
Parsing in Parallel on Multiple Cores and GPUs

Mark Johnson
Centre for Language Sciences and Department of Computing

Macquarie University
Sydney, Australia

Mark.Johnson@MQ.edu.au

Abstract

This paper examines the ways in which par-
allelism can be used to speed the parsing of
dense PCFGs. We focus on two kinds of
parallelism here: Symmetric Multi-Processing
(SMP) parallelism on shared-memory multi-
core CPUs, and Single-Instruction Multiple-
Thread (SIMT) parallelism on GPUs. We de-
scribe how to achieve speed-ups over an al-
ready very efficient baseline parser using both
kinds of technology. For our dense PCFG
parsing task we obtained a 60×speed-up us-
ing SMP and SSE parallelism coupled with a
cache-sensitive algorithm design, parsing sec-
tion 24 of the Penn WSJ treebank in a little
over 2 secs.

1 Introduction

Performance improvements in computing come in-
creasingly through greater parallelism. This paper
studies ways in which this parallelism can be used
to improve the speed of PCFG parsing in computa-
tional linguistics. Although we focus on a particu-
lar task here (constructing the inside chart for dense
PCFGs), we expect the insights to be generally ap-
plicable.

There are three major ways in which computers
are becoming more parallel. At the broadest level, it
is now common to network large numbers of com-
puters together into clusters, which are controlled
by software such as the Message-Passing Interface
(MPI) (Gropp et al., 1999) or Map-Reduce (Lin and
Dyer, 2010).

At a lower level, even commodity computers typ-
ically have multiple processors or cores, which are

connected by a high-speed bus to a shared memory,
enabling Symmetric Multi-Processor (SMP) paral-
lelism. SMP parallelism is typically controlled
by software such as OpenMP (Chapman et al.,
2007) or pThreads. Commodity computers also
possess on-chip parallel floating point vectorised
arithmetic units. The CPUs we used here have
SSE (Streaming SIMD Extensions) vectorised arith-
metic, where SIMD abbreviates “Single-Instruction
Multiple-Data”. SSE is enabled by appropriate com-
piler flags.

Finally, Graphics Processor Units (GPUs) are
increasingly becoming both less specialised and
more powerful (on many commodity machines they
can perform more floating-point operations per sec-
ond than the CPU); as we will see here, a GPU
can yield quite respectable parsing performance.
GPUs are designed for massively parallel Single-
Instruction Multiple-Thread (SIMT) programs; each
GPU thread is comparatively slow, but the GPU can
execute hundreds or thousands of threads in parallel.
GPUs are typically programmed using tools such as
OpenCL or CUDA (Sanders and Kandrot, 2011).

We concentrate on SMP multi-core and GPU par-
allelism in this paper because we expect that com-
munication latencies with conventional network-
ing hardware make parallel parsing with networked
clusters impractically inefficient. Communication
latency is much less of a problem with shared mem-
ory SMP and GPU parallelism as communication
takes place over the machine’s high-speed bus.

A base-line approach for exploiting parallelism
in parsing is simply to parse different sentences in
parallel on separate instances of the parser. This

Mark Johnson. 2011. Parsing in Parallel on Multiple Cores and GPUs. In Proceedings of Australasian
Language Technology Association Workshop, pages 29−37



is likely to be the best way to exploit parallelism
with networked clusters and SMP multi-core ma-
chines when parsing a large corpus of sentences off-
line. However, there are situations where parsing
must be on-line; e.g., when parsing is a compo-
nent of a system that interacts with users, or with
machine-learning algorithms such as Metropolis-
Hastings Sampling that update after each sentence
is parsed (Johnson et al., 2007).

2 Previous work

Parsing in parallel has been studied for several
decades, and space constraints prevent anything but
a cursory summary here. Hill and Wayne (1991)
identified the basic data dependencies between the
entries in chart cells, and discussed their implica-
tions for parallel parsing. Nijholt (1994) also stud-
ied the order in which chart cells can be filled,
and discusses its implications for a variety of shift-
reduce and chart-based parsing algorithms. Thomp-
son (1994) pointed out that the close relationship be-
tween CKY parsing and matrix multiplication can
be exploited for parsing in parallel; we rely on sim-
iliar observations below. Ninomiya et al. (1997) de-
scribed an agenda-based approach for parallelising
CKY parsing on large SMP machines, while Bor-
dim et al. (2002) describes the implementation of
a CKY parser on Field-Programmable Gate Arrays
(FPGAs). Sandstrom (2004) describes a parallel im-
plementation of Earley’s parsing algorithm. Dun-
lop et al. (2010) stresses importance of minimising
cache misses in the design of efficient parsing algo-
rithms and described how to restructure the CKY al-
gorithm to reduce grammar constant,1 which as we
show below has a dramatic impact on parallel SMP
parsing.

3 The CKY algorithm for dense PCFGs

This section introduces the basic CKY parsing al-
gorithm used below. Here we’re assuming that the
grammar is in Chomsky-Normal Form (CNF), i.e.,
all rules in the grammar are of the form A → BC

1The “grammar constant” refers to the variation in parsing
time as a function of grammar size. Standard analyses study
how parsing time varies as a function of sentence length while
the grammar is held constant; the choice of grammar affects
parsing time in such analyses via a “grammar constant”.

for i in 0, . . ., n−1:
for a in 0, . . ., m−1:

C[i,i+1,a] = T[W[i],a]

for gap in 2, . . ., n:
for i in 0, . . ., n−gap:

k = i+gap
for a in 0, . . ., m−1:

C[i,k,a] = 0
for j in i+1, . . ., k−1:

for b in 0, . . ., m−1:
for c in 0, . . ., m−1:

C[i,k,a] += R[a,b,c]∗C[i,j,b]∗C[j,k,c]

where:
m number of nonterminals in grammar
n length of input string
W [i] word in input string at position i
T [w,A] probability of A→ w
R[A,B,C] probability of A→ BC
C[i, k, A] inside probability of A spanning (i, k)

Figure 1: Pseudo-code for baseline CKY algorithm for
dense PCFG parsing and an explanation of the variables
used in the algorithm. All arrays are in row-major order,
except that the inside chart C uses specialised indexing
to take advantage of the fact that the first string position
index is always less than the second.

30



for i in 0, . . ., n−1:
for a in 0, . . ., m−1:

C[i,i+1,a] = T[W[i],a]

for gap in 2, . . ., n:
for i in 0,..,n−gap:

k = i+gap
BC = Zero
for j in i+1, . . ., k−1:

for b in 0, . . ., m−1:
for c in 0, . . ., m−1:

BC[b,c] += C[i,j,b]∗C[j,k,c]
for a in 0, . . ., m−1:

C[i,k,a] = 0
for b in 0, . . ., m−1:

for c in 0, . . ., m−1:
C[i,k,a] += R[a,b,c]∗BC[b,c]

where:
m number of nonterminals in grammar
n length of input string
W [i] word in input string at position i
T [w,A] probability of A→ w
R[A,B,C] probability of A→ BC
C[i, k, A] inside probability of A spanning (i, k)
BC an m×m scratch array
Zero an m×m array of zeros.

Figure 2: Pseudo-code for the factored CKY algorithm
for dense PCFG parsing.

or A → w, where A, B and C are nonterminals
and w is a terminal (Aho and Ullman, 1972). In
this paper we focus on dense PCFGs, i.e., where
most of the possible rules have positive probability.
Dense grammars with these properties occur in ap-
plications such as unsupervised grammar induction.
While sparse grammars have many important appli-
cations, there are many different possible patterns of
sparsity, and the optimal parsing algorithm may de-
pend on the particular sparsity pattern the grammar
instantiates. Moreover, it is extremely difficult to de-
velop effective search procedures (such as heuristic
A? search) for dense grammars in which most rules
have approximately equal probabilities, so this is a
situation where a brute-force exhaustive calculation
of the kind that the algorithms discussed below may
well be the preferred approach.

We focus on CKY-style pure bottom-up parsing
algorithms here because of their simplicity, and with
dense grammars their performance often equals or
exceeds that of more complex parsing algorithms: if
every possible chart cell will be filled with a non-
trivial probability, a predictive parsing algorithm
(such as the Earley algorithm) will have to instan-
tiate every cell anyway.

We also focus on the construction of the “in-
side chart” here, i.e., P(A ⇒+ wi, . . . , wj−1)
for each nonterminal A and 0 ≤ i < j < n,
where n is the number of words in the input string.
Constructing the inside chart is the crucial O(n3)
step of the Inside-Outside algorithm for estimat-
ing PCFGs (Charniak, 1993), and this computation
is typically the rate-limiting computation in PCFG
sampling algorithms (Johnson et al., 2007) as well.
By replacing a sum with a max, the same algo-
rithms can be used to constuct the Viterbi chart, from
which a most probable parse tree can be extracted in
O(n2) time, so again the Inside computation is the
rate-limiting step. Because our grammar is dense
we used pre-allocated fixed-sized arrays to hold
the grammar rules and the inside chart, thus min-
imising expensive memory management and pointer
arithmetic (in our experience unless great care is
taken while coding, these costs can dominate pars-
ing time).

Figure 1 presents pseudo-code for the baseline
CKY parsing algorithm. The main part of the al-
gorithm consists of six nested loops. All these loops

31



except the outermost (over the gap variable) can be
freely reordered without affecting correctness. We
experimented with a large number of reorderings
of these variables; in preliminary experiments we
found that the order presented here resulted in fastest
parsing.2

Dunlop et al. (2010) point out that the algorithm
in Figure 1 requires a grammar rule retrieval for each
mid-point j of each (i, k) span (as well as each com-
bination of nonterminals a, b and c), and show how
to reduce this by factoring the algorithm as shown
in Figure 2. This changes the “grammar constant”
as mentioned above. They point out that this also
improves the cache efficiency on modern CPUs. As
we experimentally confirm below, the improvement
that factoring brings can be dramatic.

4 Multi-core SMP parallelism using
OpenMP

It is straight-forward to parallelise both the base-
line and factored algorithms for multi-core SMP
machines using OpenMP (Chapman et al., 2007).
OpenMP programs are C++ programs with pragmas
that indicate which loops should be parallelised. We
experimented with several alternative reorderings of
the loops and using an optimised matrix-algebra
package (Guennebaud et al., 2010), but these did not
improve parsing speed.

Developing OpenMP versions of the baseline and
factored CKY algorithms is relatively straightfor-
ward. The main technical challenges in parallelising
the CKY algorithm are synchronising the parallel
threads and ensuring that different parallel threads
do not interfere with each other. This is achieved by
using synchronisation constructs with implicit bar-
riers, thread-private temporary variables and con-
structs that ensure that updates to shared variables
occur as atomic operations.

For the baseline CKY algorithm we constructed
three parallel variants by parallelising (i) the outer-
most two for loops (over the i and a variables) us-
ing the OpenMP parallel for construct, (ii) the inner

2These reorderings do not affect the theoretical complexity
of the CFG parsing algorithm; it is still O(n3), where n is the
length of the sentence being parsed. However, the loop ordering
may affect the opportunities for SIMD optimisation and mem-
ory cache efficiency, since reordering the loops affects locality
of memory access.

three loops (over j, b and c) using a parallel for re-
duction into a temporary variable, and (iii) a variant
in which all loops (except the one involving the gap
variable) are parallelised.

For the factored CKY algorithm we constructed
three parallel variants by parallelising (i) the outer-
most for loop (involving the i variable), (ii) the in-
nermost variables (involving the j, b, c and a vari-
ables), and (iii) a variant in which all loops (except
the one involving the gap variable) are parallelised.
Multiple thread-private instances of the BC variable
are required when the outermost loops are paral-
lelised, and we used the OpenMP atomic construct
to synchronise updates to BC when the innermost
loops were parallelised.

5 A CUDA GPU kernel for PCFG parsing

We experimented with several approaches to GPU
parsing based on standard GPU matrix algebra pack-
ages (NVIDIA Corporation, 2010) but results were
extremely disappointing; the resulting code ran or-
ders of magnitude slower than the baseline CPU-
based parser above. In order to obtain results com-
petitive with the multi-core SMP algorithms de-
scribed above we developed custom GPU programs.
Our GPU subroutines or kernels were written in
CUDA, which is a C++ dialect for specifying pro-
grams consisting of CPU code and GPU kernels
(Sanders and Kandrot, 2011).

We focused on developing a CUDA implementa-
tion of the factored CKY algorithm here. CUDA
programming is considerably more complicated
than OpenMP programming, and we don’t claim to
have produced an optimal program here; additional
experimentation could yield further speed improve-
ments.3

A straight-forward translation into CUDA kernels
of the baseline and factored algorithms above pro-
duced disappointing results: it ran approximately
200 times slower than the factored CKY parser de-
scribed above. A quick survey of the CUDA devel-

3We also experimented with CUBLAS, a CUDA implemen-
tation of BLAS (Basic Linear Algebra Subprograms), which
we found yielded performance one to two orders of magnitude
slower than our custom CUDA kernels. However, a new ver-
sion of CUBLAS was released after this paper was submitted;
this new version has several technical improvements that may
enable it to be effective for PCFG parsing.

32



oper message boards showed that direct translations
of CPU-based programs often perform poorly, and
for good performance one needs to redesign the al-
gorithms to take advantage of the specialised GPU
hardware.

Computation on NVIDIA GPUs is organised into
blocks of up to 1,024 parallel threads. A single
CUDA launch starts up to hundreds of thousands of
blocks; modern GPUs can execute several hundred
thread blocks in parallel (the remainder are queued).
Just as with SMP programming, the chief techni-
cal challenges in CUDA programming are synchro-
nising the parallel threads and ensuring that differ-
ent parallel threads do not interfer with each other.
CUDA programming is more difficult than SMP
programming because each individual GPU proces-
sor is much less capable than a CPU (CUDA pro-
gramming is done using a restricted subset of C++),
and data access must follow a very tightly prescribed
set of rules if it is to perform reasonably efficiently.

Unlike on a regular CPU, the memory on a GPU
has a complex organisation which the CUDA pro-
grammer must be aware of; the following sketch
omits many details. Global memory is compara-
tively slow but accessible to all threads of all blocks;
it is used to store persistent information and commu-
nicate between threads in different blocks; we store
the inside chart C in global memory. Texture mem-
ory is a kind of global memory that permits more ef-
ficient cached read-only access; we stored the gram-
mar rules R and the terminal probabilities T in tex-
ture memory. Shared memory is local to and acces-
sible to all threads in the same block and is much
faster than global memory; we stored (a local copy
of) the BC array in shared memory. In addition,
we also use thread-local variables to maintain lo-
cal state and accumulate intermediate results within
a single thread.

Our CUDA kernels consist of over 500 lines of
code, so we only sketch them here. Our central data
structures are the chart C, the rule probabilities R
and the lexical probabilities T . Our CUDA imple-
mentation starts by launching a kernel that copies
the terminal probabilities T for each of the words
W into the chart C; this is easily and completely
parallelised, and takes very little time.

Then it computes the chart one diagonal at a time
in parallel. It launches one or more kernels for

each value of gap in 2, . . . , n. If n − gap is small
enough then all of the chart entries C[i, k, ·] (where
k = i + gap) can be computed by a single thread
block, and only one kernel launch is required. But
for larger values of gap we decompose the compu-
tation into multiple thread blocks based on the mid
string position j and store intermediate results in
global memory; a second kernel launch is used to
reduce these into the chart entries C[i, k, ·].

A major goal in designing the CUDA kernel was
to perform the sum

BC[b,c] += C[i,j,b]∗C[j,k,c]

in the factored CKY algorithm as efficiently as pos-
sible. In order to achieve this we first copy all of
the relevant chart entries C[i, j, ·] and C[j, k, ·] from
global memory into the faster shared memory (this
can be done in parallel), and then accumulate the re-
sults into BC, which is also stored in shared mem-
ory. This step can also be done completely in paral-
lel.

Finally, we compute the chart entries C[i, k, a] for
all k = i + gap and all a in parallel. If n − gap is
small enough that the computation can be done in
one thread group then this is done only using shared
memory, otherwise temporary results are stored in
global memory so they are visible to other thread
blocks. The reduction

C[i,k,a] += R[a,b,c]∗BC[b,c]

in the factored CKY algorithm is also tricky, as it
requires a double sum over b and c. In order to do
this we generalised the parallel tree-based reduction
algorithm presented in Harris (2010) to compute all
of the chart entries C[i, k, ·] as a parallel reduction.

6 Evaluation on a dense PCFG

We experimented with a number of different gram-
mars, but because the results were generally similiar,
we only describe one experiment here. The strings
we parsed consist of the yields of the 1,345 trees
in section 24 of the Penn WSJ treebank. Any word
that did not appear 5 or more times in sections 2–21
was replaced with ?UNC?. We constructed a dense
PCFG with 32 non-terminals (i.e., 32,768 binary
rules) and random rule probabilities, which might
be typical of the initial grammar in an unsupervised

33



Sentence length

P
ar

si
ng

 ti
m

e 
(s

ec
on

ds
)

1e−05

1e−04

0.001

0.01

0.1

1

20 40 60 80

Parser

● baseline

● factored

● baseline+outer SMP

● factored+outer SMP

● CUDA

Figure 3: Parsing times as a function of sentence length on 1,345 sentences from section 24 of the Penn WSJ treebank
for the baseline CYK parser, the baseline parser with SMP parallelism (outer loops parallelised), the factored CKY
parser, the factored CKY parser (outer loops parallelised), and the CUDA implementation of the factored CKY parser.

Sentence length

S
pe

ed
−

up
 r

el
at

iv
e 

to
 b

as
el

in
e 

pa
rs

er

0.1

1

10

100

20 40 60 80

Parser

● baseline

● factored

● baseline+outer SMP

● factored+outer SMP

● CUDA

Figure 4: Speed-up relative to the baseline CKY parser as a function of sentence length on 1,345 sentences from
section 24 of the Penn WSJ treebank for the baseline parser with SMP parallelism (outer loops parallelised), the
factored CKY parser, the factored CKY parser (outer loops parallelised), and the CUDA implementation of the factored
CKY parser.

34



Parser Sentences/sec Speed-up
Baseline 11 1.0

(i) outer parallel 84 7.5
(ii) inner parallel 11 1.0
(iii) both parallel 29 2.6

Factored 122 11.0
(i) outer parallel 649 60.0
(ii) inner parallel 27 2.4
(iii) both parallel 64 5.7

CUDA 206 18.4

Table 1: Parsing speeds of the various algorithms on
1,345 sentences from section 24 of the Penn WSJ tree-
bank. Speed-up is relative to the baseline parser.

PCFG induction system using the Inside-Outside al-
gorithm or a Metropolis-Hastings sampler. We used
single-precision floating-point arithmetic in all ex-
periments, and multiplied the terminal rule proba-
bilities A→ w by 104 to avoid underflow.

We ran our experiments on a single node of
an SGI Altix XE 320 cluster with two quad-
core 3.0GHz Intel Harpertown CPUs, a 1600MHz
front side bus, 16GB DDR2-800 memory and two
NVIDIA Fermi s2050 GPUs, each with 448 CUDA
cores running at 1.15GHz (we only used one GPU
here). We used the CUDA 3.2 toolkit and gcc 4.4.4.
We selected compiler flags that enabled full opti-
misation, including enabling SSE3 SIMD floating-
point vector subsystem, as prior experiments showed
that this significantly speeds all calculations.

Table 1 presents the results of our experiments.
We repeated all of our experiments twice in succes-
sion and report the time of the second run here; how-
ever, run-times varied by less than 1% between the
two runs. Figures 3 and 4 depict parsing time and
speed-up as a function of sentence length respec-
tively (in order to avoid overloading the graphs, they
only show a subset of the results). It’s important to
recognise that even our baseline parser is very fast
(averaging 11 sentences/second), and both our SMP
and GPU implementations were significantly faster.

7 Conclusions

We obtained large speedups over an already very
fast baseline parser using both multi-core SMP and
CUDA parallelism. Parallelising the outer loops

in the multi-core SMP algorithms seems to be ex-
tremely effective; we see speed-ups close to the
theoretical maximum of 8 times for both the base-
line and factored algorithms. Parallelising the in-
ner loops is devastating to performance, perhaps be-
cause it interfers with cache optimisation and SSE3
SIMD vectorisation (turning off the SSE SIMD vec-
torisation in these cases did not improve perfor-
mace). The factored algorithm with parallelised
outer loops performed fastest in our experiments, but
the CUDA implementation was next best, parsing
faster than all of the parallelised baseline algorithms.

As Figure 4 makes clear, the speed-up obtained
by both the CUDA and factored algorithm with par-
allelised outer loops relative to the baseline increases
with sentence length (with the CUDA speed-up in-
creasining fastest), which suggests that parallelisa-
tion helps most where it is most needed, i.e., on
longer sentences.

It is surprising that the CUDA implementation did
not outperform the best SMP implementation. Per-
haps this is because our SMP implementation uses
highly-optimised, OpenMP/SSE3-parallelised code
and can exploit the powerful Xeon CPUs. It is also
possible that our dense PCFG parsing task is “too
easy” to take full advantage of the power of the
GPU; the entire corpus of 1,345 sentences took just a
few seconds to parse, and it’s possible that initialisa-
tion and data-transfer from the host machine to the
GPU imposed a significant overhead. It would be
interesting to repeat the experiments described here
with a grammar that is one or two orders of magni-
tude larger.

In fact, as Figures 3 and 4 make clear, the CUDA
implementation is comparatively slow on short sen-
tences; for sentences of length 5 or less, the CUDA
implementation is slower than even the baseline
parser, which is consistent with the hypothesis that
initialisation and data-transfer are imposing signif-
icant performance costs. It would be interesting to
repeat these experiments on a larger corpus with
larger and perhaps sparser grammars. It also might
be more efficient to parse more than one sentence in
parallel on a single GPU, which might keep more of
the CUDA cores busy more of the time, although we
did not try this here.

There are several lessons to draw from these re-
sults. First, parallelisation does not always produce

35



speed-ups; indeed parallelising the inner loops did
not improve performance on either the baseline or
factored algorithms. Second, parsing algorithms that
perform well on conventional CPUs may need con-
siderable redesign in order to produce good results
on GPUs. Third, as the impressive performance of
the factored algorithm shows, good algorithm design
is of crucial importance.

Finally, this is an area where both the hardware
and software are still rapidly improving. The num-
ber of cores in a single multi-core processor is likely
to increase rapidly; already it is possible to obtain
commodity machines with 24 cores. The improve-
ment in GPU technology is if anything even more
dramatic: as well as increasing the number of pro-
cessors, new GPUs are equipped with more flexi-
ble buses that permit more complex kinds of data
parallelism and ease programming. On the software
side, up-coming versions of OpenMP will permit a
greater range of efficient reduction constructs, which
may permit us to avoid using the relatively expen-
sive atomic synchronisation primitive. For GPUs,
upcoming versions of CUDA will provide a vari-
ety of parallel programming libraries (including for
sparse matrix algebra), which may make it easier to
write considerably more efficient parallel parsing al-
gorithms. Thus it is reasonable to expect a dramatic
improvement in parallel parsing in the near future.

Acknowledgments

I’d like to thank the reviewers for their thought-
ful comments and suggestions. This work was
supported was supported under the Australian Re-
search Councils Discovery Projects funding scheme
(project number DP110102593).

References

Alfred V. Aho and Jeffery D. Ullman. 1972. The The-
ory of Parsing, Translation and Compiling; Volume 1:
Parsing. Prentice-Hall, Englewood Cliffs, New Jersey.

Jacir Bordim, Yasuaki Ito, and Koji Nakano. 2002. Ac-
celerating the CKY parsing algorithm using FPGAs.
In Sartaj Sahni, Viktor Prasanna, and Uday Shukla,
editors, High Performance Computing HiPC 2002,
volume 2552 of Lecture Notes in Computer Science,
pages 41–51. Springer Berlin / Heidelberg.

Barbara Chapman, Gabriele Jost, and Ruud van der Pas.
2007. Using OpenMP: Portable Shared Memory Par-
allel Programming. The MIT Press, Cambridge, Mas-
sachusetts.

Eugene Charniak. 1993. Statistical Language Learning.
The MIT Press, Cambridge, Massachusetts.

Aaron Dunlop, Nathan Bodenstab, and Brian Roark.
2010. Reducing the grammar constant: an analysis
of CKY parsing efficiency. Technical Report CSLU-
2010-02, Oregon Health and Science University.

William Gropp, Ewing Lusk, and Anthony Skjellum.
1999. Using MPI: Portable Parallel Programming
with the Message Passing Interface. The MIT Press,
Cambridge, Massachusetts.

Gaël Guennebaud, Benoı̂t Jacob, et al. 2010. Eigen
v3.0beta2. http://eigen.tuxfamily.org.

Mark Harris. 2010. Optimizing parallel reduction in
CUDA. Technical report, NVIDIA Corporation.

Jane C. Hill and Andrew Wayne. 1991. A CYK approach
to parsing in parallel: a case study. In Proceedings
of the twenty-second SIGCSE technical symposium on
Computer science education, SIGCSE ’91, pages 240–
245, New York, NY, USA. ACM.

Mark Johnson, Thomas Griffiths, and Sharon Goldwa-
ter. 2007. Bayesian inference for PCFGs via Markov
chain Monte Carlo. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguistics;
Proceedings of the Main Conference, pages 139–146,
Rochester, New York, April. Association for Compu-
tational Linguistics.

Jimmy Lin and Chris Dyer. 2010. Data-Intensive Text
Processing with MapReduce. Morgan and Claypool.

Anton Nijholt. 1994. Parallel approaches to context-free
language parsing. In Geert Adriaens and Udo Hahn,
editors, Parallel Natural Language Processing, pages
135–167. Ablex Publishing Corporation.

Takashi Ninomiya, Kentaro Torisawa, Kenjiro Taura, and
Jun’ichi Tsujii. 1997. A parallel CKY parsing algo-
rithm on large-scale distributed-memory parallel ma-
chines. In The Proceedings of the Pacific Association
for Computational Linguistics (PACLING 97), pages

36



223–231, Tokyo. Department of Informatics, Meisei
University.

NVIDIA Corporation, 2010. CUDA CUBLAS Library,
PG-05326-032 v02 edition.

Jason Sanders and Edward Kandrot. 2011. CUDA by
Example: An Introduction to General-Purpose GPU
Programming. Addison-Wesley, Upper Saddle River,
New Jersey.

Greg Sandstrom. 2004. A parallel extension of Earleys
parsing algorithm. Technical report, Earlham College.

Henry Thompson. 1994. Parallel parsers for context-free
grammars: Two actual implementations compared. In
Geert Adriaens and Udo Hahn, editors, Parallel Natu-
ral Language Processing, pages 168–187. Ablex Pub-
lishing Corporation.

37


