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Abstract

Extracting chemical reactions from patents is
a crucial task for chemists working on chem-
ical exploration. In this paper we introduce
the novel task of detecting the textual spans
that describe or refer to chemical reactions
within patents. We formulate this task as
a paragraph-level sequence tagging problem,
where the system is required to return a se-
quence of paragraphs that contain a descrip-
tion of a reaction. To address this new task,
we construct an annotated dataset from an ex-
isting proprietary database of chemical reac-
tions manually extracted from patents. We in-
troduce several baseline methods for the task
and evaluate them over our dataset. Through
error analysis, we discuss what makes the task
complex and challenging, and suggest possible
directions for future research.

1 Introduction

Chemical patents are a crucial resource for chem-
ical research and development activities. In fact,
many compounds are reported first in patents and
only a small fraction of them appears in the chem-
ical literature after 1 to 3 years (Senger et al.,
2015), meaning that chemists habitually search
over both academic papers and patent databases.
Moreover, as the number of chemical patents
awarded each year is ever-increasing, there is
an increasing urgency to perform patent searches
to establish the novelty of chemical compounds
(Akhondi et al., 2014). Text mining methods are
a vital tool in this process, enabling a significant
reduction in associated time and effort.

Most previous research in text mining of chem-
ical information has focused on named entity
recognition (NER) of chemical concepts, and sev-
eral publicly-available NER corpora have been de-
rived from both scientific literature (Kim et al.,
2003; Corbett et al., 2007; Krallinger et al., 2015)

and chemical patents (Akhondi et al., 2014). Some
studies have also addressed relation extraction be-
tween chemical entities and other concepts such as
protein and diseases (Wei et al., 2015; Krallinger
et al., 2017).

However, there has been limited work on au-
tomatically extracting chemical reactions from
patents. A chemical patent usually contains a de-
scription of chemical reactions that are relevant
to its claims. Figure 1 shows an example of a
chemical reaction description. Generally speak-
ing, a chemical reaction is a process where a set of
chemical compounds is transformed into another
set of chemical compounds. A reaction descrip-
tion may include the source chemical compounds,
solvents and reagents involved in the reaction, re-
action conditions, and materials obtained as a re-
sult of the reaction. Despite the fact that such in-
formation is crucial for a comprehensive under-
standing of chemical patents, there are — to the
best of our knowledge — few methods or anno-
tated resources that can be used for this purpose.

As a first step to extracting chemical reactions,
a filtering step must take place to determine where
reactions are described in a patent. In this paper,
we introduce this new task of chemical reaction
detection. The output of this task can be used
as the input to (more complex) downstream tasks.
For example, consider an event extraction system
that extracts every step of a reaction as an indi-
vidual event. Events in the first reaction of Fig-
ure 1 would be: (1) heating 2-pyridine-ethanol,
triphenyl phosphine and carbon tetrachloride; (2)
the addition of triphenyl phosphine; (3) heating
them again; and so on. The application would
also include estimating the relevance of chemi-
cal compounds to a given reaction, based on their
role in the reaction (Akhondi et al., 2019). Such
downstream tasks require as input a paragraph se-
quence corresponding to a reaction, in a repre-



P: Example 1: Preparation of 2-(4-benzyloxybutyl)pyridine
P: 2-(4-Benzyloxybutyl)pyridine is prepared in 5 steps according to the following reaction route.

...
P: (1) Preparation of 2-(2-chloroethyl)pyridine 

reaction

P: 2-Pyridine-ethanol (15.00 g, 122 mmol), triphenyl phosphine (38.40 g, 146 mmol) and carbon
tetrachloride (100 mL) were put in a 500-mL flask, and heated under reflux. After 1.5 hours, triphenyl
phosphine (9.60 g, 36.6 mmol) was added thereto and further heated for 30 minutes under reflux.

P: The reaction liquid was cooled down to room temperature, and then pentane (200 mL) was added
thereto, and filtered using a Kiriyama funnel. The resultant filtrate was concentrated to give a crude
product (17.07 g). This was distilled under reduced pressure to give 11.16 g (yield 65.8%, purity 97.1%)
of 2-(2-chloroethyl)pyridine.

P: (2) Preparation of dimethyl 2-(2-pyridyl)ethylmalonate
reactionP: 2-(2-Chloroethyl)pyridine (10.35 g, 73.1 mmol), N,N-dimethylformamide (100 mL), dimethyl

malonate (14.48 g, 110 mmol) and potassium carbonate (18.18 g, 132 mmol) were put in a 300-mL
flask, and stirred. ...
...

...

Figure 1: An example of chemical reaction description in a patent document (US20180072670A1). The symbol
“P:” stands for the beginning of a paragraph.

sentation that preserves the order of the reaction
substeps. Indeed, reactions are complex processes
composed of sequentially ordered steps (much like
recipes in cooking) and tend to be described se-
quentially. Thus, we formulate this task as a
paragraph-level sequence tagging problem, where
the output is a set of paragraphs containing the de-
scription of a reaction. Although the task formula-
tion is simple, it is not straightforward to automate
as it requires document-level understanding of the
patent text, which tends to be highly ambiguous.

To measure the feasibility and identify the key
challenges of this new task, we created an an-
notated dataset and established benchmark re-
sults over it, in the form of rule-based and ma-
chine learning methods.1 The dataset is based
on the chemical structure data from Reaxys®.2

The database contains chemical reactions manu-
ally extracted from a very large number of patents.
The reactions are associated with the patent from
which they are extracted. As the primary pur-
pose of the extraction is to populate a database of
chemical reactions (some of which are extracted
from non-textual sources) and not provide train-
ing data for NLP, it is not always possible to com-
pletely map back from the data to the source text.
However, the large database enabled us to auto-
matically create a potentially very large amount
of training data that can be used to train state-
of-the-art deep learning methods. For the exper-
iments presented in this paper, we created an an-
notated corpus from a subset of Reaxys® reactions

1Contact the authors for data requests.
2Copyright ©2019 Elsevier Limited, except certain con-

tent provided by third parties. Reaxys is a trademark of Else-
vier Limited.

and filtered out documents with low mapping cov-
erage from the database to text, in an attempt to
boost the fidelity of evaluation over that data. This
culminated in training, development, and test sets
consisting of 143 documents made up of >39,000
paragraphs in total.

2 Related Work

Patents are regarded as an important resource for
chemical information, and a large volume of NLP
research has focused on them (Fujii et al., 2007;
Tseng et al., 2007; Gurulingappa et al., 2013;
Southan, 2015; Rodriguez-Esteban and Bund-
schus, 2016; Akhondi et al., 2019). However,
most previous work on chemical information ex-
traction has focused on the NER task of extract-
ing chemical names or chemistry-related concepts
from literature (Kim et al., 2003; Corbett et al.,
2007; Böhme et al., 2014; Akhondi et al., 2014;
Krallinger et al., 2015). Some previous work
has attempted to extract not only chemical names
but also reaction procedures from the literature
(Lawson et al., 2011; Wei et al., 2015; Mayfield
et al., 2017; Krallinger et al., 2017). Among them,
Lowe (2012) presents an integrated system that de-
tects reaction text from chemical patents, and ex-
tracts chemicals and their roles in the correspond-
ing reaction. The system is heavily rule-based
and incorporates existing NLP libraries, and was
reported to detect reactions with high accuracy.
However, evaluation was limited to a small num-
ber of good-quality reaction texts, and the perfor-
mance of the reaction detection sub-task was not
evaluated in isolation.

Another line of work with an extensive litera-



ture is patent retrieval, where the task is to retrieve
patent documents or passages given a query in the
form of keywords, a sentence, or a document; Sha-
laby and Zadrozny (2019) survey this task exten-
sively. A relevant shared task was organized as
part of CLEF-IP 2012 (Piroi et al., 2012). In the
sub-task titled “Passage Retrieval Starting From
Claims”, participants were required to extract pas-
sages from chemical patents that are relevant to a
given claim. The difference between our task and
theirs is that the output of our task is all chem-
ical reactions mentioned in a given patent, inde-
pendent of any claim. In addition, the CLEF-IP
task does not require the identification of reaction
spans. That is, they deal with each passage inde-
pendently, ignoring ordering.

The proposed task can also be viewed as a text
segmentation problem. Koshorek et al. (2018)
formulated the text segmentation task on gen-
eral domain corpora such as Wikipedia as a su-
pervised learning problem, and proposed a two-
level bidirectional LSTM model to learn to de-
tect text spans. In particular, they used a softmax
layer on top of a standard BiLTSM architecture
for segmentation prediction. We experiment with
a BiLTSM-CRF architecture as a document-level
training method as described in Section 4, i.e. we
use a CRF layer to obtain the document-level label
sequence, instead of applying a softmax classifier
on top of the BiLSTM.

3 Task and Dataset

3.1 Task Formulation

A patent document usually describes the reactions
to produce the relevant compounds as part of its
claims. As shown in Figure 1, a reaction may
involve several steps to obtain the target com-
pounds.3 In our example, multiple contiguous
paragraphs are used to describe a single reaction,
and multiple reactions are necessary to obtain the
final compounds.

As a reaction consists of a series of sub-steps
executed over time, it is important to detect the
beginning and the end of each reaction text accu-
rately. Therefore, we define the task as a span de-
tection problem rather than the simpler task of bi-
nary classification (i.e., classifying each paragraph
as describing (part of) a reaction or not), which

3In this study we only focus on text data, although infor-
mation of reactions can also be present in images and tables.

Synthesis of 1-benzyl 8-methyl (E)-5-ethyloct-2-enedioate (6b)

In a 200 mL, 2-neck flame dried flask, copper(I)bromide dimethyl
sulfide (2.17 g, 10.56 mmol) was dissolved ...

Synthesis of methyl (E)-6-oxohex-4-enoate (4): The compound
was synthesized according to the reported procedure, with the
use of a different catalyst.57 Briefly, ...

II.A. Synthesis Procedures for 1a-1f

II. Synthesis Procedures

Unless otherwise noted, chemicals were purchased from Sigma-
Aldrich, Acros Organics, or Fisher Scientific. “Iron-free”
glassware was prepared ...

I. Materials and Instrumentation
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Figure 2: Illustration of our reaction span detection
task.

would not be able to detect reactions as a whole or
capture reaction substructure.

Figure 2 shows an example of an input and gold-
standard output of the reaction span detection task.
A patent document is given as a sequence of para-
graphs. The task is to detect a span of contiguous
paragraphs that describe a single chemical reac-
tion. In our corpus, we provide paragraph-level
label sequences over paragraphs in patent docu-
ments, following the IOB2 tagging scheme (Tjong
et al., 1999).

The definition of “reaction spans” in our
dataset follows the extraction rules of the origi-
nal database. In principle, a reaction is extracted
from a patent if the requisite information about the
reaction (e.g., starting materials, reaction condi-
tions and target compounds) is provided within the
patent document and there is no obvious error or
inconsistency in the description. Typically a reac-
tion constitutes an example section or a subsection
beginning with a title paragraph such as Example
1, Step 1 and Preparation of [product name], as
shown in Figure 1. However, it is also commonly
the case that an example section contains multiple
reactions, in which case they have no title para-
graph.

3.2 Data Preparation

Our corpus contains patents from the European
Patent Office and the United States Patent and
Trademark Office, all of which are written in En-
glish and freely available in a digital format. The
corpus is based on the Reaxys® database, which
contains reaction entries for each patent document
manually created by experts in chemistry. A re-
action entry has “locations” of the reaction in the
corresponding patent document, mostly in terms
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Figure 3: Our model architecture. The left figure illustrates the general architecture of the whole model, while the
right figure details the decoder component.

of paragraph IDs (e.g., the reaction entry of syn-
thesis of methyl (E)-6-oxohex-4-enoate in Figure 2
has a location property with value 84, 85, 86). We
used this location information to automatically la-
bel the reaction text spans in the patent text. As
the reaction data available in the database is ex-
tracted and curated from text, images, and tables
based on specific guidelines and hence not directly
aligned with NLP requirements, it is not always
possible to completely map all the locations from
Reaxys® database to text. First, the annotation
was performed by a single expert worker for each
patent document, without redundancy or explicit
post-checking of the extraction. Second, some lo-
cations are missing in the original data. For ex-
ample, as the manual extraction process is at the
document level, a reaction is sometimes extracted
only once regardless of how many times it is men-
tioned in the patent. As part of the mapping
process, we filtered out potentially-incorrect para-
graph spans using a set of rules. For instance, we
discarded paragraph spans in which we could not
find any of the chemical compounds or related in-
formation associated with the corresponding reac-
tion in the database.

For evaluation, we applied the mapping pro-
cess to a part of the database and selected patent
documents with 100% mapping coverage (i.e. all
reaction records in the database can be mapped
to the text) and split them into training, develop-
ment, and test partitions. As a result, we obtained
training, development, and test sets consisting of
143 documents with >39,000 paragraphs in total.
Although the test set is singly-annotated and no
inter-annotator agreement is available, we man-
ually checked a small subset to confirm that the
annotation quality is sufficiently good to support
high-fidelity evaluation. Table 1 presents a break-
down of the dataset.

A patent document consists of three main parts:
title/abstract, claims, and description. We ex-

Train Dev Test

# Documents 86 29 28
# Paragraphs 24,402 7,194 7,481
# Reaction spans 1,787 638 567
# Tokens / Paragraph 72.9 74.5 75.7

Table 1: Composition of the evaluation dataset. “# To-
kens / Paragraph” stands for the average number of to-
kens in a paragraph based on OSCAR4 tokenization
(Jessop et al., 2011).

tracted the text of the description part, where
chemical reactions are described. For simplicity,
we only use textual information, and ignore other
types of data such as images describing chemi-
cal structures. Paragraphs that do not contain text
(e.g., tables or references to images) are also dis-
carded.

4 Our modeling approach

In this section, we describe our neural approach
to reaction span detection. As illustrated in Fig-
ure 3, our general model architecture is composed
of two main parts: a paragraph encoder and a para-
graph label decoder. The encoder represents each
paragraph as a vector that is then fed into the la-
bel decoder to determine the corresponding B/I/O
label of the paragraph.

4.1 Paragraph encoder
We use a paragraph encoder to encode each para-
graph p into vector vp. Assume that the paragraph
p consists of n tokens w1, w2, . . . , wn. We cre-
ate a vector ei to represent the ith word token wi

by concatenating its pre-trained word embedding
eWE
wi

, contextualized embedding eCW
wi|p, and an op-

tional embedding eFTfi representing additional fea-
tures fi associated with wi:

ei = e
WE
wi
⊕ eCW

wi|p ⊕ e
FT
fi

(1)

We then use a BiLSTM paragraph encoder to



learn the paragraph vector vp from a sequence
e1:n of vectors e1, . . . , en. We compute the hid-
den states of the LSTMs corresponding to the ith
token (i ∈ {1, . . . , n}) as follows:

−→ri =
−−−−−→
LSTMe(e1:i) (2)

←−ri =
←−−−−−
LSTMe(ei:n) (3)

where
−−−−−→
LSTMe and

←−−−−−
LSTMe denote forward and

backward LSTMs in the encoder, respectively.
We then concatenate the final states of these two
LSTMs to obtain the paragraph vector vp:

vp =
−→rn ⊕←−r1 (4)

4.2 Paragraph label decoder

Assume that we have an input document consist-
ing of m paragraphs p(1), p(2), ..., p(m). The de-
coder will assign a B/I/O label to the jth para-
graph p(j) based on the input paragraph vector rep-
resentation(s) vp(j) produced by the encoder as in
Equation (4). We explore the following settings.

Paragraph-level softmax classifier: In this set-
ting, we feed each vector vp(j) into a softmax clas-
sifier for paragraph label prediction:

P(j) = Softmax(WPSvp(j) + b
PS) (5)

where P(j) ∈ R3 is the final output of the network,
and WPS ∈ R3×2k and bPS ∈ R3 are a trans-
formation weight matrix and a bias factor, respec-
tively (here, k is the dimensionality of the

−−−−−→
LSTMe

and
←−−−−−
LSTMe hidden states).

Paragraph-trigram softmax classifier: The
paragraph-trigram softmax decoder extends the
paragraph-level softmax decoder by taking the
previous and next paragraphs of p(j) into account.4

In particular, it is formalized as:

up(j) = vp(j−1)
⊕ vp(j) ⊕ vp(j+1)

(6)

P(j) = Softmax(WPTup(j) + b
PT) (7)

where WPT ∈ R3×6k and bPT ∈ R3 are a trans-
formation weight matrix and a bias factor, respec-
tively.

We train each of the two softmax classifiers by
minimizing the model negative log likelihood (i.e.
cross-entropy loss). At inference time, we calcu-
late the label probabilities for every paragraph us-

4When j = 1 and j = m we use paragraphs p(0) and
p(m+1), each of which consist of two special symbols 〈S〉
and 〈/S〉.

ing the learned classifier, and construct the label
sequence with the highest joint probability score
under the constraint of a valid IOB2 output (i.e. an
I label must not come right after O).

BiLSTM-CRF classifier: In this setting, we
use a BiLSTM-CRF architecture (Huang et al.,
2015) to capture contextual information across
paragraphs as well as label transitions. We first
use another BiLSTM to learn latent feature vec-
tors representing input paragraphs from a se-
quence vp(1):p(m)

of vectors vp(1) ,vp(2) , ...,vp(m)
,

and then perform a linear transformation over each
latent feature vector. Then output vector hj for the
jth paragraph (j ∈ {1, . . . ,m}) is computed as:

−→rj =
−−−−−→
LSTMd(vp(1):p(j)) (8)

←−rj =
←−−−−−
LSTMd(vp(j):p(m)

) (9)

rj =
−→rj ⊕←−rj (10)

hj = WBCrj + b
BC (11)

where
−−−−−→
LSTMd and

←−−−−−
LSTMd denote forward and

backward LSTMs in the decoder, respectively.
WBC ∈ R3×2l and bBC ∈ R3 are a transforma-
tion weight matrix and a bias factor, respectively
(here, l is the dimensionality of the

−−−−−→
LSTMd and←−−−−−

LSTMd hidden states).
Output vectors hj are fed into a linear-chain

CRF layer (Lafferty et al., 2001) for final B/I/O
paragraph label prediction. A negative joint log
likelihood loss is minimized when training, while
the Viterbi algorithm is used for decoding.

5 Experimental Settings

5.1 Evaluation Metrics

We evaluate the model perfomance by using span-
based metrics as described below.

We find that calculating micro-averaged scores
over documents (i.e. the scores over the all spans
in the datasets) leads to biased results. This is be-
cause the development and test sets consist of a
small number of documents and style is consistent
within a document, meaning that errors caused by
the same writing style tend to accumulate and be
overestimated. To mitigate this effect, we evalu-
ate based on document-level macro-averaged re-
call, precision, and F-score, i.e. we compute the
scores for each document, and use the average of
document-level scores for model selection and fi-
nal evaluation.

For model selection we use the span-based



scores based on a strict match strategy, where an
output span is regarded as correct if the beginning
and ending paragraphs strictly match those of the
gold span. In some practical applications, it also
makes sense to understand if the model can iden-
tify the approximate region where a reaction is de-
scribed. Thus, for evaluation, we also compute the
scores based on a fuzzy match strategy, where we
calculate the number of matches by counting the
number of gold spans that have at least one corre-
sponding predicted output span whose beginning
and ending paragraph indices are at most 1 para-
graph away from the gold ones.

5.2 Implementation Details
5.2.1 Input Text
We use the text of each paragraph as input, with
a maximum length of 128 tokens.5 For tokeniza-
tion, we used the OSCAR4 tokenizer (Jessop et al.,
2011), as it is customized to chemical text mining.

Equation (1) formulates the input token-level
representation for the BiLSTM paragraph encoder
in the form of (context-insensitive) word embed-
dings, contextualized word embeddings, and fea-
ture embeddings. For the word embeddings eWE

wi

and contextualized embeddings eCW
wi|p, we employ

Word2Vec (Mikolov et al., 2013) and ELMo (Pe-
ters et al., 2018), respectively, both pre-trained
on chemical patent documents from Zhai et al.
(2019). These embeddings are fixed during train-
ing. We denote our encoder employing only the
pre-trained word and contextualized embeddings
(i.e. ei = eWE

wi
⊕ eCW

wi|p) as W2V +ELMO.
We also explore additional learnable feature

embeddings eFTfi (in Equation 1) based on the
output of a chemical named entity recognizer
(Zhai et al., 2019). This named entity rec-
ognizer was trained on a patent corpus named
Reaxys® Gold data (Akhondi et al., 2019). For
self-containment purpose we show the entity la-
bel set of Reaxys® Gold data in Table 4 in
the Appendix. As the label set has two levels
of granularity, we use the output in two differ-
ent ways: coarse-grained (left-hand side of the
table) and fine-grained (right-hand side). We
first obtain a token-level label sequence in the
IOB2 format such as [O, O, B-chemClass,
I-chemClass, O] for each paragraph and

5We also explored another option where we use only the
first sentence of each paragraph. However, the experimen-
tal results show better performance when we use the entire
paragraph in all cases.

then embed the labels into 5-dimensional vectors
eFTfi . We refer to the paragraph encoder with addi-
tional input of coarse-grained NER labels as W2V
+ELMO +NERCOARSE, and the one with the fine-
grained labels as W2V +ELMO +NERFINE.

5.2.2 Model Optimization

Our neural models are implemented using the Al-
lenNLP framework (Gardner et al., 2018). With
the paragraph-level and paragraph-trigram soft-
max classifiers, we train model parameters using
the training set for 20 epochs and apply early stop-
ping if no improvement in the loss over the devel-
opment set is observed for 3 continuous epochs.
With the BiLSTM-CRF classifier, we train model
parameters for 30 epochs, and early stopping is ap-
plied after 10 epochs of no improvement. Experi-
mental results with the decoder of paragraph-level
softmax on the development set show the high-
est score when using W2V +ELMO +NERFINE

input representation. Thus, for models with the
paragraph-trigram softmax and BiLSTM-CRF de-
coders, we only explore the use of the W2V

+ELMO +NERFINE input representation.
We use Adam (Kingma and Ba, 2015) as our

optimizer for all experiments. We apply a grid
search to select optimal hyper-parameters based
on the document-level macro F-score over the de-
velopment set. Table 5 in the Appendix shows the
model hyper-parameters used for evaluation. For
the model with the BiLSTM-CRF decoder, we ini-
tialize parameters of its paragraph encoder with
those from the model trained with the paragraph-
level softmax classifier, and fine-tune them to-
gether with the decoder parameters.

5.3 Baselines

5.3.1 Rule-based baseline

We additionally implement a rule-based baseline,
based on common patterns in the first paragraphs
of chemical reactions. For example, in the case
where a chemical reaction description constitutes
an Example part in a patent document, the first
paragraph begins with phrases such as Example 1,
Step 1, and Preparation of [product name]. We
use a list of frequent patterns in the first paragraphs
of chemical reaction descriptions to distinguish B
paragraphs from I or O. Once a B paragraph is de-
tected, we label succeeding paragraphs as I until
a new B paragraph is detected.



Decoder Input token representation
Strict match Fuzzy match

P R F1 P R F1

Rule-based .205 .381 .241 .278 .482 .319
Logistic .421 .380 .376 .521 .462 .461

Paragraph-level softmax W2V +ELMO .352 .365 .336 .475 .457 .437
W2V +ELMO +NERCOARSE .340 .389 .337 .446 .468 .415
W2V +ELMO +NERFINE .345 .383 .341 .479 .485 .447

Paragraph-trigram softmax W2V +ELMO +NERFINE .513 .488 .482 .643 .573 .574

BiLSTM-CRF W2V +ELMO +NERFINE .658 .653 .640 .718 .708 .696

Table 2: Performance of the baseline methods on reaction span detection, in terms of document-level macro-
averaged precision (“P”), recall (“R”), and F-score (“F1”). “NERCOARSE” and “NERFINE” indicate NER embed-
dings based on coarse- and fine-grained entity types, respectively.

5.3.2 Feature-based logistic regression
Another baseline we explore is the logistic regres-
sion classifier, where the output is calculated as:

P(j) = Softmax(WLφp(j)
+ bL) (12)

where P(j) ∈ R3 is the final output of the network,
WL ∈ R3×d and bL ∈ R3 are a transformation
weight matrix and a bias factor, and φp(j)

∈ Rd is
the concatenation of the following features:

• word count vectors of p(j−1), p(j) and p(j+1),
where the ith entry of each vector is the num-
ber of times the ith token appears in the cor-
responding paragraph, and;

• 2-dimensional one-hot vectors for p(j−1),
p(j) and p(j+1) indicating if the paragraph is
a heading or a body paragraph.6

As preprocessing, we apply lowercasing and
lemmatization using the NLTK WordNet Lemma-
tizer.7 We also replace all numeric characters with
a special character. We further apply the named
entity recognizer presented in Section 5.2.1 with
the fine-grained label set to replace all chemical
names with special tokens corresponding to their
entity types. The vocabulary consists of tokens
that appear at least three times in the training set.

6 Results and Discussion

6.1 Overall Results
Table 2 shows the overall results on the test set.
On the left-hand side of the table we show the re-

6The paragraph type information is also available in the
original database.

7https://www.nltk.org/

(a) paragraph tri-gram softmax (b) BiLSTM-CRF

Figure 4: Confusion matrices of the paragraph-trigram
softmax vs. BiLSTM-CRF model outputs, based on
paragraph-level B/I/O labels.

sults in terms of strict match. The BiLSTM-CRF
classifier achieves by far the best score in terms
of both precision and recall, indicating that con-
textual information over paragraphs is key in this
task. While the rule-based baseline achieves an
exact-match recall of nearly 0.4, the precision is
half this value, indicating a high number of false
positives. Comparing the three different input fea-
tures for paragraph-level softmax, we can see that
the named entity features improve the recall very
slightly, but overall have little impact on results.

The right-hand side of the table shows the re-
sults in terms of fuzzy match, where the BiLSTM-
CRF model achieves an F-score around 70%.

6.2 Error Analysis

Figure 4 shows the confusion matrices of the
model output based on the paragraph-level B/I/O
labels. We compare the paragraph-trigram soft-
max and BiLSTM-CRF models, both with the
W2V +ELMO +NERFINE input representation.
We can observe that the BiLSTM-CRF output
shows a large improvement in distinguishing be-

https://www.nltk.org/


Ex. Gold ParSoftmax Trigram BiLSTM-CRF Text

1

B B B B SYNTHETIC EXAMPLE 2
I B I I Compound A2
I I I I 1,4-dibromonaphthalene (7 g, 24.48 mmol) and 4-cyclohexyl-N-(4-isopropylphenyl)aniline ...
I I I I 1H NMR (400 MHz, CDCl3, δ):
I I I I δ 8.04-7.985 (dd, 5H); 7.345-7.275 (m, 10H); 7.086-7.028 (m, 23H); 7.028-6.958 (m, 20H).

2
B B B B Example 5. Preparation of SM-5: 2-Hydroxy-4’-trifluoromethylacetophenone
I I I I Step A. A 200 mL flask was charged with 4’-trifluoromethylacetophenone ...
B I I B Step B. A 200 mL flask was charged with the crude of 2-Bromo-4’...

3

B B O B Example 5
I I O I The following Example illustrates a method for producing (R,Z)-dodec-5-ene-1,3-diol ...
I I O I To a -78 C. solution of oct-1-yne (1.8 equiv.) in THF (0.5M) will be added ...
B I B B (R)-1-(benzyloxy)dodec-5-yn-3-ol will then taken up in hexane to generate ...
B I I B (R,Z)-1-(benzyloxy)dodec-5-en-3-ol will be taken up in CH2Cl2 to generate ...
B O B B Alternatively, the secondary alcohol of (R,Z)-1-(benzyloxy)dodec-5-en-3-ol may be ...
B B I B (R,Z)-((1-(benzyloxy)dodec-5-en-3-yl)oxy)(tert-butyl)dimethylsilane will be taken up ...
B I I B To a stirring 2.0M solution of (R,Z)-3-((tert-butyldimethylsilyl)oxy)dodec-5-en-1-ol ...

4

O I B B 7-(2-Methylphenylethyl)-Sancycline
O I I I 7-(2-Methylphenylethynyl)-sancycline (1 mmol) was taken in saturated ...
B I B B 9-(4’-Acetyl phenyl) Minocycline
I I I I In a clean, dry reaction vessel, was placed 9-iodominocycline (0.762 mmoles) ...
B I B I 7-(n-Propyl)-Sancycline
I I I I 7-propynyl sancycline was dissolved in a saturated methanol hydrochloric acid solvent. ...

5

B B B B Example 25: Synthesis of Compound 15-Br-Boc
I I I I In a three-necked flask, compound 13-Br (3.4 g, 5.675 mmol), DMAP (0.139 g, ...
O B B B Example 26: Synthesis of Compound 16-B-Boc
O I I I In a three-necked flask, compound 14-B (2.726 g, 5.675 mmol), DMAP (0.139 g, ...

Table 3: Output examples. Columns “ParSoftmax”, “Trigram”, and “BiLSTM-CRF” show the output of paragraph-
level softmax, paragraph-trigram softmax and BiLSTM-CRF decoders, respectively, with the W2V +ELMO
+NERFINE encoder.

tween B and I labels, indicating that long-term
contextual information is crucial to correctly de-
tecting the beginning of the reaction spans.

Table 3 shows system output examples from the
test set. In Example 1, the first two paragraphs
of the reaction span are its title and subtitle. The
paragraph-level softmax model labels both the title
and the subtitle as B, while the paragraph-trigram
and BiLSTM-CRF model successfully classify the
subtitle paragraph as I. In Example 2 and 3, there
are multiple independent reactions in an Exam-
ple part. In this case, the paragraph-level and
paragraph-trigram classifiers often regard several
reaction steps as one single reaction, while the
BiLSTM-CRF model correctly separates out the
individual reactions in both cases. Without con-
text, it would be hard to distinguish the indepen-
dent reactions from reaction steps inside a single
reaction, as they have a common writing style (an
example where a single reaction has several reac-
tion steps can be found in Figure 1). As shown
in Example 4, it is often the case that the title of
a reaction span is the name of a chemical com-
pound. All baseline classifiers often fail to de-
tect such spans, even when chemical named en-
tities are used as input features. Presumably, the

fact that the paragraph beginning with a compound
name can occur at the beginning, within or out-
side a reaction span, makes it hard to leverage
such patterns for span detection. In Example 5,
the text span beginning with Example 26 is written
in exactly the same way as the previous Example
25 except that compound 14-B is used instead of
compound 13-Br. However, Example 26 is not ex-
tracted as a reaction by the gold annotation while
Example 25 is extracted. This would be because
the reaction was regarded as incorrect for technical
reasons (e.g., the compound used in the paragraph
is clearly incorrect), or was just discarded by the
human expert because it is not an important reac-
tion. Such cases are hard for the system to pick
up on, as they require deep understanding of the
context and background knowledge.

7 Conclusions

In this paper we introduced the chemical reac-
tion detection task and formulated this task as a
paragraph-level sequence tagging problem. We
proposed heuristic and machine-learning based
baseline methods to measure the feasibility of the
task as well as to identify the key challenges.
We also created an annotated dataset by map-



ping back reactions from the Reaxys® database
to their source patents. We used this corpus to
train and evaluate our baseline methods. The ex-
perimental results show that this task requires a
deep understanding of patent document context, as
well as chemical background knowledge. Indeed,
the BiLSTM-CRF model trained at the document-
level performed much better than the paragraph-
level classification methods.

The performance of the baseline methods pre-
sented in this paper is still not satisfactory con-
sidering the complex downstream tasks such as
event extraction. We believe that both the mod-
els and the corpus have potential to be improved.
As future work, we plan to explore more efficient
document-level training methods, and, in particu-
lar, methods that work well on noisy training sets.
For instance, techniques successfully used for dis-
tant supervision (Mintz et al., 2009) may be ef-
fective. Furthermore, although we used only tex-
tual information, patent documents contain sub-
stantial visual information (e.g., images of com-
pounds, or tables) that may be helpful to properly
understand a reaction description. Longer term,
we will also tackle finer-grained information ex-
traction for chemical reactions utilizing the output
of this task. This step involves extracting the de-
tails of the detected reactions, that is, inferring the
underlying structure of the reactions themselves.
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Decoder Input token representation Layers (enc) Dim (enc) LR

Paragraph-level W2V +ELMO 1 200 5× 10−5

softmax W2V +ELMO +NERCOARSE 2 200 5× 10−5

W2V +ELMO +NERFINE 2 100 5× 10−5

Decoder Input token representation Layers (dec) Dim (dec) LR

BiLSTM-CRF W2V +ELMO +NERFINE 2 100 1× 10−3

Table 5: The best hyperparameters on the development set. “LR” is the initial learning rate, “Layers (enc/dec)”
is the number of LSTM layers; and “Dim (enc/dec)” is the dimensionality of the LSTM hidden states, where
“enc/dec” indicate the LSTMs in the paragraph encoder and paragraph label decoder, respectively. “NERCOARSE”
and “NERFINE” mean NER tag embeddings based on coarse- and fine-grained entity types, respectively. The
structure of the paragraph encoder used for the paragraph-trigram softmax and BiLSTM-CRF classifier is the same
as the one for the paragraph-level softmax classifier, thus omitted from the table.

Coarse-grained Fine-grained

chemClass chemClass

chemClassbiomolecule
chemClassmarkush
chemClassmixture
chemClassmixture−part
chemClasspolymer

chemCompound chemCompound

chemCompoundmixture−part
chemCompoundprophetics

Table 4: Entity types from Reaxys® gold-standard data.

Appendix

NER label sets
Table 4 shows the NER label sets that we used as
additional features to include in the input repre-
sentation as described in Section 5.2.1.

Hyper-parameters
Table 5 shows the optimal hyper-parameters we
used for the final evaluation.


