
A string-to-graph constructive alignment algorithm for discrete and
probabilistic language modeling

Andrei Shcherbakov Ekaterina Vylomova
The University of Melbourne

Parkville, Victoria 3010, Australia
andreas@softwareengineer.pro evylomova@gmail.com

Abstract

We propose a novel algorithm of graph-to-
string alignment that constructs automata from
a sample of string sequences. While being a
variant of global edit distance, the algorithm
also employs graph construction operations in
order to form an optimal alignment. It al-
lows dynamic insertion of edges and nodes
driven by optimization of the best string-to-
graph alignment score. The algorithm may be
used both to derive discrete non-deterministic
acceptor (or a regular expression) and to build
a probabilistic generative model of an input
language. An outstanding ability to produce
accurate approximate models from extremely
sparse training sets constitutes the main advan-
tage of the technique.

1 Introduction

Tasks such as text generation or language mod-
elling might require approximate string matching.
Often the models are trained on a set of match-
ing samples (sometimes augmented with mis-
matching, or negative, samples). In most cases,
they rely on extrinsic metrics (n-gram similarity
(Kondrak, 2005), perplexity (Jelinek et al., 1977),
Kolmogorov (Li and Vitányi, 2013) or cognitive
(Rogers et al., 2013) complexities, Levenshtein
distance (Levenshtein, 1966)). An objective func-
tion may not directly correspond to any formally
proven or intuitively observable reasonable goal.
In current paper, we attempt to combine struc-
ture awareness of graph-based models with sim-
plicity of similarity-based approaches. We train
a graph-based model that minimizes modified re-
current edit distance1 between each training sam-
ple and the path in the graph closest to it. As a
graph-based model we propose to use a weighted
non-deterministic finite state acceptor (WFSA) to

1Here “recurrent” means that a path may contain loops.

enable a compact representation of learned se-
quences as well as to allow alternations and rep-
etitions of substrings. The approach we consider
in the paper is essentially based on the hypoth-
esis that sequences that are likely to appear in
a language normally form dense clusters around
some basic patterns. In other words, the sequences
are characterized by relatively low edit distance
to some cluster centroid. The proposed tech-
nique handles both branching and looping of sub-
sequences in a consistent way. As a result, pattern
generalization may be carried out without any ex-
tra pre- or post-processing.2

2 Architecture

We first provide a set of positive (and, option-
ally, negative) string samples in order to build
a weighted acceptor (WFSA). The training pro-
cedure runs as follows. Initially, the acceptor
only contains unconnected start and finish (accept-
ing) nodes. At each training iteration we com-
pute the best possible alignments between the ac-
ceptor and a given sample string using Smith–
Waterman (Smith et al., 1981) alignment search
procedure with the following major differences.
First, it allows virtually any automaton edge (even
non-existent ones) to be considered for alignment
paths.3 In such a way, it enables new candidate
edges that should be built in order to improve fit to
a given sample. Second, it speculates on prospec-
tive new states of acceptor, one per sample string
character. Each string sample y is processed in the
following two phases during training.
Phase 1 - counting alignment scores and build-
ing a temporary transducer. We construct a ma-

2 The code is available at http://regexus.com/jumpalign ,
https://github.com/andreas-softwareengineer-pro/jumpalign

3Contrary to it, Smith–Waterman algorithm effectively
considers both string operands as unmodifiable linear-shaped
automata

compositional
WFST edge a b c c

WFST projection states for

prospective automaton
state (+bonus!)

existing
automaton state

Teleportation
(fixed cost)

the automaton
built up to now

prospective
automaton state

e:2,
a:3

c:1 c:6

b:2 c:1

b:1, c:1

a:1,
d:1

$:7

$

Figure 1: A single acceptor-to-string alignment step.

trix of best partial alignment scores Si,j , where n
is number of existing WFSA states, i ∈ {0..n +
|y|} is existing or prospective state of accep-
tor, and j ∈ {1..|y|} is sample string position.
For each j we consider all n existing automaton
states augmented with one new (prospective) state
“number” n + j. In order to assign candidate
scores for Si,j cell, we transfer scores from S∗,j−1
cells in two ways: (1) using existing WFSA edges
that match the yj character,4 applying respective
edge weights as increments; or (2) using virtual
“teleport” edges that might be added between any
pair of states, with a fixed teleport penalty T :5

Si,j = max

{ max
k

Sk,j−1 − T

max
k:∃k

yj−→i

(Sk,j−1 + w(k
yj−→ i))

(1)
where yj is the jth character of the sample string
y; k

yj−→ i is WFSA edge from state k to state i la-
belled with yj character; w(k

yj−→ i) is its weight.
Indeed, we build a transient weighted finite-

state transducer (WFST) which translates the ac-
ceptor into the sample string. Each transducer
state si,j maps into the respective Si,j score. In
order to reduce complexity, we upper bound the
number of incoming edges to each WFST state
by a constant hyperparameter K, only creating
WFST edges that yield best candidate scores to a
given Si,j according to Eq. 1. Other potential in-

4We track a modifiable character 7→ weight map for
every edge

5Technically, for the sake of efficiency, one may handle
the matrix as a sparse one, assuming the default score of any
missing (i, j) element to be maxk Sk,j−1 − T .

coming edges are ignored, if any. In Fig. 1, WFST
edges that would be built at infinitely great K but
rejected at K = 2 as not yielding competitive
scores, are given in dashed line.

For each j we create a new candidate transducer
state sn+j,j that is only “accessible” from s∗,j−1
by teleportation and apply a fixed bonus B to its
score: Sn+j,j = maxk Sk,j−1 + B. Such a state
(shown in yellow color in Fig. 1) may further be
either mapped to a newly created state of the ac-
ceptor or deleted if it fails to improve the result-
ing alignment score. The bonus encourages initial
endorsement of newly hypothesized states, which
otherwise wouldn’t have competitive scores.
Phase 2 - endorsement. After calculation of
all Si,j scores, we trace paths of alignment from
Saccepting,|y| back to Sstart,0. We endorse all
WFSA edges laying at WFST-to-WFSA projec-
tions of those optimal and near-optimal paths. En-
dorsement here means increasing weight of an ex-
isting or prospective WFSA edge k

yj−→ i by an
amount of φ(k

yj−→ i), which is endorsement flow
trough the WFST edge sk,j 7→ si,j−1 that maps

back to k
yj−→ i at some j. If multiple WFST

edges map to a single k
yj−→ i (in a case of looped

path), the latter receives multiple endorsements.
If an edge ought to be endorsed doesn’t yet ex-
ist (which happens in case of teleportation) then
we create it just in time; such a procedure lets the
WFSA grow. Endorsement flow φ is calculated
by summing outgoing edge flows at each WFST
state and then distributing through the incoming
edges. The final (accepting) state is assumed to
receive constant endorsement flow R from outside

which is then distributed to all states using a dy-
namic programming procedure. R plays part of
learning rate. Choosing a reasonably low value
for it (0.1B) helps one to alleviate bias caused by
a particular order of sample learning.

The distribution of flow over incoming edges of
a given state s is determined by the softmax:6

φ(e) =
exp (−L(e))∑

v∈Vs

exp (−L(v))
∑
u∈Us

φ(u) (2)

where {Vs} and {Us} are sets of incoming and
outgoing edges, respectively, for some state s;
e ∈ Vs; L(e) is edge loss which is calculated as
difference between the respective Si,j score for s
and a candidate score brought to it by e edge.

For negative training samples, we apply a
similar procedure (disendorsement) with negative
amounts of flow. The endorsement/disendorse-
ment procedure described above keeps the sum
of incoming edge weights and the sum of outgo-
ing edge weights equal for any given WFSA state.
Besides other benefits, that fact enables simple re-
alization of unbiased sampling procedure, just as
easy as random weighed selection of an edge to
proceed with.

3 Experiments

3.1 Learning a WFSA from positive samples

The approach demonstrates ability to recognize
basic branching and recurrent patterns in string
sample sets that can be used to construct regular
expressions. Fig. 2(a) illustrates an acceptor for
the following set:

12345 , 1232345 , 123232345 ,
abfg , abcdefg , abcdecdecdefg ,
123456, 123232323232323456

3.2 Contrastive learning of WFSA

We experimented with training acceptors on both
positive and negative examples. At every epoch,
for each sample, we applied a respective positive
or negative endorsement to the edges. Although
we started with a symmetrical approach by en-
dorsing proportionally to the score differences, it
made any graph prone to any reshaping neces-
sary for better fitting to a training set. Therefore,

6Minor terms below a threshold are ignored in the imple-
mentation in order to avoid excessive growth of the WFSA
and performance loss.

we found asymmetrical approach to be signifi-
cantly more efficient. For false positive matches
we randomly set a negative score to some of edges
constituting the best path of acceptor-to-sample
alignment. This leads to a permanent denial of
those edges, and alternative edges will be con-
sidered in further learning process to achieve a
high enough score for positive samples. Our ex-
periments showed that the acceptor easily learns
combinatorial rules like one that requires it to ac-
cept “aaabbb, aaaccc, dddccc” but to reject
dddbbb”. For most cases, it achieves a 100% ac-
curacy in less than 20 epochs.

3.3 Probabilistic language modeling

We created WFSAs on the basis of small samples
of vocabularies of the English (Germanic, IE) and
the Kukatja (Pama-Nyungan, Australian Aborigi-
nal) languages.7 For the latter, we reused the lin-
guistic resources introduced in Shcherbakov et al.
(2016). We generated “novel” possible words us-
ing the acceptors and measured precision of the
outputs, i.e. percentage of predicted strings that
were observed in the corresponding language dic-
tionaries. To generate a word, we traversed a path
in the weighted acceptor from its accepting state
back to the initial state, choosing an incoming
edge and a character to generate at each state. In
our experiments, the likelihood of test vocabulary
word production was comparable with the one ob-
tained in modified Kneser-Ney approach (Heafield
et al., 2013) if the training corpus size is large
enough. However, for very low-resource settings
(10 . . . 500 training words) the alignment-based
approach outperforms n-gram approaches (at the
best fixed n) in ∼ 1.2+ times. Fig. 2(b) shows
a graph trained for a random 300 words sampled
from Kukatja dictionary. Although the automaton
is quite simple, as many as 10% of its output words
hit the remaining known Kukatja vocabulary that
contains ∼ 9, 000 words.8 A larger automaton
may be built if we increase L hyperparameter, but
this choice does not lead to precision increase. In-
terestingly, a model trained on the English poem
“Humpty Dumpty” (only 18 words!) predicts real
English words with a precision above 18% which
is 1.5x greater than the best result achieved by

7Kukatja is an Australian Aboriginal language spoken by
about 300 people in Western Desert, Australia.

8Since the real vocabulary size of Kukatja is not known,
we may reasonably expect that the real precision is greater,
even exceeding one measured for English.

start

0

1:20

7

a:12

1

2:56 3:36

2

3:20

3

4:20

4

5:20

6:8

5

$:32

8

b:12

9

f:12

11

c:16

g:12 12

d:16

e:16

(a) Example in Subsection 3.1

start

0

k:12,m:28,p:20,r:4,w:28

7

n:44

9

t:40

10

p:20,y:16

j:8,k:16,m:12,p:20

1

a:332,i:204,y:12

p:16

k:40,l:88,m:20,n:8,p:20,r:20,t:20,w:44,y:4

l:12,n:8

2

r:172 n:76

l:8,p:4 63

$:200

l:8,r:76

i:20,n:20,u:24

t:12

13

r:12

g:56,p:12,t:16,y:16

g:8,p:12

j:24

j:16

u:112

14

$:12

(b) 90 words of Kukatja (paths with low weight edges were pruned)

Figure 2: Examples of the learned WFSA.

the modified Kneser-Ney model. Finally, since
finite state machines are well-known in the do-
main of morphology modeling, we additionally
explored this direction. We used short (100..1000
words) samples of CELEX English morphology
database (Baayen et al., 1995) to train an accep-
tor. We observed that common prefixed and suf-
fixes got aligned and represented compactly in a
resulting automaton structure. However, overfit-
ting to stems significantly affects its overall gen-
eralization potential that results is perplexity val-
ues comparable to ones achieved by n-gram mod-
els (Table 1).

Resource Test set Train set
(language) K=1 K=2 2gr. K=1 2gr.

Kukatja 1.79 1.77 1.66 1.9 1.63
English 2.54 2.46 2.32 2.4 2.13
CELEX 2.69 2.66 2.55 2.28 2.18

Table 1: Per-character perplexity (natural logarithms)
for acceptors trained on 300-word random subsamples
at different settings of K hyperparameter. Figures for a
bi-gram model (“2gr.”) are given for comparison.

3.4 Learning software control flow graphs

Reverse engineering of a software control flow
graph (CFG) based on samples of execution traces
is another area where the proposed constructive
alignment algorithm performs well. Experiments
with sample programs demonstrated its ability to
produce accurate estimations of CFG suitable for
analysis and verification purposes.

Consider a simple abstract program example
given in Figure 3. Suppose that each abstract ac-
tion writes a respective character to a log upon
execution. In such a way, every program run
produces an execution trace string. For instance,
given num = 1, c1 = c2 = c3 = false it will
produce a bcfefq trace. An automaton learnt
from a collection of traces obtained at different in-
puts is shown in Fig. 3. The result correctly back
engineers the program control flow graph. It may
be noted that procedure call context was properly
preserved. Indeed, two different edges labelled ‘f’
were produced for procedure f calls originating
from different points of code.

Speaking more generally, it may concern dis-

procedure f():
action f

procedure main(n, c1..3):
for k ∈ 1..n do

if c1 then
action a

else
action b

end
action c
f()
if c2 then

action d
else

action e
end
f()
if c3 then

action z
end
action q

end

start

0

a:4,b:8

1

c:20

2

f:20

3

d:4,e:16

4

f:20

z:12

5

q:20

b:8

6

$:12

Figure 3: A control flow graph inferred from a code
sample execution traces.

covering latent states of transition graph for vari-
ous natural and artificial processes (process min-
ing).

4 Discussion

The constructive alignment algorithm demon-
strated its ability to efficiently solve various kinds
of tasks when training sets are too small to employ
other options. This fact supports the hypothesis
that most of the acceptable sequences are likely to
congest within low edit distances from a relatively
sparse variety of alterable common patterns.

The method also demonstrated its advantages
over n-gram language modeling for “dense” train-
ing resources, still its higher complexity may chal-
lenge the advantages as a kind of “light” learn-
ing algorithms. The approach seem to be promis-
ing for regular expression construction since it ad-
dresses repetitions and branching in an intuitive,
uniform way of alignment alternative trade-off.

5 Related work

Tomita (1982) made an early successful attempt
to address automaton construction from sets of

positive and negative samples. Their approach
employs a global optimization over edge muta-
tions. Dupont (1994) proposed a further adap-
tation of genetic algorithms to the task of au-
tomata creation. Formalization of a regular gram-
matical inference task was also a major contri-
bution. Brauer et al. (2011) employed a feature-
based approach which constructed a query answer
that had the shortest possible description length.
Bui and Zeng-Treitler (2014) applied the Smith–
Waterman algorithm (Smith et al., 1981) over se-
quences of keys to align input positive samples.
A dedicated “primary” sample string was aligned
to all other strings and then a branching graph
was produced. The authors proposed to use a ma-
chine learning classifier to derive optimally per-
forming sequences of keys from given samples.
Recently Shcherbakov (2016) proposed to build
a regular expression acceptor by incrementally
aligning input samples to a topologically sorted
representation of the automaton. It essentially did
fuzzy alignment of characters dynamically reduc-
ing character sets to character classes at corre-
sponding score penalties.

Finally, Fernau (2009) used a simplified block-
wise alignment procedure and a dedicated gener-
alization for the loop creation. The construction
process combines generating prospective patterns
with inferring them from input samples.

6 Conclusion

We proposed an approach to language modeling
that constructs an acceptor driven by optimization
of minimum edit distance between a learning sam-
ple and a path in the automaton. We carried out
a series of preliminary experiments demonstrating
its effectiveness in four major areas of the algo-
rithm’s potential application, particularly, for low-
resource task settings.

References
R Harald Baayen, Richard Piepenbrock, and Leon Gu-

likers. 1995. The celex lexical database (release 2).
Distributed by the Linguistic Data Consortium, Uni-
versity of Pennsylvania.

Falk Brauer, Robert Rieger, Adrian Mocan, and Wo-
jciech M Barczynski. 2011. Enabling information
extraction by inference of regular expressions from
sample entities. In Proceedings of the 20th ACM
international conference on Information and knowl-
edge management, pages 1285–1294. ACM.

Duy Duc An Bui and Qing Zeng-Treitler. 2014. Learn-
ing regular expressions for clinical text classifica-
tion. Journal of the American Medical Informatics
Association, 21(5):850–857.

Pierre Dupont. 1994. Regular grammatical infer-
ence from positive and negative samples by genetic
search: the gig method. In International Collo-
quium on Grammatical Inference, pages 236–245.
Springer.

Henning Fernau. 2009. Algorithms for learning regu-
lar expressions from positive data. Information and
Computation, 207(4):521–541.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H
Clark, and Philipp Koehn. 2013. Scalable modified
kneser-ney language model estimation. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), volume 2, pages 690–696.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexitya measure of the
difficulty of speech recognition tasks. The Journal
of the Acoustical Society of America, 62(S1):S63–
S63.

Grzegorz Kondrak. 2005. N-gram similarity and dis-
tance. In International symposium on string pro-
cessing and information retrieval, pages 115–126.
Springer.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Ming Li and Paul Vitányi. 2013. An introduc-
tion to Kolmogorov complexity and its applications.
Springer Science & Business Media.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013.
Cognitive and sub-regular complexity. In Formal
grammar, pages 90–108. Springer.

Andrei Shcherbakov. 2016. A branching alignment-
based synthesis of regular expressions. In AIST
(Supplement), pages 315–328.

Andrei Shcherbakov, Ekaterina Vylomova, and Nick
Thieberger. 2016. Phonotactic modeling of ex-
tremely low resource languages. In Proceedings of
the Australasian Language Technology Association
Workshop 2016, pages 84–93.

Temple F Smith, Michael S Waterman, et al. 1981.
Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197.

Masaru Tomita. 1982. Learning of construction of fi-
nite automata from examples using hill-climbing. rr:
Regular set recognizer. Technical report, Carnegie-
Mellon University Pittsburgh, PA, Dept of Computer
Science.

