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Abstract

Syndromic Surveillance has been per-
formed using machine learning and other
statistical methods to detect disease out-
breaks. These methods are largely depen-
dent on the availability of historical data to
train the machine learning-based surveil-
lance system. However, relevant train-
ing data may differ from region to region
due to geographical and seasonal trends,
meaning that the syndromic surveillance
designed for one area may not be effec-
tive for another. We proposed and analyse
a semi-supervised method for syndromic
surveillance from emergency department
chief complaint textual notes that avoids
the need for large training data. Our new
method is based on identification of lexi-
cal shifts in the language of Chief Com-
plaints of patients, as recorded by triage
nurses, that we believe can be used to
monitor disease distributions and possible
outbreaks over time. The results we ob-
tained demonstrate that effective lexical
syndromic surveillance can be approached
when distinctive lexical items are available
to describe specific syndromes.

1 Introduction

The increase in new emerging pathogenic diseases
like SAARS, Ebola, and the Zika virus requires
an ongoing effective syndromic surveillance sys-
tem. A syndromic surveillance system keeps track
of the frequency of patients experiencing specific
syndromes over time. Any abnormality in the nor-
mal trend of syndromes with respect to time may
imply a proximal disease outbreak.

There are many data sources that can be used
to perform syndromic surveillance, such as data
from hospital emergency departments. Chief com-
plaints provide us with one such rich data source

to perform syndromic surveillance. A chief com-
plaint is the set of signs and symptoms that the
triage nurse registers upon a patient’s arrival at the
emergency department of a hospital. The symp-
toms are usually described in a terse, ungrammat-
ical, and abbreviated language. Once the chief
complaint is registered at the initial assessment,
the patient sees the doctor and receives a detailed
check up. This may include sending the patient’s
specimen for testing in the laboratory especially
when dealing with a potentially dangerous infec-
tious disease. The results from the laboratory tests
may take days before the end result is available
and by then, there is a large risk of spreading the
disease to other people who may come in contact
with the infected person.

Chief complaints are readily available in a dig-
ital format and can therefore be easily processed
using natural language processing algorithms. In
the past, various work has been done to perform
syndromic surveillance using supervised machine
learning and statistical algorithms (Tsui et al.,
2003; Espino et al., 2007; Chapman et al., 2005;
Bradley et al., 2005). The major drawback of ma-
chine learning methods is the requirement of his-
torical data that can be used to train the system,
and a sensitivity to the characteristics of specific
text types (Baldwin et al., 2013). In the case of
syndromic surveillance, there is evidence of a need
for localized training data; as Ofoghi and Ver-
spoor (2015) found, a machine learning classifier
trained on an American data set may not be effec-
tive on an Australian data set. The authors found
that the American off-the-shelf syndromic classi-
fier (CoCo) achieved a lower F-score on the Aus-
tralian data set compared with another classifier
(SyCo) that was trained with the Australian data
set. Moreover, there may be a lack of resources
to collect ongoing data for chief complaints, espe-
cially in remote areas. Therefore, there is a need
for a surveillance system that can work without the
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availability of historical data for a long period of
time.

In this work, rather than using machine learning
algorithms to classify the new chief complaint of
a patient into pre-defined syndromic groups, we
explored the lexical content of chief complaints
over time, specifically the changes in the distri-
bution of terms, that may indicate an impending
event. We hypothesise that when the probability
distribution of terms in chief complaints of con-
secutive time-frames exhibits a large divergence,
then there has been a measurable change in the
trend of syndromes, which can be used for de-
tecting an outbreak. The Jensen-Shannon Diver-
gence (JSD) (Lin, 1991), also known as infor-
mation radius, between consecutive time-frames
over a chief complaint corpus was used in com-
bination with CUSUM (Cumulative Sum) algo-
rithms (Fricker Jr et al., 2008) to detect any
aberrancy in the data. We also experiment with
the text segmentation algorithm Link Set Median
(LSM) (Hoey, 1991) to find segmentations in the
chief complaints texts, as a proxy for lexical shift.

The remainder of this paper is organized as fol-
lows. We first describe the SynSurv data set used
for our experiments. Then, the three different
types of time-frames necessary to perform our lex-
ical analyses will be introduced. This is followed
by the discussion of how we modeled chief com-
plaints for textual analysis using statistical meth-
ods. Finally, we discuss the utilization of ab-
normality detection algorithms and the results ob-
tained in our experiments.

2 The SynSurv Data Set

The Syndromic Surveillance (SynSurv) data we
used for our analyses was collected from two of
the main hospitals in Melbourne, Australia; the
Royal Melbourne Hospital and the Alfred Hospi-
tal. The data was collected on behalf of the Victo-
rian Department of Health, initially to enable mon-
itoring during the 2006 Commonwealth Games
held in Melbourne. The data contains 314,630
chief complaints labeled with a syndromic group
as well as with disease codes in the ICD-10 and
SNOMED terminologies. The original SynSurv
data set contained data with respect to eight syn-
dromes Flu-Like Illness, Diarrhea, Septic Shock,
Acute Flaccid Paralysis, Acute Respiratory, Radi-
ation Injury, Fever with CNS, and Rash with Fever.
Due to the sparsity of data for many of the syn-

dromes in the data, we chose the top three with the
highest numbers of positive cases in the SynSurv
data, i.e., Flu-Like Illness, Diarrhea, and Acute
Respiratory.

Chief complaints differ from the majority of
other free text that can be found in textual doc-
uments or social media posts in that they con-
tain medical acronyms, abbreviations, as well as
numeric values representing body temperature,
blood pressure, and the like. They are notes en-
tered by the triage nurses lacking well-defined lin-
guistic structure. Therefore, some preprocessing
was carried out on the set of chief complaints.

We approached the chief complaint preprocess-
ing task first by lowercasing, lemmatization using
Stanford Lemmatizer, and removing stop words
and the already assigned ICD-10 and SNOMED
disease codes from the end of the chief complaint
strings. These are the disease codes assigned to
each chief complaint upon a patient’s discharge.
We removed these codes to retain the chief com-
plaint texts in their original format. We also re-
moved all the non-alphanumeric symbols except
“/”, which plays a meaningful role in the med-
ical domains. For instance, blood pressure is
recorded as two numbers, as 120/80, the first num-
ber representing systolic blood pressure and the
second number representing diastolic blood pres-
sure. If we remove “/”, this numeric reading be-
comes “12080” or “120 80” which results in a
loss of information; neither choice may define a
good feature to represent a chief complaint with a
specific syndrome. In addition, the same symbol
“/” is used for shorthand notations while making
notes, for example, the chief complaint texts heav-
ily contained “o/a” meaning “overall pale”. Other
notations included: “r/a”, “p/s”, “c/o”, and “r/t”.
We also observed that the use of such notation de-
pended on the nurse’s own preference; while there
were many chief complaints with “o/a” there were
also many occurrences of “o a” without the sym-
bol “/” in between the characters. This meant we
could not target all the notations consistently.

However, we did not remove any numeric val-
ues from the chief complaints because numeric
values may be relevant for diagnosing a syndrome.
For example, body temperature is one of the main
recordings that a doctor (or a nurse) takes when a
patient visits the emergency department to observe
if there is a serious illness.
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3 The Choice of Time-Frame

The number of patients that visit emergency de-
partments varies between weekdays and weekends
and also seasonally. To cater for such day-of-
the-week and seasonal trends, we used different
time-frames to accumulate chief complaints, some
of which normalize the frequencies of chief com-
plaints over longer (seven-day) periods. We exper-
imented with the following three time-frames:

Intersecting seven-day windows
The chief complaints over seven days were ac-
cumulated as one time-frame window; then, this
time-frame window was advanced by one day. The
seven-day time-frame windows cater for the vary-
ing frequency of patients visiting over weekdays
and weekends. The one-day shifting time-frame
is popular for supervised syndromic surveillance
as it allows for real-time syndromic surveillance at
the end of each day (Hutwagner et al., 2003). Note
that for lexical shift analysis with seven-day win-
dows shifting by one day, there is a large vocab-
ulary overlap for the six intersecting days; how-
ever, the variance would be significant enough to
be captured by aberrancy detection algorithms that
will be discussed later.

Disjoint seven-day windows
The chief complaints over seven days were accu-
mulated as one time-frame corpus; then, the time-
frame was advanced by seven days so the two con-
secutive windows were disjoint.

Disjoint one-day windows
In this case, all of the chief complaints in a
day formed one time-frame corpus of chief com-
plaints. The time shift was for one day and there-
fore, the chief complaints in the next day formed
the next time-frame corpus. Although this time-
frame does not normalize day-of-the-week vari-
ances, we incorporated this type in order to find
some daily patterns in the SynSurv data set.

4 Textual Modeling of Chief Complaints

We examine the distribution of lexical items in
chief complaints to find the differences in the ter-
minology used in consecutive time-frames. For
this, statistical methods were utilized, as will be
discussed in the following sections. Such statisti-
cal methods have been previously used for corpus
analysis and comparison (Verspoor et al., 2009;
Rayson and Garside, 2000). We follow that prior

work here, considering chief complaints in the
consecutive time-frames as separate corpora to be
compared with each other.

4.1 Jensen-Shannon Divergence

The Jensen-Shannon divergence, also known as
Information Radius, is a symmetric measure that
measures the similarity between two probability
distributions P and Q over the same event space.
The JSD between the two probability distributions
P and Q is a symmetrized and smoothed version
of the Kullback-Leibler Divergence (KLD) and is
calculated using Equation 1.

JSD(P‖Q) =
1

2
D(P‖M) +

1

2
D(Q‖M) (1)

where,M = 1
2(P +Q) andD represents the KLD

distance between the two probability distributions;
on a finite set χ is calculated using Equation 2.

D(P‖Q) =
∑
x∈χ

P (x) logn
P (x)

Q(x)
(2)

When modeling the chief complaint corpora,
the union set of the vocabularies of two corpora
to be compared was constructed (V = Vc1 ∪
Vc2), where (c1) and (c2) were the chief complaint
corpora belonging to the two consecutive time-
frames. P and Q represent the probability of cor-
pus terms. Since JSD inherently performs proba-
bility smoothing, to find the probability distribu-
tion of each term tk over Vci for each corpus, the
conditional probability of term tk in each corpus
was calculated using Equation 3, based on the raw
term frequencies (tf ) of the terms in ci.

P (tk|ci) =
tf(tk, ci)∑

tx∈Vci
tf(tx, ci)

(3)

4.2 Log-Likelihood for Term-Level Filtering

When two corpora are lexically compared with
each other, especially in the case of overlapping
time-frames, they may share a large number of
terms. Therefore, calculating probability distribu-
tions over the entire union set of terms contained
in the text of the two corpora may not be an ef-
fective method, as all the terms will have equal
importance. In this case, there is a need for filter-
ing out the terms that do not distinguish the two
corpora well (i.e., terms that are common in both
corpora).

47



The log-likelihood score of a term represents
the relative frequency difference of that term in the
two different corpora under comparison (Rayson
and Garside, 2000). This measure is calculated
based on the expected value for term tk ∈ V using
the total frequency of all terms in the corpus and
the actual frequency (or the sum of occurrences) of
term tk in the same corpus. Equation 4 shows how
the log-likelihood score is calculated for tk ∈ V
where Nci is the total frequency of all terms in
corpus ci, and Otk,ci represents the observed fre-
quency of term tk in the same corpus ci.

Etk,ci =
Nci

∑
iOtk,ci∑
iNci

(4)

The expected frequency of term tk in corpus ci
denoted by Etk,ci is a frequency that is expected
for tk if the occurrences were evenly distributed
across the two corpora (Verspoor et al., 2009). The
log-likelihood of the term is therefore a measure
that tells us how different the actual frequency of
the term is from the expected frequency of the
same term. For this, the log-likelihood is calcu-
lated using Equation 5.

LL = 2
∑
i

(Otk,ci ln(
Otk,ci
Etk,ci

)) (5)

An alternative to the log-likelihood measure for
statistical analysis of textual corpora is Pearson’s
χ2 statistic. This measure assumes a normal dis-
tribution of terms in the corpora and has been
shown in (Dunning, 1993) to be less reliable es-
pecially in the case of small textual corpora with
rare terms. Given the relatively small size of the
chief complaint corpora for each time-frame, the
log-likelihood analysis was preferred here.

Once the log-likelihood of each term was calcu-
lated, all of the terms with the log-likelihood be-
low a set threshold were filtered out. The texts of
the two corpora now contained only the most im-
portant terms that participated in the calculation of
probability distributions using JSD.

To estimate the best log-likelihood threshold,
we calculated the JSD between consecutive time-
frames when filtering terms based on different
log-likelihood thresholds ranging from 0 to 20.
Since we were not comparing two distinct cor-
pora (cf., (Rayson and Garside, 2000; Baldwin
et al., 2013)) but consecutive time-frames over a
single corpus, we calculated the JSD values be-
tween all of the consecutive time-frames and then

took the mean of all JSD values for each possi-
ble log-likelihood threshold value. It can be seen
from Figure 1 that as the threshold increases, more
terms are filtered out and eventually, hardly any
terms remain and the divergence between consec-
utive time-frames approaches zero. A threshold
this high is not ideal. We therefore applied the el-
bow method (Kodinariya and Makwana, 2013) to
set the log-likelihood thresholds to 1.75, 3.0, and
1.25 for the one-day, disjoint seven-day, and inter-
secting seven-day time-frames when filtering out
the non-important terms.

Figure 1: The analysis of the effect of different
log-likelihood threshold values on the changes in
the JSD distances between consecutive chief com-
plaint corpora in the SynSurv data set

5 Lexical Shift Analysis with Link Set
Median

In a separate set of experiments from the statistical
JSD distance analysis of the SynSurv data set, we
used the Link Set Median (LSM) algorithm (Hoey,
1991) to find segments in the set of chief com-
plaints that suggest lexical shifts in the data set.

The LSM algorithm is based on the idea that a
typical text has a cohesive format. Therefore, lex-
ical overlaps can be used to measure the similar-
ity between two sentences. If two sentences share
similar terms, then the sentences may be on the
same or similar topic. The LSM method identifies
lexical repetitions across sentences within a cor-
pus to find textual segments of similar topics. The
algorithm has a technique to represent each sen-
tence in the corpus based on its links with other
sentences in the same corpus. The lexical link is
a repetition between a pair of sentences in the cor-
pus. The set of the links per sentence contains the
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number of times each sentence has lexical over-
laps with any other sentence in the corpus. For
instance, if sentence 1 shares two terms with sen-
tence 2 and one term with sentence 4, then “2”
is added twice in the link set of sentence 1 as
{2,2,4}. After the link sets have been created for
all sentences in the text, the median of the link sets
are calculated. This median represents the lexi-
cal span of that sentence in the text. If the sen-
tence has a median of “5” for instance, this means
that the sentence has a lexical span from i − 5 to
i + 5 where i equals the original position of the
sentence. Once each sentence in the text has a cor-
responding median, an average median of the en-
tire text is calculated. This average median is used
as a threshold to find segment boundaries. If the
median difference between two consecutive sen-
tences is larger than the threshold, then a segment
boundary is placed between two sentences.

In our experiments, we modeled a “sentence” as
a set of chief complaints over a specific time-frame
and assume a “segment” boundary to be indicative
of a lexical shift. We applied the LSM algorithm
on the SynSurv data set to understand whether the
algorithm will place segment boundaries where
the lexical contents of chief complaints deviate
and whether such lexical shifts are tied with the
changes in the frequencies of syndromic groups.

6 Aberrancy Detection

When using the JSD values to find changes in the
term probability distributions in consecutive time-
frames, there was a need for a method to detect
abnormalities in the probability deviations over
time. The Early Aberration Reporting System
(EARS) C algorithms (Hutwagner et al., 2003)
were designed to detect such changes in syn-
dromic surveillance data. The CUSUM algorithms
are based on a statistically detectable change in
counts of relevant events over specified windows
of time. The EARS implemented three CUSUM
algorithms known as C1:mild, C2:medium, and
C3:ultra for detecting large, sudden deviations of
occurrences of specific events that significantly
depart from the norm over time. These algo-
rithms have been named after their level of sen-
sitivity and represent an unsupervised monitoring
approach that omits the requirement for long his-
torical data for system training. Since syndromic
surveillance systems require real-time analysis of
chief complaints, the EARS CUSUM algorithms

are ideal. The algorithms have recently been used
in another study to find possible disease outbreaks
along with machine learning classification tech-
niques (Aamer et al., 2016).

The C1 algorithm calculates the sample mean
and the sample standard deviation over rolling
windows of samples for t− 7 to t− 1 days, where
t is the current day. C2 adds a two-day lag onto
the calculation of the mean and the standard devi-
ation, and C3 is calculated on the basis of the pre-
vious two C2 values, details to be found in (Hut-
wagner et al., 2003). In our work, we used the
pre-set threshold values for the C algorithms, i.e.,
the threshold for C1=3, C2=3, and for C3=2.

Note that the LSM algorithm has an internal
method to calculate a threshold based on which
textual segment boundaries are identified. There-
fore, when using the LSM algorithm, we did not
apply the CUSUM algorithms.

7 Results and Discussion

We applied the JSD and log-likelihood filtering al-
gorithms on the chief complaints in the SynSurv
data set with the different time-frames described
in section 3. Then, the aberrancy detection algo-
rithms were utilized over the JSD measures of con-
secutive time-frames to retrospectively find any
disease outbreaks in the data set. We separately
applied the LSM method on the same data set to
find likely aberrancies.

Table 1 shows the results obtained (i.e., the
number of dates for which an aberrancy was de-
tected) when the aberrancy detection algorithms
were applied based on the JSD lexical distribution
values, derived from the chief complaints in the
SynSurv data set over the different time-frames.
As can be seen in Table 1, the C2 and C3 al-
gorithms with higher levels of sensitivity set off
a large number of signals. Algorithms that are
overly sensitive to fluctuations in disease frequen-
cies are not ideal; they may alert health practition-
ers too frequently, resulting in alert fatigue and
mistrust of the algorithm. On the other hand, al-
gorithms that miss viable shifts corresponding to
meaningful events are also not desirable. The C1
algorithm is the least sensitive of the three algo-
rithms while still raising alerts; it appears to bal-
ance the two criteria most effectively.

Note that to apply the aberrancy detection algo-
rithms on the resulting JSD values over the dis-
joint seven-day windows, there was a need for 7 to
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Time-frame Method #Aberrancies with ADA
C1 C2 C3

1-day JSD+LL 64 (2.4%) 67 (4.0%) 205 (13.2%)
7-day disjoint JSD+LL 10 (4.6%) 14 (6.5%) 30 (13.8%)
7-day intersecting JSD+LL 36 (2.4%) 61 (4.0%) 201 (13.3%)

Table 1: The number of aberrancy dates detected by different algorithms in the chief complaints over
different time-frames. The total number of windows differed for each time-frame. The 1-day time-
frame consisted of 1522 windows starting from July 2005 to August 2009, the 7-day intersecting time-
frame had 1516 windows, and the 7-day disjoint time-frame had 217 windows. Note: ADA=Aberrancy
detection algorithm, JSD=Jensen-Shannon Divergence, and LL=Log-likelihood.

11 weeks of baseline data which would mean a 7
to 11 week wait before any aberrancy can be de-
tected. For this reason, in practice, it may not be
useful to apply the C algorithms on the JSD values
for disjoint seven-day time-frames.

Further analysis of the C1 algorithm, however,
showed that the weeks for which C1 detected out-
breaks were spread throughout the years in the
data set, indicating that LSM is highly sensitive
and produces too many noisy signals, which is not
desirable. Since the texts of chief complaints are
all in a single text corpus assigned to various syn-
dromes, a single chief complaint may correspond
to more than one syndrome. For example, due to
the very similar set of syndromes that Flu-Like Ill-
ness and Acute Respiratory share, a single chief
complaint may be labelled Flu-Like Illness, Acute
Respiratory, and No Diarrhea at the same time.
Therefore, a large lexical shift in the SynSurv data
set may correspond to any of the syndromes (in-
cluding the original set of syndromes introduced in
section 2). As a result, there was a need for a more
informed method to distinguish between the aber-
rancies related to each syndrome. For this, instead
of using log-likelihood of terms, we collected all
the chief complaints signaling the presence of a
syndrome into one corpus and extracted the terms
with the largest term frequency for each syndrome.
Table 2 shows the top 10 terms for the three syn-
dromic groups. We can see is a large intersection
for Flu-Like Illness and Acute Respiratory.

We calculated JSD values over the SynSurv data
set with the original chief complaint terms (no fil-
tering) removing stop words only, as well as with
the top 10 terms based on term frequencies for
each syndromic group. Figure 2 shows the re-
sulting diagrams for Flu-Like Illness and Diarrhea
over the different time-frames. The results for
Acute Respiratory were not shown since this syn-
dromic group is most similar to Flu-Like Illness.

TF rank Diarrhea FLI AR
1 pain sob sob
2 vomiting hr hr
3 abdo cough cough
4 diarrhea pain chest
5 hr o/a pain
6 nausea chest o/a
7 nil nil hx
8 o/a hx respiratory
9 gastrointestinal throat nil
10 hx respiratory phx

Table 2: The top TF ranked terms related to each
syndrome in the SynSurv data set. Note: TF=Term
frequency, FLI=Flu-Like Illness, and AR=Acute
Respiratory. The terms include many medical ab-
breviations such as “sob” for shortage of breath,
“hr” for heart rate, etc.

When comparing the effect of the different
time-frames, as shown in Figure 2, the results
with the one-day window time-frames seem much
noisier than those of the two other types of time-
frames. It is hardly possible to detect any aber-
rancies in the one-day time-frame output data
whereas with the seven-day windows, both dis-
joint and intersecting, some clear trends of peaks
can be detected around a few dates in the data set.

More importantly, the utilisation of the top
terms significantly changed the outputs of the
aberrancy detection as indicated by the different
patterns in the diagrams in Figure 2 with the orig-
inal versus top 10 terms. However, it is noticeable
that the peaks form at very similar dates for both
Flu-Like Illness and Diarrhea conditions, when
the top 10 terms are retained in the analysis. We
suspect this is largely due to the significant inter-
section between the list of top 10 terms for these
two syndromic groups, as seen in Table 2. Indeed,
there is a 50% overlap between the lists of top fre-
quency terms including “pain, “hr”, “o/a”, “nil”,
and “hx”. These overlapping terms are general;
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Figure 2: Variation of JSD values in the SynSurv data set with different time-frames when original and
top 10 terms retained

they seem non-specific to any syndrome.
We then experimented with the top frequency

terms that were not shared between the lists of the
two syndromic groups. We took the top 3 terms
from the two lists in Table 2 and calculated the
JSD values over the disjoint one-day windows of
chief complaints. The results are shown in Fig-
ure 3 in which the patterns of peaks are different
with drastic increases of JSD values at different
and separate dates. This suggests that if effective
and descriptive sets of terms are found to represent
each syndromic group (hence semi-supervised),
the lexical shift as measured with deviating JSD
values can be utilised as an indication of possible
outbreaks of corresponding syndromes.

Figure 3: Variation of daily JSD values in the Syn-
Surv data set when only top 3 terms retained

As a proof of concept to understand whether
JSD is in fact sensitive to the raw frequencies
of positive cases of syndromic groups, we cross-
checked deviations of JSD values (over all terms)
with reference to the actual positive cases of each
syndrome in the SynSurv data set. The results are
shown in Figure 4 where JSD is demonstrated to
be sensitive especially to the cases where there are
no positive labelled chief complaints for any of the
syndromes. In such cases, as highlighted in the
diagrams of Figure 4, JSD values deviate drasti-
cally, indicating a rapid change in the frequencies
of syndromes of interest.

In the last round of experiments, we applied the
LSM algorithm over the different time-frames of
the SynSurv data set. The algorithm detected 77
segments with the disjoint seven-day time-frame,
178 with the one-day window, and 268 with the in-
tersecting seven-day time-frame. When analysing
the dates of segmentations, it was observed that al-
though the dates were spread throughout the years,
the segments by the disjoint seven-day and one-
day time-frames were mostly in the years 2007,
2008, and 2009, similar to the times when the
peaks were observed with JSD. However, the 268
segments found using the intersecting seven-day
time-frame were distributed over the four years.
This may be due to the large vocabulary over-
laps where the windows intersect over six days
of chief complaints. The intersecting seven-day
time-frame, therefore, may not facilitate an effec-
tive process of outbreak detection using lexical
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Time-frame Method # of Segments
1-day LSM 178 (11.7%)
7-day disjoint LSM 77 (35.5%)
7-day intersecting LSM 268 (17.7%)

Table 3: The number of segments detected in the chief complaints over different time-frames. The total
number of windows differed for each time-frame. The 1-day time-frame consisted of 1522 windows
starting from July 2005 to August 2009, the 7-day intersecting time-frame had 1516 windows, and the
7-day disjoint time-frame had 217 windows. Note: LSM = LinkSetMedian

Figure 4: Analysing sensitivity of lexical shifts measured with JSD to actual deviations of the number
of daily syndromic chief complaints. Vertical lines point to the dates when drastic disease frequency
changes align with large JSD values.

shift analysis with LSM. Based on our results, the
large number of deviations/outbreaks detected by
the LSM algorithm (in its current form) seems to
be an impediment in using the algorithm for syn-
dromic surveillance.

8 Conclusion

We proposed a new semi-supervised method to
perform syndromic surveillance over the SynSurv
data set containing a large number of emergency
department Chief Complaints in the Victoria State
of Australia. This new method is based on lo-
cating significant lexical divergences in the texts
of chief complaints accumulated over consecutive
periods of time. We analysed the lexical shifts us-
ing Jensen-Shannon Divergence (JSD); a probabil-
ity distribution divergence measure; and Link Set
Median (LSM); a text segmentation algorithm; for
the three syndromes Flu-Like Illness, Acute Respi-

ratory, and Diarrhea. The aim was to find whether
lexical shifts are tied with possible disease out-
breaks in the historical SynSurv data set. We eval-
uated the lexical shifts with three types of time-
frames: i) one-day windows, ii) disjoint seven-day
windows, and iii) intersecting seven-day windows
advancing by one day.

We found that all three time-frames had some
limitations: the disjoint seven-day time-frame
when used in combination with the EARS C algo-
rithms is not efficient, and inherently, it will result
in longer periods of wait before a likely outbreak is
signalled. The seven-day intersecting time-frame,
on the other hand, resulted in noisy and frequent
signals with the LSM algorithm, mostly as a result
of large textual overlaps in consecutive overlap-
ping time-frames. The one-day time-frame pro-
duced interesting results but suffers from the day-
of-the-week effect.
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Our results also demonstrate that if each syn-
dromic group (i.e., disease) is represented with
its corresponding distinguishable high-frequency
terms, then the JSD measure provides evidence for
lexical shifts that is aligned with drastic changes
in the frequency of syndromic-labelled chief com-
plaints. The need for distinguishable terms for
each syndrome under consideration means that our
methods are semi-supervised. Based on our exper-
iments, therefore, the JSD method with syndrome-
specific term sets analysed over the one-day time-
frames resulted in the most promising outcomes.

In future work, we plan to expand the idea of
using high frequency terms into the utilisation of
related semantic representations, such as health-
related synonyms. In addition, we are planning
to analyse lexical shifts in chief complaints us-
ing other natural language processing techniques,
such as textual novelty detection with Topic Track-
ing and Detection algorithms. TDT algorithms can
track changes in text and find event-level shifts (or
first stories) in a corpus. We would like to ex-
periment with such unsupervised algorithms and
find whether first story boundaries match drastic
changes in the frequencies of chief complaints re-
lated to specific syndromic groups.
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