
Australasian Language Technology
Association Workshop 2010

Proceedings of the Workshop

Editors:

Nitin Indurkhya

Simon Zwarts

9-10 December 2010

University of Melbourne

Melbourne, Australia

I



Australasian Language Technology Association Workshop 2010 (ALTA
2010)
URL: http://www.alta.asn.au/events/alata2010

Sponsors:

Volume 8, 2010
ISSN: 1834-7037

II



ALTA 2010 Workshop Committees

Workshop Co-Chairs

• Nitin Indurkhya (University of New South Wales and eBay Research Labs)

• Simon Zwarts (Macquarie University)

Workshop Local Organisers

• David Martinez (University of Melbourne)

• Steven Bird (University of Melbourne)

Program Committee

• Achim Hoffmann (University of New South Wales)
• Adam Saulwick (DSTO)
• Alistair Knott (University of Otago, New Zealand)
• Andrea Schalley (Griffith University)
• Andrew Lampert (CSIRO)
• Ben Hachey (CMCRC)
• Caroline Gasperin (Universidade de Sao Paulo, Brasil)
• Cecile Paris (CSIRO)
• David M. W. Powers (Flinders University)
• David Martinez (University of Melbourne)
• Diego Molla Aliod (Macquarie University)
• Dominique Estival (University of Western Sydney)
• Dongqiang Yang (Flinders University)
• Eric Choi (NICTA)
• Francis Bond (Nanyang Technological University, Singapore)
• Jean-Yves Delort (CMCRC)
• Jette Viethen (Macquarie University)
• Kazunori Komatani (Nagoya University, Japan)
• Luiz Augusto Sangoi Pizzato (University of Sydney)
• Mark Dras (Macquarie University)
• Matthew Honnibal (University of Sydney)
• Menno van Zaanen (Tilburg University, The Netherlands)
• Nigel Collier (National Institute of Informatics, Japan)
• Rolf Schwitter (Macquarie University)
• Scott Nowson (Appen Pty Ltd)
• Son Bao Pham (Vietnam National University, Vietnam)
• Steven Bird (University of Melbourne)
• Tara McIntosh (NICTA)
• Timothy Baldwin (University of Melbourne)
• Wayne Wobcke (University of New South Wales)

III



Preface

This volume contains the papers accepted for presentation at the Australasian Language Tech-
nology Workshop (ALTA) 2010, held at the University of Melbourne, Melbourne, Australia
on December 9-10, 2010. This is the eighth annual instalment of the ALTA workshop in its
most-recent incarnation, and the continuation of an annual workshop series that has existed in
various forms Down Under since the early 1990s.

The goals of the workshop are:

• to bring together the growing Language Technology (LT) community in Australia and
New Zealand and encourage interactions;

• to encourage interactions and collaboration within the community and with the wider
international LT community;

• to foster interaction between academic and industrial researchers, to encourage dissemi-
nation of research results;

• to provide a forum for the discussion of new and ongoing research and projects;
• to provide an opportunity for the broader artificial intelligence community to become

aware of local LT research;
• and finally, to increase visibility of LT research in Australia, New Zealand and overseas.

This year’s ALTA Workshop includes full papers (9 pages in length) as well as short papers (5
pages in length). We received a total of 19 submissions including 5 short papers. 12 papers
including 2 short papers were selected by the program committee for publication in these
proceedings.

Each paper in the ‘reviewed papers’ section was independently peer-reviewed by at least two
members of an international program committee, in accordance with the DEST requirements
for E1 conference publications. The review process was double-blind: Great care was exercised
to avoid all conflicts of interest whenever an author also served as program committee/co-chair
or the reviewer worked at the same institution as an author. Such conflicts of interest were
resolved by transferring the reviewing task to other members of the program committee.

A key feature of this year’s workshop is a special session of invited speakers from industry. In
this ‘industry session’, which aims to bridge the gap between academia and industry, members
of different companies talk about how they apply language technology (research) in their work.
Another exciting feature of this year’s workshop is the Language Technology Programming
Competition. It is formatted as a “shared task”: all participants compete to solve the same
problem. The problem highlights an active area of research and programming in the area of
language technology. Details of the shared task are published in the proceedings and also
presented in a special session (along with the winner of the competition.)

We would like to thank all the authors who submitted papers to ALTA, the members of the
program committee for the time and effort they put into the review process and to our invited
speakers: Rodolfo Delmonte (University Ca’Foscari, Italy) and Casey Whitelaw (Google Inc,
Sydney). We would also like to thank all the invited speakers for our industry session for
making it such a success and hope that it will feature in future ALTA workshops as well.

Finally, we would like to thank our sponsors, NICTA and the University of Melbourne, for
supporting the workshop.

Nitin Indurkhya and Simon Zwarts
Program Co-Chairs
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ALTA 2010 Program

Thursday, 9th December 2010

9:00-10:00 Keynote: Opinion Mining, Subjectivity and Factuality by Rodolfo Delmonte
(University Ca’Foscari, Italy)

10:00-10:30 Coffee break
10:30-10:40 ALTA Opening remarks
Session 1 - 10:40 - 12:45

Paper Presentations
10:40-11:05 Shunichi Ishihara

Variability and Consistency in the Idiosyncratic Selection of Fillers in Japanese
Monologues: Gender Differences

11:05-11:30 Michael Curtotti and Eric McCreath
Corpus Based Classification of Text in Australian Contracts

11:30-11:55 Li Wang, Su Nam Kim and Timothy Baldwin
Thread-level Analysis over Technical User Forum Data

11:55-12:20 Susan Howlett and Mark Dras
Dual-Path Phrase-Based Statistical Machine Translation

12:20-12:45 Yue Li and David Martinez
Information Extraction of Multiple Categories from Pathology Reports

12:45-2:00 Lunch
2:00-3:00 Keynote: Language Technology: A View From The Trenches by Casey Whitelaw

(Google Inc, Sydney)
3:00-3:30 Coffee break
Session 2 - 3:30 - 5:30

Industry Session
1. BinaryPlex (Tim Bull)
2. NICTA (Wray Buntine)
3. Pacific Brands (Yuval Marom)
4. Lexxe (Hong Liang Qiao)
5. Digital Sonata (Vadim Berman)
6. CSIRO (Stephen Wan)
7. Atex (Geoff Wilson)
8. eBay (Nitin Indurkhya)
9. Appen (Scott Nowson)
10. Vicnet/State Library of Victoria (Andrew Cunningham)
11. DSTO (Adam Saulwick)

5:30- Informal Q&A followed by Conference Dinner (jointly with ADCS) at
6pm
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Friday, 10th December 2010

Session 3 - 9:00 - 10:40
Joint Session with ADCS including ALTA presentations:
Marco Lui and Timothy Baldwin
Classifying User Forum Participants: Separating the Gurus from the Hacks, and
Other Tales of the Internet
Alexandra Uitdenbogerd
Fun with Filtering French

10:40-11:10 Coffee break
11:10-12:00 LT shared talk report
12:00-1:00 ALTA AGM Meeting Free Pizza for attendees at the end!!
1:00-2:00 Lunch
Session 4 - 2:00-3:15

Paper Presentations
2:00-2:25 Diego Molla

A Corpus for Evidence Based Medicine Summarisation
2:25-2:50 Sze-Meng Jojo Wong and Mark Dras

Parser Features for Sentence Grammatical Classification
2:50-3:15 Jette Viethen and Robert Dale

Speaker-Dependent Variation in Content Selection for Referring Expression Gen-
eration

3:15-3:45 Coffee break
Session 5 - 3:45-4:35

Paper Presentations
3:45-4:10 Dominick Ng, Matthew Honnibal and James R. Curran

Reranking a wide-coverage ccg parser
4:10-4:35 Simon Zwarts, Mark Johnson and Robert Dale

Repurposing Corpora for Speech Repair Detection: Two Experiments
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Opinion Mining, Subjectivity and Factuality

Rodolfo Delmonte
University Ca’Foscari

Italy
delmont@unive.it

Abstract

We assume that in order to properly capture opinion and sentiment expressed in a text
or dialog any system needs a deep text processing approach. In particular, the idea
that the task may be solved by the use of Information Retrieval tools like Bag of Words
Approaches (BOWs) is totally flawed. BOWs approaches are sometimes also camouflaged
by a keyword based Ontology matching and Concept search, based on such lexica as
SentiWordNet, by simply stemming a text and using content words to match its entries
and produce some result. Any search based on keywords and BOWs is fatally flawed by
the impossibility to cope with such fundamental issues as the following ones:

• presence of negation at different levels of syntactic constituency;
• presence of lexicalized negation in the verb or in adverbs;
• presence of conditional, counterfactual subordinators;
• double negations with copulative verbs;
• presence of modals and other modality operators.

In order to cope with these linguistic elements we propose to build a Flat Logical Form
(FLF) directly from a Dependency Structure representation augmented by indices and
where anaphora resolution has operated pronoun-antecedent substitutions. We imple-
mented these additions our the system called venses that we will show. The output of
the system is an xml representation where each sentence of a text or dialog is a list of
attribute-value pairs, like polarity, attitute and factuality. In order to produce this
output, the system makes use of FLF and a vector of semantic attributes associated to
the verb at propositional level and then memorized. Important notions required by the
computation of opinion and sentiment are also the distinction of the semantic content of
each proposition into two separate categories:

• Objective vs Subjective

This distinction is obtained by searching for factivity markers again at propositional
level. In particular we take into account:

• tense;
• voice;
• mood;
• modality operators;
• modifiers and attributes adjuncts at sentence level;
• lexical type of the verb (in Levin’s classes and also using WordNet classification).

Rodolfo Delmonte. 2010. Opinion Mining, Subjectivity and Factuality. In Proceedings of Australasian
Language Technology Association Workshop, page 2



Language Technology: A View From The Trenches

Casey Whitelaw
Google Inc, Sydney

Australia
whitelaw@google.com

Abstract

Computers that can listen and talk? Helpers that read your books and answer complex
questions? Natural language processing has always made big promises, and has left many
people with a healthy dose of skepticism. The truth is that language technology has had
a bigger impact than you may think, by working behind the scenes.

In this talk, I will discuss the changing role of NLP in applications, and the trends
I have observed over the last 5 years with my work at Google. I will be focusing on
the practicalities of applying NLP techniques to real-world problems, avoiding common
pitfalls, and learning from our most valuable resource: our users.

Casey Whitelaw. 2010. Language Technology: A View From The Trenches. In Proceedings of Australasian
Language Technology Association Workshop, page 3



Multilingual Language Identification: ALTW 2010 Shared Task Dataset

Timothy Baldwin and Marco Lui
NICTA VRL

Department of Computer Science and Software Engineering
University of Melbourne, VIC 3010, Australia
tb@ldwin.net, saffsd@gmail.com

Abstract

While there has traditionally been strong
interest in the task of monolingual lan-
guage identification, research on multi-
lingual language identification is under-
represented in the literature, partly due to
a lack of standardised datasets. This paper
describes an artificially-generated dataset
for multilingual language identification, as
used in the 2010 Australasian Language
Technology Workshop shared task.

1 Introduction

Language identification is traditionally defined as
the task of determining the unique language a
given document is authored in, under the assump-
tion that all documents are monolingual (Bald-
win and Lui, to appear). In contexts such as the
web, however, multilingual documents are com-
monplace, suggesting the need for language iden-
tification research to move towards a more realis-
tic task setting where a document can be authored
in one or more languages (Hughes et al., 2006).
This paper describes such a dataset, based around
the task of multilingual language identification,
where the task is to determine which one or two
languages a given document is authored in. This
dataset formed the basis of the 2010 Australasian
Language Technology Workshop shared task.

Multilingual language identification is relevant
in a number of contexts. “Word spotting” of for-
eign words in multilingual documents has been
shown to improve parsing performance (Alex et
al., 2007), and multilingual language identifica-
tion is a first step in this direction. It can also be
used as part of a linguistic corpus creation pipeline
for low-density languages, e.g. to determine the
language used in interlinear glossed text (IGT)
embedded in language documentation (Xia et al.,
2009; Xia and Lewis, 2009).

The ideal vehicle for multilingual language
identification research would be a dataset gen-
uinely representative of the true multilingualism
of resources such as the web. Creating such a
resource, however, would require: (a) a multilin-
gual crawl without language bias; and (b) a large-
scale document collection with gold-standard an-
notations over the full range of languages extant
on the web, including sub-document extents for
the individual languages contained in a document.
While we would ultimately like to generate such
a dataset for general usage, in this paper we de-
scribe a more modest effort to artificially gener-
ate a dataset for multilingual language identifica-
tion purposes. Our basic approach is to: (1) select
a language bias-preserving set of primary docu-
ments; (2) select a comparable document for each
in a second language based on translation links;
and (3) concatenate sections of the two documents
together to form a single multilingual document.
In this paper, we detail the methodology for gener-
ating the dataset, and outline baseline and bench-
mark results over the dataset to calibrate future ef-
forts.

2 Dataset Synthesis

The dataset for the task was prepared from
database exports of the various language
Wikipedias provided by the WikiMedia Founda-
tion.1 The WikiMedia Foundation carries out an
ongoing export of the databases of each of the
language-specific Wikipedias, and makes these
exports available for download. The exports that
we utilized are dated between 9 June 2008 and 1
August 2008. We downloaded all the Wikipedias
that exceeded 1000 articles, which at the time
numbered 75 (as of October 2010, this number is
now almost 200). Of these, the file for the Spanish
(es) Wikipedia failed to download correctly,

1http://download.wikimedia.org/
backup-index.html

Timothy Baldwin and Marco Lui. 2010. Multilingual Language Identification: ALTW 2010 Shared Task Data.
In Proceedings of Australasian Language Technology Association Workshop, pages 4−7



Lang Language No. Docs Lang Language No. Docs
code name 1◦ 2◦ code name 1◦ 2◦

af Afrikaans 9 1 ko Korean 72 26
an Aragonese 8 1 ku Kurdish 11 0
ar Arabic 71 24 la Latin 21 1
ast Asturian 5 2 lb Luxembourgish 18 1
az Azerbaijani 8 2 lt Lithuanian 57 12
be Belarusian 10 0 lv Latvian 19 5
bg Bulgarian 57 39 mk Macedonian 16 5
bn Bengali 24 6 mr Marathi 22 1
bpy Bishnupriya 8 10 ms Malay (macrolanguage) 35 9
br Breton 8 3 nap Neapolitan 13 0
bs Bosnian 26 4 nds Low German 9 1
ca Catalan 105 62 new Newari 33 4
ceb Cebuano 15 0 nl Dutch 330 419
cs Czech 80 37 nn Norwegian Nynorsk 37 9
cy Welsh 12 4 no Norwegian 156 80
da Danish 72 27 oc Occitan (post 1500) 15 1
de German 747 1327 pl Polish 335 340
el Modern Greek (1453-) 31 7 pms Piemontese 11 0
en English 3330 3774 pt Portuguese 413 410
et Estonian 52 7 ro Romanian 92 63
eu Basque 19 2 ru Russian 376 437
fa Persian 53 12 scn Sicilian 23 0
fi Finnish 154 88 sh Serbo-Croatian 21 9
fr French 747 1084 sk Slovak 61 17
gl Galician 27 3 sl Slovenian 52 7
he Hebrew 122 83 sq Albanian 18 0
hi Hindi 22 2 su Sundanese 11 0
hr Croatian 43 10 sv Swedish 220 136
ht Haitian 11 0 ta Tamil 11 5
hu Hungarian 82 38 te Telugu 27 6
id Indonesian 95 31 th Thai 50 21
io Ido 4 0 tl Tagalog 11 0
is Icelandic 23 3 tr Turkish 111 34
it Italian 384 505 uk Ukrainian 106 41
ja Japanese 442 552 vi Vietnamese 54 16
jv Javanese 8 1 wa Walloon 13 0
ka Georgian 25 8 zh Chinese 181 125

Table 1: Composition of primary (1◦) and secondary (2◦) documents in the dataset for each language
(based on ISO-639 language codes).

leaving us with data in 74 languages. All of the
data is UTF-8 encoded, and the total volume of
uncompressed data is almost 60GB.

For this task, we were interested in presenting
a language identification challenge over largely
bilingual documents. We assumed that Wikipedia
documents were all monolingual, and that the lan-
guage they were written in corresponded exactly
to the Wikipedia they were located in. On the ba-
sis of these assumptions, we set out to build bilin-
gual documents by combining portions of mono-
lingual documents. Each document in our dataset
is compiled from two source documents, which
we will refer to as “primary” and “secondary”. In
addition to making our documents bilingual, we
were interested in maintaining semantic linkage
between the sections of the document in differ-
ent languages. We did this by taking advantage
of the fact that many Wikipedia documents con-

tain links to a comparable document in another
language. For example, the English Wikipedia
document on Natural language processing con-
tains a link to the equivalent document in a variety
of languages, including the Italian Elaborazione
del linguaggio naturale and French Traitement
automatique du langage naturel. The links are
of the form [[<language-prefix>:<page
title>]], and thus can easily be parsed with a
regular expression. For purposes of elaboration,
we shall refer to this kind of link as a language-
link. It is important to note that the language-
linked documents are not translations, they are
comparable documents, on the same topic in dif-
ferent languages.

To construct each bilingual document, we first
selected the language of the primary document via
a roulette-wheel approach, weighted according to
the relative distribution of the number of pages

5



for each language Wikipedia. From there, we
randomly sampled a document (without replace-
ment) from the primary language Wikipedia. We
then selected a secondary document from the set
of language-links in the primary document via the
same routlette-wheel approach, again weighted by
the global distribution of the languages present.

To each source document, we applied simple
regular expression-based normalisation to remove
redirects, language links and templates. We also
replaced intra-wiki links with the anchor text of
the link. We then chunked each of the two source
documents into paragraphs by splitting on two
consecutive newline characters. We select the first
half of the paragraphs from the primary document
and the second half of the paragraphs from the sec-
ondary document (rounding up in each case), and
concatenate them together to form a single docu-
ment. For example, if the primary document con-
tained 5 paragraphs and the secondary contained 8
paragraphs, we would select the first 3 paragraphs
from the primary document, and the last 4 para-
graphs from the secondary document. If either of
these sections falls below 1000 bytes, we reject
this primary–secondary pair and start over.

3 Dataset Characteristics

The dataset contains 10000 documents, separated
into three partitions: 8000 for training, 1000 for
development and 1000 for test. All except three of
the documents are multilingual. These three docu-
ments are caused by anomalies in the Wikipedia
data, in that the primary document contained a
language-link to a document in the same language;
in two of these cases, the primary document con-
tained the same content under different identifiers.
As a result, the same secondary document was se-
lected for both, resulting in two documents with
identical content in the final dataset.

The language distributions of the primary and
secondary document components are as detailed
in Table 1.

In addition to the raw documents and lan-
guage annotations, we have also made available
an evaluation script. The full dataset is avail-
able from http://www.csse.unimelb.
edu.au/research/lt/resources/
altw2010-langid/.

Baseline PM RM FM Pµ Rµ Fµ

en .011 .015 .012 .701 .350 .467
en+de .014 .030 .018 .458 .458 .458

Table 2: Results for the different baseline strate-
gies over the development documents

4 Baseline Results

As each document has two languages associated
with it, three different baselines can be considered:

best-1 monolingual: the single most common
language

best-2 monolingual: the two most common lan-
guages

best-1 multilingual: the most common language
pair

The results for the different strategies are pre-
sented in Table 2, as trained over the training doc-
uments and evaluated over the development doc-
uments. In our case, the two most common lan-
guages are en followed by de, and it also happens
that the most common language pair is en-de.
As such, our latter two baselines are identical in
behaviour, and are presented together in the fi-
nal row of the table. Based on the evaluation
scripts made available as part of the dataset, we
evaluate the models using micro-averaged preci-
sion (Pµ), recall (Rµ) and F-score (Fµ), as well
as macro-averaged precision (PM ), recall (RM )
and F-score (FM ). The micro-averaged scores
indicate the average performance per document,
while the macro-averaged scores indicate the av-
erage performance per language.

5 Benchmark Results

To provide a minimal benchmark, we consider a
prototype-based classifier based on skew diver-
gence, with the usual mixing parameter α = 0.99,
based on the findings of Baldwin and Lui (to ap-
pear). The prototype is calculated as the arithmetic
mean across all instances for each feature. We deal
with the multiple-language labelling using three
different methods:

single: a single prototype is learned for each lan-
guage; any document containing the lan-
guage is used in the calculation of this pro-
totype.

6



Tokenisation Multiclass PM RM FM Pµ Rµ Fµ

unigram single .440 .274 .295 .264 .132 .176
bigram single .540 .376 .413 .583 .291 .389
trigram single .564 .412 .453 .814 .407 .543
unigram stratified .412 .458 .414 .629 .622 .625
bigram stratified .460 .448 .435 .775 .768 .771
trigram stratified .497 .467 .464 .833 .826 .829
unigram binarised .115 .786 .155 .057 .878 .107
bigram binarised .171 .705 .221 .114 .885 .202
trigram binarised .227 .686 .292 .259 .903 .402

Table 3: Results for the benchmark methods over the development documents, for a nearest prototype
learner in combination with different tokenisation and multiclass handling strategies

stratified: a single prototype is learned for each
language pair.

binarised: a pair of prototypes is learned for each
language, one from documents containing the
language, and the other from documents that
do not contain the language; a classification
for each language is produced via this binari-
sation.

We combine these three strategies with three to-
kenisation strategies, based on byte unigrams, bi-
grams or trigrams.

We present results over the development docu-
ments in Table 3. In the shared task, the primary
evaluation measure was micro-averaged F-score
(Fµ), on the basis of which the best-performing
benchmark method is nearest prototype with skew
divergence on the basis of byte trigram tokenisa-
tion, and with stratified multiclass handling.

6 Conclusion

This paper has described a multilingual language
identification dataset, as used in the 2010 Aus-
tralasian Language Technology Workshop shared
task. We outlined the methodology for construct-
ing the dataset from Wikipedias for different lan-
guages, and detailed results for a series of baseline
and benchmark methods.

Acknowledgements
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program. This re-
search was supported in part by a Google Research Award.

References
Beatrice Alex, Amit Dubey, and Frank Keller. 2007. Us-

ing foreign inclusion detection to improve parsing perfor-
mance. In Proceedings of the Joint Conference on Empir-
ical Methods in Natural Language Processing and Com-

putational Natural Language Learning 2007 (EMNLP-
CoNLL 2007), pages 151–160, Prague, Czech Republic.

Timothy Baldwin and Marco Lui. to appear. Language iden-
tification: The long and the short of the matter. In Pro-
ceedings of Human Language Technologies: The 11th An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL HLT
2010), Los Angeles, USA.

Baden Hughes, Timothy Baldwin, Steven Bird, Jeremy
Nicholson, and Andrew MacKinlay. 2006. Reconsider-
ing language identification for written language resources.
In Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC 2006), pages
485–488, Genoa, Italy.

Fei Xia and William Lewis. 2009. Applying NLP technolo-
gies to the collection and enrichment of language data on
the web to aid linguistic research. In Proceedings of the
EACL 2009 Workshop on Language Technology and Re-
sources for Cultural Heritage, Social Sciences, Humani-
ties, and Education (LaTeCH – SHELT&R 2009), pages
51–59, Athens, Greece.

Fei Xia, William Lewis, and Hoifung Poon. 2009. Language
ID in the context of harvesting language data off the web.
In Proceedings of the 12th Conference of the EACL (EACL
2009), pages 870–878, Athens, Greece.

7



Peer-reviewed papers

8



Variability and Consistency in the Idiosyncratic Selection of Fillers
in Japanese Monologues: Gender Differences

Shunichi Ishihara
The Australian National University

Canberra, Australia
shunichi.ishihara@anu.edu.au

Abstract

This study is a linguistic study on idiosyn-
crasy using speaker classification tech-
nique as an analytical tool. The goals of
this study are to find out 1) to what extent
Japanese filler words (e.g. um, you know
in English) carry individual idiosyncratic
information; 2) if there are any differences
in the degree/nature of idiosyncrasy be-
tween the sexes; and 3) what contributes to
the identified gender differences, if there
are any. Based purely on the individ-
ual selection of fillers, we report in this
study that 1) speaker discrimination per-
formance was better in the male (ca. 85%
accuracy) than the female (ca. 75% accu-
racy) speakers by approximately 10%, and
2) the poorer performance of the female
speakers was due to the larger within–
speaker differences in the female speakers
than the male speakers. That is, the selec-
tion of fillers by female speakers is more
variable, speech by speech, than that by
male speakers, even under similar condi-
tions (e.g. same type of audience and the
same degree of formality). We also dis-
cuss that the findings of the current study
agree with the previously–reported differ-
ences between the sexes in language use.

1 Introduction

We intuitively know that different people
talk/write differently, even when they try to
convey the same message. We also know that
people tend to use their individually selected
preferred words despite the fact that in principle
they can use any word at any time from the
vocabulary built up over the course of their lives.
This is due to the idiosyncratic choice of words,
expressions and so forth. Every speaker of a given

language has their own distinctive and individual
version of the language—which is often referred
to as idiolect (Halliday et al., 1964; Coulthard
and Johnson, 2007). This idiolect manifests
itself in various aspects of communication, such
as the choice of words, expressions, or even
grammar, morphology, semantics and discourse
structure. The idiosyncratic nature of word selec-
tion between speakers/writers has been studied
in different fields. For example, it has been used
to understand speaking styles of political leaders
(Slatcher et al., 2004), to identify the authors
of literary works (Thisted and Efron, 1987), to
detect plagiarism (Woolls, 2003) and to enhance
the performance of automatic speaker recognition
(Doddington, 2001). In the domain of text (in
contrast to speech), it has been demonstrated that
word category usage is very stable across time
and writing topics (Pennebaker and King, 1999).

Besides the idiosyncrasies of individual speak-
ers, men and women speak/write differently (Kop-
pel et al., 2002). This has been well reported
in various linguistic and non–linguistic aspects of
speech (Lakoff, 1975; Coats, 1993). Particularly
in terms of linguistic styles, it has been argued that
women tend to be more stylistically flexible and
varied than men in language use (Holmes, 1997;
Holmes, 1998; Chambers, 1992). Thus, the cur-
rent study investigates:

• ‘to what extent we are idiosyncratic’ in se-
lecting certain words rather than others, keep-
ing in mind that there may be some differ-
ences in the degree/nature of idiosyncrasy be-
tween the sexes; and

• if there are any differences between the sexes,
‘what contributes to the identified gender dif-
ferences’ in these instances.

This study focuses on the use/selection of fillers
in Japanese as several existing studies identify

Shunichi Ishihara. 2010. Variability and Consistency in the Idiosyncratic Selection of Fillers in Japanese
Monologues: Gender Differences. In Proceedings of Australasian Language Technology Association Workshop,
pages 9−17



subjectively (Furui et al., 2002; Sato, 2002; Ya-
mane, 2002) and empirically (Ishihara, 2009) that
preference of fillers exists across speakers. Fillers
are unique to spoken language. They are a sound
or a word (e.g. um, you know, like) which is ut-
tered by a speaker to signal that he/she is think-
ing or hesitating. It is reported that 6% of the
total number of words spoken in Japanese are
fillers (NIJL, retrieved 2008). It is also reported
that speakers’ attributes, such as age and gen-
der, affect the choices of fillers in Japanese and
English (NIJL, retrieved 2008; Watanabe et al.,
2006). Studies on speech corpora show that males
tend to use fillers more frequently than females in
English and Japanese (Shriberg, 1994; NIJL, re-
trieved 2008).

In order to answer the above research questions,
we will conduct a series of speaker discrimina-
tion tests—separately between male and female
speakers—based solely on fillers. The hypothesis
is that the more consistent the individual speaker’s
selection of fillers is, and the more significantly
fillers selected by one speaker differ from those
selected by another, the more accurately speaker
discrimination can be performed.

We demonstrate first of all that fillers bear the
idiosyncratic information of speakers to the ex-
tent that the accuracy of the speaker discrimina-
tion based solely on fillers can be as high as ap-
proximately 85% for male speakers and approx-
imately 75% for female speakers. As can be
seen in this difference in accuracy between the
sexes, we also report that the speaker discrimi-
nation performance is better in the male than the
female speakers by approximately 10%. Four
reasons can be speculated: 1) the idiosyncrasy
was not well modelled for the females due to the
fact that less female speakers were used in the
current study; 2) the between–speaker difference
is larger in the female speakers; 3) the within–
speaker difference is larger in the female speakers
or 4) any combination of the above three. Fur-
ther investigation of the data revealed that the
poorer performance of the female speaker discrim-
ination compared to the male speaker discrimina-
tion is due to the tendency of the female speakers
to have larger within–speaker differences than the
male speakers. That is, the selection of fillers is
more variable or less consistent across the non–
contemporaneous speeches of the same speakers
for female than male speakers even under very

similar conditions.

2 Methodology

Two kinds of comparisons are involved in speaker
discrimination tests. One is called Same Speaker
Comparison (SS comparison) where two speech
samples produced by the same speaker need to be
correctly identified as the same speaker. The other
is, mutatis mutandis, Different Speaker Compari-
son (DS comparison).

The series of speaker discrimination tests that
we conducted can be categorised into two experi-
ments: Experiments 1 and 2. Detailed procedures
of Experiments 1 and 2 are explained in §4 and §5,
respectively.

2.1 Database and Speakers

For speech data, we used the Corpus of Spon-
taneous Japanese (CSJ) (Maekawa et al., 2000),
which contains recordings of various speaking
styles such as sentence reading, monologue, and
conversation. For this study we used only the
monologues, categorised as Academic Presenta-
tion Speech (APS) or Simulated Public Speech
(SPS). APS was mainly recorded live at academic
presentations, most of which were 12-25 minutes
long. For SPS, 10-12 minute mock speeches on
everyday topics were recorded. We selected our
speakers from this corpus based on three criteria:
availability of multiple and non–contemporaneous
recordings, spontaneity (e.g. not reading) of
the speech, and speaking in standard modern
Japanese. Spontaneity and standardness of the lan-
guage were assessed on the basis of the rating the
CSJ provides. Thus, only those speech samples
which are high in spontaneity and uttered entirely
in Standard Japanese were selected for this study.
This gives us 416 speech samples (= 208 speakers:
132 male and 76 female speakers x 2 sessions).

2.2 Fillers

In CSJ, a filler tag is assigned to one of the pre–
selected words given in Table 1 which have the
function of ‘filling up gaps in utterances’. Some of
the words given in Table 1 can also be used as lex-
ical words. If it is uncertain as to whether a given
word is used as a lexical word or a filler, additional
information is embedded in the tag indicating this
uncertainty. In such cases, the word was removed
from speaker discrimination tests.

In the selected speech samples, we observed 44
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• a(-), i(-), u(-), e(-), o(-), n(-), to(-)†, ma(-)†

• u(-)n, a(-)(n)no(-)†, so(-)(n)no(-)†

• u(-)n(-)(t)to(-)†, a(-)(t)to(-)†, e(-)(t)to(-)†,
n(-)(t)to(-)†

• one of the above + {∼desune(-), ∼ssune(-)}
• one of the above with † + {ne(-), sa(-)}

Table 1: Pre–selected fillers in CSJ. “-” stands for
the prolongation of the preceding segment.

different filler words for the male speakers and 42
for the female speakers, which are listed in Ta-
ble 2. As the previous studies which report that
more fillers appear in formal speech than informal
speech predict (Watanabe, 2009; Nishimura et al.,
2010), a large number of fillers could be identified
in the selected speech samples as the setting was
relatively formal.

Although there are some ranking differences be-
tween the sexes in terms of frequency, it can be
seen from Table 2 that very similar fillers are used
across the sexes.

In order for the choice of filler words to be use-
ful as a speaker classifier, it has to satisfy two cri-
teria. First it has to be consistent within a speaker.
The second criterion is the relative frequency of
use of fillers compared to other speakers. In order
to capture these characteristics, we have to model
each speech in terms of the use of fillers, and it
needs to be compared against another. We de-
scribe our method below.

2.3 Vector space model

Using the frequency counts of the identified fillers,
each speech is modelled as a real–valued vector in
this study. If n different fillers are used to repre-
sent a given speech S, the dimensionality of the
vector is n. That is, S is represented as a vec-
tor of n dimensions (

−→
S = (F1, F2 . . . Fn), where

Fi represents the ith component of
−→
S and Fi is

the frequency of the ith filler). For example, if 5
fillers are used to represent a speech (X), and the
frequency counts of these fillers are 3, 10, 4, 18
and 1 respectively, the speech X is represented as−→
X = (3, 10, 4, 18, 1).

2.4 Term frequency inverse document
frequency weighting

The usefulness of particular words is determined
by their uniqueness as well as how frequently they
are used. Different weights were given to different

filler words depending on their uniqueness in the
pooled data. The tf · idf (term frequency inverse
document frequency) weight (Formula 1) is used
to evaluate how unique a given filler word is in the
population, and a weight is given to that filler to
reflect its importance to the speaker discrimination
(Manning and Schütze, 2001).

Wi,j = tfi,j ∗ log(
N

dfi
) (1)

In Formula 1, term frequency (tfi,j) is the num-
ber of occurrences of word i (Wi) in the document
(or speech sample) j (dj). Document frequency
(dfi) is the number of documents (or speech sam-
ples) in the collection in which that word i (Wi)
occurs. N is the total number of documents (or
speech samples).

2.5 Cosine similarity measure
The difference between two speech samples,
which are represented as vectors (−→x ,−→y ), is calcu-
lated based on the cosine similarity measure (For-
mula 2) (Manning and Schütze, 2001). This par-
ticular method was selected as the durations of
the speech samples are all different, assuming that
the direction of a vector should be constant if the
speech sample is long enough.

diff(−→x ,−→y ) = cos(−→x ,−→y ) =
−→x · −→y
|−→x ||−→y |

=
∑n

i=1 xi ∗ yi√∑n
i=1 x

2
i ∗

√∑n
i=1 y

2
i

(2)

The range of the difference in two vectors
(diff(−→x ,−→y )) is between 1.0 (=cos(0◦)) for two
vectors pointing in the same direction and 0.0
(=cos(90◦)) for two orthogonal vectors.

Please note that in the experiments of this study
(§4 and §5), the length of the vectors were stan-
dardised by only looking at the X most frequent
fillers (X = (5, 10, 15, 20, 25, 30, 35, 40)) as co-
sine similarity measure requires vectors of equal
length.

3 Method for Speaker Discrimination

In this study, the performance of speaker discrim-
ination is assessed on the basis of the probability
distribution functions (PDFs) of the difference for
two contrastive hypotheses. One is the hypothe-
sis that two speech samples were uttered by the
same speaker (the same speaker (SS) hypothesis)
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Male: (52588 fillers) Female: (20575 fillers)
F % F % F % F % F % F %
e- 31.71 u- 1.08 nto 0.03 e- 24.24 e-to- 0.83 to- 0.15
ma 10.84 n- 1.00 to- 0.03 ano- 15.20 u 0.71 eto- 0.13
e 10.62 o 0.83 nto- 0.02 ano 12.86 a-no 0.67 n-to 0.07
ma- 7.85 etto 0.74 u-n 0.01 e 12.07 etto- 0.61 u-n 0.05
ano 6.41 i- 0.59 a-to 0.01 ma 8.27 un 0.45 nto 0.02
ano- 6.19 e-to- 0.57 n-to- 0.008 ma- 5.45 a-no- 0.42 n-to- 0.01
sono 3.31 i 0.35 nto- 0.008 sono 2.74 to 0.35 u-nto 0.005
e-to 3.17 eto 0.30 a-to- 0.006 n 2.45 e-tto- 0.32 nto- 0.005
a 2.52 etto- 0.24 ntto 0.002 a 2.37 o 0.29 ntto- 0.005
o- 2.09 to 0.22 n-tto- 0.002 e-to 2.17 eto 0.28 so-no- 0.005
n 2.07 e-tto- 0.21 u-nto 0.002 sono- 1.29 u- 0.28 unto 0.005
a- 2.01 a-no- 0.21 a-tto 0.002 e-tto 1.22 o- 0.28 so-no 0.005
e-tto 1.59 a-no 0.19 e-ttodesune 0.002 n- 1.13 i 0.25
sono- 1.49 un 0.09 so-no- 0.002 a- 1.02 i- 0.16
u 1.20 eto- 0.05 etto 0.88 at 0.15

Table 2: Fillers and their frequencies (%) of occurrence given separately for the different sexes. F =
fillers. ”-” stands for the prolongation of the preceding vowel.

and the other is that two speech samples were ut-
tered by different speakers (the different speaker
(DS) hypothesis). These probabilities can be for-
mulated as P (E|Hss) and P (E|Hds) respectively,
where E is the difference, Hss is the SS hypothe-
sis andHds is the DS hypothesis. In this study, the
PDF of the difference assuming the SS hypothesis
is true is called the SS PDF (PDFss) and assuming
the DS hypothesis is true the DS PDF (PDFds).
Please note again that in this study, the difference
of two speech samples refers to the cosine differ-
ence between the two vectors representing the two
speech samples.

Each PDF was modelled using the kernel den-
sity function (KernSmooth library of R statis-
tical package). Examples of PDFss and PDFds,
which are based on all of the male speakers with
the dimensions of 40, are given in Figure 1. As can
be seen from Figure 1, those PDFss and PDFds do
not conform to a normal distribution. This is the
motivation of the use of the kernel density function
in this study.

As can be seen from Figure 1, PDFss and
PDFds were not always monotonic, resulting in
more than a single crossing point, particular when
the dimension of a vector is less than 5. Thus,
the performance of the system with the length of a
vector being less than 5 is not given.

These two PDFs also show the accuracy of this
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Figure 1: Examples of PDFss (the grey curve) and
PDFds (the black curve). The vertical dashed line
(x = θ) is the crossing point of PDFss and PDFds.

particular speaker discrimination system. If the
crossing point (θ) of the PDFss and the PDFds
is set as the threshold, we can estimate the per-
formance of this particular speaker discrimination
system from these PDFs. Area 1 in Figure 1—the
area surrounded by the grey line (PDFss), the ver-
tical dotted line of x = θ and the line of y = 0—
is the predicted error for the SS comparisons, and
Area 2 of Figure 1—the area which is surrounded
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by the black line (PDFds), the vertical dotted line
of x = θ and the line of y = 0—is the predicted
error for the DS comparisons. Therefore, the ac-
curacy of the SS (ACCURACYss) and DS compar-
isons (ACCURACYds) can be calculated by For-
mulae 3 and 4, respectively.

ACCURACYss =
(

1−
∫ θ

0
PDFss(x)dx

)
∗100

(3)

ACCURACYds =
(

1−
∫ 1

θ
PDFds(x)dx

)
∗100

(4)

The accuracy of a speaker classification system
(both in SS and DS comparisons) was estimated in
this study.

4 Experiment 1: Discrimination
Performance and its Difference
between the Sexes

In Experiment 1, a series of speaker discrimina-
tion tests were conducted separately for the male
and the female speakers (132 male and 76 fe-
male speakers). Out of the 264 speech samples of
the 132 male speakers, 132 SS comparisons and
34584 DS comparisons are possible. Likewise,
for the female speakers, 76 SS comparisons and
11400 DS comparisons are possible.

The performance of a speaker classification sys-
tem is assessed separately for the male and the fe-
male speakers as explained in §3, with different
numbers of the dimensions of a spacial vector. The
spacial vectors of 5, 10, 15, 20, 25, 30, 35 and 40
dimensions are used in Experiment 1. That is, for
example, the spacial vector of 5 dimensions means
that the frequency counts of the 5 most frequently
used fillers are used to represent a speech sample.
In Figure 2, the accuracy of a speaker classifica-
tion system is plotted separately for the male (solid
lines) and the female speakers (dotted lines) as a
function of the different numbers of dimensions (=
fillers). The grey and black lines represent the SS
and the DS comparisons, respectively, in Figure 2.

Despite the fact that the techniques used in the
speaker discrimination tests are standard and fairly
simple, the performance of speaker discrimination
is fairly good, particularly for the male speaker
discrimination of which accuracy is as good as ap-
proximately 85%. It can be observed from Figure
2 that when 20 or more fillers are included in the
vectors, 1) the performance of the SS and the DS

comparisons becomes stable; 2) the speaker dis-
crimination of the male speakers outperforms that
of the female speakers by approximately 10% and
3) the performance of the SS and the DS compar-
isons becomes comparable. A trade–off between
the performance in the SS comparison and that in
the DS comparisons is evident if less than 20 fillers
are used. The third point above is important that
the comparable performance between the SS and
the DS comparisons means that the result is well
calibrated.

The fact that speaker discrimination perfor-
mance peaks with half of the dimensions available
is not surprising. The feature vectors were based
on the frequencies of occurrence of a given filler
word, and we first picked ones with higher fre-
quency to be included in the feature. So vectors in
the later orders have very low frequencies, such as
0. This means that the latter part of longer vectors
tends to include very similar low numbers across
speakers, not contributing as a strong unique fea-
ture of speakers.

In Experiment 2, we will look into what con-
tributes to the difference in performance between
the male and the female speakers.

5 Experiment 2: Why is Female
Discrimination Worse?

In Experiment 1, it was demonstrated that the
male speaker discrimination outperforms the fe-
male speaker discrimination by approximately
10%. Four reasons for this seem to be possible.
The first possible reason (R1) is a simple technical
and statistical reason. As the number of female
speech samples (152 = 76 speakers x 2 sessions)
is less than that of male speech samples (264 =
132 speakers x 2 sessions), the idiosyncratic use
of fillers was not modelled as well for the female
as for the male speakers, resulting in a poor perfor-
mance for the female speaker discrimination. The
second possible reason (R2) is that the between–
speaker differences are smaller and less significant
in the female than the male speakers. That is, the
female speakers behave more uniformly than the
male speakers, making the speaker discrimination
of the female speakers more difficult. The third
possible reason (R3) is that the within–speaker dif-
ference is larger in the female than the male speak-
ers. That is, the female speakers are less consis-
tent with their idiosyncrasy in selecting fillers than
the male speakers, giving rise to the poorer perfor-
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Figure 2: Speaker discrimination performance. The solid lines denote male speakers and the dashed
lines denote female speakers. The black lines indicate DS comparisons and the grey lines indicate SS
comparisons.

mance of the female speaker discrimination. The
fourth possible reason (R4) includes any combina-
tion of the above three.

As a first step for identifying which is the true
picture contributing to the difference in speaker
discrimination performance between the male and
female speakers, we need to conduct speaker dis-
crimination tests under the same conditions for
both the male and female speakers, equalising the
number of speakers. Therefore, 3 male speaker
groups, each of which consisted of 76 speak-
ers, were randomly created from the 132 male
speakers. Three different speaker discrimination
tests were conducted separately using these 3 male
speaker groups. If the speaker discrimination per-
formance of these 3 groups of 76 male speakers is
similar to that of the 132 male speakers obtained
in Experiment 1, we can eliminate R1. In Experi-
ment 2, the spatial vectors of 40 dimensions were
used for the speaker discrimination tests. The re-
sults of these speaker discrimination tests are sum-
marised in Table 3, together with those of the pre-
vious tests.

As can be seen from Table 3, the performance of
the male speaker discrimination remains as accu-
rate with only 76 male speakers as with 132 male
speakers, the male speaker discrimination outper-
forming the female speaker discrimination. This
result indicates that R1 can be eliminated as a pos-
sible reason.

In order to examine the validity of R2∼R4, the

Sex Male
n 76–1 76–2 76–3 76–Ave. 132

SS 88.2 89.5 77.6 85.1 83.3
DS 84.7 82.1 89.0 85.3 85.3
Sex Female
n 76

SS 73.7
DS 76.2

Table 3: Comparison of speaker discrimination ac-
curacies (%) under the same conditions for the
male and the female speakers. n = number of
speakers. The discrimination accuracies when 132
male speakers are pooled together are given as ref-
erences. The numerals in bold are the values of
most concern for the sex comparisons.

differences of paired speech samples that were cal-
culated for the SS and the DS comparisons were
scrutinised for the male and the female speak-
ers. Table 4 contains the average differences of
pairs of speech samples for the SS and the DS
comparisons, which were calculated separately for
the male and the female speakers. Let us remind
the reader that the value of the cosine similarity
measure becomes smaller if the difference of two
speech samples is larger. It can be seen in Table 4
that for the DS comparisons, the male (0.29) and
the female speakers (0.31) show very similar val-
ues, while for the SS comparisons, the average dif-
ference of compared speech samples is larger for

14



the female (0.62) than the male speakers (0.73).

Sex Male
n 76–1 76–2 76–3 76–Ave.

SS 0.75 0.70 0.75 0.73
Skew -0.97 -0.65 -1.14 -0.92
DS 0.29 0.27 0.30 0.29

Skew 0.83 0.87 0.83 0.84
Sex Female
n 76

SS 0.62
Skew -0.53
DS 0.31

Skew 0.81

Table 4: The average differences of pairs of speech
samples for SS and DS comparisons in cosine sim-
ilarity measure and the degree of skewness for
each PDF. n = number of speakers. The numer-
als in bold are the values of most concern for the
sex comparisons.

The above gender difference, i.e. that the fe-
male speakers have greater differences than the
male speakers for the SS comparisons, can also be
seen from the different patterns observed between
the PDFss of the female speakers and those of the
male speakers. Figure 3 contains the PDFss and
the PDFds plotted for the female speaker discrim-
ination test (solid line) and those plotted for the
3 male speaker discrimination tests (dotted lines)
conducted in Experiment 2.

Figure 3–1 shows that the PDFds of the female
speakers (solid line) is very similar to those of
the male speakers (dotted line)—with the PDFds
of the male speakers being slightly more posi-
tively skewed (the average male skew: 0.84; the
female skew: 0.81). On the other hand, as for
the PDFss (Figure 3–2), the male speakers (dot-
ted lines) show more negative skewness than the
female speakers (solid line) (the average male
skew: –0.92; the female skew: –0.53). Statis-
tically speaking as well, three sets of two–sided
two–sample Kolmogorov–Smirnov tests (Male 1
vs. Female; Male 2 vs. Female and Male 3 vs.
Female) confirm that the distributional pattern is
different between the male and female speakers in
their PDFss (p 5 0.04432).

Thus, it can be concluded that the larger within–
speaker difference in the female speakers than the
male speakers—which is R3—contributed to the
poorer performance in the female speaker discrim-

ination than the male.

6 Discussion

We have demonstrated in Experiment 1 that
Japanese fillers carry individual information to the
extend that we can discriminate speakers with ap-
proximately 85% and 75% accuracy for the male
and the female speakers, respectively. 75%∼85%
accuracy is not too bad, but not so great as a
speaker discrimination task. However, we would
like to remind the reader that the techniques we
employed are very simple.

In Experiment 2, it has been demonstrated that
the male and the female speakers exhibit a very
similar pattern for DS comparisons, whilst for SS
comparisons they are different in that the female
speakers generally have greater differences than
the male speakers for compared speech samples.
This indicates that the within–speaker difference
is larger for the female speakers than the male
speakers. In other words, the selection of fillers is
more flexible and variable in the female speakers,
even under fairly controlled and similar situations,
whereas male speakers tend to be more consistent
with their selection of fillers.

However, it is not clear at this stage if this is a
general tendency observed in many languages or
unique to Japanese. Furthermore, we do not know
why female speakers are more variable in selecting
fillers across non–contemporaneous occasions in
comparison to male speakers.

Judging from what has been researched on
gender differences in languages, the flexibil-
ity/variability of women’s speech appears to be
one of the universals (Holmes, 1998). Holmes
(1997, p. 198) remarks that “women tend to use
a wider range of linguistic variants than men, and
that their usage varies according to identical con-
textual factors”. A very similar statement can be
found in Chambers (1992, p. 199) that “. . . they
[women] command a wider range of linguistic
variants . . . they have the linguistic flexibility to
alter their speech as social circumstances warrant.”
The flexibility/variability of women’s speech in
linguistic styles has been empirically supported by
various studies (Nichols, 1983; Ide, 1982; Escure,
1991). In speech perception as well, it has been re-
ported that females are more sensitive to variations
in speech styles (Wiley and Eskilson, 1985).

Thus, the result of the current study, which
demonstrated the differences between males and
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Figure 3: Differences between male and female in PDFs. Panels 1 and 2 are for PDFds and PDFss,
respectively. The vertical lines are average cosine similarity values. The solid lines are used for the
female speakers and the dotted lines are for the three groups of the male speakers.

females in their linguistic styles, contributes fur-
ther evidence supporting the above assertion,
namely that women are more variable and flexible
in their linguistic usages. Yet, from the findings
of this paper, it is difficult to explain linguistically
why females behave in this way.

7 Conclusions

In this study, we have first demonstrated that
Japanese fillers carry the idiosyncratic informa-
tion of speakers. We have shown that the speaker
discrimination performance is more effective in
the male than the female speakers by approxi-
mately 10%. We also have demonstrated that the
poorer performance of the female speaker discrim-
ination compared to the male speaker discrimina-
tion is due to the tendency for female speakers to
have larger within–speaker differences than male
speakers. That is, the selection of fillers is more
variable, or less consistent, for female than male
speakers even under very similar conditions. We
have also discussed that the result of the current
study conforms to the previously reported differ-
ences between males and females in their speech;
that women’s linguistic use of their language is
more variable and flexible in comparison to males.

8 Future Research

Japanese data was used for this study. Thus it is in-
teresting to see if we can recognise the same sex–
difference in other languages.

This study is part of a large study on forensic
voice comparison (FVC). In FVC, the strength of
evidence (or likelihood ratio) is equally important
to the discriminability of the system. Therefore,
it is interesting to see what sort of strength of
evidence can be obtained from the idiosyncratic
selection of fillers. Furthermore, FVC usually
uses acoustic features, such as Mel–frequency
cepstrum coefficients, formant–patterns, funda-
mental frequency (f0) and so on. The feature
used in the current study is a non–acoustic feature
(or a text–based feature) which is completely
independent from the acoustic features. It thus
has potential to make a significant contribution
to improving the accuracy of speaker classi-
fication systems (Shriberg and Stolcke, 2008)
by combining the non–acoustic feature of the
current study and usual acoustic features. As
a next step, therefore, we intend to extend this
study by combining this feature with other, more
conventional speaker classification features, such
as formants or f0 related features.
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Abstract

Written contracts are a fundamental
framework for commercial and coopera-
tive transactions and relationships. Lim-
ited research has been published on the ap-
plication of machine learning and natural
language processing (NLP) to contracts.
In this paper we report the classification
of components of contract texts using ma-
chine learning and hand-coded methods.
Authors studying a range of domains have
found that combining machine learning
and rule based approaches increases accu-
racy of machine learning. We find similar
results which suggest the utility of consid-
ering leveraging hand coded classification
rules for machine learning. We attained an
average accuracy of 83.48% on a multi-
class labelling task on 20 contracts com-
bining machine learning and rule based
approaches, increasing performance over
machine learning alone.

1 Introduction

Contracts govern economic transactions and com-
mercial or organisational relationships from triv-
ial purchases to major national infrastructure
projects. Any large organisation (whether private
or public) must unavoidably invest significant re-
sources in developing and concluding contracts, as
the contracts it enters define its legal relations with
organisations and individuals with which it inter-
acts. As one author has noted, contracts are an
integral part of any business enterprise and it is
“difficult to overstate their importance to the busi-
ness world” (Khoury and Yamouni, 2007, p16). In
addition, drafting contracts represents a major eco-
nomic activity for the legal industry.

Ambiguity is an unresolved problem in natu-
ral language processing. It is also an important

problem affecting the drafting and operation of
contracts. The costs of ambiguity in a contract
can be enormous. The presence of ambiguity in-
creases the risk of litigation, project failure and
loss of commercial relationships. Instances of lit-
igated ambiguity are used in drafting manuals as
instructional tales for the unwary drafter (Aitken
and Butt, 2004, p37).

Our future research goal is to investigate ap-
proaches that will help identify such ambiguity,
however, a precursor for addressing the problem
of ambiguity is accurate labelling or classification
of the constituent parts of contract documents.1 In
this paper we report work on classifying ‘lines’ in
contracts into 32 classes. We compare three dif-
ferent classification approaches in order to deter-
mine which approach may provide the best per-
formance with respect to this task: supervised
machine learning; a hand-crafted rule based tag-
ger; or combining hand-crafted rules based tag-
ging with machine learning.

2 Background

Natural language processing involves applying a
pipeline of transformations to text. A typical first
step is to segment the text into its sentences, af-
ter which further processing is applied (Jurafsky
and Martin, 2009, p 69). This works well in usual
English prose, but is not necessarily well suited to
contracts because of the heavy use of layout to em-
body structure and semantics. In a contract, a sen-
tence may occur within a single paragraph of text,
or may be spread over several line breaks due to
the use of sub-paragraphing as an aid to compre-
hension. Such sub-paragraphs may embody dis-
junctive or conjunctive conditions associated with

1This task can also be thought of as a document segmen-
tation task, although we here consider it as a classification
exercise.
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a rule. A ‘clause’2 is the typical structural unit
which embodies a legal rule or set of rules. Some-
times clauses are organised into sub-clauses and
clauses and sub-clauses may be numbered in hier-
archical fashion (e.g. 1, 1.1, (a), (i), (A))(Aitken
and Butt, 2004, pp 23, 27). Line breaks often
occur immediately before data such as headings,
clauses, sub-clauses, party names, dates or execu-
tion blocks. Being able to label a line as to its char-
acter, key content or function thus enriches avail-
able information for later NLP. The line is thus a
valuable starting point for applying NLP.

3 Related Work

3.1 Classification and Segmentation of
Contracts and Legislative Documents

There would appear to be little published work
on the application of natural language process-
ing (NLP) or machine learning specifically for the
classification of text in legal contracts. An excep-
tion to this is (Indukuri and Krishna, 2010) who
apply a support vector machine over feature vec-
tors extracted from contract clauses. These feature
vectors are comprised of n-grams up to size n = 4.
They classify contract sentences as clauses or non-
clauses and then sub-classify clauses as concerned
with payment terms or not. Indukuri and Krishna
note the lack of published work on classification
of sentences in contract documents for workflow
and monitoring purposes.

While also limited, there has been some work
on segmentation or classification of legislative cor-
pora using machine learning. (Mencı́a, 2009) re-
ports 100% precision and recall in machine learn-
ing on classification of legislation into articles,
sections and parts (although to a task for which he
is able to craft an equally accurate regular expres-
sion based segmenter). (Bacci et al., 2009) auto-
matically classify plain text legislative documents
for the purpose of XML mark up. (Francesconi,
2006), on whose work Bacci et al. build, describes
four separate modules for dealing with plain text
legacy content which they are seeking to convert
to XML tagged text. (Hasan et al., 2008) carry
out segmentation of Spanish legislative bulletins
using the table of contents as an aid to segmenta-
tion. This work, in the legislative field, provides
a parallel application domain for the work under-
taken here in respect of contracts, although it is

2The term ‘clause’ here refers to a legal rule or rules ap-
pearing in a contract, rather than the linguistic entity.

generally true that legislation will tend to conform
to far tighter stylistic rules, because of the central
control of legislative drafting.

3.2 Combining Machine Learning and Hand
Coded Approaches

A number of researchers have combined hand-
coded approaches and machine learning to pro-
duce better overall results.

(Kipp, 2006) augments handcrafted rules with
machine learnt rules for gesture generation.

(McCreath and Kay, 2003) used such a com-
bined approach to improve performance on cate-
gorizing emails.

(Park and Zhang, 2003) address the problem of
text chunking for the Korean language, combining
hand-crafted rules with a memory based machine
learning method. A rule based method is used to
determine whether an instance may constitute an
exceptional case, with machine learning used to
correct classifications assigned by the rule based
method. They report up to a 2.83% improvement
in F-scores over memory-based learning alone.

(Rochery et al., 2002) report the use of hand-
crafted rules to enhance the accuracy of machine
learning utilising boosting. They apply the method
to a multi-labelling classification problem where
they are seeking to classify spoken utterances.
They attribute increased accuracy to the fact that
the rules they develop are not represented in their
data at all or do not appear sufficiently to have sta-
tistical impact during the training process. They
note that the combination has the greatest effect
when there are less then 100 examples, with the
benefit of the combination decreasing as the num-
ber of training examples increases. The method
therefore has direct applicability to reducing the
data requirement for machine learning (a costly as-
pect of supervised machine learning).

(Takahashi et al., 2005) utilise a combination
of SVM based learning and hand-crafted rules for
the task of classifying occupations from social sur-
veys. They effect a combination by using rule de-
rived labels as features for the machine learner.
Again the work occurs in a multi-class labelling
context (with around 200 occupation codes). They
find that SVM approaches are superior to rule-
based approaches alone but that combining rule-
based and SVM learning produces the best results.
They also examine the effect of the number of
training examples, noting that the differential ben-
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efits of combining methods reduces with increas-
ing data.

In our study we use class labels assigned by a
hand-coded tagger as additional features for ma-
chine learning to obtain an increase in accuracy in
the domain of text classification.

The work reported above, and our own paper,
come from diverse domains and illustrate the ap-
plication of combined rule/ML approaches using a
variety of machine learning algorithms.

This suggests the wide utility of using hand-
coded rules to improve accuracy of machine learn-
ing. Symetrically we may say that machine learn-
ing may potentially be used to improve the accu-
racy of hand-coded rules. Here we essentially fol-
low a hybrid model of development that examines
each method separately as well as in combination.

4 Data

4.1 Australian Contract Corpus

The data which forms the basis of this study is a
corpus of 256 contracts (‘the Australian Contract
Corpus’) which has been compiled from the web
using the Google Australia web search: http:
//www.google.com.au.3 The corpus is con-
stituted of 1043364 tokens (words and punctua-
tion), 42910 sentences, and a vocabulary of 14217.
The lexical diversity of this corpus is 73.39.4 As
far as we are aware there is no published work
based on a corpus of Australian contract language,
however space does not permit a fuller discussion
of the design and analysis of the corpus.

4.2 Data Representation

For the purpose of this study we randomly selected
30 contracts from the Australian Contract Corpus
to produce data sets for application of machine
learning. The 30 contracts were divided into three

3The search phrase we employed was: “clause party
agreement” , limiting the search to “pages from Australia”
and the filetype to “.doc”. The collection of the corpus was
undertaken in the period 6 - 24 December 2009. Each doc-
ument was visually inspected by one of the authors to verify
that it was an Australian contract and documents were added
to the corpus in order of their appearance in Google search
results. We have made available the list of URLs of the docu-
ments that make up the corpus at: http://cs.anu.edu.
au/people/Michael.Curtotti/. We also make code
and data referred to in this paper available at the same loca-
tion.

4Lexical diversity refers to the ratio of the total number of
tokens in the corpus to the total number of types of tokens i.e.
tokens/vocabulary. The statistics and information provided
here were extracted using the NLTK. (Bird et al., 2009).

sets: a training set (Set A)5, a second set (Set B)6

(primarily used as a test set, although sometimes
combined with Set A to form a larger training set)
and an additional test set (Set C)7, each of 10 con-
tracts. Set C was added to increase both available
data and the number of contracts on which testing
could be carried out.

To simplify processing all contracts were con-
verted into text files as a preprocessing step.8 Also
we removed material that typically does not ap-
pear in contracts (primarily guideline notes for
drafters).

For purposes of our study each ‘line’ or ‘para-
graph’ in a contract constituted a data point.
Sets A, B and C provided 1825, 2157 and 2231
lines/data points, respectively.

To classify our data for machine learning we
first employed our hand-coded tagger to produce
a labelled data set constituted of a line and pri-
mary and secondary labels according to our clas-
sification system (see below). The classifications
applied by the hand-coded tagger were then manu-
ally corrected to remove any labelling errors. Both
for the reason that hand tagging data from scratch
is more error prone than correcting previously ma-
chine tagged data, and because of the high labour
in manual tagging, machine assisted tagging is a
standard method used in corpus creation (Biber
et al., 1998, p 262), ((ed) Christopher S. Butler,
1992, p 131).

4.3 Feature Selection
Features were then extracted from our labelled
lines using a hand-coded feature extractor to ex-
tract up to 40 features to be used for machine
learning, with the primary class label earlier ap-
plied to each line serving as the target for machine
learning.9 Features for machine learning were se-
lected based on assumed relevance to the intended
classification.10 While a bag of word representa-

5Contracts numbered in our corpus: 55, 74, 77, 91, 94,
144, 174, 185, 208 and 213

6Contracts 11, 12, 164, 193, 196, 199, 249, 59, 64, 9
7Contracts 200, 254, 175, 180, 120, 102, 207, 127, 75 and

79
8Notably, this step does have the downside of discarding

valuable style and layout information found in the word doc-
ument format.

9In some instances the assignment of class is not entirely
disjunctive and implies a priority ordering of potential classi-
fications. For instance a clause may contain address details,
and be classified as such rather than as a clause. The feature
extractor removed secondary labels.

10The full list of features is as follows: 1. relative position
of a line within the contract; 2. line end punctuation; 3. num-
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tion with automatic feature extraction was trialed,
this was found to result in lower accuracy than
a manually selected (but small) number of fea-
tures. Traditionally, ‘feature engineering’ or ‘se-
lection’ in text classification has focussed on ‘bag
of words’ or proximate features such as n-grams
or noun phrases (Scott and Matwin, 1999). Our
selection of features might be regarded as ‘hybrid’
in that they implicitly encode domain knowledge
and ‘rules’. For example, we expect a definition
line to contain the widely used word ‘means’ as in
‘x means y’. We would expect clause headings to
display a different pattern of parts of speech occur-
rence, as compared to clauses themselves. We also
consider features such as the relationship between
the particular line/datapoint and its neighbouring
lines (e.g. is the preceding line long or short), or
the document as a whole (e.g. relative placement
of the line within the document).

Features used in the related work carried out
by others on contracts and legislation include: n-
grams (Indukuri), bag of word together with capi-
talisation and character patterns (Mencia), the use
of sequential word and token data as a HMM to
predict state where state is the classification of the
portion of text (Bacci/Francesconi) and the use of
word terms identifying titles and lists of indexed
terms (Hasan).

4.4 Classes

We adopted 32 classes for our classification
scheme. These classes represented significant

bering at the beginning of the line; 4. line length in charac-
ters; 5. line length in tokens; 6. number of nouns; 7. number
of adjectives; 8. number of verbs; 9. number of preposi-
tions; 10. number of coordinating conjunctions and cardinal
numbers; 11. number of modal verbs; 12. number of personal
pronouns, possessives; 13. number of adjectives; 14. whether
must occurs; 15. whether may occurs; 16. whether shall oc-
curs; 17. whether means occurs;18. the position of the word
means in the line; 19. whether the word ‘include’ occurs; 20.
the position of the word ‘includes’ in the line; 21. whether
the phase ‘has the same meaning’ occurs; 22. whether the
line begins with a capital letter followed by a stop or a space;
23. do the letters ’abn’ or ’acn’ appear; 24. does the word ad-
dress appear near the beginning of the line; 25. does the word
‘contact’ appear near the beginning of the line; 26. does the
word ‘email’ appear near the beginning of the line; 27. does
the word ‘fax’ appear near the beginning of the line; 28. does
the word ‘note’ appear at the beginning of the line; 29. does
the word ‘phone’ appear at the beginning of the line; 30. do
the terms ‘web’ or ‘www’ appear near the beginning of the
line; 31-36. token lengths of 3 lines before and after the data
line; 37. the tag applied by the hand coded tagger to the data
line; 38. whether the contract from which the line comes has
clause headings; 39. whether the contract from which the line
comes has clause sub-headings; 40. whether the contract has
a schedule.

structural elements (such as clause headings or
content lines) or sometimes key contract meta data
(for instance the parties, the date on which an
agreement is made, email addresses, ABNs etc).11

Of particular interest to us, was an ability to accu-
rately identify clausematter (the primary location
of legal rules of a contract) and clause headings
(which in some contracts effectively mark bound-
aries between major rule sets).

5 Experimental Evaluation

Analysis of our data sets was carried out using two
major methods: analysis using the training Set A
measuring peformance on test Set B (i.e. testing
for accuracy of classification of lines in Set B); and
analysis using training Set A where each contract
in test Sets B and C was used individually as a test
set (testing for accuracy of classification of lines
of each individual contract). The former testing
approach is more widely used but the latter is more
consistent with our intended end application: that
is, developing an ability to accurately classify lines
in a previously unseen contract as an individual
document.

Set A consisted of 1825 lines of data, Set B con-
sisted of 2157 lines of data and Set C consisted of
2231 lines of data.

5.1 Tools
The following tools were used to carry out ma-
chine learning tasks reported in this paper:

1. the python programming language was used
to develop a hand coded line tagger, a feature
extractor and code for evaluation of the per-
formance of the hand coded tagger;

2. the Natural Language Toolkit (NLTK)(Bird
et al., 2009) was used in corpus development
and in the hand coded tagger for application
of parts of speech tags; and

3. the Weka data mining software(Hall et al.,
2009) was used to carry out machine learn-
ing.

11The following class labels were applied: CLAUSE-
MATTER, CLAUSEHEAD, DEF, CONTENTSHEAD,
BLANK, DROSS, AND, BETWEEN, DATEMADE-
LINE, PARTIESHEAD, PARTYLINE, RECITALHEAD,
RECITALLINE, HEAD, CONTENTLINE, PRELIM, OP-
ERATIVEPROVISIONLINE, NUMBEREDLINE, SCHED-
ULEHEAD, SCHEDULEITEM, EXECUTIONBLOCK,
NOTE, ABNLINE, ADDRESSLINE, EMAILLINE,
WEBLINE, FAXLINE, PH-LINE, REF-LINE, SCH-
OTHERMATTER, CONTACTOFFICER, TITLELINE.
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5.2 Hand-Coded Tagger
Our hand-coded tagger follows a pipeline method-
ology. A contract is separated into a list of lines. In
the first phase, each line is passed through a series
of “if-then-else” routines (essentially utilising reg-
ular expressions) to assign primary and secondary
labels to the line. This produces a contract with
enhanced information content, in the form of a tu-
ple of labels and line text. This output is then fed
through a series of methods, progressively boot-
strapping improvements to labelling, based on the
information available when the method is applied.
For instance content lines will be identified, these
are then used in later methods to seek to identify
clause headings. In addition, the tagger extracts
contract meta data such as: a list of definitions,
a list of clause headings, where the beginning of
operative provisions occurs, where the schedule
begins. Such features may or may not occur in
a contract. In addition the tagger also provided
a method for hand correcting tagging which was
used to create our data set for supervised machine
learning purposes.

Development of the tagger relied heavily on do-
main knowledge to identify logical tests for label
application. For instance the occurrence of num-
bering at the beginning a line was used to identify
clause headings, or the presence of a common text
pattern which occur in definitions i.e. (the pattern
[“word[1-3]] means [...]” was used as a criterion
for identifying a line as a definition).

x s
On Set B Contracts 86.27% NA
Contract x Contract 82.84% 10.85%

Table 1: Accuracy of Line Tagger.

The first row of Table 1 reports accuracy of the
hand coded tagger when applied to Set B as the
test set (the % accuracy of tagging of individual
lines in Set B is reported). The second row of
Table 1 reports average accuracy with which the
lines in each of 20 contracts in Sets B and C are
tagged (standard deviation is also reported). The
high variance of the results at a contract by con-
tract level suggests a need for future work to iden-
tify if issues such as contract ‘type’ may account
for the differences (the lowest level of accuracy
was around 50% and the highest around 95%).

Table 2 provides measures of precision, recall
and F-measure attained by the hand coded tag-

Precision Recall F-Measure
CL.HEAD 0.98 0.83 0.89
CL.MATTER 0.91 0.91 0.91
DEF 1.00 0.66 0.80

Table 2: Performance results for Hand-Coded
Line Tagger

ger on Set B for key data items: clause headings,
clauses themselves and definitions.12 These re-
sults on key measures are sufficient for our ini-
tial purposes and will allow us to focus subsequent
work on addressing ambiguity in the substantive
rules found in a contract.

5.3 Supervised Machine Learning

Column 1 of Table 3 reports the accuracy of var-
ious supervised machine learning algorithms with
Set A as training set and Set B as test set. Of
the algorithms applied, Random Forest (imple-
mented using 100 trees and 30 random features)
performed best. No ML method performed better
than the hand coded tagger tested on the same test
set (see row 1 of Table 1).

5.4 Machine Learning vs Hand-coded
methods

Given our ultimate focus on developing applied
tools, we are primarily concerned to identify the
best methods to maximise the accuracy of our clas-
sification task. Whether this proves to be ma-
chine learning methods or hand-coded methods or
a combination of the two is immaterial from this
viewpoint (other than in regard of development
costs).

Also it is useful to consider whether methods
and insights from one method may assist in the
other. For instance, hand-coded rules that success-
fully labelled lines directly suggested ‘features’ to
be extracted for machine learning purposes. Con-
versely the identification of ‘features’ for machine
learning can be regarded as a programming ab-
straction where the algorithm is ‘under the hood’
but human intervention is required in the form of
feature selection for ‘learning’ to occur (implic-
itly encoding of rules in the feature set). In de-
riving our results we used a confusion matrix as a
tool to assist in identifying areas where the hand-

12Precision is TP
TP+FP

, Recall is TP
TP+FN

, and F-Measure
is 2PR

P+R
, where TP is true positives, FP is false positives,

FN is false negatives, P is precision, and R is recall.
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coded tagger required improvement and as a com-
mon baseline for performance. In certain forms
of machine learning, the resulting machine learn-
ing model can be represented as code in “if, then,
else” form (as in the output of a decision list or de-
cision tree learner). We may thus conceive of ma-
chine learning and hand coding of rules as differ-
ent ‘programming paradigms’ - a perspective that
encourages us to apply insights across the bound-
ary between them.

Further, we wished to explore the relative accu-
racy of machine learning vs hand coding for this
particular task. Such an exploration is valuable
from a cost benefit point of view. Supervised ma-
chine learning (where we have focused our atten-
tion) requires the production of human annotated
data (which is costly to produce) as well as fea-
ture testing and refinement. Also machine learn-
ing may be computationally intensive. Production
of an accurate hand-coded tagger requires expert
knowledge and considerable testing and code re-
finement in order to achieve a high level of ac-
curacy (which again is resource intensive). We
did not undertake quantitative data collection in
respect of time employed in the two methods,
particularly as we followed an iterative develop-
ment model that switched between rule based and
machine learning focussed work and as we were
searching for optimal outcomes. Nonetheless we
anecdotally report that each method presented sig-
nificant demands in terms of development time.

In the results reported above we note that no
machine learning approach alone exceeded the
performance of the hand coded tagger when con-
sidering performance on test Set B as a whole.
This is the result also found at contract by contract
level (see below Table 4).

5.5 Leveraging Hand-Coded Labels for
Machine Learning

As noted above we also wished to explore whether
utilising the output from the hand coded tagger
as input features for machine learning might im-
prove the accuracy of machine learning alone. A
converse question that could be framed is whether
the rule based tagger’s performance could be im-
proved by combination with machine learning.

We carried out two trials that bear on these ques-
tions:

1. machine learning alone and machine learning
enhanced with rule based input on an entire

test set (Set B); and

2. machine learning alone, rule alone and ma-
chine learning enhanced with rule based in-
put at contract by contract level.

ML Algorithm ML Alone ML + Rule
Naive Bayes 82.38% 84.75%
SMO (SVM) 82.80% 85.40%
Cl. via Regression 83.91% 87.07%
Decision Tree 82.01% 87.02%
Bagging 83.54% 87.76%
Majority Vote 84.42% 87.11%
Random Forest 85.12% 86.69%

Table 3: Comparative Performance ML alone and
ML + Rule on train and test set

Column 2 of Table 3 shows the improvement in
performance of various machine learning methods
when tags applied by the hand coded tagger were
provided as input features. All methods show im-
provement with addition of the rule derived feature
on Set B as a whole.13

We report below a comparison of accuracy of
machine learning, rule based tagging and a com-
bination of both in respect of Decision Trees. De-
cision trees offer the advantage that the output is
easily interpretable as a rule set for tagging.

Method x s
ML Alone 79.12% 10.71%
Rule Alone 82.84% 10.85%
ML + Rule 83.48% 9.83%

Table 4: Tagging Accuracy Mean and Standard
Deviation - Contract by Contract

Although the results reported in Table 4 are
different (as different contracts are included in
the tested contracts)14 average accuracy continued
to show a differential between machine learning
alone, and machine learning leveraged with hand
rules, as described above. On this combination
ML + Rule also outperformed the rule based tag-
ger alone, but by a very narrow margin. In 17 of
20 cases ML + Rule improved or did not worsen
performance of ML alone. In 15 of 20 cases, ML +

13The training set for the results reported in Table 3 was
Set A. The test set was Set B.

14The training set was Set A. Sets B and C provided 20
individual contracts (effectively 20 test sets) for testing.
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rule was no worse or outperformed the hand coded
tagger alone. Notably variation is quite high as
compared to the mean. Testing for statistical sig-
nificance we can reject a null hypothesis that the
mean accuracy for ML + Rule is the same as for
ML alone. We cannot reject a null hypothesis that
ML + Rule is the same as Rule alone.15 We note
also that this investigation was only carried out in
respect of the decision tree learner.

5.5.1 Is it more effective to increase data or
use rule based features?

To further explore the question of how much ef-
fort might be saved by combining rule based ap-
proaches with machine learning alone we tested
the effect of adding random noise to the feature
set provided by the hand coded tagger. We found
that we had to randomly flip over 45% of these
tags before they ceased to impact positively on
classification accuracy. This suggests that even
poorly prepared hand coded rules can improve per-
formance.16

We also tested the effect of incrementally in-
creasing the amount of available training data
to explore any decrease in differential in perfor-
mance. Testing using Set C as the test set and
taking training data from Sets A and B, we pro-
gressively increased training data by increments
of 500 instances of data. Differential performance
decreases progressively, starting around 5% and
reducing to 2.5% as more training data is made
available.17 (See Table 5.) Extrapolating from
these figures we would expect at a minimum that
training data would have to be doubled to remove
differential accuracy. Relatively little effort in de-
veloping rule based features may substitute for
considerable work in creating additional super-
vised data.

15We gratefully acknowledge the assistance of Bob For-
rester of the ANU Statistical Consulting Unit in deriving
this result, undertaken utilising a generalised linear model
to undertake model fitting adjusting for different file (con-
tract) types. Predictions of estimated mean proportions were:
ML Alone 0.7760 (s.e. 0.007181), Rule alone 0.8106 (s.e.
0.006775), ML+ Rule 0.8181 (s.e. 0.006677).

16Using a Decision Tree, ML + Rule accuracy on test Set B
with training Set A, was 87.0% with zero noise, 86.9% with
5% noise, 84.7% with 10% noise, 85.2% with 20% noise,
84.4% with 30% noise, 83.9% with 40% noise, 82.8% with
45% noise, 82.4% with 50% noise. Decision Tree accuracy
on ML alone on this training and test set was 82.0%.

17The data has a negative correlation of -0.70

Data 0.5 1K 1.5 2K 2.5 3K 3.5 4K

Diff. 5.1 3.4 5 4.2 3.3 3.1 3.9 2.6

Table 5: Difference in % accuracy of ML alone
and ML with rule based feature with increasing
training data.

5.5.2 Decision tree output
An examination of the decision tree produced af-
ter adding the output of the hand-coded tagger to
machine learning is of interest.

LTlabel = #CLAUSEMATTER#
| tknLngth <= 4
|| nounNum <= 1: #CLAUSEMATTER# (6.0/2.0)
|| nounNum > 1
||| linePos. <= 0.383929: #PRELIM# (2.0)
||| linePos. > 0.383929: #CLAUSEHEAD# (2.0)
| tknLngth > 4: #CLAUSEMATTER# (508.0/7.0)
: :
: :
LTlabel = #PH-LINE#
| prepNum <= 1: #PH-LINE# (5.0)
| prepNum > 1: #CLAUSEMATTER# (2.0)
LTlabel = #EMAILLINE#: #EMAILLINE# (3.0)
LTlabel = #ABNLINE#
| preLine2 <= 0: #TITLELINE# (2.0/1.0)
| preLine2 > 0: #ABNLINE# (3.0)

Figure 1: Part of the decision tree learnt when the
labels from the hand-coded are provided as an at-
tribute.

Using only the machine learning feature set, the
size of the pruned tree is 199 with 108 leaves.
After addition of labels provided by our hand-
coded tagger the size of the decision tree is re-
duced to 105 with 69 leaves. Figure 1 shows part
of this decision tree and as illustrated, the deci-
sion tree generally begins with the label assigned
by the hand-coded tagger ‘LTlabel’ and amends
the label (where necessary) utilizing other fea-
tures available to the machine learner. Some labels
(e.g. EMAILLINE) were simply adopted without
change. In the case of the CLAUSEMATTER la-
bel, the machine learner used the number of to-
kens in the line (‘tknLngth’), number of nouns in
the line (‘nounNum’) and the relative position of
the line in the contract (‘linePos.’) to re-assign the
class of the line. The significance of the use of la-
bels assigned by the hand-coded tagger is that the
decision-tree identifies that attribute as providing
the most significant information gain (that is re-
duction in entropy) and therefore partitions on that
feature (Callan, 2003, p245). This remains true
in this example irrespective of the class to which
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the data is being assigned.18 It is obvious that the
best feature for assigning the correct label for an
item of data is the correct or probably correct la-
bel (if one can obtain it without undue endeavour).
From a practical viewpoint some effort directing
to hand-crafting code to extract appropriate class
labels may thus assist machine learning.

6 Conclusions and Future Work

In terms of the overall performance of the methods
described in this paper the closest point of compar-
ison is the work reported by Indukuri and Krishna
(Indukuri and Krishna, 2010). While comparisons
using different methods, software and data are of
dubious validity, we may note their broad similar-
ity. With a training set of 10 contracts and a test set
of 20 contracts, the contract-by-contract average
F-measure for the clausematter class was 0.8632.
Also in 14 contracts of the 20 tested the F-measure
for the clausematter class was above 0.85. With a
training set of 10 contracts (Set A) and a test set
of 10 contracts (Set B) (as a single test set) the
F-measure for the clausematter class was 0.921.19

Using 4-grams as features, Indukuri and Krishna
report an accuracy of 83.48% on the task of clas-
sification clauses from non-clauses, applied to 73
sentences to be so classified. Whereas the task in
that case was a binary classification task over one
contract, we report results on multi-class classifi-
cation over test sets of up to 20 contracts.20

The work we have undertaken and related work
reviewed in this paper (Section 3) suggests the po-
tentially broad utility of combining rule based and
machine learning methods. One potential hybrid
classification method in its simplest formulation
may look something like this:

1. determine the required or anticipated level of
accuracy for the intended application;

2. develop a simple code rule set for the classifi-
cation task (i.e. with minimal expenditure of
resources);

3. if classification accuracy is sufficient ma-
chine learning would not be required, if not

18The Weka decision tree implementation, “J.48”, is based
on the Quinlan’s C4.5(Quinlan, 1986).

19The results reported here are derived using a random for-
est algorithm and using the hand coded tag as an input feature
for classification.

20Coincidentally the 83.48% figure is the same as our av-
erage result over all classes for 20 contracts.

proceed as usual in development of machine
learning using the output of hand coded rules
as an input to machine learning.

Such a development model does not avoid the de-
velopment of a supervised training set, as such a
set is required both to assess the accuracy of the
rule based tagger as well as the machine learner
(should development proceed to that stage). How-
ever it may reduce the amount of data required
to attain a desired level of accuracy. The method
could of course be applied iteratively, if the accu-
racy level is insufficient after a first iteration.

Future work to be explored includes the effec-
tive “typing” of contracts (particularly in light of
the high variance of performance on individual
contracts). For instance, some contracts use clause
headings, others do not. Some use schedules, oth-
ers do not, etc. Such type information may fur-
ther assist in the classification task (the accuracy of
which varies considerably depending on the con-
tract to which it is applied). In typical preprocess-
ing, documents in corpora are converted to plain
text. This results in the loss of layout and hierar-
chical information found in word documents. The
preservation of such information for use in classi-
fication tasks may improve accuracy.

The preliminary work here is also a precursor to
work on identification of ambiguity and the devel-
opment of practical tools to assist in contract draft-
ing. In separate work, we intend also to describe
and analyse the contract corpus that is referred to
here as the basis of this work.
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Abstract

This research focuses on improving in-
formation access over troubleshooting-
oriented technical user forums via thread-
level analysis. We describe a modular task
formulation and novel dataset, and go on
to describe a series of preliminary classifi-
cation experiments over the data. We find
that a class composition strategy achieves
the best results, surpassing multiclass clas-
sification approaches.

1 Introduction

Online forums and discussion boards are online
platforms for people to hold discussions in particu-
lar domains. They are widely used in various areas
such as customer support, community develop-
ment, interactive reporting and online education.
Forums provide one of the primary avenues for
online users to share information on the Internet.
Users post their questions or problems onto on-
line forums and get possible solutions from other
users. Through this simple mechanism, great vol-
umes of data with customised answers to highly
specialised domain-specific questions are created
on a daily basis. However, it is not an easy job to
extract the information latent in the threads.

The aim of our research is to help users to
more easily access existing information in forums
which relate to their questions, by text mining
troubleshooting-oriented, computer-related tech-
nical user forum data (Baldwin et al., 2010). An
example thread from a real-world forum is shown
in Figure 1, which is made up of 4 posts with 3
distinct participants.

Our proposed strategy is to model the “content
structure” of forum threads by analysing requests
for information and provision of solutions in the
thread data. We devise an ontology of problem
sources and solution types with which to analyse

HTML Input Code - CNET Coding & scripting Forums
User A HTML Input Code
Post 1 . . . Please can someone tell me how to create an

input box that asks the user to enter their ID, and
then allows them to press go. . . .

User B Re: html input code
Post 2 Part 1: create a form with a text field. . . .
User C asp.net c# video
Post 3 I’ve prepared for you video.link click . . .
User A Thank You!
Post 4 I have Microsoft Visual Studio 6, what program

should I do this in? . . .
User D A little more help
Post 5 . . . You would simply do it this way: . . .

Figure 1: An extract from a real-world thread

individual threads, paving the way for users to
spell out the general nature of their support need
in their queries. The main contributions of this pa-
per are: (1) designing a modular thread-level class
set; (2) constructing and publishing an annotated
dataset; and (3) performing preliminary thread-
level experiments over the dataset.

2 Related Work

There is very little work that is specifically tar-
geted at the thread-level analysis of web user fo-
rum data. The most closely-related work is that
performed by Baldwin et al. (2007), and our thread
class set was created based on this original work.

Another research line that relates to the thread
classification is discussion summarisation. For
example, technical online IRC (Internet Relay
Chat) discussions are summarised and segmented
in Zhou and Hovy (2005)’s research. The mes-
sage segments are then clustered to find the most
relevant information to users using machine learn-
ing models. There has also been work on email
summarisation, concentrating primarily on sum-
marising and organising email archives by extract-
ing overview sentences to help users find the most
useful email threads (Nenkova and Bagga, 2004;

Li Wang, Su Nam Kim and Timothy Baldwin. 2010. Thread-level Analysis over Technical User Forum Data.
In Proceedings of Australasian Language Technology Association Workshop, pages 27−31



Rambow et al., 2004; Wan and McKeown, 2004).

3 Class Definition

The proposed thread class set is made up of two or-
thogonal Basic Class sets (BASIC), and a Miscel-
laneous Class set (MISC). The first BASIC class
set is Problem Source (PROBLEM), which con-
cerns the targets and sources of the problem de-
scribed in threads. It contains 6 basic classes:
Operating System (OS), Hardware, Software, Me-
dia, Network and Programming. The second BA-
SIC class set is Solution Type (SOLUTION), which
describes the types of the solution presented in
threads in the form of 4 classes: Documentation,
Install, Search and Support. The MISC class set
includes two classes: Other and Spam. A detailed
description of each class in the thread class set is
presented in Table 1.

A given thread is labelled either with one class
label from each of the two BASIC class sets (i.e.
two class labels in total), or alternatively one class
label from the MISC class set. For example, the
thread from Figure 1 would be labelled as Pro-
gramming/Documentation. Therefore, when do-
ing the actual annotation, we used the ALLCLASS

class set containing 26 classes in total, i.e. the
cross product of the two BASIC class sets plus
Other and Spam.

It should be noted that while the design of our
class set is specific to computer-related techni-
cal user forum threads, the idea of the two or-
thogonal BASIC class sets, namely PROBLEM and
SOLUTION, can be applied to troubleshooting-
oriented forum threads from other domains. This
is because most troubleshooting-oriented forum
threads present one or more problems (i.e. PROB-
LEM), and imply possible solution types (i.e. SO-
LUTION), even if the thread is unresolved.

4 Data Collection

This research focuses exclusively on data from
CNET forums.1 Firstly, 1000 threads were
crawled from CNET forums using SiteScraper.2

We only collected threads that contained 2 to 16
posts, as threads containing only 1 post have no
answers and cannot provide solutions, and long
threads tend to be more discussion-oriented and/or
contain multiple sub-threads.

1http://forums.cnet.com
2http://sitescraper.googlecode.com/

The crawled threads were then preprocessed.
Only the title and sub-forum information of each
thread, and the body, title, and author informa-
tion of each post were preserved. Finally, we ran-
domly selected 500 threads from 4 sub-forums of
the CNET forums: Operating Systems, Software,
Hardware, and Web Development.

Two annotators performed a pilot annotation us-
ing a seed set of 150 threads and a dedicated web
annotation tool. The κ value for the pilot anno-
tation (indicating the relative agreement between
the two annotators) was 0.43. The annotators sat
down together to go over every thread where there
were disagreements, and discussed the disagree-
ments based on the class descriptions. Then, the
two annotators annotated 327 new threads, achiev-
ing a more respectable κ value of 0.74. The anno-
tators furthermore met again to resolve any dis-
agreements in the labelling of the 327 threads.
Most of the disagreements arose from confusion
between Hardware and Media in the PROBLEM set,
and Documentation and Support in the SOLUTION

set.

5 Experimental Methodology

We carried out preliminary experiments over the
annotated data, focusing on the implications of the
modular class design for thread classification.

As our feature representation, we firstly re-
moved all punctuation in the threads and nor-
malised the threads to lower case. Then, we
lemmatised the threads using the GENIA Tagger
(Tsuruoka et al., 2005), and removed stopwords.3

Based on the preprocessed threads, we used a bag-
of-words term frequency representation, concate-
nating all posts in the thread into a single meta-
document and thereby treating the task as a docu-
ment categorisation task.

All of our experiments were carried out us-
ing Hydrat (Lui and Baldwin, 2009), a classi-
fier comparison framework. Hydrat integrates sev-
eral machine learning software packages includ-
ing BSVM (Hsu and Lin, 2006), weka (Hall et
al., 2009) and MALLET (McCallum, 2002), in ad-
dition to native implementations of a number of
more basic learners. In our experiments, we tried
a range of machine learning models including
Support Vector Machines (SVM), multinominal
Naive Bayes (NB), and instance-based learners

3Using the stop word list from InfoMap (http://
infomap-nlp.sourceforge.net/).
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Class Category Description
PROBLEM: OS Operating system

Hardware Core computer components, including core external components (e.g. a keyboard)
Software Software-related issues, including applications and programming tools
Media Hardware which is either a non-standard external component or peripheral device
Network Network issues (e.g. connection speed, and installing a physical network)
Programming Coding and design issues relating to programming

SOLUTION: Documentation How to use a certain function, select a computer/component, or perform a task
Install How to install a component
Search Search for a particular component (e.g. a software package)
Support How to fix a problem with a computer or component

MISC: Other Troubleshooting-related, but the problem source is not included in the PROBLEM set
Spam The thread is not troubleshooting-related

Table 1: The components of the thread class set

(NN). A majority-class model (ZEROR) was used
as the baseline.

The class set was represented in three ways,
based on its two orthogonal components: (1) all 26
multiclasses (ALLCLASS); (2) only the PROBLEM

class sub-set, the Other class and the Spam class,
comprising 8 classes in total (PROBLEM); and (3)
only the SOLUTION class sub-set, the Other class
and the Spam class, comprising 6 classes in total
(SOLUTION). By combining the outputs of classi-
fiers based on the PROBLEM and SOLUTION class
sub-sets (i.e. class composition), it is possible to
construct full ALLCLASS classes, and we addi-
tionally compare the single-pass multiclass clas-
sification strategy with multi-pass class composi-
tion.

All experiments were carried out based on strat-
ified 10-fold cross-validation. The results were
evaluated via both micro-statistics and macro-
statistics. Micro-statistics describe average per-
formance per instance (i.e. thread), as represented
in the micro-averaged precision (Pµ), recall (Rµ)
and F-score (Fµ). Macro-statistics, on the other
hand, describe average performance per class,
as represented in the macro-averaged precision
(PM ), recall (RM ) and F-score (FM ). It should
be noted that the Pµ, Rµ and Fµ are always
the same, as the prediction per document is al-
ways unique. Moreover, because cross-validation
is used, the averaged FM is not necessarily the
harmonic mean of the averaged PM andRM .

Because we were more interested in the clas-
sification effectiveness per thread, the micro-
averaged F-score (Fµ) was used as our primary
evaluation method. We also tested the statistical
significance of the results using randomised esti-
mation with p < 0.05 (Yeh, 2000).

Class Space Learner PM RM FM Pµ/Rµ/Fµ

ZEROR .006 .018 .009 .038
ALLCLASS SVM .268 .248 .246 .382

NB .306 .211 .182 .333
ZEROR .038 .142 .060 .266

PROBLEM SVM .564 .485 .500 .661
NB .574 .483 .481 .691

ZEROR .122 .168 .140 .304
SOLUTION SVM .500 .387 .413 .575

NB .513 .270 .246 .520

Table 2: The performance of different learners
over ALLCLASS, PROBLEM and SOLUTION

6 Results and Evaluation

We performed a series of experiments by applying
the learners described in Section 5 over the three
class sets (i.e. ALLCLASS, PROBLEM and SOLU-
TION). Because NN performed significantly be-
low the other two learners in all experiments, we
only present results from SVM and NB (along
with baseline ZEROR). The performance of dif-
ferent learners over ALLCLASS, PROBLEM and
SOLUTION is shown in Table 2. For each class
space, the best result for each column is presented
in boldface.

There are several things to note in the results
presented in Table 2. First, we can see that the
majority class (ZEROR) results are quite poor, es-
pecially for ALLCLASS. This is due to the effects
of cross-validation, in learning the majority class
from the training data in each fold, but due to rel-
ative class uniformity, often finding that this is not
the majority class in the test data. Second, SVM
has relatively strong performance over all three
tasks, especially in ALLCLASS and SOLUTION

with the best Fµ scores. This is not surprising,
because it is often reported that SVMs have supe-
rior performance in document categorisation tasks
(Yang and Liu, 1999; Joachims, 1998). However,
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PROBLEM SOLUTION ALLCLASS Results

Learner Learner PM RM FM Pµ/Rµ/Fµ

SVM SVM .345 .313 .314 .434
NB SVM .379 .310 .316 .443

SVM NB .278 .259 .229 .398
NB NB .268 .247 .206 .398

Table 3: Results for class composition of the sep-
arate predictions from the PROBLEM and SOLU-
TION classifiers

it is interesting to note that NB produces the best
Fµ (i.e. 0.691) in the PROBLEM task. Although
this figure is not significantly better than the Fµ
(i.e. 0.661) from SVM, it still may imply that we
should optimise our methodology over each sub-
task.

As is explained in Section 5, the main pur-
pose of the experiments is to examine whether
the modular class set (i.e. PROBLEM and SOLU-
TION as two orthogonal components of the overall
ALLCLASS) has the potential to benefit the clas-
sification task for ALLCLASS. One simple way
is to explore class composition. To be specific,
as PROBLEM and SOLUTION represent orthogo-
nal components of ALLCLASS, it is possible to
perform classification separately over PROBLEM

and SOLUTION, and compose predictions via a
combined class set, to form the ALLCLASS class
set. For example, if a given thread is predicted to
have a PROBLEM class of Hardware and a SOLU-
TION class of Documentation, we can compose the
two predictions into the Hardware/Documentation
class. In order to map the results back onto the
ALLCLASS class set cleanly, we used the com-
bined class set, where the combination of Other
from either PROBLEM or SOLUTION with any
other class from the second class set produces an
overall classification of Other in the ALLCLASS

set, and the combination of Spam/Spam is treated
as Spam.

The combined results for the ALLCLASS class
set are presented in Table 3, with the best outcome
for each column once again indicated in boldface.
From the results we can see that the composi-
tion of NB for PROBLEM and SVM for SOLU-
TION yields the best FM (i.e. 0.316) and Fµ (i.e.
0.443), significantly improving over the best ALL-
CLASS results from Table 2 (0.246 and 0.382 re-
spectively). It would therefore appear to be the
case that class composition is effective in boosting
overall classification performance.

7 Conclusion

This research is aimed towards improving infor-
mation access over troubleshooting-oriented tech-
nical user forum data, focusing on automated
thread-level analysis of the problem sources and
solution types. As first steps in this direction, we
designed a modular thread-level class set, anno-
tated 327 threads, and performed thread classifica-
tion over the data. We proposed a class composi-
tion strategy by first performing classification sep-
arately over the PROBLEM and SOLUTION class
sets, and composing the predictions into an over-
all thread classification. This approach gives us
the best classification performance overall, with an
Fµ of 0.443, well above the best result from doing
the ALLCLASS classification directly.

Much more work could be done in terms of
feature engineering. This could include new fea-
tures such as author name/profile and the num-
ber of posts in the thread. We also speculate that
noise in the threads, such as typos and incorrect
casing/punctuation, reduced overall performance,
suggest that text normalisation may help boost our
classifiers. Additionally, because of the promising
results produced by the class composition strat-
egy and the innate structure of our thread class
set, we could consider more sophisticated hierar-
chical classification methods (Dekel et al., 2004;
Tsochantaridis et al., 2005). We leave these for
future work.
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Abstract

Preceding a phrase-based statistical ma-
chine translation (PSMT) system by a
syntactically-informed reordering prepro-
cessing step has been shown to improve
overall translation performance compared
to a baseline PSMT system. However, the
improvement is not seen for every sen-
tence. We use a lattice input to a PSMT
system in order to translate simultaneously
across both original and reordered ver-
sions of a sentence, and include a number
of confidence features to support the sys-
tem in choosing on a sentence-by-sentence
basis whether to use the reordering pro-
cess. In German-to-English translation,
our best system achieves a BLEU score of
21.39, an improvement of 0.62.

1 Introduction

Machine translation (MT) is the automatic transla-
tion of text from one human language to another.
Statistical MT accomplishes this through a proba-
bilistic model of the translation process.

In phrase-based statistical MT (PSMT), trans-
lation proceeds by dividing a sentence into se-
quences of adjacent words called phrases, then
translating each phrase and reordering the phrases
according to a distortion model. The distortion
model may be lexicalised but does not typically
incorporate information about the syntactic struc-
ture of the sentence. As such, although PSMT has
been very successful, it suffers from the lack of a
principled mechanism for handling long-distance
reordering phenomena due to word order differ-
ences between languages.

One method for addressing this difficulty is
the reordering-as-preprocessing approach, exem-
plified by Collins et al. (2005) and Xia and Mc-
Cord (2004), where PSMT is coupled with a pre-

processing step that reorders input sentences to
more closely parallel the target language word
order. Although this leads to improved perfor-
mance overall, Collins et al. (2005) show that the
reordering-as-preprocessing system does not con-
sistently provide better translations than the PSMT
baseline on a sentence-by-sentence basis.

One possible reason could be errors in the parse
or the consequent reordering. Chiang et al. (2009)
used features indicating problematic use of syntax
to improve performance within hierarchical and
syntax-based translation. In this work, we want
to see whether syntax-related features can help
choose between original and reordered sentence
translations in PSMT.

We use as our starting point the PSMT system
Moses (Koehn et al., 2007). In order to use fea-
tures within the system’s log-linear model to as-
sess the reliability of syntax, it is necessary to in-
put both variants simultaneously. To do this, we
adapt in a novel way the lattice input of Moses;
we refer to this new system as dual-path PSMT
(§3). We then augment the model with a number of
confidence features to enable it to evaluate which
of the two paths is more likely to yield the best
translation (§3.2). We reimplement the Collins et
al. (2005) reordering preprocessing step and con-
duct some preliminary experiments in German-to-
English translation (§4).

Our results (§5) do not replicate the finding
of Collins et al. (2005) that the preprocessing
step produces better translation results overall.
However, results for our dual-path PSMT system
do show an improvement, with our plain system
achieving a BLEU score (Papineni et al., 2002) of
21.39, an increase of 0.62 over the baseline. We
therefore conclude that a syntactically-informed
reordering preprocessing step is inconsistently of
use in PSMT, and that enabling the system to
choose when to use the reordering leads to im-
proved translation performance.

Susan Howlett and Mark Dras. 2010. Dual-Path Phrase-Based Statistical Machine Translation. In Proceedings
of Australasian Language Technology Association Workshop, pages 32−40



2 Background and Related Work

2.1 Phrase-based statistical MT
Phrase-based statistical MT (PSMT) systems such
as Marcu and Wong (2002) and Koehn et al.
(2007) have set the standard for statistical MT for
many years. While successful, these systems make
limited use of linguistic information about the
syntax of the languages which, intuitively, would
seem to be useful. Much research is now focused
on how to incorporate syntax into statistical MT,
for example by using linguistic parse trees on one
or both sides of the translation (e.g. Yamada and
Knight (2001), Quirk et al. (2005)) or by incor-
porating only select aspects of syntactic structure,
such as recursive structure (Chiang, 2007) or dis-
continuous phrases (Galley and Manning, 2010).

One area where this lack of syntactic informa-
tion is felt is the distortion model of the PSMT sys-
tem. This component governs the relative move-
ment of phrases and is the primary means of
dealing with word order differences in transla-
tion. Common options are distance-based mod-
els (where movement is penalised proportionally
to the distance moved) and lexicalised models
(where probability of movement is conditioned
upon the phrase being moved). Without syntactic
information here, PSMT systems lack a principled
way to manage long-distance movements, leading
to difficulty in language pairs where this is needed,
such as English and Japanese or German.

2.2 Reordering-as-preprocessing
The reordering-as-preprocessing approach ad-
dresses the PSMT reordering difficulty by remov-
ing word order differences prior to translation.
This is done with a preprocessing step where the
input sentence is parsed and a reordered alterna-
tive created on the basis of the resulting parse tree.

Our work builds on the reordering-as-
preprocessing approach of Collins et al. (2005).
Working with German-to-English translation,
Collins et al. (2005) parse input sentences with
a constituent-structure parser and apply six
hand-crafted rules to reorder the German text
toward English word order. These rules target the
placement of non-finite and finite verbs, subjects,
particles and negation. The authors demonstrate
a statistically significant improvement in BLEU
score over the baseline PSMT system.

Many other reordering-as-preprocessing sys-
tems exist. Xia and McCord (2004) present a sys-

tem for French–English translation that, instead
of using hand-crafted reordering rules, automati-
cally learns reordering patterns from the corpus.
Automatically-acquired rules may be noisier and
less intuitive than hand-crafted rules but the ap-
proach has the advantage of being more easily ex-
tended to new language pairs. Other examples
of systems include Wang et al. (2007) (manual
rules, Chinese-to-English), Habash (2007) (auto-
matic rules, Arabic-to-English) and Popović and
Ney (2006) (manual rules, Spanish/English-to-
Spanish/English/German).

Despite the success of the reordering-as-
preprocessing approach overall, Collins et al.
(2005) found that in a human evaluation on 100
sentences, there were still several cases in which
the baseline system translation was preferred over
that produced with the reordering. The authors
note this finding but do not analyse it further.

2.3 Features for improved translation

Zwarts and Dras (2008) explore the Collins et
al. (2005) finding by examining whether machine
learning techniques can be used to predict, on
a sentence-by-sentence basis, whether the trans-
lation of the reordered sentence is to be pre-
ferred over the alternative. For features, they
use sentence length, parse probability from the
Collins parser and unlinked fragment count from
the Link Grammar parser on the English side of
the translation. The authors find that, when used
on the source side (in English-to-Dutch transla-
tion), these features provide no significant im-
provement in BLEU score, while as target-side
features (in Dutch-to-English translation) they im-
prove the BLEU score by 1.7 points over and
above the 1.3 point improvement from reordering.

Our work has some similarities to that of Zwarts
and Dras (2008) but uses the log-linear model of
the translation system itself to include features,
rather than a separate classifier that does not per-
mit interaction between the confidence features
and features used during translation.

This idea of using linguistic features to improve
statistical MT has appeared in a number of re-
cent papers. Chiang et al. (2009) demonstrate an
improvement in hierarchical PSMT and syntax-
based (string-to-tree) statistical MT through the
addition of features pinpointing possible errors in
the translation, for example the number of occur-
rences of a particular grammar production rule, or
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non-terminal in a rule. Xiong et al. (2010) derive
features from the Link Grammar parser, in com-
bination with word posterior probabilities, to de-
tect MT errors (in order to subsequently improve
translation quality). Unlike Chiang et al. (2009),
we work with PSMT and use features that consider
the parse tree as a whole or aspects of the reorder-
ing process itself. Unlike Xiong et al. (2010), we
use these features directly in translation.

2.4 Reordering lattices

Our work also bears some similarity to recent
work using a reordering lattice or reordering for-
est as input to the translation system. Examples
include Ge (2010), Dyer and Resnik (2010) and
Zhang et al. (2007). In these systems, the input
structure simultaneously represents many possi-
ble reorderings of a sentence, which are produced
from a single parse and capture all possible com-
binations of individual reordering choices.

Like these systems, we use a complex input
structure to translate across multiple variations
of the sentence simultaneously, and choose be-
tween the resulting translations within the transla-
tion model itself. However, like Zwarts and Dras
(2008), we consider only two possibilities: the
original sentence and the sentence with a partic-
ular reordering process applied in full.

Our work also differs from these lattice-based
systems in that we preserve and incorporate the
standard distortion model of the PSMT system in
a way that the above systems cannot. Where the
lattice-based systems aim to overcome the weak-
nesses of the distortion model by replacing it with
the lattice-creating reordering process, we view
the two components as complementary. This has
an interesting consequence, which we introduce in
§3.1 and discuss further in §5.

Similar to our work and the work in the pre-
vious section, Ge (2010) includes features to as-
sess reordering options, based on the structure of
the resulting tree, for example which nonterminal
appears as the first child and the size of jump re-
quired to reach the nonterminal used as the next
child. In addition to the difference with the dis-
tortion model mentioned above, our work differs
in that Ge (2010) focuses on finding the best re-
ordering using syntactic features plus a few sur-
face and POS-tag features as a way of “guarding
against parsing errors”, whereas we also look at
using features to represent confidence in a parse.

3 Dual-Path PSMT

In this paper, we develop a dual-path PSMT sys-
tem. §3.1 introduces the lattice input format, by
which we provide the system with two variants
of the input sentence: the original and the re-
ordered alternative produced by the preprocessing
step. §3.2 outlines the confidence features that we
include in the translation model to help the system
choose between the two alternatives.

Our system is built upon the PSMT system
Moses (Koehn et al., 2007). For reordering, we
use the Berkeley parser (Petrov et al., 2006) and
the rules given by Collins et al. (2005), but any re-
ordering preprocessing step could equally be used.
Further details of our systems are given in §4.

3.1 Word Lattices

A word lattice is a structure used to efficiently rep-
resent multiple sentences simultaneously. This is
of use, for instance, in translating the output of
a speech recognition system, where there is some
uncertainty about the words of the sentence. The
lattice is a directed, acyclic graph with one source
and one sink node. Each path from source to sink
corresponds to one of the set of sentences being
represented. An example is given in Figure 1.

There exists an approximation to the word lat-
tice structure, called a confusion network. In this
case, every path of the lattice passes through every
node, and epsilon transitions are allowed. While
a confusion network is in general more space-
efficient than a lattice, its paths may include more
sentences than the original set (Koehn, 2010).

In the word lattice, each edge is accompanied
by a transition probability; in speech recognition
output this represents the probability that the edge
is the correct interpretation of the next part of the
signal, with the probabilities on all of the transi-
tions out of a single node summing to one. The
probability of one path in the lattice (and therefore
one sentence in the set) is the product of the prob-
abilities on the transitions that make up the path.
This path probability becomes one feature in the
system’s translation model.

Moses can be used with word lattice input. Typ-
ically, training proceeds as in the baseline case, ex-
tracting and scoring phrase pairs from plain paral-
lel sentence data. The lattice structure first appears
in tuning, where Moses determines the weight to
assign to the transition probability feature, which
is then used to translate lattices during evaluation.
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152 4. Background

4.4.2 Representation of Confusion Network

Moses adopts the following computer-friendly representation for a CN.

Haus 0.1 aus 0.4 _eps_ 0.3 Aus 0.2

der 0.9 _eps_ 0.1

Zeitung 0.7 _eps_ 0.2 Zeitungs 0.1

where a line contains the alternative edges (words and probs) between two consecutive
nodes.

In the factored representation, each line gives alternatives over the full factor space:

Haus|N 0.1 aus|PREP 0.4 Aus|N 0.4 _eps_|_eps_ 0.1

der|DET 0.1 der|PREP 0.8 _eps_|_eps_ 0.1

Zeitung|N 0.7 _eps_|_eps_ 0.2 Zeitungs|N 0.1

Notice that if you project the above CN on a single factor, repetitions of factors must be
merged and the respective probs summed up. The corresponding word-projected CN is the
one of the first example, while the part-of-speech projected CN is:

N 0.5 PREP 0.4 _eps_ 0.1

DET 0.1 PREP 0.8 _eps_ 0.1

N 0.8 _eps_ 0.2

4.5 Word Lattices

A word lattice is a directed acyclic graph with a single start point and edges labeled with a
word and weight. Unlike confusion networks which additionally impose the requirement that
every path must pass through every node, word lattices can represent any finite set of strings
(although this generality makes word lattices slightly less space-efficient than confusion net-
works). However, in general a word lattice can represent an exponential number of sentences
in polynomial space. Here is an example lattice showing possible ways of decompounding
some compound words in German:

Moses can decode input represented as a word lattice, and, in most useful cases, do this far
more efficiently than if each sentence encoded in the lattice were decoded serially. When Moses
translates input encoded as a word lattice the translation it chooses maximizes the translation
probability along any path in the input (but, to be clear, a single translation hypothesis in Moses
corresponds to a single path through the input lattice).

Figure 1: A example of a word lattice for decomposing German compounds, from Koehn (2010).

Our system In our dual-path system, we use a
word lattice to simultaneously represent original
and reordered versions of an input sentence. Rep-
resenting only two versions of the sentence, our
lattice contains only two paths. We do not wish
to introduce any additional paths that are combi-
nations of these two, since doing so sensibly is
nontrivial, so we do not use the confusion network
approximation.

As mentioned in §3, we use our lattice input
in conjunction with the PSMT distortion model.
Commonly, Moses is used with a lexicalised dis-
tortion model, which is trained along with the
phrase table from the training data. In that case,
the distortion model for the original sentences will
not be appropriate for the reordered sentences, and
vice versa. We therefore need separate distortion
information for the two paths of the lattice. To ac-
complish this, we use disjoint vocabularies on the
two paths, which we create by prepending every
token in the original sentences with 1_ and every
token in the reordered sentences with 2_.

This has two consequences. First, since Moses
translates unknown vocabulary items by copying
them directly to the output, we must ensure that
the prefix is removed before this copying occurs.
Second, by introducing disjoint vocabularies for
the two paths, we inhibit any sharing of edges
between them. This in turn inhibits any sharing
of nodes since, like in confusion networks, this
would increase the number of paths. Our lattice
is therefore degenerate, with the two paths sharing
only the source and sink nodes. An example of our
lattice input is shown in Figure 2.

This complete separation of the two paths
means that extending the dual-path system to a
multi-path system is likely to rapidly encounter ef-
ficiency issues. It is, however, a possibility; we
discuss a number of options in §5.

Finally, when specifying the lattice, nodes must
be given in topographical order. We number the
nodes of each path alternately since for efficiency
reasons Moses imposes a limit on the length of
edges in the lattice.

Note about training As in the typical case, our
lattice is used only during tuning and evaluation.
For training, we construct a parallel corpus twice
the size of the original corpus, containing the orig-
inal sentences (prefixed with 1_) plus their trans-
lations, and the reordered versions of these sen-
tences (prefixed with 2_) plus their translations
(identical to those of the first half). Training takes
place on this one corpus, giving one phrase table
containing translation candidates for both paths.

Using one vocabulary The need for disjoint vo-
cabularies is a consequence of the lexicalised dis-
tortion model; with a simple distance-based model
this would not be necessary. In that case, we could
construct a lattice identical to Figure 2 but with the
1_/2_ prefixes removed (which may then allow
some compression of the lattice), and then proceed
as in the disjoint-vocabulary system. In this case,
it may also be necessary to create separate phrase
tables from the two halves of the training data.

3.2 Confidence Features

When translating lattice input, Moses creates
translation candidates for all (in our case, both)
paths in the lattice, and the ultimate translation
will be one option from one path. The probability
of a path (obtained by multiplying the probabili-
ties of its component edges) is used as a feature
for every translation candidate for that path. We
can therefore use the transition probabilities to in-
fluence the system to choose the best translation of
one path over the best translation of the other path.

Usefully, Moses treats the transition probabili-
ties like any other feature, so in fact the values on
the transitions need not fall in the range [0, 1] and
the values on transitions out of a single node need
not sum to one. Further, Moses allows multiple
such features, so each edge in the lattice may be
associated with n values and thus each path may
have n scores, each produced by multiplying the
corresponding values on its component edges.1

1Moses actually operates with log-probabilities. After the
lattice is read in, a log transformation is applied to every value
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feature values for upper path: [1, 0, 0, 0]

feature values for lower path: [0, 8, 0.1logP(T,w), 0.1logP(T|w)]

Figure 2: Example input to our dual-path system, illustrating disjoint vocabularies, node ordering and
four feature values (both per edge and combined for path totals), for the sentence Offizielle Prognosen sind
von nur 3 Prozent ausgegangen (‘Official forecasts predicted just 3 percent’), adapted from the tuning data.

We first outline the features that we use, and
then discuss how they are incorporated into the
translation model.

3.2.1 Feature set
Reordering indicator feature This feature is
intended to differentiate the two paths of the lat-
tice. Its function is described more fully in §3.2.2.

Sentence length Intuitively, longer sentences
are more likely to be poorly parsed or poorly re-
ordered, so as a feature we include the number of
tokens in the original sentence.

Parse probability (2 features) The reordering
is based on an automatically-produced parse. A
low parse probability may indicate that the sen-
tence was difficult to parse and the reordering
may therefore be unreliable. To capture this, we
include features based on the joint and condi-
tional probabilities of the parse tree: P (T,w) and
P (T |w). Both are included as it is not obvious
whether one or the other will be the more useful.

The Berkeley parser can provide both
log P (T,w) and log P (T |w) with the parse of the
sentence. To avoid underflow issues, we actually
use 0.1 × log P (T,w) and 0.1 × log P (T |w).

Rule application counts (6 features) We in-
clude counts of the number of times each of the six
Collins et al. (2005) reordering rules was used for
the sentence, since particular rules may be more
likely to cause problems in the reordering. We an-
ticipate this feature would be more useful in a sys-
tem with automatically-acquired reordering rules.

on every edge. In the discussion that follows and in Figure 2
we specify the feature values as those obtained after the log
transformation.

POS counts (4 features) These features count
the number of nouns, verbs, prepositions and con-
junctions in the sentence. Higher counts may indi-
cate more complex sentences that require more re-
ordering or are more likely to be poorly reordered.

Jump sizes (10 features) Each time a reordering
rule fires, a sequence of a tokens is moved past a
sequence of b tokens. We call this a jump of size
max(a, b) (as it may be either a sequence of a to-
kens jumping over a sequence of b tokens, or vice
versa). These jump sizes are binned, and the num-
ber of jumps observed in each bin for the sentence
becomes one feature in the model.

To choose the bins, we examined the jumps that
occur when reordering the smaller of our paral-
lel training corpora.2 (Recall that the lattices and
therefore these confidence features do not appear
in the system until the tuning stage.) We observed
jumps from 1 to 94 tokens in size, with the num-
ber of jumps observed decreasing roughly expo-
nentially as the size of the jump increased.

Although the reordering process is intended to
produce long jumps, we expect that jumps above a
certain size are more likely to be due to erroneous
bracketing in the parse. However, we are not sure
at which point a jump becomes too large, and we
may wish to apply progressively stronger penal-
ties for longer jumps. We therefore prefer a larger
number of narrower bins over fewer, wider bins.
We chose the bins listed in Table 1.

Table 1 also lists the number of times a jump
of this size was seen in the training set, and the
number of times we therefore expect to see a jump
of this size in the tuning set, where the weights for
each bin feature will be set.

2news-commentary10.de-en.de
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Bin # in training Expected # in tuning
1–2 104,296 2,133
3–5 89,383 1,828
6–8 46,695 955
9–12 27,484 562
13–16 10,935 234
17–20 4,739 97
21–25 2,610 53
26–30 1,115 23
31–35 498 10
36+ 455 9

Table 1: Jumps seen in the training set of 100,269
sentence pairs, and the expected number for each
bin in the tuning set of 2,051 sentence pairs, if the
two corpora have a similar distribution.

3.2.2 Inclusion in the translation model
Recall that our input lattice consists of two disjoint
paths. The only choice occurs at the first node of
the lattice, where there are two options; all other
nodes have precisely one outgoing transition.

Of the two transitions out of the first node of
the lattice, one is for the original sentence and the
other for the reordered variant. On the original
sentence transition, we put the value 1 for the in-
dicator feature and 0 for the remaining 23 confi-
dence features. On the reordered sentence transi-
tion, we put 0 for the indicator feature and for all
other features the value as specified in §3.2.1.

For all the other transitions in the lattice, where
there is no branching, we put the value 0 for all 24
confidence features. This means that these edges
do not contribute to the scores for each path, and
so the overall feature values for each path are the
same as those of its first edge. The numbers beside
each edge in Figure 2 demonstrate the result with
the first four features. Note that all translation can-
didates for a given path will share the same feature
values; the features distinguish between paths, not
between candidates from one path.

Moses uses a maximum entropy model to score
translation candidates. As such, the final score of
a translation candidate is the weighted sum of all
of the feature values of the translation:

score = exp
n∑

i=1

λihi(e, f) (1)

This automatically includes the lattice transition
features. Assume without loss of generality
that the confidence features above are features
1, . . . ,m, with feature 1 being the reordering in-
dicator feature. Therefore the part of this sum
that is due to the confidence features will be

∑m
i=1 λihi(e, f). This will simplify to λ1 for can-

didate translations of the original sentence and∑m
i=2 λihi(e, f) for candidate translations of the

reordered sentence. Hence we expect the features
excluding the indicator feature to collectively in-
dicate the extent to which the reordering may be
trusted, with λ1 controlling the general preference
to use the original or the reordered sentence.3

The current version of Moses uses minimum er-
ror rate training (MERT) to set the weights λi.
This procedure is limited in the number of features
that it can efficiently process. Further extending
the feature set would require a different optimi-
sation procedure, such as MIRA, as discussed by
Arun and Koehn (2007).

4 Experiments

4.1 Models and Evaluation

Our baseline PSMT system is Moses (Koehn et al.,
2007), repository revision 3590.4 We run all of our
experiments using the Moses Experiment Man-
agement System; configuration files and scripts to
reproduce our experiments are available online.5

For the reordering preprocessing step we reim-
plement the Collins et al. (2005) rules and use this
to recreate the Collins et al. (2005) reordering-as-
preprocessing system as our second baseline.

We use the Berkeley parser (Petrov et al., 2006),
repository revision 14,6 to provide the parse trees
for the reordering process. Since the German pars-
ing model provided on the parser website does not
include the function labels needed by the Collins
et al. (2005) rules, we trained a new parsing model
on the Tiger corpus (version 1). The reordering
script and parsing model, along with details of
how the parsing model was trained, are available
online with the configuration files above.

We compare four systems on German-to-
English translation: the Moses baseline (MOSES),
the Collins et al. (2005) baseline (REORDER), the
lattice system with just the reordering indicator
feature (LATTICE), and the lattice system with all

3It is possible that in practice the imbalance in number of
non-zero features between the two paths could cause the sys-
tem some difficulty in assigning the weights for each feature.
In future it would be interesting to investigate this possibility
by introducing extra features to balance the two paths.

4https://mosesdecoder.svn.sourceforge.net/svnroot/
mosesdecoder/trunk/

5http://www.showlett.id.au/. Some minor changes to
Moses were implemented to work with our job scheduling
software; full details are also available here.

6http://berkeleyparser.googlecode.com/svn/trunk/
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Purpose File set # Sents
Training europarl-v5.de-en 1,540,549

news-commentary10.de-en 100,269
Tuning news-test2008 2,051
Test newstest2009 2,525
LM europarl-v5.en 1,843,035

news-commentary10.en 125,879
news.en.shuffled 48,653,884

Table 2: Corpora used in our experiments and
their sizes. The first four are parallel corpora
(size: number of sentence pairs); the last three are
monolingual corpora for the language model (size:
number of sentences).

confidence features (+FEATURES). We do not ex-
plore different subsets of the features here.

For evaluation we use the standard BLEU met-
ric (Papineni et al., 2002), which measures n-gram
overlap between the candidate translation and the
given reference translation.

4.2 Approximate Oracle

To get an idea of a rough upper bound, we im-
plement the approximate oracle outlined in Zwarts
and Dras (2008). For every sentence, the ap-
proximate oracle compares the outputs of MOSES

and REORDER with the reference translation and
chooses the output that it expects will contribute to
a higher BLEU score overall. The oracle chooses
the candidate that shares the highest number of 4-
grams with the reference; if the two have the same
4-gram overlap, it chooses the one that shares the
highest number of trigrams with the reference,
and so on down to unigrams. If still identical, it
chooses the original.

Note that the output of the oracle for some sen-
tence will be identical to the output of one or the
other baseline system; for the lattice system this is
not necessarily the case since the system is tuned
separately with a different number of features.

4.3 Data

For data we use the corpora provided for the
2010 Workshop on Statistical Machine Transla-
tion7 translation task. The number of sentence
pairs in each corpus are given in Table 2.

We trained 5-gram language models with
SRILM (Stolcke, 2002) using the three language
model files listed in Table 2. For convenience,
the news.en.shuffled corpus was split into eight
smaller files, seven containing 6,100,000 lines and

7http://www.statmt.org/wmt10/

System BLEU
MOSES 20.77
REORDER 20.04
Approx oracle 22.45
LATTICE 21.39
+FEATURES 21.10

Table 3: BLEU scores for every system

the last containing the remainder. One language
model was produced for each file or subfile, giv-
ing a total of ten models. The final language model
was produced by interpolation between these ten,
with weights assigned based on the tuning corpus.

5 Results and Discussion

Table 3 gives the BLEU score for each of our four
systems and the approximate oracle. We note that
these numbers are lower than those reported by
Collins et al. (2005). However, this is most likely
due to differences in the training and testing data;
our results are roughly in line with the numbers re-
ported in the Euromatrix project for this test set.8

Interestingly, our reimplementation of the
Collins et al. (2005) baseline does not outperform
the plain PSMT baseline. Possible explanations
include variability due to differences in training
data, noisier parser output in our system, or differ-
ing interpretation of the description of the reorder-
ing rules. It may also be that the inconsistency of
improvement noted by Collins et al. (2005) is the
cause; sometimes the reordering produces better
results and sometimes the baseline, with the effect
just by chance favouring the baseline here. To ex-
plore this, we look at the approximate oracle.

In our experiment, the oracle preferred the base-
line output in 848 cases and the reordered in 1,070
cases. 215 sentences were identical between the
two systems, while in 392 cases the sentences dif-
fered but had equal numbers of n-gram overlaps.
The BLEU score for the oracle is higher than that
of both baselines; from this and the distribution
of the oracle’s choices, we conclude that the dif-
ference between our findings and those of Collins
et al. (2005) is at least partly due to the inconsis-
tency that they identified. It is especially interest-
ing to note that the reordered system’s translations
are preferred by the oracle more often even though
its overall performance is lower.

Turning now to the results of our systems, we
see that simply giving the system the option of

8http://matrix.statmt.org/
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both reordered and non-reordered versions of the
sentence (LATTICE) produces an improved trans-
lation performance overall. While the addition of
our confidence features (+FEATURES) leaves the
performance roughly unchanged, the gap between
LATTICE and the approximate oracle implies that
this is due to the choice of features, and that a fea-
ture set may yet be found that will improve perfor-
mance over the plain LATTICE system.

In light of the Zwarts and Dras (2008) finding
that source-side features in the classifier do not
help translation performance, our negative result
with +FEATURES may appear unsurprising, as all
of our features may be classified as source-side.
However, we note that there remains a consider-
able feature space to explore. Note that if we were
to include the equivalent of their target-side fea-
tures into our system, they would appear as lan-
guage model features, rather than features on the
input lattice. Thus it seems that in fact Zwarts
and Dras (2008) address two distinct problems—
adding syntactic information to the translation
process, and adding it to the language model.

5.1 Extensions and Future Work

Given our dual-path system, an obvious ques-
tion is whether a multi-path extension is possible.
Since the disjoint vocabularies inhibit compres-
sion of the lattice, extending the input to a multi-
path lattice is likely to rapidly encounter efficiency
issues. However, some possibilities exist.

One option would be to include paths that repre-
sent different reorderings of the sentence based on
the same parse. For example, the original sentence
could be compared with reorderings created by
different reordering-as-preprocessing approaches.
In this instance, it would be advisable to use a dif-
ferent vocabulary (by using a different token pre-
fix) for each path, as each reordering is likely to
require a different lexicalised distortion model.

In the case where these reordered alternatives
are all possible combinations of parts of one re-
ordering process, our system approaches the work
described in §2.4, and in fact those systems will
probably be more suitable as the preprocessing
takes over the role of the PSMT distortion model.

Alternatively, the multiple options could be cre-
ated by the same preprocessor but based on dif-
ferent parses, say the n best parses returned by
one parser, or the output of n different parsers
with comparable outputs. This extension would

be quite different from the lattice-based systems
in §2.4, which are all based on a single parse.

For future systems, we would like to replace the
Collins et al. (2005) reordering rules with a set of
automatically-extracted reordering rules (as in Xia
and McCord (2004)) so that we may more easily
explore the usefulness of our system and confi-
dence features in new language pairs with a variety
of reordering requirements.

The next major phase of this work is to extend
and explore the feature space. This entails exam-
ining subsets of confidence features to establish
which are the most useful indicators of reliable re-
ordering, and possibly replacing the MERT tuning
process with another algorithm, such as MIRA,
to handle a greater quantity of features. In addi-
tion, we wish to explore more fully our negative
result with the reimplementation of the Collins et
al. (2005) system, to investigate the effect of bal-
ancing features in the lattice, and to examine the
variability of the BLEU scores for each system.

6 Conclusion

We adapt the lattice input to the PSMT system
Moses to create a system that can simultaneously
translate a sentence and its reordered variant pro-
duced by a syntactically-informed preprocessing
step. We find that providing the system with
this choice results in improved translation perfor-
mance, achieving a BLEU score of 21.39, 0.62
higher than the baseline.

We then augment the translation model of our
system with a number of features to express our
confidence in the reordering. While these features
do not yield further improvement, a rough upper
bound provided by our approximate oracle sug-
gests that other features may still be found to guide
the system in choosing whether or not to use the
syntactically-informed reordering.

While our reordering step is a reimplementa-
tion of the Collins et al. (2005) system, contrary to
their findings we do not see an improvement using
the reordering step alone. This provides evidence
against the idea that reordering improves transla-
tion performance absolutely. However, our suc-
cess with the lattice system highlights the fact that
it is useful for some sentences, and that syntac-
tic confidence features may provide a mechanism
for identifying which sentences, thus incorporat-
ing syntactic information into phrase-based statis-
tical machine translation in a useful way.
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Abstract

Pathology reports are used to store infor-
mation about cells and tissues of a patient,
and they are crucial to monitor the health
of individuals and population groups. In
this work we present an evaluation of su-
pervised text classification models for the
prediction of relevant categories in pathol-
ogy reports. Our aim is to integrate au-
tomatic classifiers to improve the current
workflow of medical experts, and we im-
plement and evaluate different machine
learning approaches for a large number
of categories. Our results show that we
are able to predict nominal categories with
high average f-score (81.3%), and we can
improve over the majority class baseline
by relying onNaive Bayes and feature se-
lection. We also find that the classification
of numeric categories is harder, and deeper
analysis would be required to predict these
labels.

1 Introduction

A pathology report is the summary of the analy-
sis of cells and tissues under a microscope, and it
may also contain information of the studied spec-
imen as it looks to the naked eye. Pathology re-
ports play an important role in cancer diagnosis
and staging (describing the extent of cancer within
the body, especially whether it has spread). These
reports are usually written by the pathologist in
natural language, and then the relevant parts are
transcribed into structured form by a different per-
son to be stored in a database.

The use of structured information can help share
the data between institutions, and can also be used
to find patterns in the data. For this reason, some
recent initiatives are exploring better ways to man-
age pathology reports. For instance, the Depart-

ment of Health and Ageing of Australia is fund-
ing the project Structured Pathology Reporting of
Cancer since 2008 to develop standard reporting
protocols for cancer reports1. Another way to
promote the creation of structured data is to use
standard terminologies, such as SNOMED CT2,
which is a large collection of medical terminology
covering most areas of clinical information such
as diseases, findings, procedures, microorganisms,
pharmaceuticals etc. The National E-Health Tran-
sition Authority (NEHTA) has recently launched
an adapted terminology (SNOMED CT-AU) to be
used by the Australian health sector3.

These initiatives will help to increase the reposi-
tories of structured data, but they will not be a sub-
stitute to the flexibility of natural language. The
relevant fields in structured reports change over
time as different clinical tests are made available,
and it is difficult to design a specific form to cover
all the possible cases that will be observed in the
pathology analysis. Clinicians need time to learn
the different standards, and they prefer the flexibil-
ity of free text to record their analyses and conclu-
sions. Ideally their natural language input would
be used to automatically extract the structured data
that different protocols demand.

This scenario is promising for text mining re-
search, because tools that can perform well in this
space are likely to make an impact in the way
health information is stored and used. Our goal in
this work is to explore this area, and develop and
evaluate a text mining tool that aims to work in
a real hospital setting, by predicting pieces of in-
formation to populate a database. Specifically, we
focus on a system for the Royal Melbourne Hospi-
tal, where pathology reports of cancer patients are

1http://www.rcpa.edu.au/Publications/
StructuredReporting.htm

2http://www.nlm.nih.gov/research/umls/
Snomed/snomed_main.html

3http://www.nehta.gov.au/media-centre/
nehta-news/571-snomed-ct
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kept in natural language, and an electronic form is
manually filled with the most relevant information.
We would like to predict the classes automatically
in order to facilitate the process.

Our aim is to build a generic approach for dif-
ferent prediction categories, involving heteroge-
neous classes with a large set of possible values
(e.g. the class “Tumour site” has 11 different val-
ues in our data, for instance “Sigmoid Colon”).
We will rely on the available document-level anno-
tations of pathology reports to build our classifiers
using Machine Learning (ML) algorithms. Anno-
tated data is difficult to obtain in this domain, and
there are few works evaluating the performance of
supervised classifiers for pathology reports, as we
will see in Section 2. In this work we will explore
how far we can get with existing annotations, and
simple lexical features that can be extracted with-
out external knowledge sources.

Thus, we present an extensive set of experi-
ments to evaluate the ability of different mod-
els and methods to perform class-predictions over
pathology reports. The problem will involve pre-
dicting nominal and numeric classes, and we test
models that perform sentence-level and document-
level classification. Our main challenges in this
project will be the sparseness of the data, the
coarseness of the annotations (document-level cat-
egories only), and the high number of heteroge-
neous categories. In the future, the tool resulting
from this work will be integrated in the hospital
workflow, and it will work interactively with the
user, making predictions and allowing corrections.
We will store all user interactions to continually
add training data to our classifiers. We will also
highlight the relevant parts of the text as predicted
by our learning models, by using feature selection.

2 Related work

Related work in text mining from pathology re-
ports has mainly relied on domain-specific lexi-
cons and rules (Dunham et al., 1978; Schadow
and McDonald, 2003; Xu et al., 2004; Hanauer
et al., 2007; Coden et al., 2009; Nguyen et al.,
2010); although there has been some work us-
ing ML (Nguyen et al., 2007; McCowan et al.,
2007). The earliest work in this area was per-
fomed by Dunham et al. (1978), who built mor-
phosyntactic rules, synonym expansion, and hand-
crafted rules in order to extract terms from the Sys-
tematized Nomenclature of Pathology (SNOP),

which was an earlier version of the SNOMED
CT terminology collection. More recent works
have used SNOMED CT as the target terminol-
ogy to map the raw text into. Hanauer et al.
(2007) relied on custom-made lists containing ap-
proximately 2,500 terms and phrases, and 800
SNOMED codes. Their method was based on
looking up relevant phrases in order to discrimi-
nate the documents of interest.

Other works have developed their own set of
relevant classes instead of relying on SNOMED.
This is interesting when the focus is on a spe-
cific subdomain, and this is the approach that we
explored in our work. Schadow and McDonald
(2003) relied on a subset of UMLS4 (Unified Med-
ical Language System) as target concept inventory
for information extraction from surgical pathol-
ogy reports. They applied a regular expression-
based parser with good performance, but they also
found that their target terminology was too exten-
sive, and this caused false positives. Xu et al.
(2004) also targeted surgical pathology reports,
and they used a restricted set of 12 classes, re-
ferred as “types of findings”. This is similar to
our approach, and some of their classes are part of
our relevant classes as well (e.g. “number of posi-
tive nodes”); however they do not provide the per-
formance for each class separately, which makes
comparison unfeasible. Regarding the methodol-
ogy, their system is based on hand-crafted rules,
and relies on a domain-specific lexicon. Our mo-
tivation is different, and we rely on ML to infer
the knowledge from coarse-grained annotation for
a larger set of classes.

Also in the area of information extraction from
pathology reports, recent work from the Australian
e-Health Research Centre5 explored the extraction
of staging information of lung cancer using Sup-
port Vector Machines (Nguyen et al., 2007). Their
initial experiments showed the difficulty of the pri-
mary tumour stage detection (T), with a top ac-
curacy of 64%. In a follow-up paper they ex-
plored richer annotation, and a combination of ML
and rule-based post-processing (McCowan et al.,
2007). They performed fine-grained annotation of
stage details for each sentence in order to build
their system, and they observed improvements
over a coarse-grained (document-level) multiclass
classifier. However, the authors explain that the

4http://www.nlm.nih.gov/research/umls
5http://aehrc.com/
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annotation cost is high, and in their latest work
they rely heavily on the SNOMED CT concepts
and relationships to identify the relevant entities
(Nguyen et al., 2010). They argue that this ap-
proach is more portable than fine-grained anno-
tation, although it still requires involvement from
the experts, and there is a loss in accuracy with
respect to their best ML approach. These three pa-
pers evaluate their system in the prediction of stag-
ing classes (T, N, and M), which are not explicit in
our dataset.

Another relevant work on this area was con-
ducted by Coden et al. (2009), where the authors
defined an extensive knowledge model for pathol-
ogy reports. Their model was linked to hand-built
inference rules built to process unseen data. They
reported high performance over 9 target classes for
a hand-annotated 300-report dataset. This system
seeks to build a strong representation of the do-
main by relying on human experts, and its porta-
bility to a different dataset or class-set could be
problematic. The classes they evaluate on are not
present in our dataset.

Currently there is no dataset of pathology re-
ports that is freely available for research, and dif-
ferent groups have built their own corpora. Pathol-
ogy reports contain sensitive material, and even
after de-identification it is not easy to make them
widely available. However, initiatives as the NLP
challenges leaded by the Informatics for Integrat-
ing Biology and the Bedside (i2b2)6 illustrate that
there is growing interest on text mining from clin-
ical data, and show that the research community
can collaboratively create corpora for experimen-
tation. In 2010 they organised their fourth chal-
lenge, focused on the extraction of medical prob-
lems, tests, and treatments from patient discharge
summaries7. Previous challenges have also fo-
cused on discharge summaries and narrative pa-
tient records for different information extraction
categories. Although this data is different to
pathology reports, the initiative is interesting for
the future of text mining from pathology reports.

3 Experimental setting

In this section we first describe the dataset and cat-
egories we will work on, and then introduce the

6i2b2 is a NIH-funded National Center for Biomed-
ical Computing (NCBC), for more information see
https://www.i2b2.org/about/index.html

7https://www.i2b2.org/NLP/Relations/

Category Unique Highest Lowest
Values

CAV 21 40 0
Distal Distance 48 150 0
Nodes Examined 36 73 0
Nodes Positive 12 15 0
Polyps Number 13 43 0
Radial Distance 9 80 0
Tumour Length 36 110 0
Tumour depth 22 40 0
Tumour width 35 75 0

Table 1: List of numeric categories, with the num-
ber of unique values and the full range.

models and classifiers we applied. Finally we ex-
plain our feature set, and our evaluation method-
ology.

3.1 Dataset

For our analysis we rely on a corpus of 203 de-
identified clinical records from the Royal Mel-
bourne Hospital. These records were first writ-
ten in natural language, and then structured infor-
mation about 36 fields of interest was introduced
to the Colorectal Cancer Database of the hospital.
The written records tend to be brief, usually cov-
ering a single page, and semantically dense. Each
report contains three sections describing different
parts of the intervention: macroscopic description,
microscopic description, and diagnosis. All sec-
tions contain relevant information for the database.

There are two types of fields (which will be
the target categories of our work), depending on
the type of values they take: numeric and nomi-
nal. Numeric categories are those that take only
numeric values, and they are listed in Table 1.
We also show the number of different values they
can take, and their value range. We can see that
most categories exhibit a large number of unique
values. The remaining 27 categories are nomi-
nal, and the list is shown in Table 2, where we
also provide the number of unique values, and the
most frequent value in the corpus for each cate-
gory. Some of the categories are linked to a large
number of values (e.g.Colon Adherent To andTu-
mour Site). During pre-processing we observed
that the database had some inconsistencies, and
a normalisation step was required with collabora-
tion of the experts. For nominal categories this in-
volved mapping empty values, “0”, and “?” into
the class “N/A”; and for numeric categories we
mapped empty values into “zero”.

The manual annotation is provided at document
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Category Unique Most
Values Frequent

Anastomosis Method 3 Staple
Anastomosis Type 4 End-End
Biopsy Confirmed Mata 3 No
Colon Adherent 3 No
Colon Adherent To 14 N/A
Differentiation 8 Moderate
Inflammatory Infiltrate 4 Not reported
Liver 3 N/A
Lympho Invasion 4 No
MLH1 4 Not done
MSH2 4 Not done
MSH6 4 Not done
MSI 4 Not done
Margins Distal 3 Not involved
Margins Radial 4 N/A
Microscopic Type 5 Adenocarcinoma
Mucinous 4 Not reported
Necrosis 4 Not reported
Other Meta 3 N/A
Pathologic Response 4 N/A
Peritoneal 3 N/A
Polyps 3 No
Polyps Type 6 N/A
Primary Tumour Rectum 4 N/A
Ressected Meta 3 No
Staging ACPS 6 B
Tumour Site 11 Sigmoid Colon

Table 2: List of nominal categories, with the num-
ber of unique values, and most frequent class.

level, and for numeric categories we automati-
cally produce fine-grained annotation by looking
up the goldstandard mentions in the text. We try to
match both the string representation and the num-
bers, and only numbers different to zero are iden-
tified. After this automatic process, each sentence
has individual annotations for each of the target
categories, and this information is used to build
sentence-level classifiers. Because the process is
automatic, some matches will be missed, but our
hypothesis is that the noisy annotation will be use-
ful for the document-level evaluation.

3.2 Models

Our goal is to build document classifiers for each
of the 36 categories with minimal hand tuning.
We follow different strategies for nominal and nu-
meric categories. For nominal categories we ob-
served that the information can be given at dif-
ferent points in the document, and we decided to
build a multiclass classifier for each category. This
method makes a single prediction based on the
class annotations in training data.

For numeric categories the information tends to
be contained in a single sentence, and instead of
using the full document, we relied on the sentence-

level annotation that we obtained automatically. In
this case the target values would be the different
numeric values seen in the goldstandard. The first
step is to build sentence classifiers for each class,
by using the sentence-level annotations. Note that
only numbers different to zero are detected, and
the zero label is assigned only in cases where the
sentence classifiers fail to identify any number.
After the model identifies the positive sentences,
the numeric values are extracted, and the number
closest to the median of the class (in training data)
is assigned. In the cases where no positive sen-
tences are identified the number zero is assigned.

3.3 Classifiers

Each of our models is tested with a suite of clas-
sifiers provided by the Weka toolkit (Witten and
Frank, 2005). We chose a set of classifiers that
has been widely used in the text mining literature
in order to compare their performances over our
dataset:

• Naive Bayes (Naive Bayes): A simple prob-
abilistic classifier based on applying Bayes’
theorem (from Bayesian statistics) to ob-
tain the conditional probability of each class
given the features in the context. It assumes
independence of the features, which in real
cases can be a strong (naive) assumption.

• Support Vector Machines (SVM): They map
feature vectors into a high-dimensional space
and construct a classifier by searching for the
hyperplane in that space that gives the great-
est separation between the classes.

• AdaBoost (AdaBoost): This is a meta-
learning algorithm where an underlaying
classifier is used to update a distribution of
weights that indicates the importance of the
training examples. Adaboost is an adaptive
algorithm, and the prediction hits and misses
in each iteration are used to build the final
weight distribution for the model.

We use the default parameter settings of Weka
(version 3-6-2) for each of the classifiers. As un-
derlaying classifier forAdaBoost we rely on sim-
ple Decision Stumps (one-level decision trees).

We also explore the contribution of feature se-
lection to the classification performance. We ap-
ply a correlation-based feature subset selection
method, which considers the individual predictive
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Category Majority Class Naive Bayes SVM AdaBoost
Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc

Tumour site 3.9 19.7 6.5 23.3 40.4 27.7 28.5 38.4 32.2 12.4 34.0 18.1
Staging ACPS 12.9 36.0 19.0 39.2 43.8 36.7 44.1 48.3 45.1 33.2 49.3 37.5
Anastomosis type 22.4 47.3 30.4 46.6 52.7 44.9 53.5 59.1 55.0 32.7 50.2 39.3
Colon adherent 23.3 48.3 31.4 63.2 67.0 62.0 67.4 70.4 67.0 47.8 58.6 51.4
Lympho invasion 23.8 48.8 32.0 48.4 51.2 42.9 53.4 55.7 53.5 32.3 51.2 39.6
Polyps 27.8 52.7 36.4 69.6 72.9 69.3 83.1 84.2 83.3 74.9 77.8 74.3
Colon adherent to 28.3 53.2 37.0 59.9 70.0 63.9 62.6 73.4 67.4 40.6 47.3 43.7
Margins radial 31.0 55.7 39.8 65.4 73.4 68.6 65.2 70.9 67.4 59.9 67.5 62.0
MlH1 31.5 56.2 40.4 41.4 50.7 45.4 46.7 49.8 46.9 35.6 58.1 43.4
MSH6 31.5 56.2 40.4 41.5 50.7 45.5 43.0 48.8 45.7 35.0 57.6 42.7
MSH2 31.5 56.2 40.4 41.5 50.7 45.5 43.0 48.8 45.7 35.0 57.6 42.7
MSI 32.7 57.1 41.6 44.5 53.7 48.4 45.8 50.7 47.9 32.7 57.1 41.6
Mucinous 34.9 59.1 43.9 42.6 58.6 46.7 70.2 72.4 68.8 57.8 73.4 64.5
Anastomosis method 41.6 64.5 50.6 57.6 70.4 62.0 62.4 71.9 65.8 56.9 69.5 60.4
Necrosis 42.9 65.5 51.9 64.5 74.4 68.7 73.5 77.3 74.6 62.8 69.5 62.7
Polyps type 49.6 70.4 58.2 49.6 70.4 58.2 66.9 72.9 63.4 49.6 70.4 58.2
Differentiation 51.0 71.4 59.5 51.2 70.9 59.5 70.3 78.3 72.1 66.0 80.8 72.7
Inflammatory infiltrate 51.0 71.4 59.5 66.5 72.4 62.6 68.4 76.8 70.9 68.9 70.9 66.2
Liver 53.2 72.9 61.5 53.0 68.0 59.5 59.5 64.5 61.7 52.8 70.9 60.5
Other meta 53.2 72.9 61.5 53.0 68.0 59.5 59.5 64.5 61.7 53.1 71.4 60.9
Primary tumour rectum 53.2 72.9 61.5 56.5 72.4 62.7 70.9 80.3 75.1 67.5 73.9 70.4
Peritoneal 53.2 72.9 61.5 53.0 68.0 59.5 59.5 64.5 61.7 52.7 70.4 60.3
Ressected meta 63.7 79.8 70.8 68.6 79.8 72.1 70.4 79.3 73.2 66.2 77.8 70.8
Margins distal 76.0 87.2 81.2 76.0 87.2 81.2 86.1 92.1 89.0 86.1 92.1 89.0
Biopsy confirmed mata 80.4 89.7 84.8 80.4 89.7 84.8 85.0 89.7 86.5 80.3 88.7 84.3
Pathologic response 81.3 90.1 85.5 81.3 90.1 85.5 81.3 90.1 85.5 81.3 90.1 85.5
Microscopic type 87.6 93.6 90.5 87.6 93.6 90.5 88.0 93.1 90.5 87.6 93.6 90.5
Macro-average 43.5 63.8 51.0 56.5 67.1 59.8 63.3 69.1 65.1 54.1 67.8 59.0

Table 3: Performances of multiclass document classifiers for nominal categories without feature selec-
tion. Results sorted by baseline f-score performance. Bestf-score per category is given in bold.

ability of each feature and the redundancy of each
subset (Hall, 1999). We relied on Weka’s imple-
mentation of this technique, and used Best-First
search, with a cache-size of one element, and 5
levels of backtracking.

3.4 Features

Pathology reports tend to be short and dense, and
the selection of words tries to precisely specify the
relevant pieces of information. For this reason we
rely on a bag-of-words (BOW) approach for our
feature representation, without any lemmatisation.
We built a simple tokeniser based on regular ex-
pressions to separate words, numbers, and punctu-
ation. We also use regular expressions to convert
the textual mentions of numbers into their numeric
representation. Finally, we include the binary fea-
ture “NUMBER” to indicate whether there is a nu-
meric reference in the text.

3.5 Evaluation

In order to evaluate the different models and clas-
sifiers we use precision, recall, and f-score by
micro-averaging the results over the different class
values. The macro-averaged scores over all cate-

gories are also provided to compare different sys-
tems. 10-fold cross-validation is used in all our
experiments.

As a baseline we rely on theMajority Class
classifier, which assigns the most frequent class
from training data to all test instances. In case
of ties the value is chosen randomly among those
tied.

4 Results

We first present our result over the nominal cate-
gories, and then show the performances over nu-
meric categories.

4.1 Nominal categories

Our first experiment applies the multiclass docu-
ment classifier to nominal categories. The results
are given in Table 3. We can see that the best
performance is achieved bySVM, with a large im-
provement over the majority class baseline.Naive
Bayes andAdaBoost also perform above the base-
line, and attain similar results. However, a max-
imum f-score of 65.1% seems insufficient to be
of use for an application. Regarding the different
categories, as expected these with lowest baseline
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Category Naive Bayes SVM
Prec. Rec. F-sc Prec. Rec. F-sc

Tumour site 53.0 54.2 51.1 43.9 44.8 43.8
Staging ACPS 71.1 71.9 70.7 58.0 59.1 58.3
Anastomosis type 74.1 71.9 71.3 69.4 69.5 69.4
MSH6 75.7 70.9 71.4 65.3 65.0 64.7
MSH2 75.7 70.9 71.4 65.3 65.0 64.7
Colon adherent to 68.9 74.9 71.6 64.4 70.4 66.5
MSI 77.6 72.9 73.3 71.5 72.4 71.3
Lympho invasion 74.3 75.4 74.4 69.8 70.9 70.3
MlH1 78.1 75.4 75.2 71.2 71.4 70.6
Anastomosis method 77.8 78.8 77.8 75.1 76.4 75.5
Margins radial 79.1 79.8 78.5 76.8 76.4 75.5
Colon adherent 78.2 80.3 78.8 80.0 80.3 79.7
Other meta 83.6 83.7 83.7 75.6 77.3 76.4
Peritoneal 83.9 84.2 84.0 79.0 80.3 78.6
Inflammatory infiltrate 82.9 86.2 84.0 83.3 84.2 82.9
Polyps type 84.8 85.2 84.4 80.5 82.3 81.2
Necrosis 84.6 85.7 85.1 79.9 81.3 80.5
Mucinous 84.5 86.7 85.4 82.6 83.7 82.8
Liver 86.9 86.2 86.4 76.1 76.8 76.4
Primary tumour rectum 87.8 86.2 86.6 84.4 84.7 83.8
Ressected meta 89.8 90.1 89.7 86.6 86.7 86.2
Margins distal 90.0 92.6 90.3 88.4 91.6 89.5
Polyps 90.3 91.6 90.9 90.1 90.1 90.1
Differentiation 91.8 92.6 91.9 90.0 92.1 90.7
Biopsy confirmed mata 93.8 94.1 93.9 94.3 94.6 93.9
Microscopic type 96.6 96.6 96.4 94.2 95.6 94.6
Pathologic response 97.7 97.5 97.5 91.4 93.1 91.9
Macro-average 81.9 82.1 81.3 77.3 78.4 77.4

Table 4: Performances of multiclass document classifiers for nominal categories using feature selection.
Results sorted by baseline f-score performance. Best f-score per category is given in bold.

performance are the ones most benefited from our
classifier, and the categories with highest baseline
score are the only ones that do not get any im-
provement.

Our next experiment applies feature selection
over the initial classifiers. The results are given
in Table 4 for Naive Bayes and SVM8. We can
see that the scenario changes when we add feature
selection, withNaive Bayes achieving the high-
est performance in all cases. The performance
for the hardest category (which is againTumour
site) raises to above 50% f-score, clearly beating
the baseline. The highest-performing category is
now Pathologic response, andNaive Bayes almost
reaches perfect scores over this category, improv-
ing the baseline again. The macro-averaged results
show that our best classifier is able to reach an
f-score of 81.3% over the 27 nominal categories,
with an improvement of 30.3% over the majority
class baseline.

8AdaBoost obtains the same results with and without fea-
ture selection.

4.2 Numeric categories

In this section we present the results of our nu-
meric classifiers in Table 5. In this case the results
of Naive Bayes are worse than the baseline, and
AdaBoost and SVM only achieve small improve-
ments. One of the reasons for the low performance
seems to be the strong bias of the categories to-
wards the majority value. On these conditions, the
baseline obtains the best result for 6 of the 9 cat-
egories. The macro-averaged performances show
that the performance is insufficient for a real ap-
plication.

For our next experiment we applied feature se-
lection to the numeric classifiers, and the results
are presented in Table 6. We can see that the over-
all performance goes down when applying feature
selection, and the main cause for this seems the
low number of features that are left for each in-
stance.

5 Discussion

Our results over nominal categories show that our
classifiers can achieve high performance (above
80% f-score in average) by relying on feature
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Category Majority Class Naive Bayes SVM AdaBoost
Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc

Nodes examined 7.4 7.4 7.4 83.1 58.1 68.4 82.1 58.6 68.4 81.8 57.6 67.6
Tumour length 42.9 42.9 42.9 41.7 24.6 31.0 50.3 37.0 42.6 44.9 39.4 42.0
Tumour width 47.8 47.8 47.8 41.4 26.1 32.0 51.8 42.4 46.6 46.5 42.9 44.6
Distal distance 52.2 52.2 52.2 63.3 34.0 44.2 70.1 53.2 60.5 52.0 51.7 51.8
Polyps number 62.1 62.1 62.1 48.9 43.4 46.0 57.0 54.2 55.6 58.9 58.6 58.8
Nodes positive 64.0 64.0 64.0 66.5 58.6 62.3 79.0 75.9 77.4 67.5 67.5 67.5
Tumour depth 70.0 70.0 70.0 70.1 49.8 58.2 74.7 61.1 67.2 70.0 70.0 70.0
Cav 72.4 72.4 72.4 72.1 71.4 71.8 73.1 69.5 71.2 72.4 72.4 72.4
Radial distance 94.1 94.1 94.1 94.1 94.1 94.1 95.4 92.1 93.7 94.1 94.1 94.1
Macro-average 57.0 57.0 57.0 64.6 51.1 56.4 70.4 60.4 64.8 65.3 61.6 63.2

Table 5: Performances for numeric categories without feature selection. Results sorted by baseline f-
score performance. Best f-score per category is given in bold.

Category Majority Class Naive Bayes SVM AdaBoost
Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc

Nodes examined 7.4 7.4 7.4 35.3 32.0 33.6 22.7 21.7 22.2 26.7 25.1 25.9
Tumour length 42.9 42.9 42.9 39.4 31.0 34.7 42.3 37.9 40.0 43.7 40.9 42.2
Tumour width 47.8 47.8 47.8 53.5 49.3 51.3 53.3 51.7 52.5 49.0 48.8 48.9
Distal distance 52.2 52.2 52.2 53.8 31.5 39.8 52.5 51.7 52.1 52.2 52.2 52.2
Polyps number 62.1 62.1 62.1 52.8 51.2 52.0 64.4 64.0 64.2 60.2 59.6 59.9
Nodes positive 64.0 64.0 64.0 69.0 67.0 68.0 68.5 67.5 68.0 68.2 67.5 67.8
Tumour depth 70.0 70.0 70.0 70.2 62.6 66.1 70.8 70.4 70.6 70.0 70.0 70.0
Cav 72.4 72.4 72.4 71.1 65.5 68.2 72.4 72.4 72.4 72.4 72.4 72.4
Radial distance 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1
Macro-average 57.0 57.0 57.0 59.9 53.8 56.4 60.1 59.1 59.6 59.6 58.9 59.3

Table 6: Performances for numeric categories with feature selection. Results sorted by baseline f-score
performance. Best f-score per category is given in bold.

selection. These results have been attained us-
ing BOW features, and this indicates that pathol-
ogy reports tend to use similar lexical elements
to refer to the relevant classes. The results show
promise to incorporate an extraction prototype
into the medical workflow for nominal classes,
which would aid the collection of structured infor-
mation, and benefit from the interaction with the
user.

One of the most interesting findings has been
the effect of the feature selection step to achieve
high performance. Apart from the increment of
the f-score, feature selection would allow us to
highlight the relevant terms in the document, and
present them to the user for a better interaction.

Regarding the results for numeric categories,
our strategy has not been successful, and the incre-
ments over the majority class baseline have been
small. The baseline for these categories is higher
than for nominal categories, and there is a strong
bias towards the “zero” value. We observed that
the main difficulty was to discriminate between
“zero” and other classes, and a 2-step classifier
would have been a better option to build upon.
Our results over numeric categories also indicate

that the generic BOW approach successfully eval-
uated over nominal categories may not be enough,
and deeper analysis of the feature space may be
required for these categories.

6 Conclusion

We have presented the results of a set of su-
pervised text classification systems over different
prediction categories in the domain of pathology
records. Our results show that we are able to
predict nominal labels with high average f-score
(81.3%) and improve the majority class baseline
by relying on Naive Bayes and feature selection.
These results are positive for the integration of au-
tomatic aids in the medical workflow, and they il-
lustrate that pathology reports contain repetitive
lexical items that can be captured by a bag-of-
words model. Our experiments also show that this
is not the case for numeric labels, and richer fea-
tures would be required in order to improve the
baselines.

For future work one of our goals is to im-
prove numeric classifiers by adding an initial clas-
sifier that identifies zero-valued instances before
looking for the final value. We observed that

47



lexical items expressing negation may be rele-
vant for this category (e.g. “No positive nodes
were found”), we plan to incorporate the negation-
classifier Negex (Chapman et al., 2001) to the fea-
ture extraction.

Finally, we want to combine our classifiers with
a user interface that will allow clinicians to up-
load structured information into the database with
the help of automatic predictions. The users will
be able to copy the pathology reports, and the
database fields will be pre-filled with the cate-
gories from the predictors. We will also highlight
the top features from the selection process, and the
user will be able to correct the automatic predic-
tions before saving. All interactions will be kept
and used to improve our classifiers.
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Abstract

This paper introduces a novel user clas-
sification task in the context of web user
forums. We present a definition of four
basic user characteristics and an anno-
tated dataset. We outline a series of ap-
proaches for predicting user characteris-
tics, utilising aggregated post features and
user/thread network analysis in a super-
vised learning context. Using the pro-
posed feature sets, we achieve results
above both a naive baseline and a bag-of-
words approach, for all four of our basic
user characteristics. In all cases, our best-
performing classifier is statistically indis-
tinct from an upper bound based on the
inter-annotator agreement for the task.

1 Introduction

The most natural form of communication is
through dialogue, and in the Internet age this man-
ifests itself via modalities such as forums and
mailing lists. What these systems have in com-
mon is that they are a textual representation of a
threaded discourse. The Internet is full of com-
munities which engage in innumerable discourses,
generating massive quantities of data in the pro-
cess. This data is rich in information, and with the
help of computers we are able to archive it, index
it, query it and retrieve it. In theory, this would
allow people to take a question to an online com-
munity, search its archives for the same or similar
questions, follow up on the contents of prior dis-
cussion and find an answer. However, in practice,
search forum accessibility tends to be limited at
best, prompting recent interest in information ac-
cess for user forums (Cong et al., 2008; Elsas and
Carbonell, 2009; Seo et al., 2009).

One problem with current approaches to access-
ing forum data is that they tend not to take into

account the structure of the discourse itself, or
other characteristics of the forum or forum partic-
ipants. The bag-of-words (BOW) model common
in information retrieval (IR) and text categorisa-
tion discards all contextual information. However,
even in IR it has long been known that much more
information than simple term occurrence is avail-
able. In the modern era of web search, for exam-
ple, extensive use is made of link structure (Brin
and Page, 1998), anchor text, document zones,
and a plethora of other document (and query, click
stream and user) features (Manning et al., 2008).

The natural question to ask at this point is,What
additional structure can we extract from web fo-
rum data? Previous work has been done in ex-
tracting useful information from various dimen-
sions of web forums, such as the post-level struc-
ture (Kim et al., 2010). One dimension that has re-
ceived relatively little attention is how we can use
information about the identity of the participants
to extract useful information from a web forum.
In this work we will examine how we can utilize
suchuser-levelstructure to improve performance
over a user classification task.

We have used the termthreaded discourseto de-
scribe online data that represents a record of mes-
sages exchanged between a group of participants.
In this work, we examine data from LinuxQues-
tions, a popular Internet forum for Linux-related
troubleshooting. Aside from a limited set of fea-
tures specific to the Linux-related troubleshoot-
ing domain, however, our techniques are domain-
inspecific and expected to generalize to any data
that can be interpreted as a threaded discourse.

This work is part of ILIAD (Baldwin et al.,
2010), an ongoing effort to improve information
access in linux forums. Our contribution to the
project is techniques to identify characteristics of
forum users, building on earlier work in the space
(Lui, 2009). The problem that we face here is two-
fold: Firstly, there is no established ontology for

Marco Lui and Timothy Baldwin. 2010. Classifying User Forum Participants: Separating the Gurus from the
Hacks, and Other Tales of the Internet. In Proceedings of Australasian Language Technology Association
Workshop, pages 49−57



characteristics of forum users. To address this,
we have designed a set of attributes that we ex-
pect to be helpful in improving information ac-
cess over forum data. Secondly, in order to exploit
user characteristics we would need to evaluate a
large number of users. This quantity of data would
be much too large to be processed manually. We
therefore apply supervised machine learning tech-
niques to allow us to effectively discover the char-
acteristics of a large number of forum users in an
automated fashion.

2 Related Work

Lui and Baldwin (2009b) showed that user-level
structure is useful in predicting percieved qual-
ity of forum posts. The data they evaluate over
is extracted from Nabble, where the ratings pro-
vided by users are interpeted as the gold-standard
for a correct classification. The task was origi-
nally proposed by Weimer et al. (2007) and fur-
ther explored by Weimer and Gurevych (2007).
In both cases, the authors focus on heuristic post-
level features, which are used to predict per-
ceived quality of posts using a supervised ma-
chine learning approach. Lui and Baldwin (2009b)
showed that features based on user-level structure
outperformed the benchmark set by Weimer and
Gurevych (2007) on a closely-related task, by us-
ing user-level structure to inform a post-level clas-
sification task. We build on this work by utilizing
the user-level structure to perform our novel user-
level classification task.

In work on thread classification, Baldwin et al.
(2007) attempted to classify forum threads scraped
from Linux-related newsgroups according to three
attributes: (1) Task Oriented:is the thread about
a specific problem?; (2) Complete:is the problem
described in adequate detail?; and (3) Solved:has
a solution been provided?They manually anno-
tated a set of 250 threads for these attributes, and
extracted a set of features to describe each thread
based on the aggregation of features from posts
in different sections of the thread. We provide a
novel extension of this concept, whereby we ag-
gregate posts from a given user.

Wanas et al. (2008) develop a set of post-level
features for a classification task involving post and
rating data from Slashdot. Their task involves
classifying posts into one of three quality levels
(High, Medium or Low), where the gold-standard
is provided by user annotations from the forum.

This is conceptually very similar to our task, and
we build on this feature set.

Extracting community structure from networks
can yield insights into the relationships between
users in a forum (Newman and Girvan, 2004;
Drineas et al., 2004; Chapanond et al., 2005), and
could in turn aid in engineering descriptions of the
users more suited to a particular task. Agrawal et
al. (2003) describe a technique for partitioning the
users in an online community based on their opin-
ion on a given topic. They find that basic text clas-
sification techniques are unable to do better than
the majority-class baseline for this particular task.
They then describe a technique based on modeling
the community as areply-to network, with users
as individual nodes, and edges indicating that a
user has replied to a post by another user; using
this representation, they are able to do much better
than the baseline. Fortuna et al. (2007) build on
this work, defining additional classes of networks
that represent some of the relationships present in
an online community. Part of our feature set is de-
rived from modelling Internet forum users on the
basis of the interactions that exist between them,
such as a tendency to reply to each other or to co-
participate in threads. We extend the social net-
work analysis of Agrawal et al. (2003) and Fortuna
et al. (2007) to generate user-level features.

Malouf and Mullen (2008) present the task of
determining the political leaning of users on a U.S.
political discussion site. They apply network anal-
ysis to the task, based on the observation that users
tend to quote users of opposing political leaning
more than they quote those of similar political
leaning. They found that standard text categori-
sation methods performed poorly over their task,
and that the results were improved significantly by
incorporating network-derived features.

In a similar vein, Carvalho et al. (2007) used
a combination of textual features (in the form of
“email speech acts”) and network-based features
to learn which users were team leaders. They
found that the network-based features enhanced
classification accuracy.

Sentiment analysis (Pang and Lee, 2008) re-
lates to this work as one of our user characteristics
(POSITIVITY ) is an expression of user sentiment.
However, sentiment analysis has tended to focus
on individual documents, and rarely takes into ac-
count the author. An exception to this is the work
of Thomas et al. (2006), who attempted to predict
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which way each speaker in a U.S. Congressional
debate on a proposed bill voted, on the basis of
both what was said and the indication of agree-
ment between speakers. Their task is related to
ours in that it involves a user-level classification,
but it focused on extracting information identify-
ing where the speakers agree and disagree.

Expert finding is the task of ranking experts rel-
ative to each of a series of queries, and has been
part of the TREC Enterprise Track (Craswell et
al., 2005; Soboroff et al., 2006; Balog et al., 2006;
Fang and Zhai, 2007). The challenge is to estimate
the likelihood of a given individual being an expert
on a particular topic, on the basis of a document
collection. There is certainly scope to evaluate the
utility of the user characteristics proposed in this
research in the context of the TREC expert finding
task, although only a small fraction of the docu-
ment collection (the mailing list archives) has the
threaded structure requisite for our methods, and
our focus is on the general characteristics of the
user rather than their topic-specific expertise.

3 User Characteristics

We have designed a set of user-level attributes
which we expect to be useful in improving in-
formation access over forum data. The attributes
were selected based on our personal experiences
in interacting with online communities. In this,
we sought to capture the attributes of users who
provide meaningful contributions, as follows:

CLARITY: How clear is what the user meant
in each of their posts, in the broader context of the
thread?

PROFICIENCY: What level of perceived tech-
nical competence does the user have in their posts?

POSITIVITY: How positive is the user in their
posts?

EFFORT: How much effort does the user put
into their posts?

Each user-level attribute is quantified by way of
a 5 point ordinal scale, as detailed in Table 1.

While we have described the four attributes as if
they were orthogonal to each other, in reality there
are obvious overlaps. For example, high clarity
often implies high effort, but the reverse is not
necessarily true. For simplicity, we do not con-
sider the interactions between the characteristics
in this work, leaving it as a possibility for further
research.

4 Dataset

We created a new dataset specifically for this work
based on data crawled from LinuxQuestions,1 a
popular Internet forum for Linux troubleshooting.
From this forum, we scraped a background collec-
tion of 34157 threads, spanning 126094 posts by
25361 users.

In order to evaluate how well we can automat-
ically rate forum users in each of our four user
characteristics (from Section 3), we randomly se-
lected 50 users who had each participated in more
than 15 different threads in the full dataset. We
asked four independent annotators to annotate the
50 users over each of the 4 attributes. The anno-
tators all had a computer science background, and
had participated in Linux-related online communi-
ties. For each attribute, the annotators were asked
to choose a rating on a five-point scale, based on
the description of user attributes from Section 3.

For each of the 50 users, we randomly selected
15 threads that they had participated in, and parti-
tioned these into 5 separate annotation instances
as follows: for the first instance, we selected
1 thread; for the second instance we selected 2
threads; and so on, giving us 5 instances, each with
1 to 5 threads. This gave us a total of 250 anno-
tation instances (with 5 instances per user). We
chose to annotate each user multiple times in order
to build a more complete picture of the user. Each
instance presented a different number of threads to
the annotator, in order to give the annotators max-
imal context in annotating a user while still mini-
mizing the number of threads we required the user
to have participated in.

Each annotator was asked to rate all 250 annota-
tion instances, meaning that they actually saw each
of the 50 users a total of five times each. Annota-
tors were not alerted to the fact that they would an-
notate each user five times, and all usernames were
removed from the threads before being displayed
to the annotator. However, for a given annota-
tion instance, the annotator was alerted to which
posts the user being annotated had authored. The
posts of other users in those threads where also
presented to provide the full thread context, but
the annotators were instructed to use those posts
only to interpret the posts of the user in question.

Since each annotator annotated each user 5
times for each attribute, we compute a score for
each user–annotator–attribute combination, which

1http://www.linuxquestions.org
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Attribute Value Description

CLARITY

1 Unintelligible It is impossible to make sense of the user’s posts; clear as mud!
2 Somewhat confused The meaning of the user’s posts is ambiguous or open to interpretation
3 Comprehensible With some effort, it is possible to understand the meaning of the post
4 Reasonably clear You occasionally question the meaning of the user’s posts
5 Very clear Meaning is always immediately obvious relative to the thread; sparkling clar-

ity!

PROFICIENCY

1 Hack The posts of this user make it patently obvious that they have no technical
knowledge relevant to the threads they participate in; get off the forum!

2 Newbie Has limited understanding of the very basics, but nothing more
3 Average Usually able to make a meaningful technical contribution, but struggles with

more difficult/specialized problems
4 Veteran User gives the impression of knowing what they are talking about, with good

insights into the topic of the thread but also some gaps in their knowledge
5 Guru The posts of this user inspire supreme confidence, and leave the reader with a

warm, fuzzy feeling!

POSITIVITY

1 Demon Deliberately and systematically negative with no positive contribution; the
prince/princess of evil!

2 Snark The user is somewhat hurtful in their posts
3 Dull The user’s posts express no strong sentiment
4 Jolly The user’s posts are generally pleasant
5 Solar Goes out of his/her way in trying to make a positive contribution in all possible

ways; positively radiant!

EFFORT

1 Loser Zero effort on the part of the user
2 Slacker Obvious deficiency in effort
3 Plodder User’s posts are unremarkable in terms of the effort put in
4 Strider Puts obvious effort into their post
5 Turbo Goes out of his/her way in trying to make a contribution; an eager beaver!

Table 1: A detailed description of the user-level attribute values

is simply the sum across the 5 annotations. Using
this score, we then rank the users for each pairing
of annotator–quality.

We formulated the user-level classification task
as four separate classification tasks, across the four
attributes. In order to account for subtle vari-
ance in annotators’ interpretations of the ordinal
scale, we took a non-parametric approach to the
data: we pooled all of the annotator ratings and
established a single ranking over all the annotated
users for each attribute. We then discretized this
ranking into 5 equal-sized bins, in order to pro-
vide a more coarse-grained view of the relative
ordering between users. Therefore, our task can
be interpreted as assigning each user to their cor-
responding uniformly-distributed quintile on each
attribute.

4.1 Inter-annotator Agreement

We calculate inter-annotator agreement on each
of the four attributes via leave-one-out cross-
validation. For each user-annotator-attribute com-
bination, we calculate two scores: the sum of rat-
ings given by the annotator being considered, and
the sum of ratings given by all the other annota-
tors. For each of the four attributes, we rank the
users based on each of these two scores, and com-

Attribute Annotator τ p

Clarity

Annotator 1 0.235 0.016
Annotator 2 0.221 0.024
Annotator 3 0.292 0.003
Annotator 4 0.307 0.002

Effort

Annotator 1 0.517 0.000
Annotator 2 0.707 0.000
Annotator 3 0.682 0.000
Annotator 4 0.610 0.000

Proficiency

Annotator 1 0.582 0.000
Annotator 2 0.460 0.000
Annotator 3 0.536 0.000
Annotator 4 0.407 0.000

Positivity

Annotator 1 0.009 0.924
Annotator 2 0.434 0.000
Annotator 3 0.473 0.000
Annotator 4 0.436 0.000

Table 2: Inter-annotator agreement, based on
Kendall’sτ and associatedp-value

pute Kendall’sτ (Kendall, 1938) between the two
ranklists (Table 2), as well as thep-value for the
significance of theτ value.

We see that for all attributes, there is a statis-
tically significant correlation between the annota-
tions. This correlation is strongest in the EFFORT

and PROFICIENCY attributes, and weakest in the
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CLARITY attribute. This is partly to be expected,
since CLARITY is more subjective than EFFORTor
PROFICIENCY. POSITIVITY shows an interesting
quirk, where the ratings from one annotator appear
completely uncorrelated with those of all the oth-
ers. This suggests that POSITIVITY as an attribute
is slightly more subjective than the others.

5 Feature Extraction

We extract features for each user based on aggre-
gating post-level features and via social network
analysis.

5.1 Post-Aggregate Features

The most basic feature set we consider is a simple
bag-of-words (BOW), computed as the sum of the
bag-of-words model over each of the user’s indi-
vidual posts.

We also make use of two post-level feature sets
from the literature on web user forum classifica-
tion. The first is that of Baldwin et al. (2007)
(BALDWIN Post), and outlined in Table 3. It was
designed to represent key posts in a thread for a
thread-level classification (see Section 2) task. We
compute this feature set for each of a user’s posts.

The second is that of Wanas et al. (2008), and
is described in Table 4. In this case, it was devel-
oped for a post-level classification task rating post
quality, and thus lends itself readily to our post-
aggregate user representation.

From each of BALDWIN Post and WANAS, we
derive a user-level feature set by finding the mean
of each feature value over all of the user’s posts
in the full dataset. For boolean features, this can
be directly interpreted as the proportion of the
user’s posts in which the feature is present. These
feature sets are referred to as BALDWIN Post

AGG and
WANASAGG respectively.

Whereas it is possible for us to engineer a
novel post-level feature set, our aim in this re-
search is not to analyze the feature sets them-
selves, but rather to show that our techniques
utilizing user-level structure perform better than
techniques which ignore this information. We
leave post-level feature engineering as an open av-
enue of further work.

5.2 Network Features

Fortuna et al. (2007) present a method of de-
scribing forum data using Social Network Anal-
ysis. The network is a graph representation of

Feature name Description Type

distribution Mention of Linux distribution name? Boolean
beginner Mention “newbie” terms? Boolean
emoticons Presence of “smiley faces”? Boolean
version numbers Presence of version numbers? Boolean
URLs Presence of hyperlinks? Boolean
words Number of words in post Integer
sentence Number of sentences in post Integer
question sentence Number of questions in post Integer
exclaim sentence Number of exclamations in post Integer
declarative sentence Number of declarative sentences Integer
other sentence Number of other sentences Integer

Table 3: The BALDWIN Post feature set

Feature name Description Type

onTopic Post’s relevance to the topic of a thread Real
overlapPrev Post’s largest overlap with a previous post Real
overlapDist Distance to previous overlapping post Integer
timeliness Ratio of time from prev post to average

inter-post interval
Real

lengthiness Ratio of post length to average post length
in thread

Real

emoticons Ratio of emoticons to sentences Real
capitals Ratio of capitals to sentences Real
weblinks Ratio of links to number of sentences Real

Table 4: The WANAS feature set

relationships within the forum. Building on For-
tuna et al. (2007), we considerUser Networks,
where each node represents a user, andThread
Networks, where each node represents a thread. In
this work, we consider two User Networks and one
Thread Network, namely: (1) POSTAFTER, (2)
THREADPART, and (3) COMMONAUTHORS, re-
spectively. The networks we define build directly
on work done by Fortuna et al. (2007), but the ap-
plication to user-level feature extraction is novel.

POSTAFTER is modeled on thereply-to net-
work described in Fortuna et al. (2007). Our data
does not contain explicit annotation about the re-
ply structure in a thread, so we approximate this
information by the temporal relationship between
posts. There exist more sophisticated approaches
to the discovery of reply structure in a thread
(Kim et al., 2010), and we consider integrating
such methods to be an important avenue of further
work.

POSTAFTER is parametrized with two values:
dist andcount. Being a User Network, the nodes
represent users. Two usersA1 andA2 have a di-
rected edge fromA1 to A2 if and only if A1 sub-
mits a post to a thread that is withindist posts after
a post in the same thread byA2 on at leastcount
occasions. Note that this can occur more than once
in a single thread. For our experiments, we used
dist = 1 andcount = 3.
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THREADPART is implemented as described in
Fortuna et al. (2007): nodes are again users, and
each undirected edge indicates that two users have
posted in the same thread on at leastk occasions.
Fortuna et al. (2007) setk = 5, but we only report
on results fork = 2 andk = 3, as we found that
for our dataset, the network is too sparse for higher
values.

COMMONAUTHORS is also implemented as
described in Fortuna et al. (2007): nodes are
threads, and each undirected edge indicates that
two threads have at leastm users in common. We
follow Fortuna et al. (2007) in settingm = 3.

In User Networks, the edges represent some re-
lationship between users. From a User Network,
we generate a feature vectorv for each user.v
is of lengthN , whereN is the total number of
nodes, or equivalently, the total number of users
in the network. v has at least one feature set to
1, which corresponds to the user described by this
feature vector, which we will hereafter refer to as
the originator. Features representing users directly
connected to the originator in the network receive
a feature value of 1, and users that are second-level
neighbours of the originator are set to a feature
value of 0.5. All other values inv are set to 0.

For Thread Networks, edges represent relation-
ships between threads. The method for comput-
ing a feature vector is similar to that for User Net-
works. The key difference is that in this instance,
nodes represent threads and not users. Therefore,
to describe a particular user, we consider threads
that the user has posted in. We define a vectorv of
lengthT , whereT is the total number of threads
in the forum. Given the setS0 of threads that the
user has posted in, for each thread inS0, we as-
sign the value 1 to the feature inv corresponding
to that thread. We then considerS1, the set of im-
mediate neighbours ofS0, and assign the value 1
to their corresponding features inv. Finally, we
considerS2, the immediate neighbours ofS1, and
assign the value of 0.5 to their corresponding fea-
tures. All other features are assigned the value 0.

6 Experimental Methodology

In all experiments, we build our classifiers using a
support vector machine (SVM: Joachims (1998)),
usingbsvm (Hsu and Lin, 2006) with a linear ker-
nel. For each combination of features, we eval-
uate it by carrying out 10-fold cross-validation.
The partitioning is performed once and re-used for

each pairing of learner and feature set.
Our experiments were performed using

hydrat (Lui and Baldwin, 2009a), an open-
source framework for comparing classification
systems. hydrat provides facilities for man-
aging and combining feature sets, setting up
cross-validation tasks and automatically comput-
ing corresponding results. Features were extracted
from the forum data usingforum features,2

a Python module implementing a data model for
forum data.

We evaluate our classifiers using microaver-
aged F-score (Fµ), reflecting the average perfor-
manceper-document. As our classes are ordi-
nal (representing quintiles of users), we addition-
ally present results based on mean absolute error
(MAE). MAE is the average absolute distance of
the predicted (Pred) ordinal value from the gold-
standard (G) value. It is a reflection of how far off
the mark the average prediction is, with an MAE
of 0 indicating perfect classifier performance.

As a baseline, we use a simple majority-class
(ZeroR) classifier. A benchmark classifier is con-
structed based on a BOW feature set, as is the
standard in text categorization. To derive an up-
per bound for the task, we perform leave-one-out
cross-validation over our annotations, and calcu-
late the mean F-score and MAE between each an-
notator and the combination of the remaining an-
notators.

When comparing a result to a baseline or a
benchmark value, we also compute thep-value for
a two-tailed pairedt-test. In line with standard
practice, we interpretp < 0.05 as statistically sig-
nificant.

7 Results

First, we present results for each of the feature
sets in isolation over the four user characteris-
tics (Table 5). In each case, we present the
results for the majority class (ZeroR) baseline
and the bag-of-words (BOW) benchmark in the
first two rows. Statistically-significant improve-
ments overZeroR (including BOW) are suf-
fixed with “∗”, and statistically-significant im-
provements over BOW are suffixed with “+”. The
best overall result for a given task achieved across
all combinations of feature sets is presented in
boldface, and is achieved for a single feature set

2http://github.com/saffsd/forum_
features
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Attribute Feature Set Fµ MAE

CLARITY

ZeroR 0.020 2.040
BOW 0.120 1.620∗

WANASAGG 0.100 1.760
BALDWIN Post

AGG 0.120 1.860
THREADPART2 0.240∗ 1.540∗

THREADPART3 0.260∗+ 1.360∗

POSTAFTER 0.220∗ 1.440∗

PROFICIENCY

ZeroR 0.000 1.980
BOW 0.240∗ 1.380∗

WANASAGG 0.000 2.080
BALDWIN Post

AGG 0.060 1.740
THREADPART2 0.180∗ 1.820
THREADPART3 0.120∗ 1.700
POSTAFTER 0.200∗ 1.900

POSITIVITY

ZeroR 0.040 1.880
BOW 0.140 1.660
WANASAGG 0.120 1.680
BALDWIN Post

AGG 0.120 1.580
THREADPART2 0.180∗ 1.720
THREADPART3 0.120 1.760
POSTAFTER 0.220 ∗ 1.340∗

EFFORT

ZeroR 0.000 1.760
BOW 0.320∗ 1.240∗

WANASAGG 0.100 1.600
BALDWIN Post

AGG 0.300∗ 1.420
THREADPART2 0.180∗ 1.700
THREADPART3 0.140∗ 1.700∗

POSTAFTER 0.100∗ 1.900

Table 5: Results for individual feature sets.

in the case of CLARITY and POSITIVITY , both us-
ing User Network feature sets.

The benchmark results (BOW) are consider-
ably more impressive than theZeroR baseline.
For CLARITY , THREADPART3 achieves the best
result for the task, beating the BOW at a level
of statistical significance forFµ. Recall that
THREADPART2 was based on a graph of co-
participation in threads, suggesting that knowl-
edge of which users co-post to threads is infor-
mative in predicting how clear their posts are on
average. In other words, there are clusters of users
who co-predict their respective post clarity.

For POSITIVITY , POSTAFTER beats the BOW
benchmark, but not at a level of statistical sig-
nificance in this case. POSTAFTER may work in
capturing POSITIVITY due to sets of antagonistic
users who respond to each other’s posts negatively
(e.g. commonly engage in flame wars), or to coop-
erative users who engage in a mutually-supportive
dialogue, each building positively on the previous
poster’s comments.

For both CLARITY and POSITIVITY , the afore-
mentioned individual feature sets achieve the best
overall results in our experiments, i.e. combining
these feature sets with BOW or other feature sets

did not improve the results. In both cases, the
MAE is around 1.3.

For PROFICIENCY and EFFORT, the BOW Fµ

results were notably higher, to the degree that none
of the feature sets in isolation were able to bet-
ter it. As a result, we looked to the combination
of up to three feature sets, and present in Table 6
the best-achieved results with two or three fea-
ture sets for PROFICIENCY and EFFORT. In both
cases, it is the combination of the BOW feature
set with one of the User Network feature sets and
one of the post-level feature sets that produces the
best result, illustrating the complementary nature
of the three basic feature set types. Results for the
BOW feature set in isolation, along with results
for BOW with each of the two feature sets in the
best-performing method, are presented to illustrate
the relative effect of each. In the case of PROFI-
CIENCY, THREADPART2 and BALDWIN Post

AGG both
lead to increasedFµ when combined with BOW,
as compared to the simple feature set (but only
the combination of all three is significantly bet-
ter than simple BOW). That is, PROFICIENCY ap-
pears to be the most multi-faceted of the four user
classification attributes, in being best captured
through the combination of lexical choice, macro
post-level features, and network-based analysis of
thread co-participation. With the network-based
features, we suggest this is largely a negative ef-
fect, in that “hacks” and “newbies” are charac-
terised by alack of thread co-participation.

With EFFORT, BOW achieves by far its
highest Fµ across all four classification tasks,
and the combination with THREADPART3 and
WANASAGG barely surpasses it, at a level which
is not statistically significant.

That the best results are achieved in all four
classification tasks with network-based features
(possibly in combination with other feature sets)
is telling, and underlines the potential of net-
work analysis for user classification. The ag-
gregate post-level feature sets BALDWIN Post

AGG and
WANASAGG are less effective, but bear in mind
that they were not tailored specifically for the user
classification task, so it is a positive result that they
have an impact when aggregated over user-level
structure, and suggests that further work in cus-
tomizing the per-post feature set will yield further
improvements on this task.

Finally, we turn to analysis of inter-annotator
agreement for the four user classification subtasks,
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Attribute Feature Sets Present Fµ MAE

PROFICIENCY

BOW 0.240 1.380
BOW ⊕ THREADPART2 0.260 1.280
BOW ⊕ BALDWIN Post

AGG 0.320 1.200
BOW ⊕ THREADPART2 ⊕ BALDWIN Post

AGG 0.360+ 1.080

EFFORT

BOW 0.320 1.240
BOW ⊕ THREADPART3 0.320 1.240
BOW ⊕ WANASAGG 0.300 1.280
BOW ⊕ THREADPART3 ⊕ WANASAGG 0.340 1.220

Table 6: Results for augmented feature sets

Attribute BOW Best MIA pBoW pBest

CLARITY 0.120 0.260 0.240 0.049 0.723
PROF 0.240 0.360 0.395 0.009 0.427
POS 0.140 0.220 0.335 0.011 0.126
EFFORT 0.320 0.340 0.410 0.108 0.193

Table 7: BOW benchmark, best result and mean
inter-annotator (MIA)Fµ over each user attribute

to gauge the quality of the results achieved by our
best classifiers in each case. In Table 7, we re-
produce the BOW and bestFµ results from Ta-
bles 5 and 6, and additionally present the mean
inter-annotator (MIA)Fµ based on leave-one-out
cross-validation. We additionally present thep-
value for the two-tailed pairedt-test for each of
BOW–MIA and best–MIA. In addition to being
able to compare theFµ values directly, we can
observe that for CLARITY , PROF(ICIENCY) and
POS(ITIVITY ), the best-performing classifier is
both significantly better than the BOW benchmark
(andZeroR baseline), and statistically indistin-
guishable from the upper bound figure. In the
case of EFFORT, there is no significant difference
between BOW and the upper bound, so it would
highly unlikely that we could achieve a significant
improvement over BOW for any of our classifiers.

In summary, we were able to consistently ex-
ceed the majority class baseline on this task us-
ing user-level features, attaining results that were
competitive with those utilising a state-of-the-art
bag-of-words benchmark. We found that in most
cases our results exceeded the benchmark to a high
degree of statistical significance, with network-
based features featuring prominently for all clas-
sification subtasks.

8 Further Work

Given that the intention of this work is to en-
hance information access over web forum data,
the next step we intend to take is to apply our

trained classifiers to a larger corpus of web fo-
rum data, and assess the impact of the predic-
tions in a task-based evaluation. Examples of
such tasks include predicting perceived post qual-
ity (Weimer and Gurevych, 2007) and identifying
troubleshooting-oriented threads (Baldwin et al.,
2007). We also note that there is limited room
for progress given our current interpretation of the
inter-annotator agreement. We intend to further
analyze the annotations. In particular, since each
annotator annotated each user five times, we in-
tend to study the interaction between the number
of context posts and the ratings given by the anno-
tator.

9 Conclusion

In this work, we introduced a novel user classifi-
cation task over web user forums. We prepared an
annotated dataset relevant to the task, which we
will release to the research community.

We extracted user-level features over aggrega-
tions of user posts, as well as via anaylsis of social
networks in a web forum. We investigated each
feature set we defined in isolation as well as in
combination with the benchmark feature sets. We
have shown that these user-level features can con-
sistently outperform a majority-class baseline over
a user classification task.

We succeeded in showing that user-level fea-
tures have empirical utility in user classification,
and we expect that the use of these features will
generalize well to tasks over other aspects of
threaded discourse, for example in profiling users
or in ranking threads for information retrieval.
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Scḧutze. 2008. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK.

Mark E.J. Newman and Michelle Girvan. 2004. Finding and
evaluating community structure in networks.Physical Re-
view E, 69. Article Number 26113.

Bo Pang and Lillian Lee. 2008. Opinion mining and sen-
timent analysis.Foundations and Trends in Information
Retrieval, 2(1–2):1–135.

Jangwon Seo, W. Bruce Croft, and David A. Smith. 2009.
Online community search using thread structure. InPro-
ceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM 2009), pages 1907–1910,
Hong Kong, China.

Ian Soboroff, Arjen P. de Vries, and Nick Craswell. 2006.
Overview of the TREC-2006 Enterprise track. InPro-
ceedings of the 15th Text REtrieval Conference (TREC
2006), Gaithersburg, USA.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out the
vote: Determining support or opposition from congres-
sional floor-debate transcripts. InProceedings of the 2006
Conference on Empirical Methods in Natural Language
Processing (EMNLP 2006), pages 327–335, Sydney, Aus-
tralia.

Nayer Wanas, Motaz El-Saban, Heba Ashour, and Waleed
Ammar. 2008. Automatic scoring of online discussion
posts. InProceedings of the 2nd ACM Workshop on Infor-
mation Credibility on the web (WICOW ’08), Napa Valley,
USA.

Markus Weimer and Iryna Gurevych. 2007. Predicting the
perceived quality of web forum posts. InProceedings of
the 2007 Conference on Recent Advances in Natural Lan-
guage Processing (RANLP-07), Borovets, Bulgaria.

Markus Weimer, Iryna Gurevych, and Max Mühlhäuser.
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Abstract

Early use of corpora for language learn-
ing has included analysis of word usage
via concordancing. In addition, some at-
tempts have been made to use readabil-
ity criteria for recommending reading to
learners. In this paper we discuss var-
ious tools and approaches for enhanced
language learning support, including dif-
ferent methods of filtering text based on
vocabulary and grammatical criteria. We
demonstrate the effects of various criteria
on the retrieval of text, assuming the user
is English-speaking and learning French.
Filtering text based on a small vocabu-
lary of frequently occurring words, a set
of English-French cognates and named en-
tities, and high coverage criteria, results
in the retrieval of short readable extracts
from French literature. We expect that text
available from the web may yield many
more documents of appropriate readabil-
ity.

1 Introduction

There is a considerable need for people to learn
and become proficient in foreign languages: the
majority of scientific discourse is published in
English; students travel to different countries to
study; people migrate for career opportunities.

Language skills are often divided into four com-
munication tasks: listening, speaking, reading,
and writing. Each of these skills can be developed
and practised separately to a certain extent. Im-
proving reading skill in a language would clearly
involve devoting a substantial amount of time to
reading.

It has been demonstrated thatextensiveread-
ing at a comfortable level in a foreign language
is more effective for improving language acquisi-

tion than intensivereading at more difficult lev-
els (Bell, 2001). Therefore there is a need for
reading material at multiple language skill levels
to allow learners to practise. Some publishers pro-
vide graded reading books targeted at the foreign
language learner, with levels indicated either by
an assumed base vocabulary size, a standard level
such as that defined by the Common European
Framework of Reference for Languages (COE,
2003), year of study, or an unexplained level struc-
ture. The simplest graded readers based on vocab-
ulary size that we have seen use a base vocabulary
of 150 words. Beginner readers tend to be much
shorter in length than those for advanced learn-
ers. For example, the level 1 readers in the Bib-
liobus Collection A are approximately 150 words
in length, in a comic book format, consisting of
two short stories (Cowling, 1982).

Several researchers independently proposed the
idea of retrieving reading material from the Web
based on its readability for the purpose of reading
practice or study (Collins-Thompson and Callan,
2004a; Ghadirian, 2002; Katz and Bauer, 2001;
Nilsson and Borin, 2002; Uitdenbogerd, 2003).
This motivated some new studies of measur-
ing readability (Collins-Thompson and Callan,
2004b; Schwarm and Ostendorf, 2005; Si and
Callan, 2001) that are more sophisticated than
was possible in the initial period of readability
research (Bormuth, 1966; Chall and Dale, 1995;
Cornaire, 1988; Granowskey and Botel, 1974;
Klare, 1974). Our earlier work demonstrated that
simple techniques are still very powerful for for-
eign language readability measurement, but could
be improved by the inclusion of automated cog-
nate detection for a specific first and second lan-
guage pair (Uitdenbogerd, 2005). Recently, the
methodology of producing readability measures
has been questioned, with alternative approaches
defined (van Oosten et al., 2010). In a related idea,
filtering according to lexical constraints was ap-
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plied to the results of queries to a concordancer
to make the query results easier for learners to
read (Wible et al., 2000).

In this paper, we explore a corpus consisting
of several classic French texts, with the goal of
determining the feasibility of finding reading ma-
terial using strict criteria for lexical content, and
with some exploration of grammatical complexity.
Exploiting the considerable overlap in language
pairs, such as French and English, due to their cog-
nate content, provides a substantially larger pool
of reading resources than if cognates are ignored.

2 Related Research

Early studies in readability measurement largely
led to formulae that consisted of two main fac-
tors of readability: lexical and grammatical. The
lexical difficulty is often approximated by word
length in terms of the number of syllables or char-
acters (Klare, 1974). Alternatively, the presence
or absence of a word in a list determined its diffi-
culty (Chall and Dale, 1995). Grammatical com-
plexity was usually modelled by a measure of sen-
tence length Klare (1974).

Recent years have seen an increase in out-
put specifically on automated readability measure-
ment for text retrieval. We discuss some contribu-
tions below.

Researchers involved with the REAP project
have developed a system for delivering reading
material of an appropriate level to users, where
the material is retrieved from the Web (Collins-
Thompson and Callan, 2004a). They have used
a range of readability measurement techniques
based on statistical models on lexical and gram-
matical features that predict the grade level of the
text (Heilman et al., 2008).

Miyazaki and Norizuki (2008) developed a
reading retrieval system more suited to Japanese
learners of English, allowing the readability mea-
surement to be learnt from a user’s ratings of text.

Tanaka-Ishii et al. (2010) had a novel approach
to training a classifier to measure readability. They
used precisely two classes, being for easy and hard
texts, trained on text for children and adults re-
spectively. Texts are classified as pairs to deter-
mine which is more difficult.

Little work has been published specifically for
French readability as a foreign language. One re-
cent development on readability of French as a for-
eign language uses a machine learning approach

applied to a range of features, including the verb
tenses occurring in the text (François, 2009).

The only work on assessing the suitability
of on-line text for learners that we know of is
ours (Uitdenbogerd, 2006), in which we con-
cluded that the percentage of web-based text (in
the English language) that is in a useful range for
learners is between 8 and 19%. We are unaware of
any that look at extracts of larger texts.

3 Experiments

In this current piece of work we are exploring the
potential of filtering text based on strict lexical and
grammatical criteria within the context of two lan-
guages that have a large set of exact cognates.

Our research questions were:

• What is the frequency distribution of distinct
sentence structures in text?If there are fre-
quent patterns, then these could be the ba-
sis for grammatical study for beginners in the
language. They could also form part of the
criteria for selecting text on readability. On
the usual observation that shorter sentences
are more readable, we were interested in dis-
covering whether there were useful portions
of natural texts to be found that could be used
for reading practice at the early stages.

• What proportion of a French text consists of
French-English cognates and vice versa?In
this work, we restrict ourselves to words that
have identical spelling in both languages. Ac-
cented words were not included. As the pres-
ence of cognates allow people to understand
more of a text than when there are no cog-
nates, we wanted to estimate the cognate con-
tent of the text. When combined with a small
vocabulary of frequent words, the coverage
of the text should be substantially greater.
This idea was again to be applied to the pro-
cess of extracting potential reading material.

The tools that we used for our experiments in-
clude Tree Tagger (Schmid, 1994), and a first ap-
proximation to a cognate list using the intersec-
tion of the English and French lexicons provided
as Tree Tagger parameter files for these languages.

3.1 Sentences in French Literature

Initial work was attempted with on-line French lit-
erature. One example of a long written work that
is available isLes Trois Mousquetaires(The Three
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Figure 1: The frequency of each sentence length up to 80 in thetext Les Trois Mousquetaires.

Musketeers) by Alexandre Dumas. The frequency
of sentences of each length are shown in Figure 1.

We first determined the frequency of different
sentence structures in the text, as described by the
part-of-speech tags reported by Tree Tagger. Nat-
urally, the majority of sentences are unique when
compared in this way, however, some structures
were frequent, particularly for very short utter-
ances.

There were 11,539 different sentence structures
found, of which 11,166 occurred precisely once.
This figure is an overestimate, as the text file was
not cleaned up, and there were a significant num-
ber of errors in the tagged data. The first four sen-
tence types consisted of a single word, being either
an interjection (263), a name (484), or a noun (65).
(A sample extract fromLes Trois Mousquetaires
of single word sentences is shown in Figure 2. Fig-
ure 3 shows a sequence of single word sentences
that occurs in the story.) Many frequent structures
are such expressions as “said Aramis”, which are
usually tagged as separate sentences to the utter-
ance of the character. The most frequently occur-
ring sentence of length 4 is this type of phrase:
“s’écria d’Artagnan”, which occurs 14 times in

Ah ! , – Non . , – Porthos ? , – Non . , – Aramis ?
, – Non . , – Oh ! , – Oh ! , – Oh ! , – Comment !

, – Oh ! , – Quoi ? , – Pardieu ! , – Oh ! , –
Silence ! , – Quoi ? , – Ah ! , – Allez . , – Ah ! , –
Silence ! , – Silence ! , – Silence ! , ” Oh ! , – Ah
! , Ah ! , ” Assez ? , Allez . , – Qui ? , – Peut-être
. , – Ah ! , ah ! , Pourquoi ? , – Hol ! , – Parle . ,

Figure 2: Some single-word sentences inLes Trois
Mousquetaires.

the text. Similarly forLe Petit Prince(The Little
Prince), the most frequent sentence structure be-
yond single-word interjections is the phrase “dit le
petit prince” (“said the little prince”), which oc-
curs 10 times.

The first interesting repeated sentence structure
in Le Petit Prince is “PRO:PER ADV VER:pres
ADV SENT”, which occurs 5 times1. One exam-
ple is “Elle ne change pas.” (She doesn’t change.)
By contrast, the positive version of this sentence
structure doesn’t occur at all.

When grouping several French texts together

1PRO:PER represents personal pronouns, ADV adverbs,
VER:pres present tense verbs, and SENT end of sentence
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435 – Aramis !

436 – Porthos !

437 – Eh !

438 Messieurs !

439 Messieurs !

2369 – Arrêté !

2370 Athos !

2371 arrêté !

2372 pourquoi ?

Figure 3: Some single-word sentence sequences
in les Trois Mousquetaires. Each sentence is pre-
ceded by its sentence number.

(2.8 million words, including some noise) before
analysis the trend is similar, in that the most com-
mon sentence structure is the single-word utter-
ance. Then there are two word sentences oc-
curring frequently, such as VER:pres PRO:PER
SENT, which represented “Pardonnez-moi!” (par-
don me), despite being an imperative rather than
simple present tense. There are several recurring
sentence structures of about four words, such as
“PRO:DEM VER:pres DET:ART NOM SENT”,
which includes “c’est l’amour” (“It’s love”), so
a larger collection can provide some useful sim-
ple examples for study2. Table 2 shows the fre-
quency of particular sentence structures of differ-
ent lengths in a corpus consisting of approximately
2.8 million words from French literature.

Our earlier work in French readability for read-
ers with an English-speaking background revealed
that average sentence length was a better indicator
of readability than other standard measures. On
this premise, we attempted to find extracts with a
very low average sentence length. Figure 4 shows
an extract fromLes Trois Mousquetaireswith a
maximum sentence length of 4, as well as the first
extract of at least 100 words, which is retrieved
when the maximum sentence length is increased
to 10, and has an average sentence length of about
5.

2PRO:DEM for demonstrative pronouns, DET:ART for
articles, and NOM for nouns

3734 – Connaissez -vous Athos ?

3735 – Non .

3736 – Porthos ?

3737 – Non .

3738 – Aramis ?

3739 – Non .

3740 Quels sont ces Messieurs ?

3741 – Des mousquetaires du roi .

– Ah ! fit Rochefort avec un sourire ,
voilà un hasard bien heureux ! et qui
satisfera Son Eminence ! L’ avez-vous
prévenue ?

– Je lui ai écrit de Boulogne . Mais com-
ment êtes-vous ici ?

– Son Eminence , inquiète , m’a envoyé
à votre recherche .

– Je suis arrivée d’hier seulement .

– Et qu’avez-vous fait depuis hier ?

– Je n’ai pas perdu mon temps .

– Oh ! je m’en doute bien !

– Savez-vous qui j’ai rencontré ici ?

– Non .

– Devinez .

– Comment voulez-vous ? ...

– Cette jeune femme que la reine a tirée
de prison .

– La maı̂tresse du petit d’Artagnan ?

– Oui , Mme Bonacieux , dont le cardi-
nal ignorait la retraite .

Figure 4: Extracts fromLes Trois Mousquetaires
with a maximum length of 4 and 10 respectively.
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Table 1: The 20 most frequently occurring words
in French newspapers and their main meanings.
1 to 10 Def. 11 to 20 Def.
de of que that
le the dans in
la the il he/it
et and à at/to
les the en in
des of the ne not
est is on one (pronoun)
un a/an/one qui who
une a/an/one au at/to the
du of the se him-/her-/it-self

3.2 Cognates, Named Entities, and Common
Words

Our cognate (and named entity) list consisted of
the intersection of the English and French lexicon
provided in the parameter files with Tree Tagger.
These lexicons contain all the tokens recognised
by the tagger in the two languages. Clearly there
are somefalse friendsin this list, that is, words that
look the same in both languages, but have differ-
ent meanings. In addition, many cognates that are
spelt differently were excluded. The initial list for
English contained 358,097 words once duplicates
were removed, and the French list had 475,209.
Taking the intersection of the two lists gave a list
of 17,908 words. Some false friends are very fre-
quent in French. We determined the frequency
of each cognate inLes Trois Mousquetairesand
found that the majority of the highest ranked terms
were either false friends, or were included due to
French phrases that occur in English (eg. “fait ac-
compli” and “laissez faire”). Highest ranked false
friends in our list included: ment, pour, dans, tout,
comme, plus, nous, quel, amis, fait, tend, main,
voir, faire, jour, deux, ours, part, dire, sent, rend,
and fort. The interjections “Ah” and “Oh” were
not in the cognate list, so these were added manu-
ally.

In addition to the cognate list, a list of the 20
most frequent words in French newspapers (ac-
cording to Crystal (1987), and listed in Table 1)
was included in the “known” words to test the ex-
treme case of a complete beginner. Named enti-
ties from Tree Tagger were also used in the list of
permitted words. To this list we added the names
of the characters fromLes Trois Mousquetaires
(Aramis, Porthos, d’Artagnan), as they were miss-

Un serpent !

Les provisions !

il est impossible !

est il possible ?

Un voyage sans fatigue et sans danger !

Impossible de continuer le commerce .

Figure 5: Some cognate-filtered sentences in the
collection of several French texts, using the most
frequent 125 words that occurred in the most fre-
quent 200 words ofLes Trois Mousquetairesand
Notre Dame de Paris.

ing. Note that this procedure is to test the feasibil-
ity of the concept of retrieving useful extracts for
learners, not a recommended technique for cog-
nate generation. However, our observations dis-
cussed later provide ideas for future automation of
cognate detection.

Using the above list provides many sentences
(1409 for the larger collection, including dupli-
cates), and some sentence sequences. On our
larger collection we found 101 short sequences,
including the following short fragment fromLes
Misérablesthat would be very easy for a beginner
with English background to read:

141780 Une barricade !

141781 Ah !

141782 le bandit !

Expanding the list of frequent words to 125
(based on the most frequent 200 tokens occur-
ring in Les Trois MousquetairesandNotre Dame
de Paris), which is approximately the size of the
smallest vocabulary of published readers, a larger
set of sentences is retrieved. Examples from the
full collection of texts are shown in Figure 5.

Using the same level of filtering while including
sentences that have at least 90% of the words in the
lists, the sentence filter produces more substantial
extracts. Examples are shown in Figure 6.

We calculated some general statistics to esti-
mate the proportion of cognates in French text,
as well as that of highly frequent words. Table 3
shows that based on our rough method of identi-
fying cognates, French texts tend to consist of ap-
proximately 10% cognate content. The 20 most
frequent words make up approximately 26% of the
text.
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270 – Ah !

271 fit d’ Artagnan .

272 – Non ; elle vous a été prise .

273 – Prise !

274 et par qui ?

887 – C’ est avec Monsieur que je me
bats , dit Athos en montrant de la main
d’ Artagnan , et en le saluant du même
geste .

888 – C’ est avec lui que je me bats aussi
, dit Porthos .

13007 Tout à coup elle jeta un grand cri
de joie et s’élança vers la porte , elle
avait reconnu la voix de d’ Artagnan .

13008 ” D’ Artagnan !

13009 d’ Artagnan !

Figure 6: Some cognate-filtered sentence se-
quences inLes Trois Mousquetaires.

4 Discussion

It is clear from the relative lack of repetition of
sentence structures beyond those of fewer than 5
words, that either more sophisticated summaries
of sentences would be required for use as sentence
examples, or very large corpora. Using a chunk-
ing phase before grouping sentences may provide
larger sets of related examples. The use of n-grams
of different lengths would also allow learners to
observe patterns of interest. For example, to better
understand how adjectives are placed in French,
users can look at occurrences of “ADJ NOM” as
well as “NOM ADJ”.

Given that for English-speaking readers of
French a good estimate of French readability is
the average sentence length of the text, there is
considerable scope for finding suitable extracts for
reading. Filtering text based on sentence length
provided extracts for reading practice that have an
average sentence length of 5.

The frequency of some false friends in the cog-
nate list suggests a simple automated technique
would be to compare the relative frequency of the
words in each language. Where there is a large dis-
crepancy (for example, “aura”, which means“will

have” in French), the word is highly likely to be a
false friend rather than a cognate.

Applying our filter based on exact cognates,
very frequent words and named entities allowed
numerous sentences to be found in the corpus.
Relaxing these requirements slightly by allowing
some unknown words can produce extracts con-
sisting of several sentences for reading — enough
to get a sense of the moment in the story, but not
as long as the shortest published stories for begin-
ners in a language (about 75 words). Our cognate
list was very restrictive in that it required words
to have the exact same spelling in both languages
(or as a related word, such as “arriver”, meaning
“to arrive” in French). It is expected that allowing
accents, typical variants such as the presence or
absence of the letter “e” as a suffix, and common
verb endings, will increase the size and quantity of
extracts. Applying the filter to much larger bodies
of text, such as found on the Web should also re-
sult in considerably more material being retrieved.
Our previous work on measuring the readability
of web text showed that a significant portion (8–
19%) of web documents had the same readability
range as stories published for those learning En-
glish Uitdenbogerd (2006). While cultural differ-
ences may mean that the range of readability of
French differs from English on the web3, we re-
main optimistic that many extracts can be retrieved
that conform to these very strict criteria.

It should also be noted, that the texts used in
the present study are relatively difficult to read.
Texts written specifically for children would have
smaller vocabularies, and translations into French
(from English) would be likely to have larger cog-
nate content.

Our earlier work on readability in French (Uit-
denbogerd, 2005) demonstrated that sentence
length was as good, if not better than the com-
monly used readability measures for predicting
text difficulty where the person reading has an
English-speaking background, and the language
being read is French. Incorporating a measure
of the cognate content was an even more reliable
predictor of readability. The texts studied var-
ied widely in their cognate rate, with some texts
written specifically for people with an English-
speaking background exploiting cognates. It
might be expected that the more technical the text,

3An example of a relevant cultural difference is that there
are many classic novels written in English for children, but
none in French until relatively recently
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the more common words there will be between
French and English, however, our results in Ta-
ble 3 showed a fairly consistent level of cognates
in text. In contrast, the manual count of cognates
in the samples of approximately 100 words used
in Uitdenbogerd (2005) revealed a range from 5
to 42%, however, the two texts with the highest
cognate count were specifically written for French
learners with an English-speaking background, in
the early stages of learning. When only texts writ-
ten by and for native speakers of French are con-
sidered, the range was 7 to 12%, which doesn’t
differ too much from our estimate in the present
study.

Studies in people’s ability to predict the mean-
ings of words from their context indicate that a
knowledge of 95% of the words in the text are
needed for comprehension (Ghadirian, 2002). Us-
ing this figure as a basis, it has been concluded that
a vocabulary of 5000 (relatively frequent words)
is required to be able to comfortably read any
text in a given language (Groot, 2000), a figure
we confirmed with our study of French texts (Uit-
denbogerd, 2005). The cognate content in French
texts probably reduces this figure somewhat. We
can expect that about 10% of the infrequent words
would be known as cognates. So, usingLes Trois
Mousquetairesas an example, the 95% threshold
assuming no knowledge of cognates requires a vo-
cabulary of about 3400 frequent words. Assuming
10% of the remaining vocabulary is known, this
figure drops to about 3120. However, at the early
stages of learning, when a person’s vocabulary is
small, the gains from cognates are greater. For ex-
ample, a knowledge of 20 words gives a cover-
age of about 31% (when combining the total of all
words regardless of their part of speech), whereas
the additional cognate knowledge increases that
coverage to 38%.

5 Conclusion and Future Work

We demonstrated potential techniques for identi-
fying short extracts from French literature based
on lexical or grammatical criteria to allow read-
ing practice at the very early stages without the in-
tensive work of translation. Experiments are cur-
rently underway that attempt to apply the same
technique in reverse for English web documents,
that is, applying strict lexical filters based on a
small frequent words list and a large list of cog-
nates.

Future work will include incorporating inex-
act cognate detection (Kondrak, 2001; Inkpen
et al., 2005) to allow words with slightly differ-
ent spelling to be found, and more sophisticated
grammatical matching. Also, the idea of determin-
ing whether a word with the same spelling in both
languages is a cognate or not based on its relative
frequency and other available data, such as POS
tags, will be explored.

References

Bell, T. (2001). Extensive reading: speed and
comprehension.The Reading Matrix, 1(1).

Bormuth, J. R. (1966). Readability: a new ap-
proach.Reading Research Quarterly, 1:79–132.

Chall, J. S. and Dale, E. (1995).Readability revis-
ited: the new Dale-Chall readability formula.
Brookline Books, Massachusetts, USA.

COE (2003). Common European frame-
work of reference for languages: Learn-
ing, teaching, assessment. http:
//www.coe.int/T/DG4/Linguistic/
CADRE EN.asp#TopOfPage. Accessed 8
September, 2006.

Collins-Thompson, K. and Callan, J. (2004a). In-
formation retrieval for language tutoring: An
overview of the REAP project. InProc.
ACM-SIGIR International Conference on Re-
search and Development in Information Re-
trieval, Sheffield, UK. Poster.

Collins-Thompson, K. and Callan, J. (2004b).
A language modeling approach to predict-
ing reading difficulty. InProceedings of the
HLT/NAACL 2004 Conference, pages 193–200,
Boston.

Cornaire, C. M. (1988). La lisibilité: Essai
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Table 2: Example sentence structures of each length in the corpus of French literature. Note that fre-
quencies for items are approximate due to the inaccuracy of the tagger and the noise in the data. Note
also that some tags are incorrect, such as the sentence of length 2, which should really have been labelled
as “imperative” instead of “present” tense.

Len Structure Freq
Example
Translation

1 INT SENT
Ah!
Ah! 943

2 VER:pres PRO:PER SENT
Sauvez-moi!
Save me! 204

3 VER:pres DET:ART NOM SENT
Videz le vase!
Empty the vase 123

4 PRO:PER VER:simp DET:ART NOM SENT
Il leva les yeux.
He raised his eyes. 73

5 PRO:PER ADV PRO:PER VER:pres ADV SENT
Elle ne la sait pas.
She doesn’t know her/it. 51

6 PRO:PER VER:simp DET:ART NOM PRP NOM SENT
Elle resta un moment sans parler.
She remained speechless for a moment. 15

7 PRO:PER ADV PRO:PER VER:pres ADV PRP NOM SENT
Il n’ y a pas de jardin.
There is no garden 11

8 DET:ART NOM VER:pres DET:ART NOM PRP DET:ART NOM SENT
La philosophie est le microscope de la pensée.
Philosophy is the microscope of thought 9

9 PRO:PER VER:impf DET:ART NOM KON PRO:PER VER:impf DET:ARTNOM SENT
Elle était la lumière et il était l’ ombre
She was the light and he was the shade 4

10 DET:ART NOM VER:impf DET:ART NOM PUN DET:ART NOM VER:impfDET:ART
NOM SENT
Les assaillants avaient le nombre ; les insurgés avaient laposition.
The assailants had the numbers; the insurgents had the position. 3

Table 3: Statistics of occurrence of cognates (including named entities and false friends), and highly
frequent words for French texts

Text Types Tokens Cognates Top 20 News Words
Le Petit Prince 2,614 16,484 1,773 (11%) 4,214 (26%)
Les Méditations 3,040 29,976 3,030 (10%) 9,111 (30%)
Les Trois Mousquetaires 16,029 235,056 23,137 (9.8%) 61,439 (26%)
Notre Dame de Paris 18,100 176,245 18,451 (10%) 51,880 (29%)

66



Parser Features for Sentence Grammaticality Classification

Sze-Meng Jojo Wong
Centre for Language Technology

Macquarie University
Sydney, NSW, Australia
sze.wong@mq.edu.au

Mark Dras
Centre for Language Technology

Macquarie University
Sydney, NSW, Australia

mark.dras@mq.edu.au

Abstract
Automatically judging sentences for their
grammaticality is potentially useful for
several purposes — evaluating language
technology systems, assessing language
competence of second or foreign lan-
guage learners, and so on. Previous work
has examined parser ‘byproducts’, in par-
ticular parse probabilities, to distinguish
grammatical sentences from ungrammat-
ical ones. The aim of the present paper
is to examine whether the primary out-
put of a parser, which we characterise via
CFG production rules embodied in a parse,
contains useful information for sentence
grammaticality classification; and also to
examine which feature selection metrics
are most useful in this task. Our re-
sults show that using gold standard pro-
duction rules alone can improve over us-
ing parse probabilities alone. Combin-
ing parser-produced production rules with
parse probabilities further produces an im-
provement of 1.6% on average in the over-
all classification accuracy.

1 Introduction

Automatically judging sentences for their gram-
maticality has been a long-standing research prob-
lem within the natural language processing com-
munity. The ability of distinguishing grammati-
cal sentences from ungrammatical ones has many
potential applications, which include evaluating
language technology systems such as natural lan-
guage generation (Mutton et al., 2007) and ma-
chine translation (Gamon et al., 2005), as well
as assessing language competence of second lan-
guage or foreign language learners (Brockett et al.,
2006; Gamon et al., 2008; Han et al., 2010).

Various approaches have been proposed in the
past to address this typical classification problem.

A number of these existing studies attempt to ex-
ploit some form of ‘parser byproduct’ as classifi-
cation features for machine learning: for instance,
(log) probability of a parse tree, number of par-
tial (incomplete) parse trees, parsing duration, and
such (Mutton et al., 2007; Sun et al., 2007; Fos-
ter et al., 2008; Wagner et al., 2009). The aim of
this paper is to examine whether the primary out-
put of a parser contains useful information for this
classification problem; we characterise this infor-
mation by the CFG production rules embodied in
a parse. The intuition is that particular production
rules might be strongly characteristic of ungram-
matical sentences, and that looking at individual
rules might provide clues that are aggregated out
in measures such as the parse tree probability.

We carry out experiments to test this intuition,
using the Penn treebank and an artificially cre-
ated ungrammatical version created by Foster et
al. (2008). This allows a large amount of data to
be used for classification, embodying a controlled
ungrammaticality that is suitable for preliminary
work in this direction; it is for similar reasons that
construction of erroneous corpora has become a
more prominent line of computational linguistic
research lately (Foster and Andersen, 2009; Han
et al., 2010; Dickinson, 2010).

The present study is carried out in two stages. In
the first stage, following Foster et al. (2008), we
induce three models from a probabilistic parser by
re-training it with a (presumably) grammatically
well-formed corpus, a grammatically ill-formed
corpus, and a mixed corpus consisting of both
grammatical and ungrammatical sentences. The
model which outperforms the others is then used
for all the subsequent parsing tasks. In the next
stage, we utilise the outputs of the parser from the
first stage and a parser trained on only grammati-
cal text for sentence grammaticality classification,
in which two classes of feature are to be examined
— parse probabilities based on the parser outputs
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and production rules based on both the gold stan-
dard and the parser outputs. A number of feature
selection metrics are explored to obtain a set of
discriminative parse rules for classifying English
sentences based on their grammaticality.

The remainder of this paper is structured as fol-
lows. We review some related work in Section 2.
In Section 3, we detail the experimental settings
and the feature selection metrics. Sections 4.1 and
4.2 then present the parsing results and the classi-
fication results, respectively; followed by discus-
sion in Section 5.

2 Related Work

In this section, we briefly review some of the re-
lated studies on judging sentence grammaticality.
We also discuss some of the recent work concern-
ing the construction of erroneous corpora for the
purpose of grammatical error detection.

2.1 Sentence Grammaticality Judgement

In some ways, the present study is an extension of
the work presented by Foster et al. (2008). Their
intention is to improve the robustness of a prob-
abilistic parser which might not be initially de-
signed to handle ungrammatical sentences. Re-
training on both grammatical and ungrammatical
sentences enabled a parser to parse ungrammati-
cal sentences at a relatively satisfactory level with-
out compromising its initial performance on gram-
matical sentences. To attain an optimal parsing
accuracy, the parser output of a sentence is cho-
sen according to the highest parse probability of
the most likely parse tree returned by the three in-
duced models of the Charniak and Johnson rerank-
ing parser (Charniak and Johnson, 2005) trained
across three different corpora — grammatical, un-
grammatical, and a combination of both. Their ex-
periments show that their parse probability-based
classifier which can be considered as an integra-
tion of two parsers (one trained on grammatical
data and the other trained on some ungrammati-
cal data) is able to parse ungrammatical sentences
better than the original parser trained exclusively
on a grammatical corpus. The grammatical corpus
used by Foster et al. (2008) is the Wall Street Jour-
nal (WSJ) treebank, and the ungrammatical ver-
sion is one that they generated (see Section 2.2).

In a related work (Wagner et al., 2009), a num-
ber of parser outputs are utilised for classifying
a sentence as to whether it is grammatical or un-

grammatical. In addition to the widely used part-
of-speech n-grams, they made use of two types
of parsers, each based on a different grammar
— the precision grammar parser (XLE parser)
and the probabilistic parser (Charniak and John-
son parser). Features extracted from the proba-
bilistic parser, which include the differences in log
probabilities of parse trees and the structural dif-
ferences between parse trees, are better discrim-
inants as compared to both the n-gram features
and the parser statistics outputs obtained from the
precision-grammar-based parser. The overall ac-
curacy achieved is within the range of 65-75% by
using the combination of all the feature sets.

A similar idea had been used by Mutton et al.
(2007), who discovered that parser outputs can be
used as metrics for assessing generated sentence
fluency. The underlying idea is that a poorer per-
formance of the parser on one sentence relative to
another might indicate that there is some degree of
ungrammaticality or disfluency in the former. Out-
puts from multiple parsers, such as log probability
of the most likely parse, number of partial parse
trees, and number of invalid parses were investi-
gated. The combination of multiple parser outputs
outperforms individual parser metrics.

Parse probability was also used by Sun et al.
(2007) for machine learning based classification.
There, the type of feature they term ‘labelled se-
quential patterns’ like non-contiguous n-grams,
proves more important for sentence grammatical-
ity classification with an accuracy rate of over
80%. To provide useful feedback to learners of
English as a Second Language (ESL), two English
learner corpora are used — Japanese and Chinese.

The techniques of phrase-based SMT have been
adapted for grammaticality judgement on ESL
sentences as well. Brockett et al. (2006) treat er-
ror correction as a translation task, and solve it by
using the noisy channel model. They made use of
the Chinese Learner Error Corpus as a template for
training data creation; but also needed large sets of
parallel corpora.

2.2 Erroneous Corpora Construction

Large-scale ungrammatical corpora are crucial for
research concerning grammaticality judgement, in
particular for classification training. Recently, a
number of pieces of corpus-based research have
been undertaken to collect authentic errors as well
as to generate synthetic errors for this purpose.
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The thesis work of Foster (2005) involved an
extensive analysis of grammar error types across a
20K word corpus consisting of newspaper articles,
emails, Internet forum postings, and academic pa-
pers. This led to the development of an ungram-
matical version of the WSJ treebank according to
a model derived from this analysis (Foster, 2007);
this also included a procedure for constructing
trees for the ungrammatical sentences. Ungram-
matical sentences are constructed by introducing
errors into the original (grammatical) WSJ sen-
tences through the operations of word insertion,
substitution, and deletion. Each ungrammatical
sentence is then tagged with the gold standard
parse tree, a transformation of the original parse
tree of its grammatical counterpart with the in-
tended meaning remained intact. The types of er-
rors introduced include missing word, extra word,
real-word spelling, agreement, and verb form: ac-
cording to Foster, these comprise 72% of the anal-
ysed errors. Subsequently, Foster and Anderson
(2009) developed an automated error generation
tool that can be applied to any text.

Okanohara and Tsujii (2007) attempt to pro-
duce grammatically ill-formed sentences termed
as pseudo-negative examples which are not rep-
resentative of authentic errors but more like ma-
chine translation outputs. Han et al. (2010),
construct an error-annotated English corpus com-
prised of texts written by Korean learners of En-
glish and demonstrate that classifiers trained on
error-annotated data outperform those that trained
exclusively on well-formed data produced by na-
tive English speakers. Dickinson (2010), in other
recent corpus-based research aiming to address
morphological errors found in highly inflecting
languages, creates learner-like morphological er-
rors from a segmented lexicon.

3 Experimental Setup

We first describe the data used, and then the con-
sequent re-training of the parser in the first stage
of the experiments. We follow that with a descrip-
tion of the feature selection metrics for the classi-
fication experiments in the second stage.

3.1 Grammatical and Ungrammatical
Corpora

Given that the goal of the present study is to dis-
tinguish between grammatical and ungrammatical
sentences, two corpora are needed. For the gram-

matical sentences, we take the WSJ treebank by
making the assumption that they are grammati-
cally well-formed. On the other hand, the ungram-
matical sentences are obtained from noisy (dis-
torted) versions of WSJ created by Foster (2007)
and used in Foster et al. (2008). As mentioned ear-
lier, the grammatically ill-formed WSJ sentences
were generated by introducing errors to the ini-
tially well-form WSJ sentences through the oper-
ations of insertion, deletion, and substitution.

It should be noted that there are two noisy ver-
sions of WSJ. The first is a complete parallel of the
original WSJ which consists of 24 sections (from
Section 0 to Section 23) and the second set is a
much smaller one covering only 6 sections (in-
cluding Section 0, Section 2-5, and Section 23).
The latter is considered noisier data since the sen-
tences were generated by applying the error gen-
eration procedures to the first set of ungrammat-
ical WSJ sentences. Hencefore, we denote the
three sets of WSJ treebank as follows: PureWSJ
— the original WSJ; NoisyWSJ — the first set of
less noisy WSJ; and NoisierWSJ — the second set
of more noisy WSJ.

In Figure 1 we give examples of sentences with
trees generated by insertion and deletion, and their
grammatical counterparts.

3.2 Re-training of Parsers

In order to enable a parser to be able to parse un-
grammatical sentences, we re-train a probabilis-
tic parser on both grammatical and ungrammati-
cal corpora. This idea is adopted from Foster et
al. (2008). By and large, we replicate the exper-
iments conducted in Foster et al. (2008) with the
exception that the parser used in our study is the
Stanford Parser (Klein and Manning, 2003), cho-
sen for ease of re-training.

In this first stage, we conduct five experiments
to re-train the Stanford Parser to induce a more
robust parser capable of parsing both grammati-
cal and ungrammatical sentences. In the first three
experiments, three models of parser are induced
by training on three different sets of corpora —
first on the original WSJ (PureWSJ); second on the
noisy WSJ (NoisyWSJ); and third on both the orig-
inal and noisy WSJ (PureWSJ plus NoisyWSJ). We
denote these three parser models as PureParser,
NoisyParser, and MixedParser. In order to gauge
its ability of parsing both grammatical and un-
grammatical sentences, each of these models is
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(S
(NP (EX There))
(VP (VBZ is)
(NP (DT no) (NN asbestos))
(PP (IN in)
(NP (PRP$ our) (NNS products)))

(ADVP (RB now)))
(. .) (’’ ’’))

(S
(NP (EX There))
(VP (VBZ is)

(NP (DT no) (NN asbestos))
(IN at)
(PP (IN in)
(NP (PRP$ our) (NNS products)))

(ADVP (RB now)))
(. .) (’’ ’’))

(S
(S
(NP (RBR More)

(JJ common)
(NN chrysotile)
(NNS fibers))

(VP
(VP (VBP are)
(ADJP (JJ curly)))

(CC and)
(VP (VBP are)
(VP
(ADVP (RBR more) (RB easily))
(VBN rejected)
(PP (IN by)
(NP (DT the) (NN body)))))))

(, ,)
(NP (NNP Dr.) (NNP Mossman))
(VP (VBD explained))
(. .))

(S
(S
(NP (RBR More)

(JJ common)
(NN chrysotile)
(NNS fibers))

(VP
(VP (VBP are)
(ADJP (JJ curly)))

(CC and)
(VP (VBP are)
(VP
(ADVP (RBR more) (RB easily))
(VBN rejected)
(PP [deleted (IN by)]
(NP (DT the) (NN body)))))))

(, ,)
(NP (NNP Dr.) (NNP Mossman))
(VP (VBD explained))
(. .))

Figure 1: Grammatical (left) and ungrammatical (right) versions of sentences, illustrating insertion errors
(top) and deletion errors (bottom)

then evaluated against the three sets of WSJ (i.e.
PureWSJ, NoisyWSJ, and NoisierWSJ) using the
labelled f-score measure.

The last two experiments can be viewed as
the use of an integrated parser, in which each
test sentence is parsed by two types of parser
— one trained exclusively on grammatical data
(i.e. PureParser) and the other trained on some
ungrammatical data (i.e. either NoisyParser or
MixedParser). The best parse is selected by choos-
ing the one with the higher parse probability.
Hence, PureParser is integrated with NoisyParser
for the fourth experiment and with MixedParser
for the last experiment. (It should be noted that all
trainings are performed on Section 2 to Section 21
while all testings are on Section 0.)

3.3 Sentence Classification

This second stage is the core of the present study
where we experiment with production rules as fea-
tures for sentence grammaticality classification.
Apart from the parse probabilities returned to-
gether with the parse trees, we extract the indi-
vidual production rules (from either the gold stan-
dard or the parse trees) and their corresponding
rule probabilities (from parse trees) as classifica-
tion features. The use of the gold standard is
a kind of oracle, to assess the impact of parser
inaccuracies. An example with a grammatical-
ungrammatical pair is given in Figure 2. We ex-
plore various feature selection metrics to obtain a

set of production rules for classifying grammatical
and ungrammatical sentences.

Parse probability features For the feature class
of parse probabilities, we perform similar proce-
dures as in the last two experiments in the first
stage. As before, each sentence (be it for train-
ing or testing) is parsed with two types of parser
— PureParser and either NoisyParser or Mixed-
Parser. The parse probability returned by each
parser type is used as a classification feature.
Therefore, there are only two feature values for
this feature class — the parse probability from
PureParser and the parse probability from either
NoisyParser or MixedParser. A classifier consist-
ing only of these two features is our baseline.

Production rule features We first parse the sen-
tences (for both training and testing) by using the
best performing parser induced from the five ex-
periments in the first stage. Production rules are
then extracted automatically from both the gold
standard and the parser outputs. Various feature
selection metrics are used to select a set of dis-
criminative parse rules as classification features.1

The metrics we use are as follows (with r repre-
senting a production rule and c a class, i.e. gram-

1There were approximately 26K unique production rules
drawn from the training data that could possibly be used as
classification features. However, our machine learner de-
scribed below could not handle this large set of features; but
in any case, further experiments showed that a larger feature
set resulted in a monotonically lower accuracy.
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(ROOT [54.390]
(S [54.288]
(NP [5.152] (EX [1.061] There))
(VP [44.906] (VBZ [0.149] is)
(NP [31.167]
(NP [15.713] (DT [4.930] no) (NN [9.013] asbestos))
(PP [15.047] (IN [1.856] in)
(NP [12.787] (PRP$ [3.179] our) (NNS [4.923] products))))

(ADVP [3.552] (RB [3.224] now)))
(. [0.002] .) (’’ [0.014] ’’)))

(ROOT [62.603]
(S [62.500]
(NP [5.152] (EX [1.061] There))
(VP [53.118] (VBZ [0.149] is)
(PP [39.890]
(ADVP [20.095]
(NP [14.923] (DT [4.930] no) (NN [9.013] asbestos))
(IN [1.780] at))

(IN [1.564] in)
(NP [12.787] (PRP$ [3.179] our) (NNS [4.923] products)))

(ADVP [3.552] (RB [3.224] now)))
(. [0.002] .) (’’ [0.014] ’’)))

Figure 2: Parser outputs for original (left) and insertion-error (right) variants, annotated with log proba-
bilities for each production rule

matical or ungrammatical):

• Frequency (FREQ): We take the n most frequently
occurring parse rules within the grammatical cor-
pus and the ungrammatical corpus, where n ∈
{50, 100, 2500}. Feature values are the relative
frequency of each parse rule within a sentence and
also the binary value of their presence or absence.

• Ratio (RATIO): We take the ratio of the number of
occurrences of a parse rule in the grammatical cor-
pus to the number of occurrences of that rule in the
ungrammatical corpus. We pick the 50 parse rules
with the highest ratio and another 50 parse rules
with the lowest ratio as features. Feature values
are of binary type.

• Mutual information (MI): We calculate the mutual
information between a parse rule and each class
(i.e grammatical and ungrammatical). The 100
parse rules with the highest mutual information are
selected as features with binary-typed values. We
adopt the formula from Yang and Pedersen (1997):

MI(r, c) = log
Pr (r ∧ c)

Pr (r) Pr (c)
(1)

• Information gain, version 1 (IG-FREQ): We pick
the 100 and 500 rules with the highest informa-
tion gain as features. The formula is again adopted
from Yang and Pederson (1997), with m = 2.

IG(r) = −
∑m

i=1
Pr (ci) log Pr (ci)

+ Pr (r)
∑m

i=1
Pr (ci|r) log Pr (ci|r)

+ Pr (r̄)
∑m

i=1
Pr (ci|r̄) log Pr (ci|r̄) (2)

• Information gain, version 2 (IG-PROB): In addi-
tion, we attempt a different way to calculate the in-
formation gain of a parse rule, where the probabil-
ity of each parse rule Pr(r) is estimated based on
its rule probabilities extracted from the parse trees
instead of its occurrence in the corpora. Hence,
Pr(r) is the sum of all the parse probabilities of a

parse rule divided by the sum of the parse proba-
bility of all the parse trees. All feature values are
of binary type. The intuition is that it might not
be particular production rules that are character-
istic of grammaticality, but their probability: for
example, ungrammatical parses might have more
unlikely rules. As an illustration, the grammati-
cal tree in Figure 2 (left) has log prob 44.906 at
the highest VP node, while the ungrammatical tree
(right) has log prob 53.118; notwithstanding the
contribution of 1.780 from the insertion of the lex-
ical item at, there are some unlikely production
rules in this subtree of the ungrammatical tree.

• Bi-normal separation (BNS): Forman (2003) sug-
gested that this feature selection metric can be
competitive with information gain. The metric is
defined as below, where F(x) = cumulative proba-
bility function of a normal distribution:

BNS(r, c) =
∣∣F−1(Pr (r|c))− F−1(Pr (r|c̄))

∣∣ (3)

Similarly, the 100 and 500 rules with the highest
BNS scores are selected as classification features
with binary-typed values.

Besides investigating these five feature selec-
tion methods individually, we also explore the ef-
fects of their combinations as well as the combi-
nation with parse probabilities.

Training set The training set is a balanced set
of grammatical and ungrammatical sentences. As
mentioned in Section 3.1, the grammatical sen-
tences are adopted from the PureWSJ, while the
ungrammatical sentences are from the NoisyWSJ;
both are based on Section 2 to Section 21. There
are 79664 sentences in total for training.

Testing set The testing set is also a balanced
set of grammatical and ungrammatical sentences.
However, we have two sets of testing data. The
first set is formed from PureWSJ and NoisyWSJ,
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Exp Parser PureWSJ NoisyWSJ NoisierWSJ
1 PureParser 85.61 78.42 72.64
2 NoisyParser 84.31 80.32 76.19
3 MixedParser 82.63 78.69 74.25
4 Pure-NoisyParser 85.39 80.43 76.40
5 Pure-MixedParser 85.49 80.04 75.53

Table 1: Parsing results (labelled f-score %) of five
experiments on three versions of WSJ Section 0

and the second set is from PureWSJ and Noisier-
WSJ; all are based on Section 0. The latter set is
used to testify whether the degree of noisiness in
the data would have any effects on the classifica-
tion performance. There are 3840 sentences in to-
tal for testing.

Classifiers A support vector machine (SVM) is
used for all the classification tasks. We use the
online SVM tool LIBSVM (Version 2.89), imple-
mented by Chang and Lin (2001). All the classi-
fications are first conducted under the default set-
tings where the radial basic function (RBF) kernel
is used. The kernel is further tuned to find the best
pair of parameters (C, γ) for an optimal classifi-
cation model. 2 In addition to SVM, another ma-
chine learner — logistic regression — is also ex-
amined to study its effects on classification. Here,
we use the logistic regression classifier with ridge
regularization from WEKA (Version 3.6.1) (Wit-
ten and Frank, 2005).

4 Results

4.1 Parsers

In Table 1, we present the parsing results of the
five experiments conducted in the first stage where
the intention is to induce a more robust parser that
can handle ungrammatical sentences without com-
promising its performance on grammatical ones.

The integrated parser in Experiment 4 — Pure
Parser integrated with Noisy Parser — is able to
attain a relatively good parsing performance for
ungrammatical data while at the same time main-
taining its performance for grammatical data. This
parser is therefore the one that was used for all the
parsing tasks in the second stage.

2As there is no significant difference between the classi-
fication results prior to and after tuning, we only report the
prior ones. In addition, no other kernels demonstrated better
results than the RBF, so we omit these.

Feature PureWSJ-NoisyWSJ PureWSJ-NoisierWSJ
Parse Prob 65.42 74.19

Table 2: SVM results (accuracy %) with parse
probabities as features on both NoisyWSJ and
NoisierWSJ

Feature (Metrics) Gold Standard Parser Output
FREQ 64.35 53.28
RATIO 50.08 50.0

MI 50.0 n/a
IG-FREQ 67.65** 60.67
IG-PROB n/a 54.22

BNS 63.75 57.58

Table 3: SVM results (%) with parse rules as fea-
tures on NoisyWSJ — based on top 100 rules from
both gold standard and parser outputs

4.2 Classification

4.2.1 Parse Probabilities
For classification, by using just parse probabili-
ties alone as features, we can see that a reasonably
good accuracy is achievable (see Table 2). As ex-
pected, for more noisy data, their ability to distin-
gush grammatical sentences from ungrammatical
sentences is even more prominent — comparing
the classification accuracy of 65.42% (NoisyWSJ)
with 74.19% (NoisierWSJ). This classifier is our
baseline for the rest of the sentence grammatical-
ity classifications utilising production rules.

4.2.2 Production Rules
As mentioned in Section 3.3, we first examined
the production rules extracted from both the gold
standard and the parser outputs with five different
feature selection metrics. The classification ac-
curacies achieved by using the top 100 rules for
the testing of the less noisy ungrammatical data
— NoisyWSJ — are shown in Table 3.

It appears that standard information gain (IG-
FREQ) outperforms the rest of the selection met-
rics and it is the only one that performs better than
parse probabilities if the gold standard parse trees
were available (with this result being statistically
significant with 95% confidence). 3 It is, however,
worth noting that information gain which utilises
rule probabilities (IG-PROB) does not turn out to
be a better discriminant as compared to informa-
tion gain (IG-FREQ). Bi-normal separation and
frequency are the next potential candidates; but the
former is a better choice in the absence of the gold
standard. Ratio and mutual information perform
no better than chance.

3All significance tests are based on the McNemar’s test.
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Feature (Metrics) n = 200 n = 500 n = 2500
FREQ 54.84 n/a 54.04

MI n/a 50.0 n/a
IG-FREQ n/a 58.72 n/a

BNS n/a 61.93 n/a

Table 4: SVM results (%) with parse rules as fea-
tures on NoisyWSJ — based on larger numbers of
rules from gold standard

Feature (Metrics) Gold Standard Parser Output
IG-FREQ 75.65* 63.44

BNS 71.2 61.51

Table 5: SVM results (%) with parse rules as fea-
tures on NoisierWSJ — based on top 100 rules
from both gold standard and parser outputs

Table 4 presents results showing the impact of
using more production rules as selected by the var-
ious metrics; and the results were all poorer than
using just 100 rules. In view of this poorer re-
sult, we subsequently made use of only the top 100
rules for all the subsequent classifications.

Next, we performed testing on more noisy data
— NoisierWSJ — to see whether the degree of
noisiness in data would have any effects on the
classification. Not surprisingly, the more noisy
data appears to be easier to be distingushed from
the grammatically well-formed data (see Table 5).
Similarly, standard information gain (IG-FREQ)
may perform better than parse probabilities if the
gold standard were available (although this is only
marginally statistically significant at 90% confi-
dence.) We only examined two metrics here —
IG-FREQ and BNS — as these are the two most
competitive ones.

4.2.3 Combinations of Features
From the tables above, it is observed that using
production rules by itself for sentence grammat-
icality classification is generally not better than
using parse probabilities alone. We therefore at-
tempted to combine the various metrics for parse
rules as well as with the parse probabilities. Again,
we use only IG-FREQ and BNS.

Table 6 shows that combining various metrics
for production rules does not lead to any sig-
nificant improvement in classification accuracy

Features IG-FREQ+BNS IG-FREQ+FREQ BNS+FREQ
NoisyWSJ 64.76 66.38 63.98

Table 6: SVM results (%) with the combinations
of metrics as features on NoisyWSJ — based on
top 100 rules from gold standard

Features NoisyWSJ NoisierWSJ
IG-FREQ (gold standard) 66.59*** 77.58***+ Parse probabilities
IG-FREQ (parser output) 65.6 75.31***+ Parse probabilities

BNS (gold standard) 66.85*** 77.66***+ Parse probabilities
BNS (parser output) 66.02* 75.6***+ Parse probabilities

Table 7: SVM results (%) with the combinations
of parse rules (IG-FREQ and BNS) and parse prob-
abilities as features

Feature (Metrics) NoisyWSJ NoisierWSJ
IG-FREQ (gold standard) 67.65 75.65
IG-FREQ (parser output) 60.83 63.41

BNS (gold standard) 63.83 71.28
BNS (parser output) 57.97 62.79

Table 8: Logistic regression results (%) with parse
rules as features — based on top 100 rules from
both gold standard and parser outputs

(i.e. their combinations still do not perform bet-
ter than using parse probabilities alone). However,
combining parse rules with parse probabilities as
shown in Table 7 does demonstrate some mod-
est improvement of 1.6% on average in the overall
classification accuracy. With either gold standard
or parser-derived production rules, combinations
on more noisy data (NoisierWSJ) are statistically
better than just using parse probabilities alone (all
marked with *** are significant at 99% confidence
level). This is also true on the less noisy data
(NoisyWSJ), but only for gold standard production
rules.

4.2.4 Effects of Classifiers
As mentioned in Section 3.3, we also examined
the effects of using a different classifier — logis-
tic regression. It appears that logistic regression
performs on par with SVM as seen in some of the
results for logistic regression presented in Table 8.

5 Discussion

Classification accuracy The overall classifica-
tion accuracies are broadly in line with the pub-
lished literature (approximately 65% to 80%), al-
though direct comparisons are not possible be-
cause of the use of different data sets. Our clas-
sification accuracy may have been affected by the
choice of parser. Our parser (Stanford) turns out
to perform at a somewhat lower level compared to
the one used in Foster et al. (2008) (Charniak and
Johnson): on the original (grammatical) WSJ, the
f-scores are around 85% vs 90%, while there is
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(ROOT [84.000]
(S [83.897]
(NP [29.684]
(NP [12.409] (DT [2.450] The) (NN [8.188] turmoil))
(PP [16.908] (IN [1.856] in)
(NP [14.648] (NN [6.372] junk) (NNS [4.550] bonds))))

(VP [51.379] (MD [2.484] may)
(ADVP [36.195] (RB [7.225] last)
(PP [25.506] (IN [2.250] for)
(NP [22.367] (NNS [3.946] years) (, [0.000] ,)
(NNS [4.558] investors)
(CC [0.162] and)
(NNS [5.318] traders))))

(VP [7.861] (VB [4.808] say)))
(. [0.002] .)))

(ROOT [92.809]
(S [92.686]
(NP [37.595]
(NP [12.467] (DT [2.568] The) (NN [8.058] turmoil))
(PP [16.972] (IN [1.869] in)
(NP [14.666] (NN [6.290] junk) (NNS [4.654] bonds)))

(VBD [1.270] was))
(VP [51.659] (MD [2.518] may)
(VP [35.837] (VB [6.911] last)
(PP [25.929] (IN [2.299] for)
(NP [22.908] (NNS [3.981] years) (, [0.000] ,)
(NNS [4.578] investors)
(CC [0.163] and)
(NNS [5.287] traders))))

(VBZ [4.723] say))
(. [0.002] .)))

Figure 3: Example of rule selected by IG-FREQ

Feature (Metrics) Prod Rule Gram Ungram
Information Gain NP → DT DT JJ NN 2 225

(IG-FREQ) VP → TO TO VP 0 89
PP → IN IN S 0 73

PP → NN IN NP 0 70
NP → NP PP VBD 0 54

Bi-normal PP → IN IN NP 105 1858
Separation NP → NP IN PP 6 275

(BNS) VP → VBZ VBZ NP 0 157
NP → DT DT NN 2 531
S → NP VBD VP . 0 242

Ratio NP → NP , NP , VBD 0 48
NP → VBP DT JJ CD 0 15

PP → CD IN NP 0 9
VP → VB VP PRP 0 9
S → CC CC NP VP 0 48

Table 9: Examples of parse rules chosen by vari-
ous metrics (IG-FREQ, BNS, and RATIO)

a slightly bigger difference on the noisy data set,
with f-scores of 78–80% vs 85–90%.

Analysis of features We admit to some surprise
that looking in detail at production rules did not
perform better in general. We examined some of
the chosen features under each metric, and these
do appear to be strongly characteristic of ungram-
matical parses; in particular, there are several in-
stances where probabilities used in IG-PROB ap-
pear in our inspection to differ quite noticeably
between grammatical and ungrammatical alterna-
tives. We present the top 5 for each of IG-FREQ,
BNS and RATIO in Table 9, along with the num-
ber of counts in the grammatical versus ungram-
matical training corpora. Figure 3 shows an exam-
ple of one of these rules in a corpus instance.

The problem may be due to feature vector spar-
sity; looking at other types of cross-sections of
parse trees, not only horizontal production rules,
(as is done in the parse reranking approach of
Charniak and Johnson (2005)), may help with this.

Substitution rules Inspecting the features
above, it appears to be the case that substitution
cases are hard to detect because the parser is
too robust. The way that the Stanford parser

handles cases of substitution, even where there is
a significant change of part of speech (e.g. if for
is, an example generated in the ungrammatical
corpus), results in a parse that is identical to
the original grammatical one: the parser is not
troubled at all by the ungrammaticality. Supple-
menting production rules and parser probabilities
by n-grams is likely to improve this.

Feature selection metrics It was not entirely
surprising that mutual information performed
poorly: it tends to select rare instances (Manning
and Schutze, 1999) and often does poorly in classi-
fication tasks (Forman, 2003). Also as per Forman
(2003), IG and BNS performed well. Interestingly,
IG perform better in every case with rules alone,
while BNS performed better in every combination
of rules with parse probabilities, which was over-
all better than rules alone.

6 Conclusion

The present study has confirmed that parse prob-
abilities are good discriminators for judging the
grammaticality of sentences. The idea of exploit-
ing details of the parses in the form of production
rules, combined with the parse probabilities, leads
to some modest improvement to the overall classi-
fication performance.

There are a number of ways in which we might
develop further. One would be to use a wider range
of features, as in the parser reranking approach
noted in Section 5, to avoid sparsity problems. An
alternative would be to adopt the noisy channel
model: in an alternative to Brockett et al. (2006),
ungrammatical trees would be considered noisy
versions of their grammatical counterparts. Ap-
plying the approach to real ESL data might have
different results, with the kinds of errors being less
constrained and hence perhaps leading to more
significant, and detectable, parse tree changes.
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Abstract

In this paper we motivate the need for
a corpus for the development and testing
of summarisation systems for evidence-
based medicine. We describe the corpus
which we are currently creating, and show
its applicability by evaluating several sim-
ple query-based summarisation techniques
using a small fragment of the corpus.

1 Introduction

Current clinical guidelines urge medical prac-
titioners to practise Evidence Based Medicine
(EBM) when providing care for their patients
(Sackett et al., 2000). EBM has been defined as
“the conscientious, explicit, and judicious use of
current best evidence in making decisions about
the care of individual patients” (Sackett et al.,
1996). To find and appraise the evidence the
medical practitioner has access to systematic re-
views available through search tools such as the
Cochrane Library1 and UpToDate2. However,
there is not always a systematic review that ad-
dresses the specific topic at hand (Sackett et al.,
2000) and then a search on the primary literature
becomes necessary.

The amount of documents that exist in the pri-
mary literature is overwhelming. The US Na-
tional Library of Medicine, for example, offers
PubMed,3 a database of medical publications that
comprises more than 20 million citations. A
search in PubMed often returns thousands of doc-
uments. With such amount of text, summarising
the information becomes crucial. The tools avail-
able to the medical practitioner — see e.g. the
Survey by Berkowitz (2002) — typically focus on
finding and ranking the relevant papers, often with

1http://www.thecochranelibrary.com/
2http://www.uptodateonline.com
3http://www.ncbi.nlm.nih.gov/pubmed

easy access to the abstracts and type of study, and
sometimes with highlight of matching terms. But
surprisingly little effort has been placed on sum-
marising the information for easy perusal and ap-
praisal by the user.

In this paper we stress the lack of corpora to
help research in evidence-based summarisation of
clinical articles (Section 2). We present the char-
acteristics of the corpus we are developing (Sec-
tion 3), and we show the use of a small fragment of
the corpus for the evaluation of simple summarisa-
tion techniques (Section 4).

2 Where is the Corpus for
Summarisation?

Current summarisation systems have been devel-
oped and tested by using corpora built ad-hoc
and there is no common corpus readily available
specifically for the task. Afantenos et al. (2005)
surveys research in summarisation from medical
documents. One such summariser is CENTRI-
FUSER/PERSIVAL (Elhadad et al., 2005), which
builds structured query-based representations of
the documents as source for the summaries. The
system was built using an iterative design that ac-
commodates the feedback of a cohort of users.
However, their developers acknowledge the lack
of appropriate corpora, and to our knowledge nei-
ther CENTRIFUSER nor PERSIVAL were tested
on a specific corpus for comparison with other sys-
tems.

SemRep (Fiszman et al., 2004) provides ab-
stractive summarisation by producing a semantic
representation based on the UMLS concepts and
their relations (Bodenreider, 2004) as found in the
text. The evaluation was based on human judge-
ment and therefore its results are not readily com-
parable.

The system by Demner-Fushman and Lin
(2006) produces multi-document summaries
based on clusters of the main intervention found.

Diego Molla. 2010. A Corpus for Evidence Based Medicine Summarisation. In Proceedings of Australasian
Language Technology Association Workshop, pages 76−80



Figure 1: Extract of a clinical inquiry from
the Journal of Family Practice for the question
“Which treatments work best for hemorrhoids?”.

The authors present a fine review of possible
evaluation methods and they finally settled for
a combination of a factoid-based evaluation
method, together with the automatic tool for
summary evaluation ROUGE (Lin, 2004). The
model summaries used for the automatic evalua-
tion were the original paper abstracts. However,
by evaluating on a set of abstracts the evaluation
was not able to measure the system’s ability to
perform query-based summarisation, since the
abstracts were written prior to any query.

The system by Fiszman et al. (2009) uses
factoid-based evaluation that tests the summary
ability to find good interventions. This kind of
evaluation is not suitable for assessing the sum-
mary’s ability to indicate the quality of the clini-
cal evidence or other aspects of the summaries that
could be important to the medical doctor.

There are collections of clinical questions with
their answers that could be used as development
and evaluation corpora, such as the Parkhurst Ex-
change collection,4 but to our knowledge none of
the answers in these collections contain explicit

4http://www.parkhurstexchange.com/
searchQA

pointers to primary literature. Therefore, as they
stand these collections could be used for question-
answering tasks but not for query-based summari-
sation.

3 A Corpus for Summarisation

We are currently developing a corpus of questions
and evidence-based information sourced from the
Journal of Family Practice (JFP)5. We are using
all the 496 publicly available documents of the
“Clinical Inquiries” section (JFPCI henceforth).6

Each clinical inquiry from JFPCI contains a clin-
ical question, a short evidence-based answer that
includes the strength of recommendation as speci-
fied by the Strength of Recommendation Taxon-
omy (SORT) (Ebell et al., 2004), and a justifi-
cation of the answer that includes specific refer-
ences. An extract of a clinical inquiry is shown in
Figure 1.

There are two main advantages of using JFPCI
rather than direct systematic reviews such as the
Cochrane Reviews7 as a source for our corpus.

1. The format of each inquiry is relatively uni-
form across all inquiries and therefore it en-
ables a semi-automatic method to convert the
data to a corpus that can be used by a ma-
chine.

2. The text in each inquiry is much more com-
pact than in a Cochrane review. This results
on target text that is closer to what a busy
medical practitioner would want to read.

There are other sources of evidence-based text
that could be used, such as the project ATTRACT
by Public Health Wales (Brassey, 2001).8 We pre-
fer JFPCI because their procedure to find the an-
swers is more methodical than ATTRACT’s and
JFPCI includes a short evidence-based answers
followed by longer explanations, thus allowing for
the use of the corpus for multiple-document and
single-document summarisation.

The corpus we are developing is being encoded
in XML and each item has the following informa-
tion (see Figure 2 for a fragment of the encoding
of the information from Figure 1):

5http://jfponline.com/
6As of 6 September 2010.
7http://www.cochrane.org/

cochrane-reviews
8http://www.attract.wales.nhs.uk/
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<question>Which treatments work best for hemorrhoids?</question>
<answer> <snip ID=”1”>Excision is the most effective treatment for thrombosed external hemorrhoids. <SOR
type=”B”>retrospective studies</SOR>

<long>A retrospective study of 231 patients treated conservatively or surgically found that the 48.5% of patients treated
surgically had a lower recurrence rate than the conservative group (number needed to treat [NNT]=2 for recurrence
at mean follow-up of 7.6 months) and earlier resolution of symptoms (average 3.9 days compared with 24 days for
conservative treatment). <ref ID=”15486746”/ ></long>

<long>Another retrospective analysis of 340 patients . . . <ref ID=”12972967”/ ></long></snip>

</answer>

Figure 2: Information extracted from a clinical inquiry (formatted to enhance readability)

• A question, which corresponds to the title of
the clinical inquiry.

• The answer, which is split into “snips” each
one delimited by its evidence level in the
original clinical inquiry (e.g. there are 3 an-
swer snips in Figure 2).

• The evidence level of each answer snip (A, B,
C) as marked by the source.

• Additional “long” text that justifies the an-
swer by providing a summary of the explicit
evidence. This text is manually extracted
from the main text body.

• References used in the additional text. Man-
ual lookup in PubMed is being done to locate
the PubMed ID.

Not all of the text from the original source is
mapped to the XML data (e.g. the sentence “Few
studies . . . ” has been removed in Figure 2), and
sometimes minor rephrasing is required to avoid
incoherent text.

4 Summarisation Experiments

At the time of writing we had 12 clinical inquiries
available for a pilot study. With this fragment we
have evaluated several simple query-based single-
document summarisation methods. Given a ques-
tion and an abstract, the summarisers attempt to
find those sentences that best satisfy the question
information needs. The evaluation system uses
ROUGE9 taking the corresponding <long> ele-
ment as the model text. For example, in Figure 2,
given the abstract with PubMed ID 15486746,
the model text is the first <long> element. The
12 clinical inquiries produce a total of 73 text-
reference pairs that were used for our evaluation.

We used two baselines:
9We used the default settings of ROUGE.

System n Avg F Confidence

Last 3 0.183 [0.159–0.206]
Outcomes 3 0.181 [0.158–0.205]

Table 1: Baseline results

1. (Last): Return the last n sentences of the ab-
stract for n = 1, 3, 7. We obtained the best
values for n = 3 with no statistically signifi-
cant difference between n = 3 and n = 7.10

2. (Outcomes): Return the sentences extracted
by the US National Library of Medicine
(NLM)’s outcome extractor (Demner-
Fushman et al., 2006). We chose this system
because it reports very good results in the
task of finding the outcome information and
it is the closest that we have found to the
aims of our summarisers. The system returns
3 sentences (n = 3).

The results of the evaluation of the baselines are
summarised in Table 1.

4.1 Finding the most similar sentences
The two baselines introduced in the previous sec-
tion return summaries that do not incorporate in-
formation from the question. We tested the follow-
ing summarisers that reward sentences with higher
similarity with the question:

1. (Simple): Return the n sentences that share
any words (except stop words)11 with the
question, for n = 1, 3, 7. We found the best
results for n = 3.

10All tests of statistical significance in this paper are based
on the 95% confidence intervals returned by ROUGE.

11The stop words used are: ‘[’, ‘]’, ‘of’, ‘a’, ‘the’, ‘in’, ‘to’,
‘and’, ‘or’, ‘should’, ‘than’, ‘both’, ‘for’, ‘with’,’ through’,
‘is’, ‘as’, ‘that’, ‘.’, ‘,’, ‘;’, ‘:’, ‘(’, ‘)’, ‘who’, ‘are’, ‘this’,
‘those’, ‘at’, ‘has’, ‘have’, ‘had’, ‘been’, ‘be’, ‘it’, ‘were’,
‘was’.
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System n Avg F Confidence

Simple 3 0.180 [0.157–0.203]
UMLS Concepts 3 0.185 [0.161–0.209]
UMLS Graph 3 0.172 [0.149–0.194]

Table 2: Results with query similarity methods

2. (UMLS Concepts): Attempt to account for
the existence of synonyms by incorporating
the information from UMLS. In particular,
return the last n sentences that share any
UMLS concepts with the question. UMLS
concepts are extracted via NLM’s MetaMap
(Aronson, 2001).

3. (UMLS Graph): Incorporate word relations
other than synonymy. We do this by incorpo-
rating a word similarity measure that is based
on random walks through the graph formed
by UMLS relations (Agirre et al., 2009). The
summarisers of this group return the n sen-
tences that have the greatest similarity score
with the question.

We found the best results for n = 3 as reported
in Table 2. None of the approaches have statis-
tically significant differences on the value of the
average F against each other nor against the base-
lines.

4.2 Using the structure of the abstracts
Many of the source abstracts contain labelled sec-
tions. In the next group of summarisers we have
attempted to use such structured abstracts to help
the summarisers focus on specific sections of the
abstracts. We have mapped each abstract sec-
tion labels into one of “background”, “setting”,
“design”, “results”, “conclusion”, “evidence” and
“appendix”.12 Then we have used this informa-
tion to build summarisers that extract n sentences
using this sequence of steps:

1. Extract the first n sentences of the “conclu-
sion” sections.12

2. If we have less than n sentences, fill from the
first sentences of the last “results” section. If
there are still less than n sentences, fill from
the first sentences of the second last “results”
section, and so on until we have n sentences
or we have exhausted all “results” sections.

12Note that an abstract may have several sections that result
mapped to the same target label.

System n Avg F Confidence

No Overlap 3 0.184 [0.161–0.206]
Word 3 0.178 [0.154–0.199]
UMLS 3 0.185 [0.160–0.209]

Table 3: Results with abstract structure

3. If we still have less than n sentences, fill form
the “design” sections using the same method
as with the “results” sections described in
step 2.

If the abstract did not have structure, the sum-
mariser returns the last n sentences as in Sec-
tion 4.1. We are also studying methods to auto-
matically structure the unstructured abstracts.

We tried a variation that did not use information
from the question (No Overlap), another one that
selected only sentences with word overlap with
the question (Word), and another one that selected
sentences with UMLS overlap with the question
(UMLS). The results are shown in Table 3. The
results are not statistically different among each
other or against the results of the previous section.

5 Summary and Conclusions

We have argued for the creation of a corpus for
evidence-based medical summarisation. The cor-
pus is currently under construction, and here we
have presented a pilot study of the use of a frag-
ment of the corpus to test simple evidence-based
summarisers.

We have seen no statistically different results
between the approaches presented. We expect to
complete the corpus by end 2010. Then we will
repeat the experiments and confirm whether there
is no real difference in the results. More im-
portantly, we will release the corpus and test its
use with more data-intensive approaches including
machine learning methods.

The corpus is designed to facilitate the devel-
opment of multi-document summarisation tech-
niques and this will be one of the of the main re-
search paths that we plan to follow.
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Abstract

In this paper we describe machine learn-
ing experiments that aim to characterise
the content selection process for distin-
guishing descriptions. Our experiments
are based on two large corpora of human-
produced descriptions of objects in rela-
tively small visual scenes; the referring ex-
pressions are annotated with their seman-
tic content. The visual context of refer-
ence is widely considered to be a primary
determinant of content in referring expres-
sion generation, so we explore whether a
model can be trained to predict the col-
lection of descriptive attributes that should
be used in a given situation. Our exper-
iments demonstrate that speaker-specific
preferences play a much more important
role than existing approaches to referring
expression generation acknowledge.

1 Introduction

Since at least the late 1980s, referring expression
generation (REG) has been a key topic of inter-
est in the natural language generation community
(see, for example, (Dale, 1989; Dale and Had-
dock, 1991; Dale and Reiter, 1995; van der Sluis,
2001; Krahmer and Theune, 2002; Krahmer et
al., 2003; Jordan and Walker, 2005; van Deemter,
2006; Gatt and van Deemter, 2006; Kelleher and
Kruijff, 2006)); and it has recently served as the
focus for the first major evaluation efforts in nat-
ural language generation (see, for example, (Belz
et al., 2009; Gatt et al., 2009)). This level of atten-
tion is due in large part to the consensus view that
has arisen as to what is involved in referring ex-
pression generation: the task is widely accepted as
involving a process of selecting those attributes of
an intended referent that distinguish it from other
potential distractors in a given context, resulting

in what is often referred to as a distinguishing de-
scription.

Most existing REG algorithms rely on hand-
crafted decision procedures whose behaviour is ei-
ther entirely deterministic (Dale, 1989; Dale and
Haddock, 1991; Gardent, 2002) or can be influ-
enced to some degree using parameters such as
preference orderings or cost functions over the
available properties in order to choose those that
should appear in a referring expression (Dale and
Reiter, 1995; van der Sluis, 2001; Krahmer and
Theune, 2002; Krahmer et al., 2003; van Deemter,
2006; Gatt and van Deemter, 2006; Kelleher and
Kruijff, 2006). However, only very limited at-
tempts have been made to determine how these
parameters should best be instantiated in order to
allow an algorithm to mimic human-produced re-
ferring expressions. Furthermore, the results of re-
cent evaluation exercises (Gupta and Stent, 2005;
Viethen and Dale, 2006; Belz and Gatt, 2007; Gatt
et al., 2007; Gatt et al., 2008) show that none of
these algorithms can be considered an accurate
model of human production of referring expres-
sions in any of their instantiations.

In this paper, we take a speaker-oriented per-
spective on REG that is aimed in part at exploring
the factors that impact on the choices that humans
make when they refer, and ultimately at finding
models for REG which can claim at least a cer-
tain level of cognitive plausibility by being able
to replicate human referring behaviour. To this
end we use two large corpora of referring expres-
sions to train machine learning models on the task
of content determination. The larger of these cor-
pora is being introduced for the first time here. We
first attempt to build models that are able to predict
the content of a referring expression based only on
the visual characteristics of the surrounding scene.
We then contrast the results of this experiment to
those of a second set of experiments in which the
machine learner was told which participant had
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produced each description. Our results show that,
while there is too much variation in the data to
reliably predict the content of a referring expres-
sion based on the visual features of a scene alone,
much of this variation can be accounted for by ad-
ditionally taking into account participant-specific
preferences. Even models based on the identity of
the participants alone, while not as successful as
the models based solely on scene characteristics,
performed surprisingly well, underlining the im-
portance of speaker preferences in the choice of
semantic content for referring expressions.

In Section 2, we provide an overview of previ-
ous work relevant to the approach we take in this
paper. Section 3 describes the two corpora that
we use for training and testing our models. Sec-
tion 4 details the experimental setup we used, and
in Section 5 we discuss the results of our experi-
ments. Finally, in Section 6, we summarise the key
conclusions of this work and point to some future
research directions we aim to pursue.

2 Related Work

There exist a number of approaches to the use of
machine learning in referring expression genera-
tion, although they are typically focussed on as-
pects of the problem that are distinct from those
considered here.

Poesio et al. (1999) addressed the decision of
what type of NP to use to refer to a given dis-
course entity in the contexts of museum item de-
scriptions and pharmaceutical information leaflets.
They used a statistical model to choose between
a large set of NP types, including proper names,
definite descriptions, or pronouns. More recently,
Stoia et al. (2006) attempted a similar task, but
in an interactive navigational domain; as well as
deciding what type of referring expression to use,
they trained decision trees to determine whether a
modifier should be included. Cheng et al. (2001)
tried to learn rules for the incorporation of non-
referring modifiers into noun phrases. In a domain
of spoken negotiations over apartment furniture,
Jordan and Walker (2005) used features based on
different models of discourse theory to learn rules
about which attributes to include in a referring ex-
pression. The functions performed by the refer-
ring expressions in their corpus went far beyond
the simple identification task at hand in our cor-
pora, and they had to take account of a variety of
discourse-related factors impacting on their data.
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Figure 1: The 20 stimulus scenes for GRE3D3.

A number of the contributions to the 2008 and
2009 GREC and TUNA evaluation tasks have made
use of machine learning techniques. The GREC

task is primarily concerned with the choice of
form of reference (i.e. whether a proper name, a
descriptive NP or a pronoun should be used), and
so is less relevant to the focus of the present paper.
Much of the work on the TUNA task (Gatt et al.,
2008) is relevant, however, since this also is con-
cerned with determining the content of referring
expressions in terms of the attributes used to build
a distinguishing description. In particular, Fab-
brizio et al. (2008) explored the impact of individ-
ual style and priming on attribute selection for re-
ferring expression generation, and Bohnet (2008;
2009) used a nearest-neighbour learning technique
to acquire an individual referring expression gen-
eration model for each person. Other related ap-
proaches to attribute selection in the context of the
TUNA task are explored in (Gervás et al., 2008; de
Lucena and Paraboni, 2008; Kelleher and Namee,
2008; King, 2008; Hervás and Gervás, 2009; de
Lucena and Paraboni, 2009).

3 Two Corpora of Referring Expressions

3.1 Stimulus Design

The experiments in this paper are based on two
corpora of human-produced referring expressions.
The referring expressions were elicited by show-
ing participants small visual scenes containing a
number of simple abstract objects. One of the ob-
jects was marked by an arrow to indicate its status
as the target referent to be described.

One of the initial intentions underlying both
corpus collections was to investigate the condi-
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tions under which participants use spatial relations
to describe the target referent. Therefore, the de-
sign of all scenes is carefully controlled so that the
use of relations is encouraged, but not strictly nec-
essary in order to identify the referent. In particu-
lar, the target referent is always placed on top of or
directly adjacent to a second object, which we call
the landmark object. Each object is either a ball or
a cube, large or small, and of one of two colours.
The landmark object is always a cube in order to
avoid unnatural looking situations where the target
object would be balanced on top of a ball.

The main difference between the stimuli used
to collect the two corpora lies in the number of
objects contained in the scenes. The first corpus,
GRE3D3,1 has been described in detail elsewhere
(Viethen and Dale, 2008); here we only summarise
the key points. The stimulus scenes used to collect
GRE3D3 are shown in Figure 1; they contain three
objects each.

The stimuli used for the second corpus,
GRE3D7,2 contained seven objects. One of these
objects was always placed on its own to one side
of the scene; the remaining six appeared as three
pairs of directly adjacent objects. The target was
always a member of the most central pair, and one
of the other pairs had the same spatial relation as
that holding between the target and the landmark
object. The 32 stimuli scenes for GRE3D7 are
shown in Figure 2. Their design was balanced for
four within-participant factors and one between-
participant factor, which were chosen based on the
assumption that they might impact on the use of
spatial relations. These factors were the size of
the landmark object, the commonness of the land-
mark’s size (based on the number of objects shar-
ing the landmark’s size), the type of relation hold-
ing between the target and the landmark object
(vertical or lateral), and two Boolean factors cap-
turing whether the landmark and the target shared
size and colour.

3.2 Procedure and Participants

The corpora were collected in two separate self-
paced on-line language production experiments.
Participants were asked to describe the target ref-
erent in each scene in a way that would enable an-
other party looking at the same scene to pick it out

1GRE3D3 stands for Generating Referring Expressions
in 3D scenes with 3 objects.

2GRE3D7 stands for Generating Referring Expressions
in 3D scenes with 7 objects.
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Figure 2: The 32 stimulus scenes for GRE3D7.
The top half constitutes Trial Set 1 and the bottom
half is Trial Set 2.

from the other objects. The scenes were presented
consecutively above a text box into which the par-
ticipants were required to type a description before
clicking ‘DONE’ to move on to the next scene.
In the GRE3D3 collection experiment, the scenes
were presented in a preset order directly follow-
ing each other. For the GRE3D7 experiment, each
stimulus scene was preceded by a filler scene. The
filler scenes were designed to distract the partic-
ipants from noticing the similarities between the
stimulus scenes. Additionally, the order in which
the stimuli and the filler scenes were presented was
randomised before each trial.

To encourage the use of fully distinguishing
referring expressions, participants were told that
they had only one chance at describing the ob-
ject. After being presented with all the scenes in
the trial, participants were asked to complete an
exit questionnaire, which asked for their opinion
on whether the task became easier over time, and
any other comments they might wish to make.

The data from 63 participants in the GRE3D3
collection exercise and from 280 participants in
the GRE3D7 collection exercise were used to form
the final corpora. A small amount of data from
both collections were discarded because the par-
ticipants did not complete the whole experiment
or clearly had not understood the instructions cor-
rectly. All participants were self-reported native
English speakers.

Both sets of stimuli were subdivided into two
trial sets and each participant saw only one of
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% Relative Frequency
Content Pattern Example Description GRE3D3 GRE3D7

R 〈tg size, tg col, tg type〉 the small blue ball 22.70 47.88
D 〈tg col, tg type〉 the blue ball 27.30 36.70
W 〈tg size, tg col, tg type, rel, lm size, lm col, lm type〉 the small blue ball on top of the large green cube 4.76 5.31
F 〈tg col, tg type, rel, lm col, lm type〉 the blue ball on top of the green cube 7.78 2.70
T 〈tg size, tg col, tg type, rel, lm col, lm type〉 the small blue ball on top of the green cube 4.92 2.08
I 〈tg col, tg type, rel, lm size, lm col, lm type〉 the blue ball on top of the large green cube 1.90 1.03

ZF 〈tg type〉 the ball 8.25 0.07
Z 〈tg size, tg type〉 the small ball 4.44 0.38
N 〈tg size, tg col, tg loc, tg type〉 the small blue ball in the left 0.32 0.87

ZK 〈tg type, rel, lm type〉 the ball on top of the cube 3.49 0.40

Table 1: The ten most common content patterns that occur in both GRE3D3 and GRE3D7.

these trial sets. So, each participant in the
GRE3D3 collection provided ten descriptions,
while each GRE3D7 participant described 16
stimulus scenes. This resulted in 630 GRE3D3 de-
scriptions (30 for each scene in Trial Set 1, and 33
for each scene in Trial Set 2) and 4480 GRE3D7
descriptions (140 for each stimulus scene).

3.3 Annotation of Semantic Content
In order to be able to analyse the semantic content
of the referring expressions, we annotated the at-
tributes and relations contained in each of them.
The attributes that participants used in the refer-
ring expressions contained in the two corpora, and
their possible values, are as follows:

• type [ball, cube]

• colour [blue, green, red, yellow]

• size [large, small]

• location [right, left, front, top]

• relation [on-top-of, in-front-of, left-of,
right-of]

In our annotations, each attribute is prefixed by ei-
ther tg or lm to mark whether it pertains to the tar-
get or the landmark object. For example, tg size
indicates that the size of the target was mentioned.
This results in nine component properties.3

Each description contained in the GRE3D3 and
GRE3D7 corpora can be characterised in terms of
a content pattern defined by the presence or ab-
sence of each of these nine component proper-
ties. Table 1 lists the ten most common of these

3As noted by one reviewer, the ethno-cultural background
of speakers can have a large impact especially on the use of
spatial information. The data would look very different if it
had been collected from speakers of languages that mostly
make absolute reference to points of the compass rather than
using relative information such as ‘left’ and ‘right’.

content patterns along with example descriptions
and the relative frequency with which these pat-
terns occurred in each corpus. 37 different content
patterns can be found across the two corpora; the
GRE3D3 corpus contains 31 of these 37 content
patterns, four more than the much larger GRE3D7
corpus. 21 of the patterns occur in both corpora.

4 Experimental Setup

Most work on referring expression generation at-
tempts to determine what attributes should be used
in a description by taking account of aspects of the
context of reference. An obvious question is then
whether we can learn the content patterns in this
data from the contexts in which they were pro-
duced. To explore this, we define a number of
features that capture the relevant aspects of the vi-
sual context in our stimulus scenes. Importantly,
these features are general enough to be able to
capture both GRE3D3 and GRE3D7 scenes. We
use two types of features: direct property features,
which simply record the attribute value of a cer-
tain object in the scene, and comparative features,
which compare the attribute values of one object
to those of the other objects. In a second step,
we additionally include Participant ID as a scene-
independent feature. The complete list of 12 fea-
tures used is shown in Table 2.

The features pay particular attention to the prop-
erties of the target and the landmark objects for
two reasons: firstly, the nature of the task is such
that these two objects can be expected to be clos-
est to the participant’s focus of attention; and sec-
ondly, these are the only two objects that can be
identified as corresponding to each other across all
scenes, in particular in the GRE3D7 stimuli.

As direct property features we use the type of
spatial relation holding between target and land-
mark, as people generally show a preference for
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Attribute Explanation Values
direct
property
features

TG Size size of the target object small, large
LM Size size of the landmark object small, large
Relation Type type of relation between target and landmark horizontal, vertical

comparative
features

Num TG Size number of objects of same size as the target numeric
Num LM Size number of objects of same size as landmark numeric
TG LM Same Size target and landmark share size Boolean
Num TG Col number of objects of same colour as target numeric
Num LM Col number of objects of same colour as landmark numeric
TG LM Same Col target and landmark share colour Boolean
Num TG Type number of objects of same type as target numeric
Num LM Type number of objects of same type as landmark numeric
TG LM Same Type target and landmark share type Boolean
Participant ID ID number of the description giver alphanumeric

Table 2: The features and their value formats.

vertical relations over horizontal ones (Lyons,
1977; Gapp, 1995; Bryant et al., 2000; Landau,
2003; Arts, 2004; Tenbrink, 2005), and the sizes
of these two objects. We do not include colour or
type as features because the actual values of these
attributes are unlikely to have an impact on their
use. Rather, we expect the proportion of objects
sharing these properties, captured in the compara-
tive features, to be of importance. This is different
for size, as a large object stands out more from
its surroundings than a small one, even indepen-
dently of the sizes of the other objects. location
is not included as it was almost constant across all
scenes and can therefore not be used to distinguish
between them.

We used the C4.5 decision tree learning algo-
rithm (Quinlan, 1993) implemented in the Weka
workbench (Witten and Frank, 2005). We tested
both pruned and unpruned trees, but in what fol-
lows we comment on the results of the unpruned
trees only where they are different from those of
the pruned trees. Decision tree pruning is a post-
training step that simplifies the trees to reduce
over-fitting to the training data. This is especially
relevant if the trained models are used on unseen
data. However, if the ability of a feature set to
characterise a set of natural data is at question, un-
pruned trees can also be of interest.

5 Results and Discussion

In the following, the fit of the trained models is
measured by the Accuracy with which they predict
held-out test data or characterise the training data.
It is defined as the number of instances predicted
correctly divided by the total number of instances
in the test or training set.

5.1 Content Selection Based on Scene
Characteristics

The Accuracy results achieved by the models
trained on the scene-based feature set, without tak-
ing into account Participant ID, are shown in Ta-
ble 3. As a baseline we report the success rate of
a model that simply chooses the majority class in
each case. We used three different test methods:
(1) testing on the complete training set shows how
well the learned model characterises the data and
thereby gives an indication of the extent to which
the chosen features can explain the variation in the
data; (2) ten-fold cross-validation is used to assess
the ability of the learned model to generalise to
unseen data; and finally, (3) cross-corpus testing
gives insights into the difference in variation be-
tween the two data sets.

Both models significantly outperform the ma-
jority class baseline in all three test methods.4 No
difference can be found between the results for
testing on the training sets and cross-corpus test-
ing. However, three interesting observations can
be made from these results:

1. Training and testing on the GRE3D7 corpus
achieves better results than training and test-
ing on the GRE3D3 corpus.

2. Both the baseline and the decision trees
trained on GRE3D3 perform better on
GRE3D7 than on GRE3D3 itself, while the
GRE3D7-trained models achieve the lowest
results when tested on GRE3D3.

3. Overall, none of the decision trees achieve
very high Accuracy levels.

4We used χ2 with a maximum p<.05 for all significance
tests in this paper.
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training test maj. class pruned
corpus method baseline tree

GRE3D3
training set 27.30% 46.51%
10 fold X 27.30% 46.51%
cross-corpus 36.70% 47.88%

GRE3D7
training set 47.88% 64.93%
10 fold X 47.88% 64.71%
cross-corpus 22.70% 36.98%

Table 3: Accuracy for the models purely based on
scene characteristics. (Bold values are statistically
significantly different from the baseline.)

The first two of these points indicate that the
content of the referring expressions found in the
GRE3D7 corpus is easier to predict than that in the
GRE3D3 corpus, a fact that was already foreshad-
owed by the lower number of different content pat-
terns contained in GRE3D7. The second point in
particular shows that the predicted usage patterns
for the different content patterns for GRE3D7 are
subsumed by the GRE3D3 usage patterns.

One might consider these results to be slightly
surprising, as the GRE3D7 corpus with its much
larger participant base and size could have been
expected to contain more variation than GRE3D3.
It is possible that the filler items used in GRE3D7
prevented the participants from noticing how sim-
ilar their responses to the stimulus scenes were,
and thereby also prevented them from intention-
ally varying the content in their descriptions. A
second, related, factor could be that the slightly
more complex GRE3D7 scenes forced participants
to concentrate on the task more, which also would
lead to a reduced number of intentionally-varied
descriptions.

From the third observation above we conclude
that neither of the learned decision trees are able
to accurately model the referring behaviour dis-
played by the participants in our corpora. In fact,
both models predict the use of only two content
patterns, patterns R and D, the two most common
ones in both data sets, as shown in Table 1. The
tree trained on GRE3D3 is shown in Figure 3: it
only has three nodes. The GRE3D7-trained tree is
at 15 nodes more complex, but nonetheless only
predicts the same two most common patterns.

The overall low performance of the models
might either be due to some of the variation in the
data being in fact unpredictable (due to factors that
we did not capture in the collection experiments)
or random, or it may indicate that the features we

Num_TG_Same_Type > 0 ?

use pattern R use pattern D

TRUE FALSE

Figure 3: The participant-insensitive decision tree
trained on GRE3D3.

made available to the machine learning algorithm
were not sufficient to model the variation.

5.2 Participant-Dependent Modelling

Based on observations we made in (Viethen and
Dale, 2006) for a different data set, we hypoth-
esise that one main factor that might be at play
in producing the variation in the two corpora used
here are the differing preferences of the individ-
ual participants. We therefore introduced the fea-
ture Participant ID and carried out two further ex-
periments: first, we tested the predictive ability of
this feature on its own by removing all other fea-
tures from the set provided to the machine learner;
and second, we combined the scene-based features
with the Participant ID feature, in order to as-
sess the extent to which the individual participants
were taking the features of the scene into account
when referring to the target referents.

Table 4 compares the results of the second two
experiments to those of the participant-insensitive
decisions trees from the previous section.5

We firstly observe that the size of the learned de-
cision trees, measured in terms of the number of
nodes they contain, increases dramatically when
Participant ID is taken into account, even when
the other, scene-based, features are also available.
This indicates that, when given the option to use
this feature, the machine learner chooses to do
so in every case, demonstrating the usefulness of
Participant ID in characterising our data.

The trees based on Participant ID alone also
achieved surprisingly good performance, although
these trees are forced to choose one content pat-
tern for all descriptions produced by a given par-
ticipant. Only the Accuracy of the tree trained
on GRE3D3 was significantly lower than that of
the corresponding participant-insensitive tree; the
other scores are surprisingly close to those based

5Because the participants in the two data collection
exercises were not the same, cross-corpus testing of the
participant-sensitive models is not possible.
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+[scene features] −[scene features] +[scene features]
−Participant ID +Participant ID +Participant ID

training test pruned n/a pruned unpruned
corpus method Acc nodes Acc nodes Acc nodes Acc nodes

GRE3D3
training set 46.51%

3
41.91%

64
91.27%

415
98.10%

573
10 fold X 46.51% 31.11% 54.44% 57.61%

GRE3D7
training set 64.93%

15
62.28%

281
82.59%

1023
93.77%

2798
10 fold X 64.71% 57.12% 67.01% 63.71%

Table 4: Accuracy and tree size for the models based on scene and participant information. (Bold values
are statistically significantly different to the participant-insensitive trees.)

on scene features only.6

Combining the scene-based features with
Participant ID gives better results than either of
the two exclusive models achieve. To the best of
our knowledge, their cross-validation scores are
also higher than any Accuracy scores reported in
the literature for any existing algorithm instanti-
ated with a set parameter setting.7 However, in 10-
fold cross-validation, only the unpruned GRE3D3
model achieves a statistically significant improve-
ment over the participant-insensitive model. When
testing on the training set, the pruned and un-
pruned trees for both corpora vastly outperform
the models that do not take participant preferences
into account. In particular, the Accuracy scores
achieved by the unpruned models are very high.

These results confirm the hypothesis that
speaker preferences play a very important role
in shaping the semantic content of referring ex-
pressions in identification tasks. Trees using
Participant ID as the only feature perform surpris-
ingly well, and the trees that take account of both
the features of the scene and the preferences dis-
played by individual speakers are able to charac-
terise our two data sets with very high accuracy.
Our particular choice of scene-based features is
also supported by these results, as they do seem
to capture the factors that individual speakers rely
on when they build referring expressions.

The fact that they only achieve high scores if
tested directly on the training set shows that these
models are very specific to the data they were
trained on, and would not necessarily generalise
well to unseen data. A likely explanation for the
large differences between the cross-validation re-
sults and results on the training set is the low num-

6Note that pruning has no effect on trees using only one
feature, in this case Participant ID.

7This comparison must be viewed with caution, as the
other evaluations were carried out on different test corpora.

ber of instances per participant in both corpora.
We have ten descriptions from each participant in
the GRE3D3 corpus and 16 in GRE3D7, and nei-
ther of the corpora contains multiple descriptions
from the same participant for a given stimulus.

6 Conclusions and Future Work

This paper is based on the view that a primary
consideration in the study of REG should be the
development of systems that are able to explain
and replicate the semantic content found in human
data. We hold this view for two reasons: firstly,
such systems can aid the exploration of factors that
impact on the semantic choices that people make
when they refer and ultimately might be able to
claim some level of psychological reality; and sec-
ondly, generating the same referring expressions
as humans can also serve a utilitarian purpose, as
only human-like reference is likely to be accepted
as fully natural by listeners.

We have chosen a straightforward approach
to building REG models that take into account
what people do by training decision trees on two
human-produced corpora of distinguishing de-
scriptions in visual scenes. We defined a set of
features to capture the relevant visual aspects of
the stimuli used in the data collection exercises for
the two corpora. In our first experiment we estab-
lished that decision trees trained using these fea-
tures are able to outperform a majority class base-
line, but are not able to replicate a large enough
proportion of the data to be considered accurate
models of human reference behaviour. In a sec-
ond experiment we added the Participant ID fea-
ture, which allowed the machine learner to estab-
lish participant-specific behaviour patterns. Trees
based on this feature alone achieved surprisingly
good results, and the participant-sensitive trees
which also took into account the features of the
scene achieved much higher Accuracy scores than
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the participant-insensitive trees.
The main conclusion we draw from these exper-

iments is that speaker-dependent variation is one
of the most important factors shaping content se-
lection processes in the referring behaviour of hu-
mans. This is an observation that has been over-
looked in the development of most existing algo-
rithms for REG. However, if our aim is to build
algorithms that are able to accurately model cor-
pora of human referring expressions, as was the
case in the recent public evaluation campaigns in
REG (Belz and Gatt, 2007; Gatt et al., 2008; Gatt
et al., 2009), then we cannot ignore this fact.

Our next step is to take this work further by
training individual models for each speaker. Such
speaker-specific trees will allow us to explore the
different strategies that people follow when they
refer, and to compare the strategies of different
speakers to each other. We think it unlikely that
every individual speaker is idiosyncratic in this
regard; our hypothesis is that it will be possible
to use automatic clustering techniques to identify
groups of people who follow the same strategies.
Such clusters can then be used to make predic-
tions that are sensitive to between-participant dif-
ferences while benefitting from the commonalities
in people’s behaviour. It might also be interest-
ing to see if non-linguistic characteristics of speak-
ers, such as age, gender, and social or cultural
background, can account for some of the between-
participant variation in reference behaviour.

In a second strand of work we are exploring an
alternative approach to learning human reference
behaviour from this data. We are training attribute-
specific trees that make binary decisions about the
use of each individual attribute in a given refer-
ence situation, instead of predicting whole content
patterns. The attribute-specific trees for a given
participant can then be combined into a speaker
profile predicting complete referring expressions
produced by this speaker.
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Abstract

n-best parse reranking is an important
technique for improving the accuracy of
statistical parsers. Reranking is not con-
strained by the dynamic programming re-
quired for tractable parsing, so arbitrary
features of each parse may be considered.

We adapt the reranking features and
methodology used by Charniak and John-
son (2005) for the C&C Combinatory Cat-
egorial Grammar parser, and develop new
features based on the richer formalism.
The reranker achieves a labeled depen-
dency F-score of 87.59%, which is a sig-
nificant improvement over prior results.

1 Introduction

Accurate syntactic parsing has proven to be criti-
cal for many tasks in natural language processing
(NLP), including semantic role labeling (Gildea
and Jurafsky, 2002), question answering (Echihabi
and Marcu, 2003), and machine translation (De-
Neefe and Knight, 2009). Improved parser accu-
racy benefits many downstream tasks in the field.

One method of improving parsing accuracy is
reranking – the process of reordering the top n
analyses as determined by a base parser (Collins,
2000). The statistical models used in phrase-
structure and dependency parsers rely on dynamic
programming algorithms that restrict possible fea-
tures to a local context. This is necessary for effi-
cient decoding of the potential parse forest, ensur-
ing tractability at the cost of excluding any non-
local features from consideration. Reranking op-
erates over complete trees that are the most prob-
able derivations under the dynamic programming
model, allowing arbitrary complex features of the
parse to be incorporated without sacrificing effi-
ciency. Poor local decisions made by parsers are
easier to model and capture in the reranking phase.

Collins (2000) reports a 1.55% accuracy im-
provement with reranking for the Collins parser,
and Charniak and Johnson (2005) reports a 1.3%
improvement for a reranked Charniak parser. An
open question is how well reranking applies to
parsers of different design to the Charniak and
Collins parsers. An attempt to port the Char-
niak and Johnson reranker for the Berkeley parser
(Petrov et al., 2006) produced only minimal ac-
curacy improvements (Johnson and Ural, 2010),
suggesting that careful feature engineering is nec-
essary for good performance.

In this paper we describe the implementation
of a discriminative maximum entropy reranker for
the C&C parser (Clark and Curran, 2007), a state-
of-the-art system based on Combinatory Catego-
rial Grammar (CCG). We reimplement the features
described in Charniak and Johnson (2005) to suit
the CCG parser and replicate the Charniak reranker
setup. Our experiments show that the PCFG-
style features are less effective at reranking CCG

than Penn Treebank-style trees. We hypothesise
that the binary-branching structure of CCG is the
cause, as CCG trees are deeper and create differ-
ent constituent structures compared to Penn Tree-
bank trees. To address this, we develop a number
of new features to take advantage of the more de-
tailed formalism and the evaluation over recovered
dependencies. We also experiment with regression
and classification approaches, variations in feature
pruning, and differing numbers of n-best parses
for the reranker to consider.

The reranker achieves a best labeled depen-
dency F-score of 87.13% on Section 00 of CCG-
bank and 87.59% on Section 23. The performance
gains are statistically significant, but small in real
terms, indicating that crafting reranking features is
not a trivial process. However, the continued im-
provements in parsing accuracy will benefit down-
stream applications utilising the parser through
more accurate syntactic analysis.

Dominick Ng, Matthew Honnibal and James R. Curran. 2010. Reranking a wide-coverage ccg parser. In
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2 Parser Reranking

Reranking has been successfully applied to de-
pendency parsing (Sangati et al., 2009), machine
translation (Shen et al., 2004), and natural lan-
guage generation with CCG (White and Rajkumar,
2009). Collins (2000) describes reranking for the
Collins (Model 2) parser (Collins, 1999). 36,000
sentences from Sections 02-21 of the Penn Tree-
bank WSJ data are parsed with a modified ver-
sion of the base parser, producing an average of
27 parses per sentence. Features are extracted
from the parses to create reranker training data,
including lexical heads and the distances between
them, context-free rules in the tree, n-grams and
their ancestors, and parent-grandparent relation-
ships. Collins reports a final PARSEVAL F-score of
89.75% using a boosting-based reranker, a 1.55%
improvement compared to the baseline parser.

The potential benefits from reranking are de-
pendent on the quality of the candidate n-best
parses. Huang and Chiang (2005) describe effi-
cient and accurate algorithms for this task based
on a directed hypergraph analysis framework
(Klein and Manning, 2001). By improving the
quality of the candidate parses, Huang and Chiang
demonstrate how oracle reranking scores (using a
perfect reranker that always choses the best parse
from an n-best list) can be dramatically improved
compared to the parses used in Collins (2000).

Charniak and Johnson (2005) describe discrimi-
native reranking for the Charniak parser. A coarse-
to-fine parsing approach allows high-quality n-
best parses to be tractably computed while retain-
ing dynamic programming in the parser. When run
in 50-best mode the Charniak n-best parser has an
oracle F-score of 96.8% in the standard PARSE-
VAL metric – much higher than the 89.7% parser
baseline. The reranker produces a final F-score of
91.0% in 50-best mode. This is an improvement of
1.3% over the baseline model. Self-training over
the reranked parses further improves performance
to 92.1% F-score, which remains the state-of-the-
art (McClosky et al., 2006). Self-training provides
the additional benefit of improving the Charniak
parser’s performance on out-of-domain data – a
known weakness of supervised parsing.

More recently, the Charniak reranking system
has been adapted for the Berkeley parser (Petrov
et al., 2006). Unlike the Collins and Charniak
parsers, which are broadly similar and heavily
based on lexicalised models, the Berkeley parser

Jack baked a cake with raisins

N (S\NP)/NP NP/N N (NP\NP)/NP N
>

NP NP NP
>

NP\NP
<

NP
>

S\NP
<

S

Figure 1: A simple CCG derivation.

uses a split-merge technique to acquire a much
smaller, unlexicalised grammar from its training
data. Johnson and Ural (2010) report that rerank-
ing leads to negligible performance improvements
for the Berkeley parser, and acknowledge that the
reranker’s feature set, adapted from Charniak and
Johnson (2005), may be implicitly tailored to the
Charniak parser over the Berkeley parser. In par-
ticular, the feature pruning process for rerank-
ing was conducted over output from the Charniak
parser, which may have prevented useful features
for the Berkeley parser from being chosen.

3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG, Steed-
man (2000)) is a lexicalised grammar formalism
based on combinatory logic. The grammar is di-
rectly encoded in the lexicon in the form of cate-
gories that govern the syntactic behaviour of each
word. A small number of generic rules combine
categories together to form a spanning analysis.

Categories may be atomic or complex. Atomic
categories represent words and constituents that
are syntactically complete, such as nouns (N ),
noun phrases (NP ), prepositional phrases (PP ),
and sentences (S ). Complex categories are binary
structures of the form X /Y or X \Y , and repre-
sent structures which combine with an argument
of category Y to produce a result of category X .
The forward and backward slashes indicate that Y
is expected to the right and left respectively.

Complex categories can be thought of as func-
tors that require particular arguments to produce
a grammatical construction. Subcategorization
information is encoded using nested categories.
For example, transitive verbs have the category
(S\NP)/NP , which indicates that one object NP
is expected to the right to form a verb phrase
S\NP , which in turn expects one subject NP to
the left to form a sentence.
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In addition to forward and backward applica-
tion, CCG has a number of other binary combi-
nators based on function composition. There are
also unary type-changing combinators that take a
single category and transform it into another cat-
egory. Figure 1 gives a simple CCG derivation,
showing how categories are successively com-
bined together to yield an analysis.

4 The C&C parser

The C&C parser (Clark and Curran, 2007) is a fast,
highly accurate parser based on the CCG formal-
ism. The parser is used in question answering sys-
tems (Bos et al., 2007), computational semantics
tools (Bos et al., 2004), and has been shown to per-
form well in recovering unbounded dependencies
(Rimell et al., 2009).

The parser divides the parsing process into two
main phases: supertagging and parsing. First,
the supertagger assigns a small set of initial cat-
egories to each word in the sentence. Then, the
parser attempts to find a spanning analysis using
the proposed categories using the modified CKY

algorithm described in Steedman (2000). If the
parser cannot find an analysis (i.e. there is no se-
quence of combinators that can combine the pro-
posed categories) the supertagger is run again at a
higher ambiguity level, giving each word a larger
set of possible categories, and the process is re-
peated. The supertagging phase dramatically re-
duces the number of derivations for the parser to
consider, making the system highly efficient.

An n-best version of the C&C parser has re-
cently been developed (Brennan, 2008), incorpo-
rating the algorithms described in Huang and Chi-
ang (2005). The n-best parser is almost as efficient
as the baseline 1-best version, and we use it as the
basis for all experiments presented in this paper.

CCGbank is the standard corpus for English
parsing with CCG. It is a transformation of the
Penn Treebank WSJ data into CCG derivations
and dependencies (Hockenmaier and Steedman,
2007). Sections 02-21 are the standard training
data for the C&C parser, with Section 00 used for
development and Section 23 for evaluation. The
supertagger requires part-of-speech information
for each word as part of its feature set, so a POS

tagger is also included with the C&C parser. Both
the supertagger and the POS tagger are trained over
tags extracted from Sections 02-21 of CCGbank.

5 Methodology

We frame the reranking task for CCG parsing as
follows: given an n-best list of parses, ranked by
the parser, choose the parse that is as close as
possible to the gold standard. We use the stan-
dard CCG labeled dependency metric as described
in Hockenmaier (2003) to define closeness to the
gold standard, allowing us to explore both classi-
fication and regression as frameworks for the task.
In classification, the closest sentence(s) to the gold
standard with respect to F-score are labeled as pos-
itive, while all other sentences are labeled as neg-
ative. If there are multiple parses with the highest
F-score, they are all labeled as positive. In regres-
sion, the F-score of each parse is used as the tar-
get value. Both classification and regression ap-
proaches were implemented using MEGAM1.

n-best lists of parses were generated using the
n-best C&C parser using Algorithm 3 of Huang
and Chiang (2005). We used the normal-form
model for the C&C parser as described in Clark
and Curran (2007) for all experiments in this pa-
per. Reranker training data was created using n-
best parses of each sentence in Sections 02-21 of
CCGbank. As this is also the parser’s training
data, care must be taken to avoid generating train-
ing data where the parser’s confidence level is dif-
ferent to that at run-time (caused by parsing the
training data). We constructed ten folds of Sec-
tions 02-21, training the POS tagger, supertagger,
and parser on nine of the folds and producing n-
best parses over the remaining fold.

Features were generated over the n-best parses
of the folded training data and the appropriate la-
bel assigned based on the F-score. This data was
used to train the reranker. Similarly, Section 24 of
CCGbank was parsed using a model trained over
Sections 02-21 for use as tuning data. At run-time,
features were generated over the n-best parses of
the test data, and the most probable parse (clas-
sification) or the parse with the highest predicted
F-score (regression) was returned.

We experimented with values of 10 and 50 for
n to balance between the potential accuracy im-
provement and the efficiency of the reranker. n
was kept constant between the training data and
the final test data (i.e. a reranker trained on 50-
best parses was then tested over 50-best parses).

Following Charniak and Johnson (2005) we im-
plemented feature pruning for the reranker train-

1http://www.umiacs.umd.edu/˜hal/megam
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ing data as follows. For each sentence, define a
feature as being pseudo-constant if it does not dif-
fer in value over all the parses for that sentence.
We keep all features that are non pseudo-constant
in at least t sentences in the training data. We ex-
perimented with values of 0, 2, and 5 for t to in-
vestigate the effect of feature pruning.

6 Reranking Features

The features described in this section are calcu-
lated over CCG derivation trees produced by the
C&C parser. We began by implementing the fea-
tures described by Charniak and Johnson (2005),
before developing features specifically for CCG

derivations. We also implemented the CCG pars-
ing features described by Clark and Curran (2007),
so that our reranking model would have access to
the information used by the parser. These features
include various combinations of word-category,
word-POS, CCG rule, distance, and dependency in-
formation. Finally, the log score and rank assigned
to each derivation by the parser were encoded as
core features for the reranker.

CCG derivation trees have some important struc-
tural differences from the trees that the Charniak
and Johnson features were designed for. The most
important difference is that CCG trees are at most
binary branching2. As the longest non-terminal in
the Penn Treebank has 51 children, features de-
signed to generalise long production rules are use-
ful in the Charniak and Johnson reranker but are
less relevant to CCG trees.

Another important difference is that CCG pro-
duction rules are constrained by the combinatory
rules, whereas Penn Treebank productions com-
bine unrelated atomic symbols. For instance, a
Penn Treebank production NP→ NP PP would be
translated into CCG as NP→ NP NP\NP . Much
of the information in the production is already
present in the structure of the NP\NP category.
We speculate that this will make the features that
capture the vertical context of a production rule
less useful for CCG.

Finally, each ccg tree corresponds to exactly one
dependency analysis, and this is produced as out-
put by the C&C parser. This gives the reranker
access to the full dependency analysis of each
sentence, making the dependency-approximation

2Steedman (2000) describes a ternary conjunction rule,
but this is broken into two binary productions in CCGbank,
using the marker [conj ].

heuristics used by Charniak and Johnson (2005)
unnecessary for our purposes.

The features adapted from Charniak and John-
son (2005) are described in Sections 6.1 and 6.2
below. The novel CCG features we develop are
described in Section 6.3. Most features were im-
plemented as simple boolean indicator functions.
Maximum entropy modelling exponentiates fea-
ture values, so real-valued features are more in-
fluential than boolean features. We mitigated this
effect by taking the log of real-valued features.

6.1 Tree Topology Features

These features attempt to describe the overall
shape of the parse tree, to capture the fact that
English generally favours right-branching parse
trees, with phonologically heavy constituents gen-
erally occurring in sentence-final position. Tree
topology can also be useful in capturing the bal-
ance found in coordination attachment. These
guidelines distinguish the correct parse tree in Fig-
ure 2a from the incorrect parse tree in Figure 2b –
the incorrect tree is more left-branching than the
correct tree, with a shallower depth of balance in
the coordination.

CoPar: records coordination parallelism at vari-
ous depths. Indicates whether both sides of a co-
ordination are identical in structure and category
labels at depths of 1 to 4 from the coordinator.

CoLenPar: indicates the difference in size be-
tween two halves of a conjunction (where size
is the number of nodes in the yield) as well as
whether the latter half is the final element.

Heavy: encodes the category and size of the sub-
tree rooted at each non-terminal, whether the non-
terminal is at the end of the sentence, and whether
it is followed by punctuation. This crudely cap-
tures the tendency for larger constituents to lie fur-
ther to the right in a tree.

RightBranch: encodes the number of non-
terminals on the longest path from the root of the
tree to the right-most non-punctuation node in the
tree, and the number of non-terminals in the tree
that are not on this path.

SubjVerbAgr: captures the conjoined POS tags of
the subject noun and verb in a sentence to distin-
guish cases where the pluralisation does not agree.
The subject is assumed to be the final NP before
the verb phrase (S\NP ) in a sentence.
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(a) The correct parse.
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(b) Parse featuring a conjunction error.

Figure 2: Two CCG derivations for the sentence, It rose 2% this week and 9% this year.

6.2 Local Context Features

These features, adapted from Charniak and John-
son (2005), attempt to represent various fragments
of the tree as well as incorporate layers of vertical
and horizontal context that are difficult to encode
in the parser model.

Edge: captures the words and POS tags immedi-
ately preceding and following the subtree rooted
at each non-terminal in the tree. This crudely cap-
tures poor attachment decisions in local trees.

Heads: represents pairs of constituent heads as in-
dicated by the parser at various levels in the tree.
Heads are encoded as lexical items and POS tags.

HeadTree: records the entire tree fragment (in a
bracketed string format) projected upwards from
the head word of the sentence.

Neighbours: encodes the category of each non-
terminal, its binned size, and the POS tags of the
`1 preceding words and the `2 following words,
where `1 = 1 or 2 and `2 = 1. Binned size is the
number of words in the yield of the non-terminal,
bucketed into 0, 1, 2, 4, or 5+.

NGramTree: records tree fragments rooted at the
lowest common ancestor node of ` = 2 or 3 con-
tiguous terminals in the tree. This represents the
subtree encompassing each sequence of ` words
in the sentence.

Rule: captures the equivalent CCG rule application
represented at each non-terminal node; equivalent

to a context-free production rule.

SynSemHeads: yield pairs of semantic heads (e.g.
the rightmost noun in a noun phrase) and func-
tional heads (e.g. the determiner in a noun phrase)
at each non-terminal in the tree. Heads are en-
coded as lexical items and POS tags.

Word: yields each word in a sentence along with
the categories of ` = 2 or 3 of its immediate an-
cestor nodes in the tree.

WProj: for each terminal in the tree, encode the
word combined with the category of its maximal
projection parent, which is the first node found by
climbing the tree until the child node is no longer
the head of its parent.

6.3 CCG Features

We devised a number of new features for CCG

aimed at uncovering various combinator se-
quences or combinations that may indicate an
overly complicated or undesirable derivation. Ad-
ditionally, these features attempt to encode more
information about the dependencies licensed by
the derivation as it is these dependencies which
will be evaluated.

Balance: encodes the overall balance of the tree in
terms of the ratio of leaves and the ratio of nodes
in the left and right subtrees from the root. This
feature reflects the decision to make all nominal
compounds in CCGbank right branching (Hock-
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enmaier and Steedman, 2007).

CoHeads: records the heads of both halves of a
coordination as indicated by the parser, along with
the depth at which the head is found. This attempts
to encode the conjunction dependencies in the tree
as incorrect conjunction dependencies propagate
through to other dependencies in the tree. Heads
are encoded as lexical items and POS tags.

LexDep: CCG dependencies can be partially cap-
tured via the children of non-terminals in the tree.
This feature is active for non-terminals with two
children and encodes the heads of the children in
terms of lexical items, POS tags, categories, and
depth from the non-terminal. Dependencies in-
volving punctuation are ignored as they are not as-
sessed in the evaluation.

NumDeps: distinguishes between parses based on
the log number of dependencies that they yield ig-
noring punctuation. Dependencies are located us-
ing the same heuristic as the LexDep feature.

TypeRaising: indicates the presence of unary
type-raising in the tree. While type-raising is nec-
essary to analyse some constructions in CCG, it has
tightly restricted in the parser due to its power, and
is expected to appear only rarely.

UnaryRule, BiUnaryRule: indicates the unary
rules present in the tree and the bigram combina-
tions of these rules. The unary rules do not include
type-raising and are non-standard in CCG; they
were added by Hockenmaier and Steedman (2007)
to CCGbank for constructions such as clausal ad-
juncts, which are poorly handled by the formalism.

C&C Features: Finally, we also incorporate the
dependency and normal-form features used by
the C&C parser as described in Clark and Cur-
ran (2007). These features encode various com-
binations of word-category, word-POS, root-word,
CCG rule, distance, and dependency information.

7 Evaluation Measures

We follow the CCG dependency evaluation
methodology established by Hockenmaier (2003),
using the EVALUATE scorer distributed with the
C&C parser. It evaluates a CCG parse as a set of la-
beled dependencies consisting of the head, its lex-
ical category, the child, and the argument slot that
it fills. A dependency is considered correct only if
all four elements match the gold standard.

LP LR LF AF

Baseline 87.19 86.32 86.75 84.80
Oracle 10 91.98 90.89 91.43 89.47
Oracle 50 93.43 92.26 92.84 90.96

Table 1: Baseline and oracle n-best parser perfor-
mance over Section 00 of CCGbank.

Statistical significance was calculated using the
test described in Chinchor (1992), which measures
the probability that the two sets of responses are
drawn from the same distribution. A score below
0.05 is considered significant.

We report labeled precision (LP), labeled recall
(LR), and labeled F-score (LF) results over gold
standard POS tags and labeled F-score over auto-
matically assigned POS tags (AF).

8 Results

8.1 Oracle Performance

Reranking is dependent on high-quality parses
from the n-best parser. As seen in Table 1, the ora-
cle labeled dependency F-score of the n-best C&C

parser is 92.48% given a perfect reranker over 50-
best parses. This is a significant improvement over
the baseline result of 86.75% and provides a solid
basis for a reranker.

Our oracle score falls notably short of the 50-
best oracle of 96.8% reported by Charniak and
Johnson (2005), over a baseline of 89.7%. How-
ever, these numbers refer to the PARSEVAL score
for constituency parses, so they are not directly
comparable to our dependency recovery metric.

We present results in Tables 2 and 3 com-
paring the 1-best C&C parser using the normal-
form model (Clark and Curran, 2007), random-
ized baselines (choosing a parse at random from
the n-best list), and the reranking C&C parser in
labeled dependency recovery over Section 00 of
CCGbank. Our best result for 10-best rerank-
ing is an F-score of 87.13% with gold POS tags
and 85.22% with automatically assigned POS tags.
This is achieved using the regression setup and all
features without pruning. The best result for 50-
best reranking is F-scores of 87.08% and 85.23%
respectively, using the classification setup with all
features and a pruning value of 2. These two
results are both statistically significant improve-
ments over the baseline parser.

Randomly choosing a parse from the n-best list
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t LP LR LF AF

Baseline - 87.19 86.32 86.75 84.80
Random - 85.40 84.46 84.93 83.00

Class+CJ

0 87.21 86.06 86.63 84.81
2 87.16 85.98 86.57 84.82
5 87.12 85.95 86.53 84.74

Class+CCG

0 87.17 86.18 86.67 84.75
2 87.19 86.19 86.69 84.74
5 87.11 86.09 86.59 84.68

Class+ALL

0 87.32 86.32 86.82 84.85
2 87.29 86.29 86.78 84.82
5 87.23 86.25 86.74 84.79

Regress+CJ

0 86.96 85.99 86.47 84.58
2 86.75 85.76 86.26 84.34
5 86.69 85.72 86.20 84.30

Regress+CCG

0 87.27 86.41 86.83 85.08
2 87.05 86.12 86.58 84.70
5 86.96 86.08 86.52 84.73

Regress+ALL

0 87.60 86.67 87.13 85.22
2 87.42 86.47 86.94 85.00
5 87.41 86.50 86.95 84.96

.

Table 2: 10-best reranking performance on Sec-
tion 00 of CCGbank for various combinations of
features, pruning values t, and classification and
regression experiments. Bolded scores are the
highest for the feature set and approach.

t LP LR LF AF

Baseline - 87.19 86.32 86.75 84.80
Random - 83.90 82.58 83.24 81.50

Class+CJ

0 86.93 85.87 86.40 84.69
2 86.72 85.54 86.12 84.48
5 86.77 85.61 86.19 84.56

Class+CCG

0 87.17 86.10 86.63 84.62
2 87.14 86.07 86.60 84.66
5 87.29 86.17 86.72 84.66

Class+ALL

0 87.38 86.29 86.83 84.91
2 87.61 86.56 87.08 85.23
5 87.30 86.22 86.76 84.74

Regress+CJ

0 86.49 85.64 86.07 84.22
2 86.44 85.46 85.95 84.32
5 86.32 85.28 85.80 84.12

Regress+CCG

0 87.08 86.15 86.61 84.65
2 87.00 86.06 86.53 84.66
5 87.07 86.08 86.57 84.72

Regress+ALL

0 87.28 86.30 86.79 84.89
2 86.73 85.77 86.25 84.43
5 87.04 86.06 86.55 84.66

Table 3: 50-best reranking performance on Sec-
tion 00 of CCGbank for various combinations of
features, pruning values t, and classification and
regression experiments.

LP LR LF AF

Best 87.60 86.67 87.13 85.22
-CoPar 87.47 86.57 87.02 85.11
-CoLenPar 87.53 86.59 87.06 85.17
-Heavy 87.44 86.55 86.99 85.09
-RightBranch 87.59 86.67 87.13 85.17
-SubjVerbAgr 87.26 86.26 86.76 84.88
-Edges 87.11 86.22 86.67 84.87
-Heads 87.55 86.65 87.10 85.26
-HeadTree 87.61 86.64 87.12 85.22
-Neighbours 87.50 86.59 87.05 85.16
-NGramTree 87.51 86.55 87.03 85.08
-Rule 87.54 86.58 87.05 85.14
-SynSemHeads 87.42 86.47 86.94 85.07
-Word 87.44 86.51 86.97 85.11
-WProj 87.44 86.55 86.99 85.09
-Balance 87.44 86.53 86.98 85.17
-CoHeads 87.38 86.47 86.93 84.90
-LexDep 87.52 86.58 87.04 85.15
-NumDeps 87.40 86.54 86.97 85.04
-TypeRaising 87.41 86.48 86.95 85.05
-UnaryRule 87.58 86.68 87.13 85.27
-BiUnaryRule 87.55 86.64 87.09 85.20
-C&C 87.44 86.48 86.96 84.97

Table 4: Subtractive analysis on the top perform-
ing 10-best model on Section 00. Bold indicates a
statistically significant change from the baseline.

results in much poorer performance than the 1-best
baseline. All our experiments produced results
that were significantly higher than the randomized
result, indicating that our approaches were learn-
ing useful features from the training data. Even
though the oracle scores increase with n (as shown
in Table 1), the overall parse quality deteriorates.

Regression was generally more successful for
10-best reranking, while classification was better
for 50-best reranking. However, there were very
few cases where a statistically significant differ-
ence in performance was observed between re-
gression and classification approaches.

8.2 Features

We investigated the performance of three sets of
features: those adapted from Charniak and John-
son (2005) (CJ), our new features (CCG), and the
union of the two sets (ALL). The log score and
rank of each parse was included as core features
in every experiment. In general, more features im-
proved performance. The best results were pro-
duced using all of the possible features in the
reranker model. In terms of the top F-score for
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LP LR LF AF

Baseline 87.19 86.32 86.75 84.80
SubjVerbAgr 86.76 85.87 86.31 84.33
Edges 86.29 85.45 85.87 83.95
Both 86.30 85.49 85.89 83.95

Table 5: 10-best isolation experiments for the
SubjVerbAgr and Edges features on Section 00 us-
ing regression and no pruning.

LP LR LF AF

Baseline 87.75 86.98 87.36 85.07
Reranker 87.98 87.21 87.59 85.36

Table 6: Baseline and final reranker performance
over Section 23 of CCGbank with the normal-
form model.

each set of features, the CCG-specific features
were better than the Charniak and Johnson (2005)
features by a statistically significant margin. This
held in all experiments except one (10-best clas-
sification), indicating that features tailored to CCG

trees and dependency evaluation were more dis-
criminative between good and bad CCG parses.
This also implies that for reranking to improve
the accuracy of a parser, the features must target
that parser and the nature of its evaluation. Fea-
tures producing state-of-the-art performance for
the Charniak reranker had no positive impact on
CCG parsing in isolation.

We conducted subtractive feature analysis on
our best performing model (10-best regression
with all features and no pruning) to investigate
the contribution of individual features. Features
were individually removed and the reranker was
retrained and retested on Section 00. The removal
of the SubjVerbAgr and Edges features are statis-
tically significant, while the removal of any other
single feature results in a non-significant decrease
in F-score. We then performed an isolation ex-
periment, training and testing the reranker using
just the SubjVerbAgr and Edge features with the
log score and rank from the parser. Table 5 shows
that these features do significantly worse than the
baseline in isolation, indicating that it is the com-
bination of features together which produces the
improved performance.

8.3 Pruning

We found that increased feature pruning had a neg-
ative impact on parsing accuracy. None of our ex-
periments showed a significant improvement with
higher pruning values, as opposed to Charniak and
Johnson (2005) who found the count-based prun-
ing to be useful. The best performing systems
overall used pruning values of 0 or 2, implying
that the pruning strategy is ineffective with respect
to performance over such a varied set of features.
One area where pruning does help is in the train-
ing times for the reranker: some experiments are
nearly twice as fast with a pruning value t = 5 com-
pared to t = 0. However, as this cost must only be
paid once, the benefit of pruning with respect to
actual parsing time is negligible.

8.4 Final Results

Table 6 summarises the performance of our best
reranker model against the baseline normal-form
model on Section 23 of CCGbank. We achieve
statistical significant improvement in F-score over
the baseline. However, in real terms the change in
F-score is small, indicating that reranking may not
guarantee performance improvements even if it is
carefully targeted to the parser.

9 Conclusion

We have implemented a maximum entropy
reranker for the C&C CCG parser, building on the
methodology and features of Charniak and John-
son (2005) and extending the approach with new
features. We have found that performance im-
provements from reranking stem from targeting
the reranker features at the parser and its evalua-
tion: features tailored to CCG perform better than
PCFG-style features in isolation. Our best system
achieves an of 87.59%, which is a statistically sig-
nificant improvement over the baseline parser.

The reranker scales with the efficiency of cal-
culating features on parse trees. The features de-
scribed in this paper require time linear in the
number of nodes in the tree. However, the reranker
is currently implemented as an external post-
processing step. This leads to an order of magni-
tude speed decrease; future work will include in-
tegrating the reranker into the parser itself to miti-
gate this speed impact.

The improvement in accuracy that we achieve is
small in absolute terms, showing that reranking is
a considerably difficult task. However, continued
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improvements such as this one in parsing accuracy
will benefit the variety of downstream applications
that utilise parsing for practical NLP tasks.
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Abstract

Unrehearsed spoken language often
contains many disfluencies. If we want
to correctly interpret the content of
spoken language, we need to be able to
detect these disfluencies and deal with
them appropriately. In the work de-
scribed here, we use a statistical noisy
channel model to detect disfluencies in
transcripts of spoken language. Like
all statistical approaches, this is natu-
rally very data-hungry; however, cor-
pora containing transcripts of unre-
hearsed spoken language with disflu-
encies annotated are a scarce resource,
which makes training difficult.

We address this issue in the follow-
ing ways: First, since written textual
corpora are much more abundant than
speech corpora, we see whether using a
large text corpus to increase the data
available to our language model com-
ponent delivers an improvement. Sec-
ond, given that most spoken language
corpora are not annotated with disflu-
encies, we explore the use of Expecta-
tion Maximisation to mark the disflu-
encies in such corpora, so as to increase
the data availability for our complete
model.

In neither case do we see an improve-
ment in our results. We discuss these
results and the possible reasons for the
negative outcome.

1 Introduction

We are interested in improving speech disflu-
ency detection in transcripts of spontaneous
spoken language. Many models have been pro-
posed for this task in the literature; the best

performing models so far are statistical by na-
ture and have large data needs.

A statistical natural language processing al-
gorithm typically has two important compo-
nents: a model that describes the behaviour of
interest, and the training data which is neces-
sary to guide that model. It has been observed
that simple algorithms can outperform more
complex models when these simple algorithms
have the advantage in terms of the amount
of data available; so, for example, Brill and
Banko (2001) argue that more data is more im-
portant than better algorithms for some natu-
ral language processing tasks. It is this insight
that drives the work described in this paper.

Our current approach to speech disfluency
detection is trained on manually-constructed
spoken language corpora which contain anno-
tations of all disfluencies as part of the tran-
scription process. Our model is based on the
noisy channel model and consists of a language
model and a channel model. As we have re-
ported elsewhere (Zwarts et al., 2010), we are
able to achieve reasonable results when using
Switchboard data: we obtain an F-score of
0.757 in determining which constituents of an
utterance belong to a disfluency.

We would like to see if we can improve
on our previously reported performance by
adding more data. Our language model does
not need any special annotation, and so our
first set of experiments investigates whether
we can improve results by vastly increasing the
training data for the language model. The task
of increasing the training data for the channel
model is a more difficult one, since here we re-
quire the annotation of disfluencies. Our sec-
ond set of experiments therefore investigates
whether, given our existing annotated data, we
can use Expectation Maximisation in a semi-
supervised approach to automatically anno-
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tate a larger collection of unannotated speech
data, by learning what sentences typically look
like around disfluencies and what the typical
structure of disfluencies is.

The remainder of this paper is structured
as follows. In Section 2 we first present some
background on disfluencies and their structure
in spontaneous speech. Section 3 discusses the
current state of the art in disfluency detection
models, motivates the choice of the model we
use, and describes some of its intricacies and
the data sets we use. Section 4 investigates the
language model component of our model and
explores whether we can improve this compo-
nent; we provide the results obtained when
using a language model that is several orders
of magnitude larger than the language model
used in our previous work. Section 5 investi-
gates a more radical approach to address our
data needs: we alter the training data for both
the language model and the channel model.

It turns out that neither of these experi-
ments results in an improvement in disfluency
detection. Section 6 draws some conclusions
from our results, and suggests some ways for-
ward based on this experience.

2 Speech Repairs

We adopt the terminology and definitions in-
troduced by Shriberg (1994) to discuss dis-
fluencies. We are particularly interested in
those disfluencies which are categorised as re-

pairs. These are the most interesting and
also the hardest disfluencies to identify, since
they are not marked by a characteristic vocab-
ulary. Shriberg (1994) identifies and defines
three distinct parts of a such a disfluency, re-
ferred to as the reparandum, the interreg-

num and the repair. Consider the following
utterance:

I want a flight

reparandum
︷ ︸︸ ︷

to Boston,
uh, I mean
︸ ︷︷ ︸

interregnum

to Denver
︸ ︷︷ ︸

repair

on Friday
(1)

The reparandum to Boston is the part of the
utterance that is being ‘edited out’; the inter-
regnum uh, I mean is a filler, which may not
always be present; and the repair to Denver
replaces the reparandum.

Given an utterance that contains such a dis-
fluency, we want to be able to correctly detect

the start and end positions of each of these
three components. We can think of each word
in an utterance as belonging to one of four
categories: fluent material, reparandum, filler,
or repair. We can then assess the accuracy
of techniques that attempt to detect disfluen-
cies by computing precision and recall values
for the assignment of the correct categories to
each of the words in the utterance, as com-
pared to the gold standard as indicated by an-
notations in the corpus.

3 Disfluency Detection Models

3.1 Related Work

A number of different techniques have been
proposed for automatic disfluency detection.
Schuler et al. (2010) propose a Hierarchical
Hidden Markov Model approach; this is a sta-
tistical approach which builds up a syntactic
analysis of the sentence and marks those sub-
trees which it considers to be made up of dis-
fluent material. Although this is one of the
few models that actually builds up a syntactic
analysis of the utterance being analysed, its fi-
nal F-score for fluency detection is lower than
that of other models.

Snover et al. (2004) investigate the use of
purely lexical features combined with part-of-
speech tags to detect disfluencies. This ap-
proach is compared against approaches which
use primarily prosodic cues, and appears to
perform equally well. However, the authors
note that this model finds it difficult to iden-
tify disfluencies which by themselves are very
fluent. The edit repairs which are the focus
of our work typically have this characteristic:
when a speaker edits her speech for meaning-
related reasons, rather than errors that arise
from performance, the resulting disfluency can
be by itself fluent. We can see this in Exam-
ple (1): the repair and the reparandum are
equally fluent. This makes it difficult to distin-
guish reparanda as being part of disfluencies
when only lexical cues are available. Since the
transcripts we work with do not have prosodic
cues annotated, we need to look elsewhere for
a solution to this problem.

Noisy Channel models have done very well
in this area; the work of Johnson and Char-
niak (2004) explores such an approach. This
approach performs very well when compared
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with other approaches. Johnson et al. (2004)
adds some handwritten rules to the noisy
channel model, providing the current state
of the art in disfluency detection. Lease
and Johnson (2006) also use this approach,
but they are particularly interested in finding
fillers; they use early filler detection and dele-
tion in this model.

The following section describes the noisy
channel approach in more detail.

3.2 The Noisy Channel Approach

The approach we build on is that first intro-
duced by Johnson and Charniak (Johnson and
Charniak, 2004). This approach is modular
by nature, making it possible to interchange
different sub-components. The original paper
explores the use of different types of language
models, and demonstrates how some models
provide better overall performance than oth-
ers. In the remainder of this section we de-
scribe the basics of this approach.

To find repair disfluencies, a noisy channel
model is used. For an observed utterance with
disfluencies y, we wish to find the most likely
source utterance, x̂, where:

x̂ = argmax
x

p(x | y) (2)

= argmax
x

p(y | x) p(x)

Here we have a channel model p(y|x) which
generates an utterance y given a source x and
a language model p(x). We assume that x is a
substring of y, i.e., the source utterance can be
obtained by marking words in y as being dis-
fluent elements and effectively removing them
from this utterance.

The task of the language model is to assess
the fluency of the sentence when the reparan-
dum and the interregnum have been removed.
As noted above, Johnson and Charniak (2004)
experiment with variations on the language
model; they report results for a bigram model,
a trigram model, and a language model using
the Charniak Parser (Charniak, 2001). Their
results demonstrate that the parser model out-
performs the bigram model by 5%.

The channel model is based on the intuition
that a reparandum and a repair are generally
very alike; it is often the case that the repair is

almost a copy of the reparandum. In the train-
ing data, over 60% of the words in a reparan-
dum are lexically identical to the words in
the corresponding repair. Example (1) again
provides an example of this: half of the re-
pair is lexically identical to the reparandum.
The channel model therefore gives the highest
probability when the reparandum and repair
are identical. When the potential reparan-
dum and potential repair are not identical,
the channel model performs deletion, inser-
tion or substitution operations. The proba-
bilities for these operations are defined on a
lexical level and are derived from the training
set text. This channel model is formalised us-
ing a Synchronous Tree Adjoining Grammar
(S-TAG) (Shieber and Schabes, 1990), which
matches words from the reparandum to the re-
pair. The weights for these S-TAG rules are
learnt from the training text, where reparanda
and repairs are aligned to each other using a
minimum edit-distance string aligner.

For a given utterance, every possible ut-
terance position might be the start of a
reparandum, and every given utterance posi-
tion thereafter might be the start of a repair
(to limit complexity, a maximum distance be-
tween these two points is imposed). Every dis-
fluency in turn can have an arbitrary length
(again up to some maximum to limit com-
plexity). After every possible disfluency other
new reparanda and repairs might occur; the
model does not attempt to generate crossing
or nested disfluencies, although they do very
occasionally occur in practice. To find the op-
timal selection for reparanda and repairs, all
possibilities are calculated and the one with
the highest probability is selected.

A chart is filled with all the possible start
and end positions of reparanda, interregna
and repairs; each entry consists of a tuple
〈rmbegin, irbegin, rrbegin, rrend〉, where rm is the
reparandum, ir is the interregnum and rr is
the repair. A Viterbi algorithm is used to find
the optimal path through the utterance, rank-
ing each chart entry using the language model
and channel model. The language model, a bi-
gram model, can be easily calculated given the
start and end positions of all disfluency com-
ponents. The channel model is slightly more
complicated because an optimal alignment be-
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tween reparandum and repair needs to be cal-
culated. This is done by extending each par-
tial analysis by adding a word to the reparan-
dum, the repair or both. The start position
and end position of the reparandum and repair
are given for this particular entry. The task of
the channel model is to calculate the highest
probable alignment between reparandum and
repair. This is done by initialising with an
empty reparandum and repair and ‘growing’
the analysis one word at a time. Using a sim-
ilar approach to that used in calculating the
edit-distance between reparandum and repair,
the reparandum and repair can both be ex-
tended with one of four operations: deletion
(only the reparandum grows), insertion (only
the repair grows), substitution (both grow),
or copy (both grow). When the reparandum
and the repair have their length corresponding
to the current entry in the chart, the chan-
nel probability can be calculated. Since there
are multiple alignment possibilities, we use dy-
namic programming to select the most proba-
ble solutions. The probabilities for insertion,
deletion and substitution are estimated from
the training corpus. We use a beam-search
strategy to find the final optimum when com-
bining the channel model and the language
model.

3.3 The Data Set

As a data set to work with, we use the Switch-
board part of the Penn Treebank 3 corpus.
The Switchboard Corpus is made up of tran-
scriptions of spontaneous conversations be-
tween two partners during a telephone call.
The Penn Treebank 3 corpus adds manual
annotation of disfluencies to the Switchboard
corpus; additionally it provides part-of-speech
information for all the words.

The disfluency annotation distinguishes be-
tween repair disfluencies and filled pauses.
When repair disfluencies are present the struc-
ture of the disfluency is annotated: these an-
notations indicate which part of the disfluency
is the reparandum, which part is the interreg-
num and which part is the repair. The follow-
ing is an example:
[ i/NN think/VBP it/PRP was/VBD +

{F yeah/UH } i/NN think/VBP that/WDT

was/VBD ] the/DT only/JJ question/NN

E S

Here we see the reparandum (I think it was),
the interregnum (yeah) and the repair (I think
that was) annotated.

Following Johnson and Charniak (2004), we
use all of sections 2 and 3 of the corpus for
training; we use conversations 4[5-9]* for a
held-out training set; and conversations 40*,
41[0-4]* and 415[0-3]* as the held-out test set.

The corpus is not immense: a little over
100K sentences are present in the training
data. This means that in the the held-out
training set, and presumably also in the test
set, there are many out-of-vocabulary words
and a very large incidence of low frequency vo-
cabulary items, for which we struggle to find
the appropriate statistical values.

Our earlier work just used this data. When
we use the noisy channel model as described in
Section 3.2 using the Switchboard data, as de-
scribed above, we can compute precision and
recall over a held-out test set. Comparing our
output against the gold standard annotation,
we can compute performance over disfluencies
detected. This results in an F-score of 0.757.1

4 Extending The Language Model

4.1 Background

As we noted earlier, previous work by John-
son and Charniak (2004) has shown that the
language model component of the model has
an important role: when more sophisticated
language models are used, the overall perfor-
mance can be increased significantly.

An important aspect of our earlier work is
that we were particularly interested in process-
ing incoming speech incrementally, detecting
disfluencies as soon after they happen as pos-
sible. However, incremental processing makes
the use of a reranker, as adopted in Johnson
and Charniak’s more sophisticated model, a
less viable option. Our initial language model
was trained on the fluent part of the Switch-
board Corpus: this consists of the utterances
with the reparanda and the interregna re-
moved. The bigram model is trained on the
counts from the same data and, as mentioned
above, this contains approximately 100k sen-
tences. This would not typically be considered
a large data set in terms of language modelling

1The F-score reported here is the harmonic mean

between precision and recall.
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(Harb et al., 2009); consequently, we look to
increasing the amount of data used in our lan-
guage model as an alternative means of im-
proving results.

4.2 Motivation

Using a larger set of data for the language
model allows us to answer two questions:

1. Has the current bigram model reached
its limit? Previous research has shown
that reranking the results of a model
using bigrams still leaves room for im-
provement. We assume that the bigram
model itself also has scope for improve-
ment, since there is still a large set of
out-of-vocabulary words in the held-out
training set, and an even larger set of low
frequency words for which it is difficult
to calculate the proper probabilities accu-
rately. Can we improve the bigram model
when we increase its training data?

2. Does the nature of the data used matter?
Our language model is currently specifi-
cally trained on the fluent parts of tran-
scribed spontaneous speech. Most lan-
guage models, however, are built on pri-
marily written texts, given their greater
availability. Would the use of a vastly
greater quantity of written data offset the
impact of the change in the nature of that
data?

4.3 Experimental Setup

We decided to use the Google Web 1T cor-
pus, which contains English word n-grams and
their observed frequency counts. The n-gram
counts were generated from approximately 1
trillion word tokens of text from publicly ac-
cessible Web pages, much larger than the num-
ber of words in Switchboard (roughly 700K).
In their description of this corpus, the authors
suggest the corpus should be useful for lan-
guage models and for speech recognition; our
experiments are one test of this claim.

The Web 1T corpus records counts for uni-
grams up to 5-grams. We only use the bigram
part of this corpus, but this still introduces
memory problems. The entire bigram counts
take up more than 8.8GB, which is more than
we can fit into memory. This dataset is also

vastly larger than the test portion of the cor-
pus. Since our evaluation is only carried out
over the test portion, we do not need to mem-
orise any bigrams which are not present in this
portion; so, we can use the process of prefilter-
ing (Goodman, 2001) the bigrams of the larger
corpus against the test set. This process does
not mean we are using test data during our
experiments: it is only an optimisation strat-
egy that avoids loading into memory bigrams
which will not be used later. After this process
of prefiltering we are left with only 10MB of
bigram data, which easily fits into memory.

Our baseline model is the model as de-
scribed by Johnson and Charniak (2004), us-
ing the traditional Switchboard part of the
Penn Treebank 3 data to derive the language
model. Our alternative model has the lan-
guage model replaced with the Web 1T bi-
gram probabilities. If this approach proves to
be successful, we might consider using a lan-
guage model which is a hybrid consisting of
both the data derived from the Switchboard
part (which is arguably closer in nature to the
data we ultimately want to process), and the
Web 1T data (which might deliver statistics
for the tail end of the Zipfian curve). We can
use the held-out training set for tuning pur-
poses to decide on the relative weight to be
accorded to these two language models.

4.4 Results

The baseline model, using only the Switch-
board data with a bigram language model, re-
sults in an F-score of 0.757. Our new model,
which uses a vastly larger data set for bigram
modelling, results in an F-score of 0.739.

The most obvious explanation for this is
that text derived from Web pages is not a good
source of data for building a language model
for spoken language: Even when disfluencies
are removed from spontaneous spoken speech,
the language used is still very different from
written text. In general terms, this, of course,
is not a new or surprising result; Biber (1988),
and many others since, have drawn attention
to the differences between spoken and written
language. What is perhaps more surprising
is that these differences appear to impact not
only, for example, at the syntactic level, but
also at the level of bigram occurrences.

103



5 A Semi-supervised Learning

Approach

5.1 Background

Our noisy channel approach has two compo-
nents, the language model and the channel
model. The approach in the previous section
investigate whether it would be possible to use
a very large data set for the language model.
In this section we investigate whether it is pos-
sible to address the data needs for both the
language model and the channel model.

5.2 Motivation

Our objective here is to use a data set of tran-
scribed spontaneous speech which is more than
an order of magnitude larger than the data
available in the Switchboard part of the Penn
Treebank 3 corpus. With this approach we
would hope to answer the following three ques-
tions:

1. Is it possible to significantly increase the
performance of this model, without the
application of a more complicated ap-
proach? As noted above, complications
like reranking via parser results are diffi-
cult to apply in our incremental process-
ing scenario.

2. What does the performance curve of this
model look like? When we increase train-
ing data, how does the overall perfor-
mance increase? Our interest here is in
providing a more definitive assessment as
to how much data is needed to reach the
upper limit of performance with the cur-
rent model.

3. Can we use a Expectation Maximisa-
tion approach in order to increase our
data needs? Disfluency-annotated data
is very costly to develop; we want to see
whether we can avoid this by automat-
ically deriving such annotations using a
semi-supervised approach.

5.3 Experimental Setup

In the experiments described here, we explore
increasing the training data by using addi-
tional speech corpora.

The Fisher English Training Speech Tran-
scripts represent the collection of conversa-

tional telephone speech (CTS) that was cre-
ated at the LDC during 2003. It contains tran-
script data for 5,850 complete conversations,
each lasting up to 10 minutes. The Fisher
Speech Corpora Part I and II together contain
a little over 2 million sentences, which is con-
siderably more than is present in the Switch-
board part of Penn Treebank 3. However,
the only disfluency annotation the corpus con-
tains is the marking of partially uttered words.
Filled pauses and the more complicated repair
disfluencies are not annotated.

Besides lacking disfluency annotations, the
Fisher corpora also lacks part-of-speech tags.
Our channel model uses these tags to build up
an alignment between reparandum and repair:
since it assumes reparandum and repair are a
rough copy of each other, it uses the part-of-
speech tags to inspect how similar these parts
are, and these tags are especially useful when
the words in the reparandum and repair are
not exact lexical copies. Since it is too costly
to obtain manually-annotated tags for our cor-
pus, we use the Brill Tagger (Brill, 1993) to
automatically annotate the Fisher corpus with
part-of-speech tags, using the same tag set as
is used in the Penn Treebank 3 data.

Once the part-of-speech tags are available,
we can use our original noisy channel model
to annotate this corpus for disfluencies. We
can then add this newly acquired data to the
existing training data. In this way, we hope
to acquire new statistical insights into what
types of disfluencies are common, and what
sentences typically look like around these dis-
fluencies.

In order not to dominate the manually-
annotated data from the Penn Treebank 3
data with the more noisy Fisher data, we
would as a first step like to use them in simi-
lar proportions. We initially only use the first
part of the Fisher data, of a similar size to the
Penn Treebank 3 data. When this approach
results in increased performance, we can re-
annotate this same part with the newly built
model, which hopefully will result in a bet-
ter analysis of the Fisher corpus. When this
iterative process reaches its maximum score,
we can then investigate whether we can use
more of the Fisher data. Because the original
Penn Treebank 3 data is hand-annotated and
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is more accurate, it might prove to be help-
ful to not weight counts from both corpora
equally: doing so might make the model drift
away from disfluency detection to another an-
notation scheme which fits the data better, but
which ultimately could be meaningless. We
can use the held-out training data to properly
decide on a weighting scheme between both
corpora.

The baseline which we compare against is
the standard model as described by (Johnson
and Charniak, 2004), using the Penn Treebank
3 data set only.

5.4 Results

The baseline model using only the Switch-
board data part results in an F-score of 0.757
using the bigram language model. When we
add the Fisher data as part of our training
data we expect to achieve a higher perfor-
mance; however in our experimental set-up we
reached a final F-score of 0.742, which is ac-
tually a slight decrease in performance. This
is disappointing, since Expectation Maximisa-
tion has proven to be a successful strategy in
other area of natural language processing.

There are several possible reasons as to why
this approach turned out to be less fruitful
here. First, note that the training process
heavily relies on part-of-speech information.
However, the Brill Tagger was not initially
built for spontaneous speech, and may have
introduced errors which impact on our final
results. An alternative explanation could be
that the Fisher corpus and Switchboard cor-
pus exhibit a different type of language use,
although this seems to be less likely. Finally,
it could be the case that our model does not
perform well enough on the Fisher data to ac-
tually help out in a new iteration, although
for the expectation maximisation step an F-
score of around 0.75 should not be a hindrance
to building a new model for a next iteration.
Significant gains using Expectation Maximisa-
tion have been achieved in other spoken lan-
guage processing tasks starting from this abso-
lute score (Sandrini and Federico, 2003). We
are not yet convinced, therefore, that this di-
rection is a dead-end.

6 Conclusions and Future Work

Statistical models are typically data-hungry,
and so a problem arises in any domain where
data is scarce. In this paper, we have explored
two different approaches that aim to increase
the amount of data usable by our disfluency
detection model. We have investigated the use
of Google 1T, the largest written text corpus
available to date for language modelling. This
proved to have a negative impact on our re-
sults. We hypothesise that this is most likely
because of the differences between written and
spoken language. The result means that one
should be cautious about using corpora de-
rived from textual sources when working with
conversational speech.

In our second set of experiments, we tried
to use Expectation Maximisation to provide
more data for use in our channel model.
Again, the results here were negative.

Ultimately, although it may be true that
more data can be more important than
smarter algorithms, it needs to be the right
data.

For future work we intend to experiment
with a different part-of-speech tagger. We
also suspect that a different source of data
may require retuning of our model: currently
our model is trained towards the Switchboard
data, and even though this is the only data
for which we have gold standard annotations,
we would like to retune the model parameters
when using the Fisher corpus. We can still
use the held-out Switchboard data set to re-
tune the model operating on Switchboard and
Fisher. The current approach uses a noisy
channel model, in which the language model
and channel model are weighted equally. We
could transform this into a log linear model
which will allow us not only to weight the lan-
guage model and channel model differently,
but also will allow us to use multiple mod-
els. We can develop separate language models
from different sources (Web1T, Fisher, Switch-
board) and separate channel models derived
from different sources (Fisher via EM train-
ing, Switchboard) and use them simultane-
ously. Using a log linear approach we can in-
dividually weight these components using the
held-out training set to achieve optimal per-
formance. This almost guarantees that perfor-
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mance will not degrade, as in a worst case sce-
nario the learner can turn off new data sources
and use the old model; but even when there
is a little information in any of the additional
sources, performances is expected to go up. Fi-
nally, using such a model will allow us to add
any computable feature, making it possible to
go beyond language and channel models. As
an additional advantage, the individual learnt
weights will be a good indication of the rela-
tive value of each data source.
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