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Abstract

This paper describes the winning entry to
the ALTA Shared Task 2013. The theme
of the shared task was recovery of cas-
ing and punctuation information from de-
graded English text. We tackle the task
as a sequential labeling problem, jointly
learning the casing and punctuation labels.
We implement our sequential classifier us-
ing conditional random fields, trained us-
ing linguistic features extracted with off-
the-shelf tools with simple adaptations to
the specific task. We show the improve-
ment due to adding each feature we con-
sider, as well as the improvment due to uti-
lizing additional training data beyond that
supplied by the shared task organizers.

1 Introduction

The ALTA Shared Task 20131 required partici-
pants to recover casing and punctuation informa-
tion from degraded English text. The task fo-
cused specifically on English text where casing
and punctuation were entirely absent (i.e. all
characters had been reduced to lowercase, and
all non-alphanumeric symbols had been omitted).
Participants were required to submit word-level
predictions, identifying on a word-by-word basis
whether (1) the word in its original form has any
characters in uppercase, and (2) whether the word
is followed by one of a closed set of punctuation
marks.

Our approach to the task treats the task as a se-
quential labeling problem, a common technique in
modern natural language processing (NLP). We
implement a word-level sequential classifier us-
ing conditional random fields (CRFs), a sequen-
tial labeling technique that has been successfully

1http://www.alta.asn.au/events/
sharedtask2013

applied to a variety of NLP problems. We make
use of a number of linguistic features extracted
using off-the-shelf NLP tools, with some simple
adaptations to the specific problem at hand. We
also make use of additional training data beyond
that supplied by the shared task organizers, and
show that this has a large impact on the final re-
sult. Overall, our approach was the most effec-
tive in the shared task by a reasonable margin, out-
performing 50 other participants (22 of which out-
performed the organizer-supplied baseline).

2 Task Description

Participants were required to implement an auto-
mated system that could accept as input a stream
of words without any casing or punctuation. On
the basis of this stream, participants were asked
to infer which words in the stream should (1) have
some form of casing, and (2) be followed by punc-
tuation. The setting was meant to simulate scenar-
ios whereby such information is missing, such as
from audio transcriptions, or from user-generated
content in social media.

For purposes of the shared task, the text
supplied to participants was an automatically-
converted version of original English documents
with “standard” casing and punctuation. These
documents constitute the “original” goldstandard,
and were not supplied to participants. Partici-
pants only received the transformed (i.e. lower-
cased and punctuation removed) version. Addi-
tionally, for training documents, participants were
provided with a “simplified” goldstandard con-
sisting of word-level annotation of which words
in the original text (1) contained any uppercase
characters and/or (2) were followed by a punctua-
tion mark. Participants were only required to pro-
vide predictions corresponding to the “simplified”
goldstandard, not to restore the text to the “origi-
nal” goldstandard.
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The shared task was hosted on Kaggle2, a web
platform for crowdsourced competitive data ana-
lytics. Kaggle provides the infrastructure for run-
ning a shared task, including user management, re-
sults tabulation and discussion forums. For evalu-
ation, the macro-averaged F-score across the two
types of word-level labels (casing and punctua-
tion) was used. Participants were able to submit
two attempts daily and received immediate feed-
back on the score obtained, which was also posted
on a publicly-visible ranking known as the leader-
board. The initial data released to participants
consisted of a “basic” training set of ≈66k words
and a test set of≈64k words, with a further≈300k
words from English Wikipedia. The source of the
“basic” training data and the test data was not offi-
cially revealed, but manual inspection showed that
it was newswire data.

3 Methodology

Our main focus was to treat the task as a sequential
labeling problem, which in recent NLP research
has frequently been tackled using conditional ran-
dom fields (Lafferty et al., 2001), a class of prob-
abilistic graphical model that integrates informa-
tion from multiple features, and has enjoyed suc-
cess in tasks such as shallow parsing (Sha and
Pereira, 2003). We apply CRFs to learn a se-
quential labeler for the shared task on the basis
of 4 automatically-extracted features: the surface
form of the word (WORD), the part-of-speech of
the word in context (POS), IOB tags for verb and
noun phrases (CHUNK) and named entity recogni-
tion with NE type such as person (NER).

POS, CHUNK and NER were extracted using
SENNA v3.0 (Collobert et al., 2011), an off-the-
shelf shallow parsing system based on a neural
network architecture. We chose SENNA for this
task due to its near state-of-the-art accuracy on
tagging tasks and relatively fast runtime. One
challenge in using SENNA is that it expects in-
put to be segmented at the sentence level. How-
ever, this information is obviously missing from
the stream-of-words provided for the shared task.
Restoring sentence boundaries is a non-trivial
task, and automatic methods (e.g. Kiss and Strunk,
2006) typically make use of casing and punctua-
tion information (e.g. a period followed by a cap-
italized word is highly indicative of a sentence
boundary). In order to obtain POS, CHUNK and
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NER tags from SENNA, we segmented the text
using a fixed-size sliding window approach. From
the original stream of words, we extracted pseudo-
sentences consisting of sequences of 18 consecu-
tive words. The start of each sequence was off-
set from the previous sequence by 6 words, re-
sulting in each word in the original appearing in
three pseudo-sentences (except the words right at
the start and end of the stream). SENNA was
used to tag each pseudo-sentence, and the final
tag assigned to each word was the majority label
amongst the three. The rationale behind this over-
lapping window approach was to allow each word
to appear near the beginning, middle, and end of
a pseudo-sentence, in case sentence position had
an effect on SENNA’s predictions. In practice, for
over 92% of words all predictions were the same.
We did not carry out an evaluation of the accu-
racy of SENNA’s predictions due to a lack of gold-
standard data, but anecdotally we observed that the
POS and CHUNK output generally seemed sensi-
ble. We also observed that for NER, the output
appeared to achieve high precision but rather low
recall; this is likely due to SENNA normally utiliz-
ing casing and punctuation in carrying out NER.

3.1 Sequence Labeler Implementation

To implement our sequence labeler, we made
use of CRFSUITE version 0.12 (Okazaki, 2007).
CRFSUITE provides a set of fast command-line
tools with a simple data format for training and
tagging. For our training, we used L2-regularized
stochastic gradient descent, which we found to
converge faster than the default limited-memory
BFGS while attaining comparable extrema. We
also made use of the supplied tools to facilitate se-
quential attribute generation. We based our feature
template on the example template included with
CRFSUITE for a chunking task. For WORD, sin-
gle words are considered for a (-2,2) context (i.e.
two words before and two words after, as well
as word bigrams including the current word. For
POS, CHUNK and NER, we used a (-2,2) con-
text for single tags, bigrams and trigrams. This
means that for word bigrams, we also utilized fea-
tures that captured (1) two words before, and (2)
two words after, in both cases excluding the target
word itself.

We treated the task as a joint learning problem
over the casing and punctuation labels, reasoning
that the two tasks are highly mutually informative,
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Feature Case Punc Avg
WORD 0.469 0.453 0.461
+POS 0.607 0.577 0.592
+CHUNK 0.627 0.592 0.610
+NER 0.636 0.597 0.617

Table 1: F-score attained by adding each feature
incrementally, using only the organizer-supplied
train data, broken down over the two compo-
nent tasks. The average of the two components is
the metric by which the shared task was judged.

as certain punctuation strongly influences the cas-
ing in the immediate context, e.g. a period often
ends a sentence and thus a word followed by a pe-
riod is expected to be followed by a capitalized
word. We trained the labeler to output four distinct
labels: (FF) the word should not be capitalized
and should not be followed by punctuation, (FT)
the word should not be capitalized and should be
followed by punctuation, (TF) the word should be
capitalized and should not be followed by punctu-
ation, and (TT) the word should be capitalized and
should be followed by punctuation.

We applied the same pseudo-sentence segmen-
tation to the text that was carried out to pre-process
the word stream for use with SENNA, and again the
majority label amongst the three predictions was
used as the final output.

Table 1 summarizes the effect of adding each
feature to the system, using only the “basic” train-
ing data. The result attained using only word
features is marginally better than the organizer-
supplied hidden Markov model baseline (0.461 vs
0.449). The biggest gain is seen by adding POS,
and further improvements are achieved by using
CHUNK and NER.

4 Additional Data Used

The feature set and labeler setup we outline above,
combined with the “basic” training data provided
by the shared task organizers resulted in a sys-
tem that attained F-score of 0.617, comfortably ex-
ceeding the organizer-posted baseline of 0.449 uti-
lizing a hidden Markov model on the same training
data. Adding the organizer-provided Wikipedia
data further improved this result to 0.664.

Banko and Brill (2001) observed that for confu-
sion set disambiguation, the performance of learn-
ers can benefit significantly from increasing the
training set size substantially. Confusion set dis-
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Figure 1: Effect of adding training data. Left to
right, each point represents the cumulative addi-
tion of training data. (i.e. a uses only train, and
f uses all the data in Table 2.) Datasets are added
in the order listed in Table 2.

ambiguation is representative of many NLP tasks,
in that it relies on statistical models of word se-
quences. Due to the large vocabulary, only a very
small proportion of valid sequences is observed in
any given dataset, and hence adding more data al-
lows us to better estimate the parameters of the
model. Our task suffers the same problem, and we
thus expect that increasing the quantity of train-
ing data will increase performance, a hypothesis
is supported by the results obtained by adding the
Wikipedia data to the “basic” training data.

Table 2 summarizes the training data we used in
our best-scoring system. As previously discussed,
manual inspection of the training data suggested
that it was derived from a newswire source. We
thus sought additional training data from newswire
sources. We made use of all the treebanked Wall
Street Journal (WSJ) data from the Penn Treebank
(Marcus et al., 1993), as well as a sample of data
from RCV1 (Lewis et al., 2004). We opted not
to use the organizer-supplied sample of English
Wikipedia in our further experiments, instead uti-
lizing our own sample which gave us access to a
larger number of documents. For purposes of dis-
cussion, we divide the Wikipedia and Reuters data
into two partitions each.

Table 2 also shows the score attained using
each dataset individually as training data. Here
we see the effect of affinity between datasets; the
organizer-supplied train is assumed to be the
most similar to the test data, and hence attains a
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Label Source Size (words) F-score
train Competition Organizer 66371 0.617
wsj Wall Street Journal 1082959 0.617
enwiki1

English Wikipedia
372547 0.553

enwiki2 383368 0.564
reut1

Reuters RCV1
2244959 0.604

reut2 2052119 0.606

Table 2: Datasets used in our best-scoring system. F-score is the macro-averaged F-score for the task
attained by using each dataset individually as training data, using the full feature set.

high score despite having a relatively low word
count. An interesting comparison can be made
with the wsj result, where much more data is
required to attain the same score. Figure 1 il-
lustrates the effect of training models on succes-
sively greater amounts of training data. The order
in which data was added for Figure 1 was largely
arbitrary, though several trends can be observed:
adding each successive dataset reduces the im-
provement obtained per word added, and for each
of Wikipedia and RCV1, adding the same amount
of data results in a near-linear increase in perfor-
mance.

5 Negative Results

CRFSUITE is not able to train a model incremen-
tally, and so adding additional training data re-
quired retraining the entire model from scratch.
We attempted to circumvent this problem by im-
plementing a voting system over models from dif-
ferent partitions of the training data, but found
that the performance was not competitive with the
monolithic model.

We also tested crfsgd,3 but found that
CRFSUITE was faster and attained slightly better
F-score for comparable setups. We believe that the
default parametrization of the CRF model differs
slightly between tools, but did not investigate.

Much of the additional training data we used
was pre-tokenized in Penn Treebank format,
which utilizes special sequences to represent dif-
ferent types of brackets. As the organizer-supplied
data did not follow this convention, we tested “de-
escaping” the Penn Treebank brackets (e.g. con-
verting -LCB- back to { ). Surprisingly, we found
that this actually reduced our F-score, though the
reasons for this remain unclear.

We introduced gazetteer features on the basis of
observing that despite low recall, the NER fea-

3http://leon.bottou.org/projects/sgd

tures produced by SENNA had an overall positive
impact on our task score. Our gazetteer features
are based on word lists of common named entities.
For place names, we used data from GeoNames,4

and for first names we used a wordlist included
with Apple’s OS X. We used each wordlist to pro-
duce a single Boolean feature indicating whether
the word was present in the given wordlist. This
approach showed some promise in internal cross-
validation, but was abandoned as we found that it
did not improve our score on the leaderboard.

6 Further Work

The CRF feature template (i.e. the set of rules for
generating sequential features) that we used was
derived with minimal modification from a tem-
plate for a chunking task. Tuning the template
to this task may yield further improvements. Fur-
thermore, CRFs are able to provide a probability
distribution over labels, and this information may
be useful in weighting a voting approach to model
combination. Finally, the amount of data we used
was primarily limited by computation resources
available, so it is likely that increasing data quan-
tity will further improve performance.

7 Conclusion

In this paper we detailed the winning entry to the
ALTA 2013 Shared Task. We treat the task as
a sequence labeling problem, jointly learning the
casing and punctuation labels. We implemented a
classifier using conditional random fields, trained
using linguistic features extracted using off-the-
shelf tools, using a simple windowing approach to
generate pseudo-sentences. We find that the lin-
guistic features out-perform simple word features,
and that further improvements can be made by fur-
ther adding training data. We briefly discussed

4http://www.geonames.org
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negative results in our development process, and
outlined some avenues for further work.
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