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Abstract

In this paper, we perform a compara-
tive evaluation of off-the-shelf embedding
models over the task of compositional-
ity prediction of multiword expressions
(“MWEs”). Our experimental results sug-
gest that character- and document-level
models do capture some aspects of MWE
compositionality and are effective at mod-
elling varying levels of compositionality,
but ultimately are not as effective as a sim-
ple word2vec baseline. However they have
the advantage over word-level models that
they do not require token-level identifica-
tion of MWEs in the training corpus.

1 Introduction

In recent years, the study of the semantic id-
iomaticity of multiword expressions (“MWEs”:
Baldwin and Kim (2010)) has focused on com-
positionality prediction, a regression task involv-
ing the mapping of an MWE onto a continuous
scale, representing its compositionality either as a
whole or for each of its component words (Reddy
et al., 2011; Ramisch et al., 2016; Cordeiro et al.,
to appear). In the case of couch potato “an idler
who spends much time on a couch (usually watch-
ing television)”, e.g., on a scale of [0, 1] the over-
all compositionality may be judged to be 0.3, and
the compositionality of couch and potato as 0.8
and 0.1, respectively. The main motivation for the
study of compositionality is to better understand
the semantic of the compound and the semantic
relationships between the component words of the
MWEs, which has applications in various infor-
mation retrieval and natural language processing
tasks (Venkatapathy and Joshi, 2006; Acosta et al.,
2011; Salehi et al., 2015b).

Separately, there has been burgeoning interest

in learning distributed representations of words
and their meanings, starting out with word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014) and now also involving the study of
character- and document-level models (Baroni
et al., 2014; Le and Mikolov, 2014; Bojanowski
et al., 2017; Conneau et al., 2017). This work has
been applied in part to predicting the composition-
ality of MWEs (Salehi et al., 2015a; Hakimi Parizi
and Cook, 2018), work that this paper builds on
directly, in performing a comparative study of the
performance of a range of off-the-shelf representa-
tion learning methods over the task of MWE com-
positionality prediction.

Our contributions are as follows: (1) we show
that, despite their effectiveness over a range of
other tasks, recent off-the-shelf character- and
document-level embedding learning methods are
inferior to simple word2vec at modelling MWE
compositionality; and (2) we demonstrate the util-
ity of using paraphrase data in addition to simple
lemmas in predicting MWE compositionality.

2 Related work

The current state-of-the-art in compositionality
prediction involves the use of word embeddings
(Salehi et al., 2015a). The vector representa-
tions of each component word (e.g. couch and
potato) and the overall MWE (e.g. couch potato)
are taken as a proxy for their respective meanings,
and compositionality of the MWE is then assumed
to be proportional to the relative similarity be-
tween each of the components and overall MWE
embedding. However, word-level embeddings re-
quire token-level identification of each MWE in
the training corpus, meaning that if the set of
MWEs changes, the model needs to be retrained.
This limitation led to research on character-level
models, since character-level models can implic-
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itly handle an unbounded vocabulary of compo-
nent words and MWEs (Hakimi Parizi and Cook,
2018). There has also been work in the extension
of word embeddings to document embeddings that
map entire sentences or documents to vectors (Le
and Mikolov, 2014; Conneau et al., 2017).

3 Embedding Methods

We use two character-level embedding models
(fastText and ELMo) and two document-level
models (doc2vec and infersent) to compare with
word-level word2vec, as used in the state-of-the-
art method of Salehi et al. (2015a). In each case,
we use canonical pre-trained models, with the ex-
ception of word2vec, which must be trained over
data with appropriate tokenisation to be able to
generate MWE embeddings, as it treats words
atomically and cannot generate OOV words.

3.1 Word-level Embeddings

Word embeddings are mappings of words to vec-
tors of real numbers. This helps create a more
compact (by means of dimensionality reduction)
and expressive (by means of contextual similarity)
word representation.

word2vec We trained word2vec (Mikolov
et al., 2013) over the latest English Wikipedia
dump.1 We first pre-processed the corpus, re-
moving XML formatting, stop words and punc-
tuation, to generate clean, plain text. We then
iterated through 1% of the corpus (following
Hakimi Parizi and Cook (2018)) to find every oc-
currence of each MWE in our datasets and con-
catenate them, assuming every occurrence of the
component words in sequence to be the compound
noun (e.g. every couch potato in the corpus be-
comes couchpotato). We do this because instead
of a single embedding for the MWE, word2vec
generates separate embeddings for each of the
component words, owing to the space between
them. If the model still fails to generate embed-
dings for either the MWE or its components (due
to data sparseness), we assign the MWE a default
compositionality score of 0.5 (neutral). In the case
of paraphrases, we compute the element-wise av-
erage of the embeddings of each of the component
words to generate the embedding of the phrase.

1Dated 02-Oct-2018, 07:23

3.2 Character-level Embeddings

In a character embedding model, the vector for a
word is constructed from the character n-grams
that compose it. Since character n-grams are
shared across words, assuming a closed-world al-
phabet,2 these models can generate embeddings
for OOV words, as well as words that occur infre-
quently. The two character-level embedding mod-
els we experiment with are fastText (Bojanowski
et al., 2017) and ELMo (Peters et al., 2018), as
detailed below.

fastText We used the 300-dimensional model
pre-trained on Common Crawl and Wikipedia us-
ing CBOW. fastText assumes that all words are
whitespace delimited, so in order to generate a rep-
resentation for the combined MWE, we remove
any spaces and treat it as a fused compound (e.g.
couch potato becomes couchpotato). In the case
of paraphrases, we use the same word averaging
technique as we did in word2vec.

ELMo We used the ElmoEmbedder class in
Python’s allennlp library.3 The model was pre-
trained over SNLI and SQuAD, with a dimension-
ality of 1024.

Note that the primary use case of ELMo is to
generate embeddings in context, but we are not
providing any context in the input, for consis-
tency with the other models. As such, we are
knowingly not harnessing the full potential of the
model. However, this naive use of ELMo is not
inappropriate as the relative compositionality of
a compound is often predictable from its compo-
nent words only, even for novel compounds such
as giraffe potato (which has a plausible composi-
tional interpretation, as a potato shaped like a gi-
raffe) vs. couch intelligence (where there is no nat-
ural interpretation, suggesting that it may be non-
compositional).

3.3 Document-level Embeddings

Document-level embeddings aim to learn vec-
tor representations of documents (sentences or
even paragraphs), to generate a representation

2Which is a safe assumption for languages with small-
scale alphabetic writing systems such as English, but po-
tentially problematic for languages with large orthographies
such as Chinese (with over 10k ideograms in common use,
and many more rarer characters) or Korean (assuming we
treat each Hangul syllable as atomic).

3options file = https://bit.ly/2CInZPV,
weight file = https://bit.ly/2PvNqHh
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of its overall content in the form of a fixed-
dimensionality vector. The two document-level
embeddings used in this research are doc2vec (Le
and Mikolov, 2014) and infersent (Conneau et al.,
2017), as detailed below.

doc2vec We used the gensim implementation
of doc2vec (Lau and Baldwin, 2016; Řehůřek
and Sojka, 2010), pretrained on Wikipedia data us-
ing the word2vec skip-gram models pretrained on
Wikipedia and AP News.4

infersent We used two versions of in-
fersent of 300 dimensions, using the inbuilt
infersent.build vocab k words func-
tion to train the model over the 100,000 most
popular English words, using: (1) GloVe
(Pennington et al., 2014) word embeddings
(“infersentGloVe”); and (2) fastText word
embeddings (“infersentfastText”).

4 Modelling Compositionality

In order to measure the overall compositionality
of an MWE, we propose the following three broad
approaches.

4.1 Direct Composition

Our first approach is to directly compare the em-
beddings of each of the component nouns with
the embedding of the MWE via cosine similar-
ity, in one of two ways: (1) pre-combine the em-
beddings for the component words via element-
wise sum, and compare with the embedding for
the MWE (“Directpre”); and (2) compare each in-
dividual component word with the embedding for
the MWE, and post-hoc combine the scores via a
weighted sum (“Directpost”). Formally:

Directpre =cos(mwe,mwe1 +mwe2)

Directpost =α cos(mwe,mwe1)+

(1− α) cos(mwe,mwe2)

where: mwe, mwe1, and mwe2 are the embed-
dings for the combined MWE, first component and
second component, respectively;5 mwe1+mwe2
is the element-wise sum of the vectors of each of
the component words of the MWE; and α ∈ [0, 1]
is a scalar which allows us to vary the weight of

4https://github.com/jhlau/doc2vec/
blob/master/README.md

5Noting that all MWEs are binary in our experiments, but
equally that the methods generalise trivially to larger MWEs.

Emb. method Directpre Directpost

word2vec 0.684 0.710 (α = 0.3)

fastText 0.223 0.285 (α = 0.3)
ELMo 0.056 0.399 (α = 0.0)

doc2vec −0.049 0.025 (α = 0.0)
infersentGloVe 0.413 0.500 (α = 0.5)
infersentinfersent 0.557 0.610 (α = 0.5)

Table 1: Pearson correlation coefficient for com-
positionality prediction results on the REDDY

dataset.

the respective components in predicting the com-
positionality of the compound. The intuition be-
hind both of these methods is that if the MWE ap-
pears in similar contexts to its components, then it
is compositional.

4.2 Paraphrases
Our second approach is to calculate the similar-
ity of the MWE embedding with that of its para-
phrases, assuming that we have access to para-
phrase data.6 We achieve this using the following
three formulae:

Para first =cos(mwe,para1)

Para allpre =cos(mwe,
∑
i

parai)

Para allpost =
1

N

N∑
i=1

cos(mwe,parai)

where para1 and parai denote the embedding for
the first (most popular) and i-th paraphrases, re-
spectively.

We apply this method to RAMISCH only, since
REDDY does not have any paraphrase data (see
Section 5.1 for details).

4.3 Combination
Our final approach (“Combined”) is based on the
combination of the direct composition and para-
phrase methods, as follows:

Combined =βmax
(
Directpre,Directpost

)
+

(1− β)max
(
Para first,Para allpre,

Para allpost
)

where β ∈ [0, 1] is a scalar weighting factor to bal-
ance the effects of the two methods. The choice

6Each paraphrase shows an interpretation of the com-
pound semantics. e.g. olive oil is “oil from olive”
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Emb. method Directpre Directpost Para first Para allpre Para allpost Combined

word2vec 0.667 0.731 (α = 0.7) 0.714 0.822 0.880 0.880 (β = 0.0)

fastText 0.395 0.446 (α = 0.7) 0.569 0.662 0.704 0.704 (β = 0.0)
ELMo 0.139 0.295 (α = 0.0) 0.367 0.642 0.664 0.669 (β = 0.2)

doc2vec −0.146 0.048 (α = 1.0) 0.405 0.372 0.401 0.419 (β = 0.3)
infersentGloVe 0.321 0.427 (α = 0.7) 0.639 0.704 0.741 0.774 (β = 0.5)
infersentfastText 0.274 0.380 (α = 0.8) 0.615 0.781 0.783 0.783 (β = 0.0)

Table 2: Pearson correlation coefficient for compositionality prediction results on the RAMISCH dataset.

of the max operator here to combine the sub-
methods for each of the direct composition and
paraphrase methods is that all methods tend to un-
derestimate the compositionality (and empirically,
it was superior to taking the mean).

5 Experiments

5.1 Datasets

We evaluate the models on the following two
datasets, which are comprised of 90 English bi-
nary noun compounds each, rated for composi-
tionality on a scale of 0 (non-compositional) to 5
(compositional). In each case, we evaluate model
performance via the Pearson’s correlation coeffi-
cient (r).

REDDY This dataset contains scores for the
compositionality of the overall MWE, as well as
that of each component word (Reddy et al., 2011);
in this research, we use the overall compositional-
ity score of the MWE only, and ignore the compo-
nent scores.

RAMISCH Similarly to REDDY, this dataset
contains scores for the overall compositionality
of the MWE as well as the relative composition-
ality of each of its component words, in addi-
tion to paraphrases suggested by the annotators,
in decreasing order of popularity (Ramisch et al.,
2016); in this research, we use the overall compo-
sitionality score and paraphrase data only.

5.2 Results and Discussion

The results of the experiments on REDDY and
RAMISCH are presented in Tables 1 and 2, re-
spectively. In this work, we simplistically present
the results for the best α and β values for each
method over a given dataset, meaning we are ef-
fectively peaking at our test data. Sensitivity of
the α hyper-parameter is shown in Figures 1 and
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Figure 1: Sensitivity analysis of α (REDDY)
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Figure 2: Sensitivity analysis of α (RAMISCH)

2, for the REDDY and RAMISCH datasets, respec-
tively.

The first observation to be made is that none
of the pretrained models match the state-of-the-art
method based on word2vec, despite the simplic-
ity of the method. ELMo and doc2vec in partic-
ular perform worse than expected, suggesting that
their ability to model non-compositional language
is limited. Recall, however, our comment about
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using ELMo naively, in not including any con-
text when generating the embeddings for the com-
ponent words and, more importantly, the overall
MWE. The results show that doc2vec performs
better when representing paraphrases, and strug-
gles with compounds without sentential context.

In Table 1, we find Directpost to produce a higher
correlation in all cases, with α ranging from 0.0 to
0.5, suggesting that the second element (= head)
contributes more to the overall compositionality of
the MWE than the first element (= modifier); this
is borne out in Figure 1.

In Table 2, on the other hand, we find that, with
the exception of ELMo, the α values favour the
modifier of the MWE over the head (i.e. α > 0.5;
also seen in Figure 2), implying that the former
is more significant in predicting the composition-
ality of the MWE. The reason for the mismatch
between the two datasets is not immediately clear,
other than the obvious data sparsity.

We also see that the paraphrases achieve a
higher correlation across all models, suggesting
this is a promising direction for future study.
The low β values for Combined also confirm
that the paraphrase methods have greater predic-
tive power than the direct composition methods.
Among the paraphrase experiments, we find that
Para allpost— the average of the similarities of the
MWE with each of its paraphrases — consistently
achieves the best results. We hypothesize that
the paraphrases provide additional information re-
garding the compounds that further help determine
their compositionality.

6 Conclusions and Future Work

This paper has investigated the application of a
range of embedding generation methods to the
task of predicting the compositionality of an
MWE, either directly based on the MWE and its
component words, or indirectly based on para-
phrase data for the MWE. Our results show that
modern character- and document-level embedding
models are inferior to the simple word2vec ap-
proach at the task. We also show that paraphrase
data captures valuable data regarding the compo-
sitionality of the MWE.

Since we have achieved such promising results
with the paraphrase data, it might be interesting
to consider other possible settings in future tests.
While none of the other approaches could outper-
form word2vec, it is useful to note that they were

pretrained and, as such, did not require any manip-
ulation of the training corpus in order to generate
vector embeddings of the MWEs. This means they
can be applied to new datasets without the need for
retraining and are, therefore, more robust.

In future work, we intend to train the models
used in our study on a fixed corpus, to compare
their performance in a more controlled setting. We
will also do proper tuning of the hyperparameters
over held-out data, and plan to experiment with
other languages.
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