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Abstract

Twitter text-based geotagging often uses
geospatial words to determine locations.
While much work has been done in word
geospatiality analysis, there has been little
work on temporal variations in the geospa-
tial spread of word usage. In this paper,
we investigate geospatial words relative to
their temporal locality patterns by fitting
periodical models over time. The model
jointly captures inherent geospatial local-
ity and periodical factor for a word. The
resultant factorisation enables better un-
derstanding of word temporal trends and
improves geotagging accuracy by only us-
ing inherent geospatial local words.

1 Introduction

Automatically inferring geographical location of
social media data has become increasingly pop-
ular, as geospatial information plays a vital role
in applications such as advertising, influenza de-
tection and disaster management. Due to a
lack of abundant reliable geospatial information
(Cheng et al., 2010), various text-based geotag-
ging methods have been proposed (Cheng et al.,
2010; Eisenstein et al., 2010; Wing and Baldridge,
2014).1 The main idea is to leverage geospatial
words such as dialects and location names em-
bedded in Twitter text to infer geographic loca-
tions. For instance, yinz is primarily used in Pitts-
burgh, #auspol is a popular hashtag in Australia,
and @TransLink is frequently mentioned by Van-
couver users.

Social media data often comes as a stream, and
its contents and topics change over time. This im-
plies geospatial words in social media can be fur-

1Indeed there is a way that a user can turn on their location
sharing options which offers accurate location information,
however, the ratio of such users are pretty low (Cheng et al.,
2010).

ther distinguished based on their temporal patterns
of locality (i.e. how location-indicative a word
is). Some time-invariant geospatial words (e.g.
CalTech) are consistently associated with a loca-
tion, while other words like #ALTA216 are only
transiently associated with a location (e.g. during
the conference).

In this paper, we investigate the word local-
ity pattern over time. First, we bin streaming
tweet data into a series of sliding time windows
and calculate the locality estimators in each win-
dow. The time-indexed locality estimators are then
fed into periodical models which jointly capture
the inherent geospatial locality and periodical fac-
tor. We show that by removing the periodical fac-
tor, we can obtain improved geotagging accuracy.
Furthermore, we demonstrate the utility of fitted
model parameters in explaining some intuitive ob-
servations for reoccurring words.

2 Background

Text-based geotagging is often formulated as a
classification task (Cheng et al., 2010) which in-
volves predicting a location from a set of pre-
defined geographical partitions. It exploits words
in tweets on the grounds that some of them carry
geographical information. The accuracy is of-
ten measured by the agreement of the predicted
locations with true oracle locations (Wing and
Baldridge, 2011).

Earlier work in geotagging exploits language
models identified from textual data from different
locations (Cheng et al., 2010; Wing and Baldridge,
2011; Kinsella et al., 2011). It selects the location
with the most similar language model relative to
the input tweet text. However, these methods also
include irrelevant words such as stop words (e.g.
the) and common hashtags (e.g. #iphone), mean-
ing they capture imperfect geospatial signals.

Cheng et al. (2010) improved language model-
based methods by augmenting local words for

Bo Han, Antonio Jimeno Yepes, Andrew MacKinlay and Lianhua Chi. 2016. Temporal Modelling of Geospatial Words in
Twitter. In Proceedings of Australasian Language Technology Association Workshop, pages 133−137.



geotagging. Words with sharply-peaked frequency
distributions with respect to location are cate-
gorised as local words, and only local words are
used in geotagging. Furthermore, ranking geospa-
tial words by their locality in the decreasing order
has been proposed (Chang et al., 2012; Laere et
al., 2013; Han et al., 2014), however the categori-
sation of local and non-local words is still binary.
Hierarchical models and regularisation have also
shown to be effective in geotagging (Ahmed et al.,
2013; Wing and Baldridge, 2014).

With much progress in identifying and utilising
geospatial words, the temporal variance of geospa-
tial words has not been under studied. In this pa-
per, we study the impact of this temporal aspect
for geospatial words.

3 Temporal Geospatial Word Modelling

To analyse the temporal pattern of geospatial
words, we first define a fixed-length sliding time
window. The collected data within a time window
is then aggregated for computing locality vari-
ances for each word. The same calculations are
performed for each consecutive time window and
the location scores are collectively incorporated in
a periodical model, and the geospatial words are
then ranked and categorised based on this model.
Top ranked words are assumed to be consistently
location-indicative over time and should therefore
be preferred when building geotagging models.

3.1 Measurement of Word Locality

The locality variances of a word are computed on
basis of time windows (e.g. one week). For each
word found in a time window, we obtain a list
of locations (i.e. GPS coordinates) from tweets
containing the word. Then we draw random sam-
ples of paired locations without replacement (non-
exhaustive to improve tractability), and compute
the distances between paired locations following
Cook et al. (2014), yielding a list of paired lo-
cation distances. The mean and median of these
distances serve as locality variances and are used
in subsequent experiments. Permanent location-
indicative words should have consistently low lo-
cality variances as they are likely to occur in ge-
ographically close regions in most time windows.
The metric of median distance reduces the influ-
ence of outlier locations (e.g. caused by people
mentioning their home city while travelling).

3.2 Sinusoidal Modelling

We assume that a word’s observed geospatial pat-
tern is jointly influenced by its inherent locality
and periodical factor. A general sinusoidal model
is applied to capture both factors in Equation 1.

f(t) = C︸︷︷︸
Inherent locality

+α sin(ωt+ φ)︸ ︷︷ ︸
Periodical factor

(1)

f(t) denotes the geospatial locality variance
over time and t is the time window index. C,
which is constant with respect to time, models
the inherent permanent locality, while the pe-
riodic factor is captured by the time-dependent
α sin(ωt+ φ) in Equation 1.

A smaller C suggests the corresponding word is
more inherently location-indicative since the peri-
odic effects are factored out into the other term.

The time component α sin(ωt+φ) is dependent
on the time window index t and parameterised by
the amplitude α, angular frequency ω and phase
φ. α represents the maximum impact of periodic
component on a word’s locality, with a larger value
suggesting the word is strongly time-dependent.
ω denotes the frequency of this periodic com-

ponent. It is inversely proportional to the period,
which is important for categorising the geospatial
patterns of a word. Ideally, for transient geospa-
tial words, lower locality variances will occur in
a tight cluster of time windows giving a large pe-
riod (and hence low ω), while recurring geospatial
words will have a smaller period corresponding to
lower locality variances appearing at more regular
intervals.
φ is the phase of the wave and reflects the point,

such as a day of the week, within a time window
and it is crucial for curve fitting.

4 Experiments and Discussion

4.1 Datasets

We collected 10% 2014 Twitter stream data from
Gnip.2 Tweets are lowercased and non-English
data is removed according to Gnip-provided lan-
guage code. We use APR-DEC geotagged tweets
as the training data and JAN-MAR users (by ag-
gregating all their tweets) for test.3 To ensure the

2https://gnip.com/
3Because we had a major data collection interruptions be-

tween March and April, we chose the larger of two datasets
for training and the other for test.
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quality of test data, we only include users who
have more than 10 English tweets that are within
150 km of a city centre according to the geotag
coordinates of the tweets, with at least 80% of
these tweets having the same closest city. The
closest city is stored as the user’s true location.4

The datasets after applying the above process are
shown in Table 1.5

Datasets Data size

Train(APR-DEC) 45.4M tweets
Test(JAN-MAR) 373K users

Table 1: Filtered Twitter dataset

4.2 Fitting Sinusoidal Models

We estimate parameters for Equation 1 using Non-
linear Least Square for each word. The initial val-
ues for important factors are set as follows:6

• C is set to the mean of the “10%-trimmed”
(5th-95th percentile) locality variance num-
bers.
• α is determined by taking the root mean

square of the 10%-trimmed locality variance
numbers and dividing by

√
2.

• ω is set to the dominant frequency in
Discrete-Time Fourier Transformation.

We further check the model validity by check-
ing p-values for each C, and only keeping geospa-
tial words with models that are significant at p <
0.05. We also only keep words that occur at least
20 times in at least 20 time windows due to effi-
ciency considerations and because rare words have
less impact in terms of analysis and building sta-
tistical models.

4.3 Impact on Geotagging

One advantage of temporal modelling of geospa-
tial words is that the geotagging accuracy is ex-
pected to improve by teasing out transient and re-
curring location-indicative words. We set a bench-
mark multinomial naive Bayes classifier with the

4We adopted the 3709 city partitions of Han et al. (2014)
5Pavalanathan and Eisenstein (2015) mentioned geotag-

ging results are influenced by demographics and where the
true location source being used. These influencing factors
are less of our concern when analysing the impact of tempo-
ral factors.

6The remaining parameters for data fitting are set as fol-
lows: φ = 1, maxIter = 500.

following settings to test the impact.7

• WHOLE: This baseline uses the whole train-
ing data collection period to calculate the
locality median score in training without
specifying time windows, which is roughly
equivalent to conventional word-based non-
temporal geotagging model.
• SIN-MEAN: This setting uses a fourteen-day

sliding time window with one day as the slid-
ing step.8 Random location pairs are gener-
ated three times with each sample size equal
to 20. Mean numbers are used to fit the si-
nusoidal model and the initial parameters are
estimated as described in Section 4.2.
• SIN-MEDIAN: Similar to SIN-MEAN, but we

use medians as locality variances to reduce
the negative impact of outliers.

We then rank words by the C value from (3.2)
and evaluate the accuracy of the geotagging mod-
els produced by using the top n words. The
experiment range starts from the top 5K with a
next 5K increment up to 40K.9 As shown in Fig-
ure 1, we found (1) As expected, the more fea-
tures, the better the performance of the geotag-
ger; (2) With the same number of features, both
SIN-MEAN and SIN-MEDIAN outperform WHOLE

consistently by 2.0-4.7% error reduction (with an
absolute accuracy 5.3-9.3%); (3) The differences
between WHOLE and each of the SIN methods are
all statistically significant (p < 0.0001). In con-
trast, the difference between SIN methods is in-
distinguishable. Overall this indicates that using
only permanent location indicative words (as de-
termined by C) allows us to build more accurate
models for text-based geotagging.

4.4 Post Analysis and Discussions
The fitted model parameters also imply some in-
teresting patterns for geospatial words. As ex-
plained in Section 3.2, C provides an indica-
tion of inherent locality (as shown in Table 2).

7The objective is to analyse the impact of temporal
geospatial word modelling instead of building state-of-the-
art geotagging systems. Advanced models including a
regularised logistic regression as discussed by Wing and
Baldridge (2014) are preferred in building geotaggers for bet-
ter accuracy.

8In theory, we can choose other window sizes, however
shorter time windows would produce sparse location distri-
butions and unreliable samples.

9The total feature number is around 43K.
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Figure 1: Geotagging performance comparisons
(over 373K test users)

C ≥ 105 C ≤ 10−3

siya @zeling97
#thankyoulord @seandasheepdog
@armorogod #xiomaraforugirlperu
@aquariusquotez @parazetsalive
@shainedawson @mishecollins

Table 2: Examples of large and small C values

We found words with lower C values are often
user names and hashtags which are used in spe-
cific regions. For instance, #telpadmovienight and
#xiomaraforugirlperu are popular in Philippines
and Peru. Large C values are associated with pop-
ular people (e.g. siya and @shainedawson) or
common expressions (e.g. #thankyoulord).

Metropolitan city names are often not consis-
tent local words over time, as they might be men-
tioned across the world. In contrast, the hashtag
versions seem to be more permanent location in-
dicative (e.g. Figure 2).10 Some local sport terms
(e.g. Figure 3) share (modest) recurring local-
ity patterns over time as captured by the temporal
modelling. Theoretically, it is possible to have lo-
cation indicative words that are local to one loca-
tion at certain times, while local to other locations
at other times, however, we have not found such
examples in our selected features.

The current modelling approach also has several
limitations. Some infrequent location-indicative
words may be missed due to the minimum fre-
quency threshold in Section 4.2 and the relatively
small datasets we used for experiments. Further-

10All figures are smoothed using “loess” with span =
0.06 (Cleveland and Devlin, 1988).

Figure 2: Locality comparison: locations versus
location hashtags

Figure 3: Recurring pattern for local sports

more, we may obtain unreliable fitted parameters
due to insufficient data points, because as few as
20 locality variances may be available. Using a
training data set which covers a longer time span
would partially mitigate this problem and help
learn parameters for words with longer periods.
We could also increase the time window size (e.g.
to a month) to incorporate more words, however
this may make it difficult to capture monthly re-
curring words.

5 Conclusion and Future Work

In this paper, we investigated the temporal vari-
ance of geospatial words over time. Specifically,
a sinusoidal model is applied to jointly capture
the inherent permanent locality along with time-
dependent component representing changes which
occur in word usage with respect to particular lo-
cations over time. This model factors out perma-
nent location indicative words which are shown to
be able to improve geotagging accuracy. The fitted
parameters also confirm intuitive geospatial local-
ity patterns. In general, we believe such temporal
modelling of geospatial words benefits both pre-
dictive tasks and geospatial data analysis.

Sinusoidal models are effective in capturing
strict recurring patterns, however, this assumption
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is often not satisfied due to the nature of periodi-
cal patterns and noise in the data. In future work,
we plan to experiment with more advanced peri-
odical models for data fitting, e.g. employ a num-
ber of superposed periodical models, instead of us-
ing only the dominant frequency model. Inspired
by Dredze et al. (2016) that periodical patterns
have impacts on geotagging results, we also plan
to compare test results based on datasets collected
over different periods.

References
Amr Ahmed, Liangjie Hong, and Alexander J. Smola.

2013. Hierarchical geographical modeling of user
locations from social media posts. In Proceed-
ings of the 22nd International Conference on the
World Wide Web (WWW 2013), pages 25–36, Rio
de Janeiro, Brazil.

Hau-wen Chang, Dongwon Lee, Eltaher Mohammed,
and Jeongkyu Lee. 2012. @Phillies tweeting from
Philly? Predicting Twitter user locations with spa-
tial word usage. In 2012 IEEE/ACM International
Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 111–118, Istan-
bul, Turkey.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you tweet: a content-based
approach to geo-locating Twitter users. In Proceed-
ings of the 19th ACM Conference on Information
and Knowledge Management (CIKM 2010), pages
759–768, Toronto, Canada.

William S Cleveland and Susan J Devlin. 1988. Lo-
cally weighted regression: an approach to regression
analysis by local fitting. Journal of the American
statistical association, 83(403):596–610.

Paul Cook, Bo Han, and Timothy Baldwin. 2014. Sta-
tistical methods for identifying local dialectal terms
from gps-tagged documents. Dictionaries, 35:248–
271.

Mark Dredze, Miles Osborne, and Prabhanjan Kam-
badur. 2016. Geolocation for twitter: Timing mat-
ters. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1064–1069, San Diego, California,
June. Association for Computational Linguistics.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith,
and Eric P. Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2010), pages 1277–
1287, Cambridge, USA.

Bo Han, Paul Cook, and Timothy Baldwin. 2014.
Text-based Twitter user geolocation prediction.

Journal Artificial Intelligence Research (JAIR),
49:451–500.

Sheila Kinsella, Vanessa Murdock, and Neil O’Hare.
2011. “I’m eating a sandwich in Glasgow”: Model-
ing locations with tweets. In Proceedings of the 3rd
International Workshop on Search and Mining User-
Generated Contents, pages 61–68, Glasgow, UK.

Olivier Van Laere, Jonathan Quinn, Steven Schockaert,
and Bart Dhoedt. 2013. Spatially-aware term selec-
tion for geotagging. IEEE Transactions on Knowl-
edge and Data Engineering, 99:221–234.

Umashanthi Pavalanathan and Jacob Eisenstein. 2015.
Confounds and consequences in geotagged Twitter
data. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2138–2148, Lisbon, Portugal.

Benjamin P. Wing and Jason Baldridge. 2011. Sim-
ple supervised document geolocation with geodesic
grids. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies (ACL HLT 2011),
pages 955–964, Portland, USA.

Benjamin Wing and Jason Baldridge. 2014. Hierar-
chical discriminative classification for text-based ge-
olocation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 336–348, Doha, Qatar, Oc-
tober. Association for Computational Linguistics.

137


