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Abstract

Social media sites such as Twitter are
attractive sources of information due to
their combination of accessibility, timeli-
ness and large data volumes. Identifica-
tion of medical entities in Twitter can sup-
port tasks such public health surveillance.
We propose an approach to perform anno-
tation of medical entities using a sequence
to sequence neural network. Results show
that our approach improves over previous
work based on CRF in the annotation of
two medical entities types in Twitter.

1 Introduction

Public health surveillance (Nsubuga et al., 2006)
is the systematic collection, analysis and monitor-
ing of population health for the public good using
a variety of tools. Governments rely mostly on
aggregated health data from health care centres,
which cannot be used in real-time scenarios such
as syndromic surveillance.

Twitter is a promising source of information due
to its availability and the large quantity of informa-
tion published, with more than 500 million posts
published each day. It can be potentially used to
mine information about the status of the popula-
tion (Jimeno Yepes et al., 2015a), and can then
be used in combination with other sources to em-
power government decision makers.

Natural language processing can leverage the
short messages in Twitter by extracting pieces of
structured information from them which can be
aggregated for data analysis. Identifying entities
of interest in tweets is relevant for several tasks,
including public health surveillance. Several ap-
proaches have been used to perform named en-
tity recognition in Twitter, which range from dic-
tionary matching approaches to machine learn-
ing methods. Named entity recognition (NER) in

Twitter has unique challenges compared to many
other sources of text. Tweets are short (with at
most 140 characters), and often contain highly in-
formal language, idioms, humour, typos and gram-
matical errors (Baldwin et al., 2013; Jimeno Yepes
et al., 2015b).

Effective biomedical NER methods for Twitter
rely on machine learning methods such as condi-
tional random fields (CRF) (Lafferty et al., 2001).
Learning algorithms like CRF typically consider a
limited span of one token before and/or after the
token being annotated, which may omit valuable
contextual information in order to work within the
limitations of the learning algorithms.

We use a recurrent neural network under the as-
sumption that it can manage dependencies in lan-
guage better than traditional methods such as CRF.
The proposed approach uses a sequence to se-
quence network (Sutskever et al., 2014) to analyse
text in a tweet producing an encoding vector which
is then used to perform the annotation by a second
LSTM (Long Short Term Memory) node. Word
embeddings generated from several million tweets
are used to represent the tokens in text, which is
the only feature engineering required in this neu-
ral network approach.

This approach improves over previous work
based on CRF in the annotation of two medical
entity types in Twitter. It also takes advantage
of word embeddings, thus reducing the domain-
specificity of the NE recogniser, i.e. no domain-
specific lexicon is used by the LSTM approach.

2 Methods

In this section, we describe the generation of word
embeddings and the recurrent network structure
used. We describe the data set used and the CRF
baseline method.
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2.1 Word embeddings

Bag-of-words representations for natural language
processing are typically high-dimensional (with
dimension equal to the vocabulary size) and very
sparse, since just the words in the represented doc-
ument will have non-zero values. This represen-
tation is a problem for deep neural networks and
recently word embeddings have been used. Word
embeddings map this high dimensional space into
a lower dimensionality space which is dense rather
than sparse and has some interesting properties
that allow, for instance, identifying words with a
similar meaning (Mikolov et al., 2013).

The data set used in this work to generate the
word embeddings consists of 148 million tweets
randomly selected from years 2012 and 2013.
We used word2vec1 to generate word vectors us-
ing the continuous bag-of-words (CBOW) ap-
proach (Mikolov et al., 2013) with 200 dimensions
and other parameters set to default values.

Tweet text was lowercased and then tokenised
using the TweetNLP package2.

2.2 Sequence to sequence neural network

Typically recurrent neural networks suffer from
the vanishing gradient problem (Bengio et al.,
1994; Pascanu et al., 2013) when trained on long
dependencies. These networks rely on gradi-
ent descent methods and backpropagation through
time, thus gradients after long dependencies might
be very small. As an effect, the time needed
to train a network might be quite large. It
can even make a problem difficult to learn since
the signal for important events might be missed.
LSTM (Hochreiter and Schmidhuber, 1997) mem-
ory cells were developed to overcome the vanish-
ing gradient limitation and it can learn to retain
information for a long period of time.

LSTM memory cells introduce mechanisms to
avoid the vanishing gradient problem using, for a
given time t, an input gate it, an output gate ot,
a forget gate ft and a cell ct. The weights for
these three gates and memory cell are trained us-
ing backpropagation using training data. The input
to the LSTM cell is the vector xt and the hidden
output is ht. The ability of LSTM to effectively
deal with long-range dependencies (such as syn-
tactic dependencies) may be useful for NLP tasks
such as disambiguation.

1https://code.google.com/archive/p/word2vec
2www.cs.cmu.edu/ ark/TweetNLP

We adopt the definition of LSTM memory cell
introduced in (Graves, 2013), which follows the
diagram in Figure 1. Equations 1 to 5 show how
the values in different LSTM components get cal-
culated. Weights matrices W have subscripts that
indicate the components being related. For in-
stance Whi is the weight matrix between the hid-
den output and the input gate.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (3)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (4)

ht = ottanh(ct) (5)

Figure 1: LSTM memory cell unit dia-
gram (Graves, 2013)

Our network design is inspired by the
previously-mentioned sequence to sequence
learning network for machine translation of
Sutskever et al. (2014).

In our network, we have two LSTM nodes with
n units each. The first one (LSTMe) is used en-
coded to encode the text into a vector represen-
tation. The second one (LSTMa) takes as input
an input vector and the current token and gener-
ates an annotation. The output of LSTMa is pro-
cessed by a linear classifier trained using multi-
class hinge loss. In this stage, one of three cat-
egories is predicted, corresponding to IOB tags
common in NER: B(eginning), I(nside entity) and
O(ut of entity).

Training relies on AdaGrad (Duchi et al., 2011),
and the learning rate has been set to 0.01 for all
iterations, with the number of iterations set to 300.

A lookup table was used to translate each token
into a vector representation. Word embedding vec-
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Figure 2: Recurrent network layout. LSTMe performs encoding of tweets while LSTMa performs
B(eginning), I(n entity) and O(ut of entity) annotation.

tors of 200 dimensions for each token were gener-
ated. The LSTM memory cells have been config-
ured to use 200 units each, which matches the di-
mensions of the vectors generated with word2vec.

The vocabulary for word embeddings is finite,
as it is dependent on the training data we supply
to word2vec training data; in addition, words with
less than 20 occurrences in the training set are re-
moved to reduce the size of the vocabulary. This
means that some tokens in the NER training and
test sets might not be found in the word embed-
ding lookup table. In these cases, a vector with all
dimensions equal to zero is provided to the LSTM
nodes for both training and evaluation.

2.3 Micromed data set

We have used the Micromed3 data set described
in Jimeno Yepes et al. (2015b), which contains
1300 tweets from May 2014 manually annotated
with mentions of diseases, pharmacological sub-
stances and symptoms. In addition, the annota-
tions include parts-of-speech for some of the en-
tities, since adjectives have been considered for
symptoms and it includes references to either fig-
urative terms or entities that look as medical terms
but are used in a figurative meaning (e.g. mentions
of heart attack when someone is anxious).

Non medical entities were removed and the
JSON format was converted into IOB format for
training the recurrent network system based on
Torch4 and then converted into BRAT format5 for
evaluation. As in the generation of word embed-
dings, Tweet text was lowercased and then tok-
enized using the TweetNLP package.

3https://github.com/IBMMRL/medinfo2015
4http://torch.ch
5http://brat.nlplab.org/standoff.html

2.4 CRF baseline method
As an informed comparative baseline, we used
previously published work (Jimeno Yepes et al.,
2015a) based on a linear-chain CRF system with
the following features: part-of-speech, token sur-
face form and window relative position, token pre-
fix and suffix character n-grams of all lengths up to
eight, whether the token appears in a list of terms
extracted from the UMLS (Unified Medical Lan-
guage System) (Bodenreider, 2004) corresponding
to the entity type. This is currently the method
with best performance on this data set.

3 Results

The Micromed data set is split in 13 subsets of 100
tweets each, which are used to train and test the
machine learning methods using 13-fold cross val-
idation.

Results are presented in tables 1 and 2. Previ-
ous results published on Micromed (Jimeno Yepes
et al., 2015a) are compared to the proposed LSTM
approach with word embeddings as features. We
report precision, recall and F1 results for each
method, for both exact match (boundaries exactly
match the gold standard) and partial match (the
postulated entity overlaps at all with the gold stan-
dard). Statistical significance was determined us-
ing a randomisation version of the paired sample
t-test (Cohen, 1996).

Our approach improves the performance for
both pharmacological substance and symptom en-
tity types against the CRF comparison method.
However, the performance on the disease entity
type is decreased, particularly with exact match.

4 Discussion

The proposed method improves the F-score in the
annotation of pharmacological substances due to
a boost in recall. It improves the accuracy on the

140



Disease Pharm.Substance Symptom
Method Prec Rec F1 Prec Rec F1 Prec Rec F1
Baseline 0.796 0.527 0.634† 0.821 0.396 0.535 0.720 0.608 0.659

LSTMe+LSTMa 0.600 0.439 0.507 0.694 0.476 0.565 0.744 0.619 0.676

Table 1: Exact match NER results. Precision (Prec), recall (Rec) and F1 are used for evaluation. Baseline
tagger and the proposed approach (LSTMe+LSTMa) are trained and evaluated for the three entity types:
disease, pharmacological substance (Pharm.Substance) and symptom. † denotes statistically significant
different of p < 0.05 against the alternate method.

Disease Pharm.Substance Symptom
Method Prec Rec F1 Prec Rec F1 Prec Rec F1
Baseline 0.845 0.562 0.675 0.854 0.415 0.558 0.746 0.630 0.683

LSTMe+LSTMa 0.795 0.572 0.665 0.838 0.575 0.682† 0.793 0.656 0.718†

Table 2: Partial match Named entity recognition results. Precision (Prec), recall (Rec) and F1 are used for
evaluation. Baseline tagger and the proposed approach (LSTMe+LSTMa) are trained and evaluated for
the three entity types: disease, pharmacological substance (Pharm.Substance) and symptom. † denotes
statistically significant difference of p < 0.05 against the alternate method.

annotation of symptoms to a lesser extent. On the
other hand, the accuracy decreases for the annota-
tion of diseases, mostly in the exact match evalua-
tion.

A manual examination of the neural network
annotation shows that for entities with multiple to-
kens, annotations are sometimes incorrect for one
of the tokens in the entity.

The recall is typically higher in our NER sys-
tem, even though the CRF baseline uses external
domain-specific terminological resources such as
the UMLS. In fact, the CRF baseline heavily re-
lies on the term lists extracted from the UMLS,
which represent extensive domain-specific cus-
tomisation, while our LSTM approach does not
depend on anything specific to the medical do-
main apart from the relatively small training cor-
pus. The external knowledge comes solely from
word embeddings derived from a general Twitter
corpus, which would only contain a very small
amount of domain-specific information, suggest-
ing that the LSTM approach is more robust and
domain-agnostic.

Even with higher recall, there are some terms
that are missed by the neural network tagger and
a larger data set or domain knowledge based on
the UMLS could provide a boost in the recall. In-
frequent terms might cause problems – for exam-
ple, valerian did not appear in the word embed-
dings generated using word2vec. A larger Twitter
corpus and/or a domain corpus based on MED-
LINE might be considered to generate the word

embeddings to make them more robust and encode
more relevant domain knowledge including rarer
phenomena such as these.

5 Related work

CRF has become the standard tool for NER, in-
cluding for Twitter (Ritter et al., 2011; Ritter et
al., 2012). Previous work in biomedical natu-
ral language processing (NLP) has explored using
CRF methods to several manually annotated data
sets (Jimeno Yepes et al., 2015b; Nikfarjam et al.,
2015).

Initial work using convolutional neural net-
works (Collobert et al., 2011) showed state-of-the-
art performance on standard general English data
sets. There is recent work on named entity recog-
nition using bidirectional LSTM based recurrent
networks that are enhanced using CRFs (Lample
et al., 2016) and complemented with CNNs (Ma
and Hovy, 2016), which show state-of-the-art per-
formance in standard data sets. These works use
word-based features as we do here but also fea-
tures at the character level.

6 Conclusions and Future work

The proposed method improves the annotation of
biomedical entities in Twitter based on a previ-
ously state-of-the-art method based on CRF. For
future work, we may consider additional neural
network designs. For example, to alleviate the
aforementioned problem of tokens only partially
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aligning with ground truth, we could use meth-
ods discussed in a preprint (Lample et al., 2016)
to combine the output of a bigraph neural network
with CRF to improve the annotation of the begin-
ning of the entity (B). We may also consider ad-
ditional neural network designs inspired by other
work on deep learning for NER, and combining
external domain knowledge from a terminology
such as the UMLS, which may improve accuracy
while making it more targeted to the medical do-
main and this particular corpus.

NER over medical entities is a potentially useful
part of a public health surveillance system; further
normalisation of these terms, and detecting figu-
rative or non-medical uses would further enhance
their utility and could also benefit from a deep neu-
ral network approach.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, 12:2121–2159.

Alex Graves. 2013. Generating sequences
with recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Antonio Jimeno Yepes, Andrew MacKinlay, and
Bo Han. 2015a. Investigating public health surveil-
lance using twitter. ACL-IJCNLP 2015, page 164.

Antonio Jimeno Yepes, Andrew MacKinlay, Bo Han,
and Qiang Chen. 2015b. Identifying diseases,
drugs, and symptoms in twitter. In MEDINFO 2015:
eHealth-enabled Health - Proceedings of the 15th
World Congress on Health and Biomedical Infor-
matics, São Paulo, Brazil, 19-23 August 2015, pages
643–647.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the eighteenth in-
ternational conference on machine learning, ICML,
volume 1, pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. arXiv preprint arXiv:1603.01360.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Azadeh Nikfarjam, Abeed Sarker, Karen OConnor,
Rachel Ginn, and Graciela Gonzalez. 2015. Phar-
macovigilance from social media: mining adverse
drug reaction mentions using sequence labeling
with word embedding cluster features. Journal
of the American Medical Informatics Association,
22(3):671–681.

Peter Nsubuga, Mark E. White, Stephen B. Thacker,
Mark A. Anderson, Stephen B. Blount, Claire V.
Broome, Tom M. Chiller, Victoria Espitia, Rubina
Imtiaz, Dan Sosin, Donna F. Stroup, Robert V.
Tauxe, Maya Vijayaraghavan, and Murray Trostle.
2006. Public health surveillance: a tool for target-
ing and monitoring interventions. In Disease Con-
trol Priorities in Developing Countries. 2nd edition.
World Bank.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In EMNLP.

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter.
In KDD.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

142


