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Abstract

The negative log-likelihood or cross entropy
is the usual training objective of NLP mod-
els owing to its versatility and empirical per-
formance. However, training objectives which
directly target the performance measure used
to evaluate the task have the potential to lead
to higher empirical accuracy. For this rea-
son, in this short paper we propose using a
multi-constraint structured hinge loss as the
training objective of a contemporary named-
entity recognition (NER) model. Experimen-
tal results over the challenging OntoNotes 5.0
dataset have shown that the proposed objective
has been able to achieve an improvement of
0.62 CoNLL score points at a complete parity
of testing set-up.

1 Introduction

All NLP models utilise a loss function as minimi-
sation objective for model training. Choosing the
most appropriate loss function for a particular task
can play an important role in the performance of
the trained models at test time and in-field. How-
ever, almost invariably the utilised loss function
is the negative log-likelihood (NLL), also known
as cross entropy. This is due to a number of at-
tractive properties of the NLL such as its smooth-
ness and differentiability in large regions of the
parameter space. In addition, training with min-
imum NLL often leads to models of high empiri-
cal accuracy. However, this function is not exempt
from shortcomings. To name two, 1) the NLL
only rewards the probability of the ground-truth
class and does not distinguish between the other
classes, and 2) it does not impose explicit mar-
gins (or ratios) between the probability assigned
to the ground-truth class and those assigned to the
other classes. For this reason, other differentiable
loss functions are regarded as appealing alterna-
tives or complements to the NLL. Amongst them

are the hinge loss (Cortes and Vapnik, 1995) and
the REINFORCE loss (Williams, 1992; Ranzato
et al., 2016) which both attempt to directly op-
timise the performance measure used to evaluate
the model’s accuracy (e.g., the Hamming loss, the
CoNLL score, the BLEU score etc). Both these
losses can be used for the usual classification at
token level or for the joint classification of all the
tokens in a sentence (i.e., structured prediction)
(Tsochantaridis et al., 2005). Given that targeting
the evaluation loss during training may lead to im-
proved performance at test time, in this short paper
we explore the use of a structured hinge loss for
named-entity recognition (NER). Our main contri-
bution is the introduction of additional constraints
between specific labelings aimed at increasing the
accuracy of the learned model. Experimental re-
sults over a challenging NER dataset (OntoNotes
5.0, which is still far from accuracy saturation)
show that the proposed approach has been able to
achieve higher accuracy than both the NLL and a
conventional structured hinge loss.

2 Related Work

In this section we briefly review the main literature
on NER architectures and on structural loss func-
tions. For a broader review of deep learning for
NER, the reader can refer to (Li et al., 2018).

A current and well-known approach for NER
combines a bidirectional LSTM with a CRF out-
put layer to benefit from both their properties in
sequential tagging (Huang et al., 2015). In this ap-
proach, the LSTM is used first to process each sen-
tence token-by-token and produce an intermediate
representation. Then, the CRF uses the interme-
diate representation as input to provide the joint
prediction of all the labels. Lample et al. (2016)
have extended this model with a second, aux-
iliary LSTM encoding each token character-by-



character to also capture the regularities at charac-
ter level. More recently, Peters et al. (2017; 2018)
have proposed tagLM and ELMo to take advan-
tage of the contextualised embeddings provided
by pre-trained neural language models. Several
other variants have been proposed since, includ-
ing the Flair embedddings of Akbik et al. (2018)
which currently hold the state-of-the-art accuracy
over OntoNotes 5.0 (NB: besides a system hat
uses gazetteers as extra resources to increase accu-
racy (Liu et al., 2019)). However, a bidirectional
LSTM-CRF with ELMo embeddings can still be
regarded as a very strong baseline for NER and,
for this reason, it is used in the rest of this paper.

For what concerns alternative training objec-
tives to the negative log-likelihood, Zhang at
al. (2016) have proposed training an LSTM addi-
tioned with a linear output layer by using an SVM
objective. In their model, the parameters of both
the LSTM and the output layer have been learned
jointly using a combination of sequence-level and
frame-level regularised hinge losses. Similarly,
Shi et al. (2016) have proposed adding a structural
SVM output layer (Tsochantaridis et al., 2005)
to an RNN to improve its discriminative capabil-
ity. In 2012, Gimpel and Smith (2012) have pro-
posed a structured ramp loss that leverages vari-
ous styles of margins between predicted labelings.
Recently, Edunov et al. (2018) have carried out
an extensive review of structured loss functions,
including hinge losses, cost-weighted likelihoods
and reinforcement learning objectives. In a 2015
computer vision paper, Zhang and Piccardi (2015)
have proposed adding extra constraints to a struc-
tured hinge loss to increase its accuracy in a task
of activity segmentation in video. Inspired by that
approach, in this paper we explore its application
to NER, proposing three original combinations of
dedicated constraints and margins.

3 Methodology

In this section, we first briefly review the struc-
tured hinge loss (3.1) and the utilised scoring func-
tion (3.2), and then introduce the proposed ap-
proach (3.3).

3.1 Structured hinge loss

Given a token sequence, x = {x1 . . . xt . . . xT },
we note with y = {y1 . . . yt . . . yT } a labeling, i.e.
a sequence of corresponding labels, one per to-
ken. We also assume to have a scoring function,

F (x, y;w) or F (x, y) for brevity, which is able
to assign a compatibility score to any such (x, y)
pair. This function is completely defined by its set
of parameters, w, and it is a structured predictor if
the score of a labeling is computed jointly rather
than independently for each label. Given these as-
sumptions, the goal of a structured hinge loss is
simply to ensure that the ground-truth labeling, yg,
for a given x is assigned a score larger than that of
any other labeling, y 6= yg, by a chosen margin,
K:

F (x, yg)− F (x, y) ≥ K ∀y 6= yg (1)

It is often useful to impose a margin that is
the larger the more the labeling differs from the
ground truth, and this can be achieved by set-
ting the margin to be the evaluation loss (“margin
rescaling” (Tsochantaridis et al., 2005)):

F (x, yg)− F (x, y) ≥ ∆(yg, y) ∀y 6= yg (2)

However, the number of distinct labelings is ex-
ponential in the length of the sequence and it may
not be possible to find a set of parameters which
is able to satisfy all the constraints. In that case,
the constraints are relaxed by introducing a non-
negative term, ξ ≥ 0, in Eq. 2 to minimally satisfy
all the constraints:

F (x, yg)− F (x, y) ≥ ∆(yg, y)− ξ ∀y 6= yg

It is easy to see that the value of ξ is set by the
most violated of the constraints, with y∗ its corre-
sponding labeling:

ξ = max
y

[−F (x, yg) + F (x, y) + ∆(yg, y)] (3)

y∗ = argmax
y

[F (x, y) + ∆(yg, y)] (4)

where we have omitted the first term in Eq. 4
since it does not depend on y. Note that since the
search domain includes yg, and ∆(yg, yg) = 0,
the above guarantees that ξ ≥ 0. Eq. 3 is known
as the structured hinge loss because of the inter-
dependencies between the individual labels inside
the scoring function and, possibly, the evaluation
loss. In turn, the solution of Eq. 4 is known as
the “loss-augmented” inference and is the crux of
structured hinge loss minimisation. Given a train-
ing set, {xi, yi}, i = 1 . . . N , the training objec-
tive is therefore:

w∗ = argmin
w

N∑
i=1

ξi(w) (5)



While the minimisation in Eq. 5 can be easily
entertained by automated differentiation, the infer-
ence of the most-violating labelings must be per-
formed externally with a dedicated algorithm.

3.2 Scoring function

The scoring function, F (x, y;w), has been imple-
mented as a BiLSTM-CRF (Lample et al., 2016),
a popular NER model using a bidirectional LSTM
as its feature layer and a CRF as its output layer.
Its scoring function can be expressed as:

F (x, y;w) =
T∑
t=2

wyt−1,yt +
T∑
t=1

f(yt;w) (6)

where wi,j are the transition weights for transi-
tioning from label yt−1 = i to label yt = j,
and f(yt;w) denotes the score assigned to label
yt by the BiLSTM layer. At its turn, the BiL-
STM layer is organised as a bidirectional LSTM
with trainable word and character embeddings as
its inputs. At initialisation, the word embeddings
can be assigned with either random or pre-trained
values. At inference time, argmaxy F (x, y;w) is
provided by the Viterbi algorithm. For further de-
tails, please refer to (Lample et al., 2016).

3.3 The proposed multi-constraint structured
hinge loss

Rather than constraining the optimisation prob-
lem with an exponential number of constraints, the
structured hinge loss minimisation only considers
the constraint setting the value of the loss:

ξ = [−F (x, yg) + F (x, y∗) + ∆(yg, y∗)] (7)

While such an approach makes the constrained
minimisation feasible, we speculate that the ad-
dition of other constraints – either between the
ground-truth labeling and other labelings, or be-
tween the other labelings themselves – may even-
tuate in a more performing model. To this aim, we
have created a new set of labelings by arbitrarily
introducing false positives in the ground-truth la-
belings of the training set. As false positives, we
have decided to change the “Outside” label im-
mediately preceding the first ground-truth entity
of the training sentences into a “B-ORG” label.
This is an altogether arbitrary change that creates
mildly incorrect labelings: as such, we expect the
scoring function to assign them scores lower than
the corresponding ground truths, yet higher than

more incorrect labelings. We note these new la-
belings as ui, i = 1 . . . N , reserving the subscript
position for the sample index henceforth. Given
these extra labelings, we propose three versions of
a multi-constraint training loss:

• Hinge-yu: in this loss, we impose an ex-
tra constraint between the altered ground-
truth labeling, ui, and the remaining label-
ings. However, function ∆(ui, y) cannot be
used as margin since it expects to have a true
labeling as its first argument. Therefore, fol-
lowing (Zhang and Piccardi, 2015) we set the
margin to be (∆(yi, y) −∆(yi, ui)). The la-
beling returned by the loss-augmented infer-
ence with this margin is the same as in the
standard case (y∗i ) since the the second term
in the margin (∆(yi, ui)) does not depend on
y.

• Double Hinge: in this loss, we instead im-
pose an extra constraint between the ground-
truth labeling, yi, and the altered ground
truth, ui. As margin, we can naturally use
∆(yi, ui).

• Discounted Margin: in this loss, we again
impose an extra constraint between the al-
tered ground-truth labeling, ui, and the re-
maining labelings. As margin, we use the
regular loss function, ∆(ui, y), but “dis-
counted” by a small discount factor since ui
is not an actual ground truth.

As evaluation loss for the margin, we have sim-
ply used the Hamming loss, since it naturally de-
composes over the individual tokens of its argu-
ments and it allows us to easily touch up the
standard Viterbi algorithm to provide the required
loss-augmented inference. Extending the loss-
augmented inference to other, more specialised
evaluation measures such as the CoNLL and MUC
scores (Nadeau and Sekine, 2007) could be the
scope of future work.

4 Experiments and results

4.1 Experimental set-up
We have carried out experiments over a challeng-
ing NER dataset, OntoNotes v5.0, which was first
introduced in CoNLL 2012 as a shared task (Prad-
han et al., 2012, 2013). This English dataset con-
tains multi-token entities from 18 different cate-
gories, including amongst others, person, facility,



Table 1: The compared training objectives.

NLL lNLL = −
∑N

i=1 log p(yi|xi)

Hinge Loss lHinge =
∑N

i=1[−F (xi, yi) + F (xi, y
∗
i ) + ∆(yi, y

∗
i )]+

y∗i = argmaxy F (xi, y) + ∆(yi, y)

Hinge-yu
lHinge−yu =

∑N
i=1[−F (xi, yi) + F (xi, y

∗
i ) + ∆(yi, y

∗
i )]+

+
∑N

i=1[−F (xi, ui) + F (xi, y
∗
i ) + ∆(yi, y

∗
i )−∆(yi, ui)]+

y∗i = argmaxy F (xi, y) + ∆(yi, y)

Double Hinge
lDoubleHinge =

∑N
i=1[−F (xi, yi) + F (xi, y

∗
i ) + ∆(yi, y

∗
i )]+

+
∑N

i=1[−F (xi, yi) + F (xi, ui) + ∆(yi, ui)]+
y∗i = argmaxy F (xi, y) + ∆(yi, y)

Discounted Margin
lDiscountedMargin =

∑N
i=1[−F (xi, yi) + F (xi, y

∗
i ) + ∆(yi, y

∗
i )]+

+
∑N

i=1[−F (xi, ui) + F (xi, y
∗
i ) + df ×∆(ui, y

∗
i )]+

y∗i = argmaxy F (xi, y) + ∆(yi, y)

Table 2: Comparison of the CoNLL scores for the OntoNotes 5.0 dataset with the different training objectives.

Training objective CoNLL score
NLL 88.54± 0.13
Hinge Loss 88.81± 0.06
Hinge-yu 88.88± 0.10
Double Hinge 88.85± 0.13
Discounted Margin (df = 0.925) 89.16± 0.03

organisation, location, product, event, law, date
and time, and is split over a training, validations
and test sets. For the experiments, we have con-
verted it to the IOB2 tagging scheme.

The experiments have been carried out using the
DeLFT1 implementation of the BiLSTM-CRF. In
the experiments, the word embeddings have been
initialised with a concatenation of fastText-300d2

and ELMo-1024d3 (DeLFT’s default). All hyper-
parameters have also been left to their default val-
ues. Each training session has been run until con-
vergence of the evaluation loss over the validation
set or a maximum of 20 epochs. In the experi-
ments, we have compared the following training
objectives: 1) the NLL/cross entropy; 2) a stan-
dard structured hinge loss using the Hamming loss
as margin (“Hinge Loss”), with no additional con-
straints; and 3-5) the three versions of the pro-
posed multi-constraint structured hinge loss pre-
sented in Section 3.3. The discount factor, df , for

1https://github.com/kermitt2/delft
2https://dl.fbaipublicfiles.com/

fasttext/vectors-english/crawl-300d-2M.
vec.zip

3https://s3-us-west-2.amazonaws.com/
allennlp/models/elmo/2x4096_512_2048cnn_
2xhighway_5.5B/elmo_2x4096_512_2048cnn_
2xhighway_5.5B_options.json

the Discounted Margin approach has been chosen
in range [0.85, 0.95] in 0.025 steps over the valida-
tion set. All the training objectives are displayed
in Table 1.

For evaluation, we have used the CoNLL score,
an entity-oriented variant of the F1 score which is
the standard evaluation measure for NER (Nadeau
and Sekine, 2007). For every experiment, we have
run three independent runs from different random
seeds and reported their average score. In addition,
for the most noteworthy pairwise comparisons, we
have run one-tailed Welch’s t-tests to test statis-
tical significance (Hintze, 2019). As shown in
(Colas et al., 2019), the Welch’s t-test enjoys a
good balance between Type I and Type II errors
under a variety of assumptions for the underlying
score distributions (beyond Gaussian), especially
for small sample sizes.

4.2 Results and analysis

Table 2 shows the CoNLL scores achieved by the
compared training objectives over the OntoNotes
5.0 test set as average of 3 independent runs. The
table shows that even the standard structured hinge
loss has achieved a higher score than the NLL
(+0.27 percentage points). Even if the improve-
ment is mild, the standard deviations over the

https://github.com/kermitt2/delft
https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway_5.5B/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway_5.5B/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway_5.5B/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway_5.5B/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json


three runs are small and the p-value from a one-
tailed Welch’s t-test is < 0.05, showing that the
improvement is statistically significant. In turn,
all the versions of the proposed multi-constraint
hinge loss have achieved higher scores than both
the NLL and the standard structured hinge loss,
with the Discounted Margin achieving the high-
est score. The improvement of the Discounted
Margin over the NLL has been +0.62 percent-
age points, with a one-tailed Welch’s t-test p-value
< 0.01. While this improvement is still somehow
limited, we wish to remark that it has leveraged
only changes to the loss function in the code, and
at a complete parity of model.

5 Conclusion

In this short paper, we have proposed a multi-
constraint structured hinge loss to be used as
training objective for a named-entity recognition
model. The proposed loss enforces additional
constraints with respect to the standard structured
hinge loss with the aim of improving the test ac-
curacy of the trained model. Experimental results
over a challenging NER dataset (OntoNotes 5.0)
have showed that the proposed loss has been able
to achieve an improvement of 0.62 CoNLL score
percentage points over the common negative log-
likelihood. In the future, we aim to explore further
combinations of constraints and margins, and pos-
sibly extend the proposed approach to other tasks.
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