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Abstract

Transformer-based models have been popu-
lar recently and have improved performance
for many Natural Language Processing (NLP)
Tasks, including those in the biomedical field.
Previous research suggests that, when us-
ing these models, an in-domain vocabulary
is more suitable than using an open-domain
vocabulary. We investigate the effects of a
specialised in-domain vocabulary trained from
scratch on a biomedical corpus. Our research
suggests that, although the in-domain vocabu-
lary is useful, it is usually constrained by the
corpora size because these models needs to be
trained from scratch. Instead, it is more useful
to have more data, perform additional pretrain-
ing steps with a corpus-specific vocabulary.1

1 Introduction

In the natural language processing domain, there is
a requirement for a fixed-sized vocabulary during
training which could lead to Out-Of-Vocabulary
(OOV) problem (Luong et al., 2015). This prob-
lem is when the fixed vocabulary model encoun-
ters an unseen word during inference, and the
model is unable to handle it appropriately. Word-
Piece tokenisation, initially used in machine trans-
lation systems (Wu et al., 2016), has been widely
successful in addressing the OOV problem by seg-
menting unseen words into word pieces as a rep-
resentation for the unknown word. Previous re-
search has either replaced unseen words with a
special token (Luong et al., 2015), used charac-
ter word embeddings (Labeau and Allauzen, 2017)
as a fall-back, or ignored these words completely.
These techniques have shortcomings as they do
not attempt to represent the unseen word or re-
quire additional processing and memory as with
character embeddings. WordPiece tokenisation is

1Our code is publicly available at Lexical-Segmentation-
Transformer.

WordPiece: arthralgias → art-hra-al-gia-s
Ideal: arthralgias → arthr-algias
arthr- means joints, -algias means pain

Figure 1: Word segmentation in WordPiece and the
ideal segmentation using medical morphemes.

a trade-off, where there is no need for special han-
dling of out-of-vocabulary, as unseen words are
segmented into sub-word units. It allows a limited
vocabulary to represent an infinitely sized vocabu-
lary space.

Models that successfully use WordPiece tokeni-
sation include the transformer-based architectures:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XLNet (Yang et al., 2019). BERT
uses WordPieces as morphemes to aid the contex-
tual representation of words. BERT performs at
a state-of-the-art level on the GLUE tasks (Wang
et al., 2019) due to its ability to fine-tune specif-
ically to each task. Given this success, the
model has also been applied to the biomedical
domain through models such as BioBERT (Lee
et al., 2019), which applies additional pretrain-
ing on the MEDLINE and PubMed corpora for
biomedical text representation. However, these
BioBERT models sometimes do not perform well
on biomedical tasks, and in some instances are
even worse than vanilla BERT (Zhu et al., 2019;
Peng et al., 2019; Nguyen et al., 2019).

We hypothesise that a reason for this fail-
ure could be due to the vocabulary limitation
of BioBERT, where the authors keep the open-
domain vocabulary of BERT. This is problem-
atic because the original BERT vocabulary is not
suited for the biomedical domain due to the lack
of medical suffixes and prefixes in its vocabulary
leading to incorrect segmentation of the words
(see the example in Figure 1). This is important
because the suffixes and prefixes (the morphemes)
in medical terminology carry distinct meanings,
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and almost the entire medical vocabulary can
be constructed from prefix and suffix combina-
tions (Stanfield et al., 2008). Thus, we aim to
validate the importance of having the additional
biomedical vocabulary for downstream tasks.

2 Background

Most of biomedical natural language process-
ing is adapted from open-domain state-of-the-art
techniques, from word embeddings (Chiu et al.,
2016), to BiLSTM-CRF (Kalyan and Sangeetha,
2019). BERT is a deeply bidirectional encoder
that is based on the transformer architecture. It
uses self-attention as a mechanism of encoding
input contextually by attending to different as-
pects of the sentence using multi-headed self-
attention head, passed through layer normalisation
and a Multi-Layer Perceptrons (MLP). The BERT
model has been successful in the open-domain as
it scored State-of-the-Art (SOTA) performance on
the SQUAD (Rajpurkar et al., 2016) and GLUE
datasets because it addresses the polysemy prob-
lem (Molla and Gonzlez, 2007), through contex-
tual clues, for richer representations.

However, it was realised that directly apply-
ing the model to a closed domain can be prob-
lematic due to two factors: (1) The BERT model
is trained on Wikipedia and BookCorpus mean-
ing that the internal representations for specialised
words may not be properly learned for a spe-
cialised domain; and, (2) The internal vocabulary
that BERT has learned is suitable for tasks in the
open-domain and a separate or additional vocabu-
lary is needed (Beltagy et al., 2019).

To address the first problem, BioBERT takes
the original BERT model and performs additional
pretraining steps on academic biomedical litera-
ture, PubMed and MEDLINE, to improve down-
stream medical tasks. However, BioBERT does
not change the open-domain vocabulary to a
medically-focused one. Furthermore, the lan-
guage in academic corpora is different to clinical
text and patient language. These issues resulted in
lower than expected performance on biomedical
datasets, such the MEDIQA (Ben Abacha et al.,
2019; Nguyen et al., 2019) and in some cases
worse than the original BERT models (Zhu et al.,
2019) from which they were trained from.

Alleviating the dataset problem, Clinical
BERT (Alsentzer et al., 2019), performs further
pretraining steps for the BioBERT and BERT

models on domain-specific corpora showing
marked improvements on downstream clinical
tasks. However, they did not change the internal
vocabulary of the models as this would require
training the models from scratch which may limit
performance.

Addressing both the vocabulary and the dataset
problem, SciBERT was trained from scratch on
the Semantic Scholar corpus and a specialised
SentencePiece vocabulary trained on the corpus.

Our paper is a first look empirical study into
the effect of vocabulary and dataset in applying
BERT-based models to downstream tasks. Al-
though our study is limited in scope, it still ex-
plores an important problem and our research sug-
gests that some of previous studies may have
drawn incorrect conclusions.

2.1 Sub-word Models

The original WordPiece algorithm addresses the
OOV problem and handles arbitrary sequences
of characters found on the web. This algorithm
greedily maximises the likelihood of the vocabu-
lary over the training data. The algorithm is simi-
lar to the byte-pair encoding algorithm, which uses
frequency rather than likelihood to train the model.
By using word pieces, the tokenisation procedure
can break down OOV words into their word sub-
units. For instance, jumped can be broken down
into jump ##ed.

The SentencePiece algorithm (Kudo and
Richardson, 2018) is similar to WordPiece except
that it performs direct training from raw sen-
tences with language independence. It treats all
sentences as a sequence of Unicode characters
without a special reliance on spaces, allowing for
reliable multi-lingual de-tokenisation.

3 Methods

We propose vocabulary adaption to investigate the
segmentation problems for medical text in BERT
models and their variants. We propose two dif-
ferent methods to achieve this: (1) Adding ad-
ditional vocabulary from a common medical vo-
cabulary of suffixes and prefixes2 to the existing
BERT vocabulary and perform additional pretrain-
ing steps; and, (2) Training a separate Senten-
cePiece tokeniser and pretraining a BERT model
from scratch on the medical corpus. We compare

2GlobalRPh Common Medical Suffixes and Prefixes (Ac-
cessed Nov 2019)
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NLI RQE QA

Model Dev Acc. Test Acc. Dev Acc. Test Acc. Dev Acc. Test Acc.

Medical vocab 10k steps 0.781 0.743 0.778 0.487 0.739 0.655
Medical Vocab (intermediate) 0.795 0.721 0.762 0.500 0.718 0.657
Medical Vocab (final) 0.791 0.751 0.748 0.500 0.731 0.634
Medical Vocab (final) - Medical Vocab 0.741 0.798 0.768 0.478 0.731 0.640

SentencePiece Vocab (intermediate) 0.769 0.684 0.745 0.491 0.782 0.665
SentencePiece Vocab (final) 0.666 0.684 0.431 0.500 0.641 0.513

BioBERT v1.0 PMC 0.809 0.768 0.775 0.487 0.778 0.721
BioBERT v1.0 PubMed+PMC 0.828 0.778 0.775 0.474 0.765 0.708
BioBERT v1.0 PubMed 0.815 0.775 0.791 0.465 0.744 0.704
BioBERT v1.1 PubMed 0.833 0.790 0.808 0.487 0.778 0.677

SciBERT + BaseVocab 0.799 0.773 0.745 0.487 0.735 0.697
SciBERT + SciVocab 0.817 0.783 0.785 0.483 0.761 0.713

BERT base 0.786 0.736 0.742 0.483 0.709 0.655

Table 1: Comparing accuracy of all models in three tasks using the MEDIQA datasets.

these methods against BERT, BioBERT and SciB-
ERT models on downstream medical tasks.

3.1 Datasets

We use PubMed Central (PMC)3 corpus for pre-
training our BERT Model. It consists of two mil-
lion articles, 300 million sentences and one billion
tokens at the time of writing. Note that we use the
full text of the articles, not just the abstracts, as
this was shown to be effective in SciBERT (Belt-
agy et al., 2019).

For fine-tuning, we select the MEDIQA
datasets (Ben Abacha et al., 2019) which contains
three tasks: MEDical Natural Language Inference
(MEDNLI) (Johnson et al., 2016), Recognising
Question Entailment (RQE) (Abacha and Demner-
Fushman, 2016), and Question Answering (QA).

3.2 Preprocessing

In order to comply with BERT’s formatting for
pretraining, for tokenisation and sentence segmen-
tation, we use ScispaCy (Neumann et al., 2019),
with a biomedical model (en core sci sm) for its
speed and ability to parse biomedical data. We
then train a SentencePiece model with a fixed vo-
cabulary size of 32,000 on a subset of 20 million
PubMed text articles to extract a vocabulary that
maximises likelihood over the dataset. We then
adapt the SentencePiece vocabulary to be compat-
ible with BERT by pruning ‘ ’ characters, replac-
ing them with ‘##’ and removing start and end of
sequence tokens.

3PubMed Central Dump

3.3 Pretraining

Due to the large size of PMC and time and com-
puting resources limitation, we randomly select a
subset of 60 million sentences for pretraining. We
use the default settings for pretraining the BERT
model as described in the original paper. We also
use the same pretraining schedule as the origi-
nal BERT implementation where the model is first
trained on a sequence length of 128, which we call
the intermediate model, until convergence before
being trained on a sequence length of 512, the fi-
nal model. We set the learning rate of 1e-4 for
the SentencePiece model as this is being trained
from scratch and 2e-5 for the Medical Vocabulary
model.

3.4 Fine-tuning

After pretraining, we fine-tune our model to each
task in the dataset. We use a learning rate of 5e-
5 for five epochs. We also use a fixed seed of 42
for all libraries. We train our model on the official
training data and report our results on the develop-
ment and test sets of each task.

We fine-tune 12 models to three separate tasks
and evaluate on both the development and the
test sets due to distribution mismatch (the test
sets were made much later than the original train-
ing/development sets). We fine-tuned the BERT
base model plus medical vocabulary with the mod-
els pretrained for 10k, 90k (intermediate), 100k
(final) steps and a final model without the medi-
cal vocabulary. Similarly, we pretrain the BERT
model with a PubMed SentencePiece vocabulary
on models for 90k (intermediate) and 100k steps
(final). We fine-tune all the BioBERT models,

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/


where all v1.0 models are trained on abstracts
of a specific corpus (e.g., Pubmed or PMC), and
the v1.1 model is trained on the full-text cor-
pus. We also fine-tune the SciBERT models with
BERT base vocabulary (BaseVocab) and Semantic
Scholar SentencePiece vocabulary (SciVocab). Fi-
nally, we fine-tune our baseline (BERT base). We
report our results in Table 1.

4 Results and Discussions

Overall, we found that fine-tuned models , with the
exception of our SentencePiece model and Medi-
cal Vocab model for QA, outperformed the BERT
base baseline.

For the NLI task, the SentencePiece models and
the Medical Vocab (final) model performed worse
on the development set, however the Medical Vo-
cab (final) - Medical Vocab model performed best
on the test set. All other models performed scored
higher than the BERT base model. The BioBERT
models, on average, performed best here as the
task involved inference from a medical sentence (a
clinical note) to a normalised sentence (summary).

On the RQE dataset, all models performed rea-
sonably on the development set, with the PubMED
models scoring the best, with the exception of the
final SentencePiece model as the task required in-
terpretation of patient language in addition to aca-
demic. However, all models performed poorly
on the test set, with no model scoring higher
than random guess due to a marginal distribution
mismatch between the training, development sets
against the test set.

On the QA dataset, the task involved interpret-
ing a patient’s naturally formed question to a med-
ical answer from medical articles. Here, BioBERT
performed the best on the test set.

In summary, all models performed similarly
with only mild discrepancies which we discuss in
the following section.

4.1 SciVocab versus BaseVocab

We find that the SciVocab model performed bet-
ter than the BaseVocab model (see Table 1, rows
11-12). BaseVocab is trained similarly to our
medical vocab model where BERT base was fine-
tuned with additional data before further tuned to a
downstream task. The reason the SciVocab model
performed better is that it had learned better repre-
sentations during the training phase while the Ba-
seVocab model learned noisier representations due

to a vocabulary mismatch between the Semantic
Scholar dataset and the BERT vocabulary. How-
ever, the SciVocab may not be as beneficial due
to the academic nature of the vocabulary as the
MEDIQA contains a mix of both academic medi-
cal terminology and natural patient questions.

4.2 BioBERT versus SciBERT SciVocab
The BioBERT and SciBERT models are both pre-
trained/tuned on academic biomedical literature.
However, there are two keys differences to note,
SciBERT is trained from scratch as it is not pos-
sible to completely alter the BERT vocabulary
while maintaining the original weights. We found
that, contrary to previous research (Zhu et al.,
2019), citing a development accuracy of 43%
(RQE) and 68% (NLI), the BioBERT models per-
formed better on the development and test sets of
the MEDIQA datasets. We attribute BioBERT’s
strength to the fact that it was fine-tuned rather
than trained from scratch, and thus incorporates
both open-domain and biomedical-domain knowl-
edge. Further evaluation with a purely biomedical
reasoning task such as clinical term extraction (Si
et al., 2019) may be suitable for further compari-
son.

We found that the BioBERT models performed
better than previously reported and that the size of
corpus matters in the performance of the model as
the full-text corpus model is generally better.

4.3 Medical versus SentencePiece Vocab
We found that, on two of the tasks, the medical
vocab model performed better due to the nature of
the task. The SentencePiece vocab is adapted only
for the PMC corpus, which is academically written
without misspellings or colloquialism, in contrast
with the datasets. That is, having a corpus specific
vocabulary might not be sufficient even within the
same domain due to the different nature of writ-
ing styles; academic and general audience. Fur-
thermore, we found that the SentencePiece vocab
do not contain all the punctuation tokens, which
further hurts performance when it comes to under-
standing questions as ‘?’ is replaced with ‘unk’.

Consistent with SciBERT and BaseVocab vo-
cabulary overlap, there was a 40% overlap in
vocabulary between BERT base vocabulary and
the PMC SentencePiece vocabulary, highlighting
the vocabulary mismatch between two corpora.
Also, there is a 4% overlap in the added medi-
cal suffix/prefix vocabulary and the SentencePiece



vocabulary suggesting that the PMC corpus was
likely not training the representations of the added
prefix and suffix tokens correctly because they do
not appear frequently enough. Finally, due to the
relatively smaller size of pretraining dataset com-
pared with all the other models, the Sentence-
Piece model most likely overfit as the performance
across all datasets worsened with more training
steps (see Table 1, rows 6-7).

However, the training with the PMC corpus al-
lowed for better adaption to the downstream tasks.
Our models did not perform as well as BioBERT
as they are trained on a smaller subset than the
original models. We also find that the intermediate
SentencePiece model performs better than the fi-
nal model, and this is because the downstream task
had only short sequences, introducing noise and
overfitting. The medical vocab model, rather than
the SentencePiece model, is more robust against
this noise as it is not trained from scratch.

4.4 BioBERT versus Medical Vocab
Although trained similarly, all the BioBERT mod-
els outperformed our pretrained models across all
datasets. For a direct comparison, we compare
BioBERT v1.1 PubMED as this shares the same
dataset and pretraining procedures. The only no-
table differences between the BioBERT model and
ours is that: 1) 3% of the Medical vocab model is
augmented with medical suffix/prefix and 2) We
trained only a subset of PubMED on the Medical
vocab model. We do a preliminary test by remov-
ing additional vocabulary (Table 1, row 4) in our
model for a comparison against dataset size. We
saw that the performance of the model increased
slightly on average, leading to the conclusion that
the extra vocabulary was hurting performance as
they were not well trained. Overall, we also find
that the accuracy is still lower than the BioBERT
model, suggesting that additional dataset size is
crucial to achieving a better performance.

4.5 Effect of Corpus and Vocabulary
In all the models, although vocabulary helps (e.g.,
SciVocab vs. BaseVocab), this effect is limited
to the pretraining phase when learning represen-
tations, but when applying to a downstream task,
it is more important to have additional corpus data
that is suited to the downstream task. This effect
is shown where SciBERT basevocab (fine-tuned
from the BERT base model) performed better than
the BERT base model. The additional corpus data

is useful in the case of BioBERT vs. SciVocab as
BioBERT is fine-tuned with additional data on top
of the BookCorpus and Wikipedia datasets of the
BERT model.

We hypothesise that the best way to maximise
all these effects is instead of fine-tuning from one
corpus to the other, to combine both the open-
domain and target domain corpora and pretrained
the model from scratch with a well-tuned vocabu-
lary. We leave this to future work.

5 Limitations and Future Work

There are several limitations to our study which
we leave as directions for future work: (1) we only
trained on a subset of the PMC dataset for pretrain-
ing the Medical Vocab and SentencePiece models
as it was computationally intensive to use the full
set; (2) we only trained and evaluated on BERT
base models. For a complete comparison we need
to pretrain all the BioBERT models, SciBERT
models, our models and also, for completeness,
clinical BERT using the BERT large model, and
then 3) we would need to train on datasets of vary-
ing sizes to see the effect of the corpus. Further-
more, investigation of character embeddings as a
segmentation strategy over the use of wordpieces,
avoiding the need for a vocabulary could be useful.
However, this would require factorisation of the
embedding space to reduce the computational cost
of increased sequence length (Lan et al., 2019).

Furthermore, empirically, we did not conduct
a significance test due to the use of a fixed seed
for all randomisation to emphasise reproducibil-
ity, however, in future, re-running each experiment
without a fixed seed multiple times to produce re-
liable statistics is desirable in future work.

6 Conclusions

Previous research suggests that using open-
domain vocabulary in BERT-based models affects
downstream tasks compatibility and leads to a loss
in effectiveness. However, our research suggests
that this is not the case. An open-domain vocabu-
lary is more useful than an in-domain vocabulary
trained on less data, if it is additionally trained on
an in-domain corpus.
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