchanged. 

3.3 Operat ion  Costs  

As exposed in section 3.1, a tree is "close" to 
another one because of the definition of the op- 
erators costs. In this work, they have been set 
to allow the only comparison of nodes of same 
structural  nature  (break-related nodes together, 
syllable-related nodes together...), and to repre- 
sent the linguistic "similarity" between compa- 
rable elements (to set that  an adjective may be 
"closer" to a noun than to a determiner.. .).  

These operation costs are currently manually 
set. To decide on the scale of values to affect 
is not an easy task, and it needs some human 
expertise. One possibility would be to further 
automate  the process for setting these values. 

4 P r o s o d y  P r e d i c t i o n  

The tree representations and the metrics can 
now be used to predict the prosody of a sen- 
tence. 

4.1 Neares t  Ne ighbour  Predic t ion  
The simple method that  we have firstly used is 
the nearest neighbour algorithm: given a new 
sentence, the closest match among the corpus 
of sentences of known prosody is retrieved and 
used to infer the prosody of the new sentence. 
The mapping from the tree distance computa- 
tions can be used to give a simple way to know 
where to apply the prosody of one sentence onto 
the other one, from the words linked inside. 

Unfortunately, this process may not be as 
easy. The ideal mapping would be that  each 
word of the new sentence had a corresponding 
word in the other sentence. Hopeless, the two 
sentences may not be as closed as desired, and 
some words may have been inserted or deleted. 
To decide on the prosody for these unlinked 
parts is a problem. 

4.2 Ana logy-Based  Predic t ion  
A potential way to improve the prediction is 
based on analogy. The previous mapping be- 

tween the two structures defines a tree transfor- 
mation. The idea of this approach is based on 
the knowledge brought by other pairs of struc- 
tures from the corpus sharing the same trans- 
formation. 

This approach can be connected to the ana- 
logical framework defined by Pirrelli and Yvon, 
where inference processes are presented for sym- 
bolic and string values by the mean of two no- 
tions: the analogical proportion, and the ana- 
logical transfer (Pirrelli and Yvon, 1999). 

Concerning our problem, and given three 
known tree structures T1, T2, T3 and a new one 
T I, an analogical proportion would be expressed 
as: T1 is to T2 as T3 is to T ~ if and only if the set 
of operations transforming T1 into T2 is equiva- 
lent to the one transforming T3 into T I, accord- 
ingly to a specific tree metric. There are various 
levels for defining this t ransformation equiva- 
lence. A strict identity would be for instance 
the insertion of the same structure at the same 
place, representing the same word (and having 
the same syntactic function in the sentence). A 
less strict equivalence could be the insertion of 
a different word having the same number of syl- 
lables. Weaker and weaker conditions can be 
set. As a consequence, these different possibili- 
ties have to be tested accordingly to the amount 
of diversity in the corpus to prove the efficiency 
of this equivalence. 

Next, the analogical transfer would be to ap- 
ply on the phrase described by T3 the prosody 
transformation defined between T1 and T2 as to 
get the prosody of the phrase of T ~. The for- 
malization of this prosody transfer is still under 
development. 

From these two notions, the analogical infer- 
ence would be therefore defined as: 

• firstly, to retrieve all analogical proportions 
involving T ~ and three known structures in 
the corpus; 

• secondly, to compute  the analogical trans- 
fer for each 3-tuple of known structures, 
and to store its result in a set of possible 
outputs  if the transfer succeeds. 

This analogical inference as described above 
may be a long task in the retrieval of every 3- 
tuple of known structures since a tree trans- 
formation can be defined between any pair of 
them. For very dissimilar structures, the set of 
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operations would be very complex and uneasy 
to employ. A first way to improve this search 
is to keep the s tructure resulting of the near- 
est neighbour computat ion as T3. The trans- 
formation between T t and T3 should be one of 
the simplest (accordingly to the operations cost; 
see section 3.3), and then the search would be 
limited to the retrieval of a pair (T1,T2) sharing 
an equivalent transformation.  However, this is 
still t ime-consuming, and we are trying to de- 
fine a general way to limit the search in such a 
tree s tructure space, for example based on tree 
indexing for efficiency (Daelemans et al., 1997). 

5 F i r s t  R e s u l t s  

Because of the uncompleted development of 
this approach, most experiments are still under 
progress. So far they were run to find the clos- 
est match of held-out corpus sentences using the 
syntactic s t ructure and the performance struc- 
ture, for each of the distance metrics. We are 
using bo th  the "actual" and est imated perfor- 
mance structures to quantify the effects of this 
estimation. Cross-validation tests have been 
chosen to validate our method.  

These experiments are not all complete, but  
an initial analysis of the results doesn' t  seem to 
show many differences between the tree metrics 
considered. We believe that  this is due to the 
small size of the corpus we are using. With  only 
around 300 sentences, most s tructures are very 
different, so the major i ty  of pairwise compar- 
isons should be  very distant. We are currently 
running experiments where the tree structures 
are generated at the phrase level. This strat- 
egy implies to adapt  the tree metrics to take 
into consideration the location of the phrases in 
the sentences (two similar structures should be 
privileged if they have the same location in their 
respective sentences). 

6 C o n c l u s i o n  

We have presented a new prosody prediction 
method.  Its original aspect  is to consider sen- 
tences as tree structures.  Tree similarity metrics 
and analogy-based learning in a corpus of such 
structures are used to predict the prosody of a 
new sentence. Further  experiments are needed 
to validate this approach. 

An additional development of our method 
would be the introduction of focus labels. In 

a dialogue context, some extra  information can 
refine the intonation. Wi th  the tree structures 
that  we are using, it is easy to introduce spe- 
cial markers upon the nodes of the structure. 
According to their nature and location, they 
can indicate some focus either on a word, on a 
phrase or on a whole sentence. Wi th  the adap- 
tat ion of the tree metrics, the prediction process 
is kept unchanged. 
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