
Australasian Language
Technology

Workshop 2005

Proceedings of the Workshop

Workshop Chairs:
Timothy Baldwin

James Curran
Menno van Zaanen

10-11 December 2005
University of Sydney

Sydney, Australia

Proceedings of the Australasian Language Technology Workshop 2005

URL: http://www.alta.asn.au/events/altw2005/

Sponsors:

The University of Sydney

ISBN: 0-9751687-2-X

To order copies of this and other ALTA proceedings, contact workshop@alta.asn.au

ii

Introduction

This volume contains the papers accepted for presentation at the Australasian Language Technology
Workshop (ALTW) 2005, held at the University of Sydney, Sydney, Australia, on 10-11th of December,
2005. This is the third annual installment of the workshop in its most-recent incarnation, and the
continuation of an annual workshop series that has existed under various guises since the early 90s.

The goals of the workshop are:

• to bring together the growing Language Technology (LT) community in Australia and New
Zealand and encourage interactions;

• to encourage interactions between this community and the international LT community;

• to foster interaction between academic and industrial researchers;

• to encourage dissemination of research results;

• to provide a forum for the discussion of new and ongoing research and projects;

• to provide an opportunity for the broader artificial intelligence community to become aware of
local LT research; and, finally,

• to increase visibility of LT research in Australia, New Zealand and overseas.

One innovation in this year’s Australasian Language Technology Workshop was the introduction of
poster presentations in addition to the regular talks. Our intention here was to optimise the presentation
medium for each submission, and reviewers were accordingly instructed to independently rate the
acceptability of each submitted paper first as a regular paper and second as a poster. Specifically,
consideration was given to: (a) which mode of delivery was most appropriate for a given submission
(e.g. papers which were felt to benefit from a more interactive presentation were preferred as posters),
(b) what was the technical merit of the submission (e.g. highly technical papers which relied on detailed
explanation of a series of equations were preferred as regular papers), and (c) was the submission of
general interest (e.g. papers describing general results with ramifications for a range of fields were
preferred as regular papers). It is important to note that research quality and technical rigour were not
taken into consideration in determining whether to accept a paper as a regular paper or poster. As such,
regular papers and posters are of identical academic status.

Of the 45 papers submitted, 30 papers were selected by the programme committee for publication and
appear in these proceedings. Of these, 14 are regular papers and 16 are posters. Each full-length
submission was independently peer reviewed by at least two members of the international program
committee, in accordance with the DEST requirements for F1 conference publications.

We would like to thank all the authors who submitted papers, as well as the members of the program
committee for the time and effort they contributed in reviewing the papers, and Dan Flickinger, Kathy
McKeown and Virach Sornlertlamvanich for providing the ideal complement to the workshop with
their invited talks. Our thanks go also to members of the ALTA executive, and particularly Steven Bird
and Cécile Paris for encouragement and support in organising the workshop. Finally, we would like
to thank the sponsors (DSTO, NICTA, CSIRO and Appen) for their generous help in supporting the
workshop, and Dominique Estival as sponsorship chair.

Timothy Baldwin, James Curran, Menno van Zaanen

iii

Organizers:

Timothy Baldwin (University of Melbourne)
James Curran (University of Sydney)
Menno van Zannen (Macquarie University)

Program Committee:

Ash Asudeh (University of Canterbury)
Eric Atwell (Leeds University)
Timothy Baldwin (University of Melbourne)
Steven Bird (University of Melbourne)
Lawrence Cavedon (NICTA Victoria)
Trevor Cohen (University of Melbourne)
James Curran (University of Sydney)
Walter Daelemans (University of Antwerp)
Robert Dale (Macquarie University)
Dominique Estival (Defence Science and Technology Organisation)
Dan Flickinger (Oslo, Saarland and Stanford Universities)
Tanja Gaustad (Appen)
Graeme Hirst (University of Toronto)
Ben Hutchinson (University of Edinburgh)
Jong-bok Kim (Kyung Hee University)
Alistair Knott (University of Otago)
Valia Kordoni (University of Saarland)
Mirella Lapata (University of Edinburgh)
Hang Li (Microsoft Research)
Diana McCarthy (University of Sussex)
Daniel Midgley (University of Western Australia)
Diego Molla (Macquarie University)
Kyonghee Paik (KLI Language and Translation)
Ajeet Parhar (Telstra Research Laboratories)
Cécile Paris (CSIRO ICT Centre)
Jon Patrick (University of Sydney)
David Powers (Flinders University)
Tony Smith (Waikato University)
Harold Somers (University of Manchester)
Nicola Stokes (NICTA Victoria)
Takaaki Tanaka (NTT Communication Science Laboratories)
Aline Villavicencio (University of Essex)
Menno van Zaanen (Macquarie University)
Simon Zwarts (Macquarie University)

Invited Speakers:

Dan Flickinger (Oslo, Saarland and Stanford Universities)
Kathy McKeown (Columbia University)
Virach Sornlertlamvanich (NICT)

v

Table of Contents

Dimensions of Deep Grammar Validation
Dan Flickinger . 1

Text Summarization: News and Beyond
Kathy McKeown . 4

From Non-segmenting Language Processing to Web Language Engineering
Virach Sornlertlamvanich . 5

Disambiguating Conjunctions in Named Entities
Pawel Mazur and Robert Dale. .7

Learning of Graph Rules for Question Answering
Diego Molla and Menno van Zaanen . 15

A Statistical Approach towards Unknown Word Type Prediction for Deep Grammars
Yi Zhang and Valia Kordoni . 24

Tagging Unknown Words with Raw Text Features
David Vadas and James R. Curran . 32

POS Tagging with a More Informative Tagset
Andrew MacKinlay and Timothy Baldwin . 40

Augmenting Approximate Similarity Searching with Lexical Information
James Gorman and James R. Curran . 49

Word Prediction in a Running Text: A Statistical Language Modeling for the Persian Language
Masood Ghayoomi and Seyyed Mostafa Assi . 57

Using Diverse Information Sources to Retrieve Samples of Low Density Languages
Andrew MacKinlay . 64

Faking it: Synthetic Text-to-speech Synthesis for Under-resourced Languages – Experimental Design
Harold Somers . 71

Dual-Type Automatic Speech Recogniser Designs for Spoken Dialogue Systems
Jason Littlefield and Michael Broughton . 78

Efficient Knowledge Acquisition for Extracting Temporal Relations
Son Bao Pham and Achim Hoffmann . 87

Formal Grammars for Linguistic Treebank Queries
Mark Dras and Steve Cassidy . 96

Extracting Exact Answers using a Meta Question Answering System
Luiz Augusto Pizzato and Diego Molla . 105

Multimedia Presentation of Grammatical Description: Design Issues
Simon Musgrave . 113

vii

Structuring Documents Efficiently
Robert Marshall, Steven Bird and Peter Stuckey . 120

Round-trip Translation: What Is It Good For?
Harold Somers . 127

Evaluating the Utility of Appraisal Hierarchies as a Method for Sentiment Classification
Jeremy Fletcher and Jon Patrick .134

Efficient Grapheme-phoneme Alignment for Japanese
Lars Yencken and Timothy Baldwin . 143

Statistical Interpretation of Compound Nominalisations
Jeremy Nicholson and Timothy Baldwin . 152

Paraphrase Identification by Text Canonicalization
Yitao Zhang and Jon Patrick . 160

Words and Word Usage: Newspaper Text versus the Web
Vinci Liu and James R. Curran .167

Automatic Induction of a POS Tagset for Italian
Raffaella Bernardi, Andrea Bolognesi, Corrado Seidenari and Fabio Tamburini 176

A Dual-Iterative Method for Concept-Word Acquisition from Large-Scale Chinese Corpora
Guogang Tian and Cungen Cao . 184

Programming With Unrestricted Natural Language
David Vadas and James R. Curran . 191

Identifying FrameNet Frames for Verbs from a Real-Text Corpus
Matthew Honnibal and Tobias Hawker. .200

A Distributed Architecture for Interactive Parse Annotation
Baden Hughes, James Haggerty, Joel Nothman, Saritha Manickam and James R. Curran 207

Multi-document Summarisation and the PASCAL Textual Entailment Challenge
Nicola Stokes and Eamonn Newman . 215

Design and Development of a Speech-driven Control for a In-car Personal Navigation System
Ying Su, Tao Bai and Catherine I. Watson . 224

Combining Confidence Scores with Contextual Features for Robust Multi-Device Dialogue
Lawrence Cavedon, Matthew Purver and Florin Ratiu . 233

Automatic Utterance Segmentation in Instant Messaging Dialogue
Edward Ivanovic . 241

viii

Workshop Programme

DAY 1 — 10 DECEMBER, 2005

09:25-09:30 Opening Remarks

09:30-10:00 Disambiguating Conjunctions in Named Entities
Pawel Mazur and Robert Dale

10:00-10:30 Learning of Graph Rules for Question Answering
Diego Molla and Menno van Zaanen

10:30-11:00 A Statistical Approach towards Unknown Word Type Prediction for Deep Grammars
Yi Zhang and Valia Kordoni

11:00-11:30 Coffee Break

11:30-12:00 Tagging Unknown Words with Raw Text Features
David Vadas and James R. Curran

12:00-12:30 POS Tagging with a More Informative Tagset
Andrew MacKinlay and Timothy Baldwin

12:30-13:00 Augmenting Approximate Similarity Searching with Lexical Information
James Gorman and James R. Curran

13:00-14:00 Lunch

14:00-15:00 Dimensions of Deep Grammar Validation
Invited Speaker – Dan Flickinger

15:00-15:15 Coffee Break

15:15-16:30 POSTER SESSION 1
Word Prediction in a Running Text: A Statistical Language Modeling for the Persian
Language
Masood Ghayoomi and Seyyed Mostafa Assi
Using Diverse Information Sources to Retrieve Samples of Low Density Languages
Andrew MacKinlay
Faking it: Synthetic Text-to-speech Synthesis for Under-resourced Languages – Ex-
perimental Design
Harold Somers
Dual-Type Automatic Speech Recogniser Designs for Spoken Dialogue Systems
Jason Littlefield and Michael Broughton
Efficient Knowledge Acquisition for Extracting Temporal Relations
Son Bao Pham and Achim Hoffmann

ix

Formal Grammars for Linguistic Treebank Queries
Mark Dras and Steve Cassidy
Extracting Exact Answers using a Meta Question Answering System
Luiz Augusto Pizzato and Diego Molla
Multimedia Presentation of Grammatical Description: Design Issues
Simon Musgrave

16:30-17:00 Structuring Documents Efficiently
Robert Marshall, Steven Bird and Peter Stuckey

17:00-17:30 Round-trip Translation: What Is It Good For?
Harold Somers

17:30-18:00 Evaluating the Utility of Appraisal Hierarchies as a Method for Sentiment Classifi-
cation
Jeremy Fletcher and Jon Patrick

DAY 2 — 11 DECEMBER, 2005

09:30-10:00 Efficient Grapheme-phoneme Alignment for Japanese
Lars Yencken and Timothy Baldwin

10:00-10:30 Statistical Interpretation of Compound Nominalisations
Jeremy Nicholson and Timothy Baldwin

10:30-11:00 Paraphrase Identification by Text Canonicalization
Yitao Zhang and Jon Patrick

11:00-11:30 Coffee Break

11:30-12:30 Text Summarization: News and Beyond
Invited Speaker – Kathy McKeown

12:30-14:00 Lunch

14:00-15:15 POSTER SESSION 2
Words and Word Usage: Newspaper Text versus the Web
Vinci Liu and James R. Curran
Automatic Induction of a POS Tagset for Italian
Raffaella Bernardi, Andrea Bolognesi, Corrado Seidenari and Fabio Tamburini
A Dual-Iterative Method for Concept-Word Acquisition from Large-Scale Chinese
Corpora
Guogang Tian and Cungen Cao
Programming With Unrestricted Natural Language
David Vadas and James R. Curran

x

Identifying FrameNet Frames for Verbs from a Real-Text Corpus
Matthew Honnibal and Tobias Hawker
A Distributed Architecture for Interactive Parse Annotation
Baden Hughes, James Haggerty, Joel Nothman, Saritha Manickam and James R.
Curran
Multi-document Summarisation and the PASCAL Textual Entailment Challenge
Nicola Stokes and Eamonn Newman
Design and Development of a Speech-driven Control for a In-car Personal Naviga-
tion System
Ying Su, Tao Bai and Catherine I. Watson

15:15-15:45 Combining Confidence Scores with Contextual Features for Robust Multi-Device
Dialogue
Lawrence Cavedon, Matthew Purver and Florin Ratiu

15:45-16:15 Automatic Utterance Segmentation in Instant Messaging Dialogue
Edward Ivanovic

16:15-16:45 Coffee Break

16:45-17:45 From Non-segmenting Language Processing to Web Language Engineering
Invited Speaker – Virach Sornlertlamvanich

17:45-18:00 Award Ceremony and Closing Remarks

xi

Proceedings of the Australasian Language Technology Workshop 2005, pages 1–3,
Sydney, Australia, December 2005.

Dimensions of Deep Grammar Validation

Dan Flickinger
Oslo, Saarland, and Stanford Universities

danf@csli.stanford.edu

Abstract

In order to arrive at a more disciplined ap-
proach to the sustained development of linguis-
tically rich grammars, I present a methodology
for grammar validation, identifying principal di-
mensions of the task, and illustrating the appli-
cation of the method for one release cycle of the
open-source English Resource Grammar.

1 Introduction

Broad-coverage grammars for natural language
processing which encode rich linguistic de-
scription are resources which develop relatively
slowly, through many iterations of modification
and testing, and ideally through exposure to the
demands of a variety of NLP tasks. As with
most large software components, such gram-
mars are designed to exhibit a complexity of
behavior which presents serious challenges for
quality assurance from one release of a gram-
mar to the next release. There is by now a
substantial literature on many aspects of the
evaluation of NLP software, including gram-
mars, much of it focused around ’black box’
or functional evaluation within some specific
task domain(Hirschman and Thompson, 1998),
(Sparck Jones and Galliers, 1998). Methods and
tools have also been developed for ’glass box’
or structural evaluation (EAGLES, 1996), with
one line of work analyzing the internal formal
coherence of such deep grammars, for example
to flag inconsistencies or identify unused rules
or constraints in the grammar code (Broeker,
2000), (Barr and Siefring, 2004), and another
line of work using paraphrase generation to il-
luminate properties of a bi-directional grammar
not easily detected when parsing (Dymetman
and Isabelle, 1988). And finally, there has been
work on developing a methodology of sustained
grammar development, whereby these labor-
intensive, long-lived resources undergo periodic
modification intended to improve corpus cover-
age, or processing efficiency, or linguistic preci-

sion, or more typically all three at once (Oepen
and Flickinger, 1998). Such a methodology
must incorporate a set of disciplined procedures
for validation of the resulting grammar, ensur-
ing that it meets the expectations of its engi-
neers, and explicitly communicates the interface
specifications for its use in applications.

In this talk I describe an instantiation of a
method for natural language grammar valida-
tion (cf. (Barr and Klavans, 2001)) to iden-
tify and motivate the multiple dimensions of the
procedure, and to illustrate how many of the
the tools and techniques proposed in the NLP
evaluation literature are being exploited by en-
gineers of large deep grammars. For concrete-
ness, I present the method used in maintaining
and extending the English Resource Grammar
(ERG (Flickinger, 2000), a semantically pre-
cise, broad-coverage Head-driven Phrase Struc-
ture Grammar (HPSG) implementation used
for both parsing and generation in several
NLP applications, being developed within the
Deep Linguistic Processing with HPSG Initia-
tive (DELPH-IN: www.delph-in.net).

At the heart of this method is the use of
a growing set of test suites of two kinds, to-
gether with a sophisticated grammar profiling
tool, [incr tsdb()], which collects and preserves
competence and performance data on these test
suites. Some of the test suites consist of sets of
hand-built example sentences and ungrammat-
ical strings illustrating core linguistic phenom-
ena, while the other class of test suites contain
naturally occurring text items drawn from cor-
pora, intended to be representative of the lan-
guage data expected for a particular domain or
task. For each of these test suites, human anno-
tators have identified the intended analysis for
each item out of the exhaustive set of analy-
ses that the grammar supplied (up to the limits
of available computational resources), thus pro-
viding ’gold standard’ treebanks against which
a modified version of the grammar can be mea-

1

sured. Employing test suites from a variety of
domains and tasks not only provides a basis for
’snapshot’ profiles that enable a historical view
of the grammar’s development, but more impor-
tantly protects against overfitting of the gram-
mar to just the current domain’s data.

The principal dimensions in this grammar
validation stand in some interesting tension
with each other, since in each incarnation the
grammar seeks to maximize (1) robustness in
the range of phenomena and sheer quantity of
data it processes; (2) precision linguistically in
its mappings between strings and semantic rep-
resentations; (3) efficiency in its consumption
of CPU and memory resources; and (4) sta-
bility in the mappings it previously assigned
to the items in those test suites, to minimize
adaptation costs for its customer base, and to
minimize the cost of updating the gold stan-
dard treebanks. For each of these four dimen-
sions, I will present tools and techniques used to
evaluate the relevant properties of the grammar,
and illustrate the tensions among these dimen-
sions with examples from the existing inventory
of test suites.

Other dimensions that enter into this valida-
tion method arise from the heterogeneity of con-
texts in which the grammar can be used, includ-
ing (5) multiple NLP processing systems (in-
cluding at least the LKB (Copestake, 2002) and
PET (Callmeier, 2000)); (6) bi-directionality
of processing with attendant demands on each
of the principal dimensions above for both pars-
ing and generation; (7) multiple configura-
tions of the grammar, including variants of pre-
processing, unknown-word handling, root (start
symbol) constraints, chart packing (for either
parsing or generation, or both), and storage of
the lexicon as text file vs relational database; (8)
stochastic parse/realization selection or dis-
ambiguation (Oepen et al., 2004), particularly
for highly ambiguous items where resource lim-
itations become a crucial factor; and of course
(9) the demands of multiple applications,
currently including generation for Norwegian-
to-English machine translation in the LOGON
project (Lønning et al., 2004), extraction of
ontological relationships by parsing dictionary
definitions, and robust interpretation of tran-
scribed conversations via enriched annotations
of rhetorical relations.

Finally, for the grammar to be of use to ap-
plication developers without an overly intimate
knowledge of it, each release must be accom-

panied by (10) external interface specifica-
tions whose currency must be validated. The
content of these specifications is in part auto-
matically generated from the implemented rep-
resentations of lexical entries, lexical types and
grammar rules, and in part manually main-
tained. Principal among these specifications is
the SEM-I (semantic interface) (Flickinger et
al., 2005), an exhaustive listing of each lexi-
cal semantic predicate and its salient proper-
ties, which should precisely determine the ob-
served variation in the elementary predications
within the Minimal Recursion Semantics (MRS
(Copestake et al., 2006)) representations that
the grammar produces or accepts as input. A
second essential specification provides the set of
available lexical entry types, particularly those
for open-class words which will inevitably need
to be added for each new application, whether
automatically guessed via part-of-speech tag-
ging or entered into the lexicon manually.

In the talk, I will provide a detailed step-by-
step tour of this method of validation as ap-
plied to the ERG for one typical grammar up-
date, noting along the way how each of the di-
mensions identified above comes into play, often
more than once in the process, and illustrating
the interactions among several pairs of these di-
mensions in arriving at what must always be a
compromise resolution of the tensions inherent
in grammar engineering.

2 Acknowledgements

This work draws from research on the ERG
that has been supported by several funding
sources to the LinGO project at CSLI, Stan-
ford University, over many years, including two
grants from the German BMBF as part of the
Verbmobil project, two National Science Foun-
dation grants (IRI-9612682 and BCS-0094638),
two grants from NTT Communication Science
Laboratories, and one grant from Scottish En-
terprise through the Stanford- Edinburgh Link.
In addition I am grateful for current support
from the LOGON project at Oslo University,
and from the Computational Linguistics depart-
ment at Saarland University. For the issues dis-
cussed in this talk, I am especially grateful for
my recent collaborations with Stephan Oepen,
Ann Copestake, Francis Bond, and Tim Bald-
win.

2

References

Valerie Barr and Judith Klavans. 2001. Verifi-
cation and validation of language processing
systems: Is it evaluation? Proceedings of the

Workshop on Evaluation Methodologies for

Language and Dialogue Systems, ACL2001.

Valerie Barr and Ellen Siefring. 2004. Verifica-
tion of lexicalized tree adjoining grammars.
Online Proceedings of the Seventh Interna-

tional Workshop on TAG and Related For-

malisms.

Norbert Broeker. 2000. The use of instrumen-
tation in grammar engineering. Proceedings
of COLING 2000.

Ulrich Callmeier. 2000. PET — A platform for
experimentation with efficient HPSG process-
ing techniques. Natural Language Engineer-

ing, 6 (1) (Special Issue on Efficient Process-
ing with HPSG):99 – 108.

Ann Copestake, Dan Flickinger, Ivan A. Sag,
and Carl Pollard. 2006. Minimal Recur-
sion Semantics. An introduction. Research on

Language and Computation. (to appear).

Ann Copestake. 2002. Implementing Typed

Feature Structure Grammars. CSLI Publica-
tions, Stanford, CA.

Marc Dymetman and Pierre Isabelle. 1988. Re-
versible logic grammars for machine trans-
lation. Proceedings of the 2nd International

Conference on Theoretical and Methodologi-
cal Issues in the Machine Translation of Nat-

ural Languages.

EAGLES. 1996. Evaluation of Natural Lan-

guage Processing Systems. Final Report
EAG-EWG-PR.2. EU Report.

Dan Flickinger, Jan Tore Lønning, Helge Dyvik,
Stephan Oepen, and Francis Bond. 2005.
SEM-I rational MT: Enriching deep gram-
mars with a semantic interface for scalable
machine translation. In Machine Translation

Summit X, Phuket. (to appear).

Dan Flickinger. 2000. On building a more ef-
ficient grammar by exploiting types. Natural

Language Engineering, 6 (1):15 – 28.

Lynette Hirschman and Henry Thompson.
1998. Overview of evaluation in speech and
natural language processing. In G. Varile
and A. Zampolli, editors, Survey of the State

of the Art in Human Language Technology.
Cambridge University Press, New York.

Jan Tore Lønning, Stephan Oepen, Dorothee
Beermann, Lars Hellan, John Carroll, Helge
Dyvik, Dan Flickinger, Janne Bondi Johan-

nessen, Paul Meurer, Torbjørn Nordg̊ard,
Victoria Rosén, and Erik Velldal. 2004. LO-
GON. A Norwegian MT effort. In Proceed-
ings of the Workshop in Recent Advances in

Scandinavian Machine Translation, Uppsala,
Sweden.

Stephan Oepen and Dan Flickinger. 1998. To-
wards systematic grammar profiling. Test
suite technology ten years after. Journal of

Computer Speech and Language, 12 (4):411 –
436.

Stephan Oepen, Daniel Flickinger, Kristina
Toutanova, and Christopher D. Manning.
2004. LinGO Redwoods. A rich and dynamic
treebank for HPSG. Journal of Language and

Computation.
Karen Sparck Jones and Julia Galliers. 1998.

Evaluating Natural Language Processing Sys-
tems. Springer-Verlag, Berlin.

3

Proceedings of the Australasian Language Technology Workshop 2005, pages 4–4,
Sydney, Australia, December 2005.

Text Summarization: News and Beyond

Kathleen McKeown
Department of Computer Science

Columbia University

Redundancy in large text collections, such as the web, creates both problems and opportunities
for natural language systems. On the one hand, the presence of numerous sources conveying the
same information causes difficulties for end users of search engines and news providers; they
must read the same information over and over again. On the other hand, redundancy can be
exploited to identify important and accurate information for applications such as summarization
and question answering.

Columbia’s Newsblaster system for online news summarization exploits online redundancy to
generate a summary, at the same time creating a concise synopsis of recent events for end users.
Newsblaster crawls the web nightly for news articles, clusters news on the same event and gener-
ates a summary of each event. In this talk, I will present the current capabilities of Newsblaster,
with some focus on its ability to generate and edit text. I will then turn to our ongoing work which
goes beyond summarization of English news. Our research on summarization of multilinguual
news requires us to deal with noisy input; we rely on state of the art machine translation systems
and use information that is available at the time of summarization to improve the fluency of the
summary. We are also moving to summarization of other media, including email and meetings.
Both of these media also require the ability to handle noisy input, but add an additional challenge
to handle features of dialog.

4

Proceedings of the Australasian Language Technology Workshop 2005, pages 5–6,
Sydney, Australia, December 2005.

From Non-Segmenting Language Processing to Web
Language Engineering

Virach Sornlertlamvanich
Thai Computational Linguistics Laboratory (TCL), NICT, Thailand

virach@tcllab.org

It is interesting to look at the statistics of the online languages reported by the Global Reach (www.global-
reacg.biz). In September 2004, it was reported that the top six online language populations were English
35.2%, Chinese 13.7%, Spanish 9.0%, Japanese 8.4%, German 6.9%, and French 4.2% while the web
contents were English 68.4%, Japanese 5.9%, German 5.8%, Chinese 3.9%, French 3.0% ,and Spanish
2.4%. There are some changes in ranking between the online language populations and the existing of the
web contents. However, English is still the majority language used in the online community. Many efforts
have been making to prevent the fall-off in using of other languages, especially the less computerized
languages. It is said that there are about 7,000 languages using in all over the world. At the same time the
less computerized languages are disappearing. The Rosetta Project (http://64.81.54.21:8080/live/) is a
global collaboration to build an online archive of all documented human languages. The Language
Observatory Project (www.language-observatory.org) initiated by Nagaoka University of Technology to
search for the disappearing languages.

To deal with languages as many as we can find online, it is much more efficient to consider the language
independent approaches. The big difference between segmenting languages (i.e. English and other
European languages) and non-segmenting languages (i.e. Thai, Lao, Khmer, Japanese, Chinese and a lot of
Asian languages) in the existing of word boundary marker causes the change in language processing. Most
of the current approaches are based on the assumption that words are already identified disregarding the
existing of the word boundary markers. The research on word boundary is separately conducted under the
topic of word segmentation. On contrary, we proposed some algorithms to handle the non-segmenting
languages (Virach 2005a, Virach 2005b) to establish a language independent approach.

In our recent research, we proposed a language interpretation model to deal with an input text as a byte
sequence rather than a sequence of words. It is an approach to unify the language processing model to cope
with the ambiguities in word determination problem. The approach takes an input text in the early stage of
language processing when the exhaustive recognition of total word identity is not necessary. In our
research, we present the achievements in language identification, indexing for full text retrieval, and word
candidate extraction based on the unified input byte sequence. Our experiments show comparable results
with the existing word-based approaches.

In our statistical-based word extraction research (Virach et al. 2000), it was reported to yield about 30% of
the total word candidates being the unregistered words of a published dictionary, when the recall threshold
was set to 56%. Character-based mutual information and entropy provided significant information to C4.5
algorithm for selecting appropriate candidates for words. The approach greatly supported the process of
developing a dictionary, and later was extended to fulfill a dictionary-less search engine (Virach et al.
2003). The search engine had introduced a word score as a heuristic value to determine the word likelihood
of a string. The word score was a normalized value of a mutual information value. The minimum score of
the left and right hand side of a string in question was assigned as the word score of the string. Based on the
proposed approach, we successfully implemented a multi-lingual search engine with minimum
modification.

Language identification (Canasai et al. 2005) is yet another challenging task when it is done without any
parsing knowledge. Byte sequence is the only magic key in our approach to determine the language of the
input text. We introduced string kernel for this language identification task. We conducted experiments
using 2 kernel classifiers i.e. centroid-based and support vector machine (SVM) methods. The accuracy of
identification was acceptable for both methods. The accuracies reached 95 percent with only 10 training
sets (2 KB per set). It was also found that the simple centroid-based classifier is comparable to the SVM
classifier based on the string kernel.

Our approaches had been proven effective under the Thai language and the multi-lingual environment of 16
European and 4 Asian languages including Thai, Chinese, Japanese, Korean, English and many other

5

European languages. We are expanding our corpus for conducting our experiments under the environment
of a large number of languages.

Based on the successful results of word extraction, language identification and language independent
indexing for search engine, we are conducting an experiment of the collaborative crawler on the high speed
link (45 mbps) between Thailand and Japan. This collaborative work will provide an infrastructure for
collecting web contents to study about the web language. The language together with its encoding of every
webpage will be automatically identified and indexed to make the archive. Collaborative search engine will
then go through all archives in all registered sites to present the ranked search results for any particular
requests in any languages. The reports on the web languages from any perspectives can also be constructed
by the proposed web language engineering.

Reference:
Virach Sornlertlamvanich. Implementations that Unify the Language Processing, Proceedings of the 9th
NCSEC, University of Thai Chamber of Commerce, Bangkok, Thailand, pp. 1053-1062, 27-28 October,
2005.

Virach Sornlertlamvanich. Statistical-Based Approaches for Non-Segmenting Languages, Proceedings of
Pacific Association for Computational Linguistics (PACLING), Meisei University, Tokyo, Japan, pp. 75-
84, 24-27 August 2005.

Virach Sornlertlamvanich, Tanapong Potipiti and Thatsanee Charoenporn. Automatic Corpus-based Thai
Word Extraction with the C4.5 Learning Algorithm. Proceedings of the 18th International Conference on
Computational Linguistics (COLING2000).

Virach Sornlertlamvanich, Pongtai Tarsaku, Prapass Srichaivattana, Thatsanee Charoenporn and Hitoshi
Isahara. Dictionary-less Search Engine for the Collaborative Database, Proceedings of The Third
International Symposium on Communications and Information Technologies (ISCIT-2003), Songkhla,
Thailand, 3-5 September 2003.

Canasai Kruengkrai, Prapass Srichaivattana, Virach Sornlertlamvanich, and Hitoshi Isahara. Language
Identification Based on String Kernels, Proceedings of the 5th International Symposium on
Communications and Information Technologies (ISCIT-2005), Beijing, China, October 12-14, 2005.

6

Proceedings of the Australasian Language Technology Workshop 2005, pages 7–14,
Sydney, Australia, December 2005.

Disambiguating Conjunctions in Named Entities

Pawe l MAZUR
Institute of Applied Informatics

Wroc law University of Technology
Wyb. Wyspiańskiego 27

50-370 Wroc law,
Poland

Pawel.Mazur@pwr.wroc.pl

Robert DALE
Centre for Language Technology

Macquarie University
NSW 2109,

Sydney,
Australia

Robert.Dale@mq.edu.au

Abstract

The recognition of named entities is now a well-
developed area, with a range of symbolic and
machine learning techniques that deliver high
accuracy identification and categorisation of a
variety of entity types. However, there are
still some named entity phenomena that present
problems for existing techniques; in particular,
relatively little work has explored the disam-
biguation of conjunctions appearing in candi-
date named entity strings. We demonstrate
that there are in fact four distinct uses of con-
junctions in the context of named entities; we
present the results of some experiments using
machine-learned classifiers to disambiguate the
different uses of the conjunction, with 81.73% of
test examples being correctly classified. We pro-
vide some discussion and analysis of the prob-
lem of conjunction in named entities, and we
show that there are some cases which are am-
biguous even for humans.

1 Introduction

Initially developed as a component task in infor-
mation extraction (see, for example, (Grishman
and Sundheim, 1996)), named entity recogni-
tion, whereby entities such as people, organi-
zations and geographic locations are identified
and tracked in texts, has become an important
part of other natural language processing appli-
cations such as question answering, text sum-
marisation and machine translation.

Named entity recognition consists of both
identifying those strings in a text that corre-
spond to named entities, and then classifying
each such named entity string as being of a spe-
cific type, with typical categories being Com-
pany, Person and Location. Sometimes an ad-
ditional step is introduced for coreference res-
olution, which establishes whether two named
entities in a given document refer to the same
(either physical or abstract) object; so, for ex-
ample, we might determine that the named en-

tity International Business Machines Corpora-
tion has the same real world referent as both
IBM and Big Blue. We can go further and de-
termine whether named entities in separate doc-
uments (hence, cross-document coreference res-
olution) refer to the same entities (see (Bagga,
2004)), although this is a much less explored
area.

All of the above assumes that identifying in-
dividual named entities in text is a relatively
straightforward and well-defined task. How-
ever, although there are reported high perfor-
mance figures for named entity identification
and classification in general, there are some cat-
egories of named entities that remain problem-
atic. We will refer to those strings in a text
that may correspond to named entities as can-

didate named entity strings; one type of
candidate named entity string that is problem-
atic, from a surface linguistic perspective, is the
category that contains conjunctions. Consider
the string Australia and New Zealand Banking
Group Limited: in the absence of an appropri-
ate domain lexicon, an occurrence of this string
within a document could be interpreted as ei-
ther being the name of one company, or as be-
ing a conjunction of a location and a company
name.1 Determining the correct interpretation
is clearly important for any application which
relies on named entity extraction.

We have been working with a data set from
the Australian Stock Exchange (ASX). This
data set consists of a large set of company an-
nouncements: for a variety of regulatory rea-
sons, listed companies provide around 100000
documents to the ASX each year, and the ASX
subsequently makes these available to users via
the web. Our goal is to take this data set (and
similar data sets) and to add value to the docu-
ments by making use of language technologies.

1Such a conjunction may appear pragmatically odd,
but, as we argue below, rejecting possibilities on such
grounds requires a complicated set of rules.

7

The overall approach taken in this work is de-
scribed in (Dale et al., 2004).

The significance of the kinds of ambiguities
we introduced above depends, of course, on the
extent to which the phenomenon of conjunc-
tions in named entities is widespread. Our cur-
rent work focuses on a subcorpus of 13000 ASX
documents. From this subcorpus, we selected
45 documents at random; in these documents,
there were a total of 545 candidate named en-
tity strings, of which 31 contained conjunctions.
This informal sampling suggests that conjunc-
tions appear, on average, in around 5.7% of can-
didate named entity strings;2 however, in some
documents in our sample, the frequency is as
high as 23%. These frequencies are sufficient
to suggest that the seeking of an appropriate
means of handling conjunctions is a worthwhile
and important pursuit.

For present purposes, we define a candidate
named entity string as any sequence of words
beginning with initial capitals, with the possi-
ble inclusion of a single instance of the word and
or the form & internal to the string.3 An exami-
nation of the candidate named entity strings ap-
pearing in our corpus reveals four distinct uses
of the conjunction, as exemplified in the follow-
ing:

1. Oil and Gas Ltd

2. Agfa and Fuji

3. John and Mary Smith

4. Company Secretary Resignation and Ap-
pointment

In example (1), we have a single named entity
that happens to contain an internal conjunction;
in example (2), we have a conjunction of two
distinct named entities; and in examples (3) and
(4), we have conjunctions that, from a linguistic
perspective, contain a form of ellipsis, so that
one conjunct is incomplete on its own, but can
be completed using information provided in the
other conjunct.

That conjunctions are problematic has been
noted before, in particular by Mikheev et al.

2For comparison, a check on the MUC-7 evaluation
data shows that, in that corpus, the proportion of can-
didate named entity strings containing conjunctions is
4.5%, so our corpus appears not particularly unusual in
this regard.

3This is clearly an overly restrictive definition, but it
appears to account for a large proportion of the cases we
are interested in.

(1998), who suggested the strategy of examin-
ing the preceding document context to identify
candidate conjuncts that should be considered
as separate named entities. Mikheev et al. men-
tion this approach being part of their system
used in the MUC-7 competition, but no data is
reported on the accuracy of this kind of heuris-
tic; in our experience, there are many cases
where there are no antecedent mentions that
can be used in this way. Furthermore, in the
MUC-7 data, strings like John and Mary Smith
were considered as one named entity, whereas
we take the view that, for many information
extraction applications, it is important to rec-
ognize that this string represents two distinct
entities.

2 Problem definition

Following from the above, we distinguish four4

categories of candidate named entity strings
containing conjunctions.

A: Name Internal Conjunction: This cate-
gory covers those cases where the candidate
named entity string contains one named en-
tity, where the conjunction is part of the
name. Some examples from our corpus:5

Copper Mines and Metals Limited, Herbert
P Cooper & Son, Ernst & Young, Accep-
tance and Transfer Form, and Fixing and
Planning Phase.

B: Name External Conjunction: This cat-
egory covers those cases where the conjunc-
tion serves to separate two distinct named
entities. Some examples from our cor-
pus: Proxy Form and Explanatory Mem-
orandum, Hardware & Operating Systems,
John Travolta and Robin Wright Penn, and
EchoStar and News Corporation.

C: Right-Copy Separator: This category of
conjunction separates two named entities,
where the first is incomplete in itself but
can be completed by copying information
from the right-hand conjunct. This is
perhaps most common in conjunctions of

4Conceptually, we might view the last two categories
as subtypes of the more general category Copying Sep-

arator; however, it makes sense to keep the two cate-
gories separate, since the process of reconstructing the
unelided conjuncts is different in each case.

5In what follows, we treat the ampersand (&) and the
full lexical item and as being equivalent; however, as we
discuss later, there are cases where it may be useful to
distinguish the two forms.

8

proper names, as in William and Alma
Ford, but appears in other contexts as well.
Some examples from our corpus: Con-
nell and Bent Streets, Eastern and West-
ern Australia, and Melbourne and Harvard
Universities.

D: Left-Copy Separator: This is similar to
the previous category, but instead of copy-
ing information from the right-hand con-
junct, in order to complete the constituent
named entities we need to copy information
from the left conjunct. Examples in our
corpus: Hospital Equipment & Systems,
J H Blair Company Secretary & Corporate
Counsel.

In the data we have analysed, most examples
are either Name Internal or Name External, and
Left-Copy Separators are the rarest. It should
be noted that the Copy Separator categories
have been explored within linguistic treatments
of conjunction, particularly as found in Cate-
gorial Grammar (see, for example, (Steedman,
1985)), although linguistic analyses tend to fo-
cus on conjunctions involving common nouns
rather than proper names.

We could attempt to distinguish the different
uses of the conjunction by means of some heuris-
tics. For example, if a candidate named en-
tity string matches the pattern 〈GivenName and
GivenName FamilyName〉, the conjunction is
probably a Right-Copy Separator; and if
it matches the pattern 〈CompanyName and
CompanyName〉, the conjunction is most likely a
Name External Conjunction. However, analysis
of a reasonably large sample makes it clear that
there are many different cases to be considered,
and the heuristics required are difficult to derive
by hand; a significant reason for this is that the
names of people, companies, and locations, as
well as other less common named entity types,
may occur in many different combinations.

Consequently, we decided to view the prob-
lem as one of classification: given a particu-
lar instance of the conjunction and its left and
right conjuncts, we want to determine, via ma-
chine learning, which category the conjunction
belongs to.

3 Experimental Setup

We carried out an experiment to determine
how machine learning algorithms cope with the
problem of conjunction classification in named
entities. In the work described in this paper,

we limited the experiment to candidate named
entity strings containing a single occurrence of
the conjunction & or and.

In our approach, before we attempt to disam-
biguate the conjunctions we first tag the con-
stituents of each candidate named entity string
with their types. This step also recognizes
multi-word elements where there is no ambigu-
ity (for example, in the case of unambiguous
person and company names); for example, Aus-
tralia and New Zealand Banking Group Lim-
ited should be recognized as a sequence of to-
kens whose types are marked as Loc and Loc
Org CompDesig, where the second Loc tag cor-
responds to the pair of tokens New Zealand.

Table 1 lists the 21 tags we use to annotate
the tokens. Some of these, such as Loc, Org,
GivenName, AlphaNum, Dir, and PersDesig, are
the same as those used by many other named
entity recognizers; there are also two tags that
come from part-of-speech tagging (Noun and
Adj). In our corpus, we note that there are a
number of frequently occurring key terms which
can be thought of as closed class items that are
highly indicative of named entity type, and so
we also use a number of tags to annotate specific
words that perform a key role in distinguish-
ing the categories (Form, Son, Project, System,
and Phase). In our corpus there are 160 occur-
rences of Form(s) tokens, 102 of Son(s), 75 of
Project(s), 56 of System(s) and 4 occurrences
of Phase(s).

Some additional comments are appropriate
by way of explanation of some of the tags:

• Fac (Facility) is a general-purpose category
intended to cover ‘domain objects’: names
of buildings, meeting places, and worksites.
Examples are Ashmore Tavern, Imperial
Hotel, Parkway Plaza, and Solano Mall.

• CompDesig (Company Designator) is used
for those tokens that unambiguously mark
the occurrence of a company name, such as
Ltd, Limited, Pty Ltd, GmbH, and plc; we
also use this tag for much longer and not so
obvious multi-word sequences like Invest-
ments Pty Ltd, Management Pty Ltd, Cor-
porate Pty Ltd, Associates Pty Ltd, Family
Trust, Co Limited, Partners, Partners Lim-
ited, Capital Limited, and Capital Pty Ltd.

By assigning tags to tokens we obtain a
pattern which represents the named entity
candidate string. For example, for the string
Herbert P Cooper and Son Ltd the

9

No Tag Meaning

1 Loc The name of a location
2 Org The name of an organization
3 GivenName A person’s given name
4 FamilyName A person’s family name
5 Fac A facility
6 Initial An initial in the range A-Z
7 CompPos A position within a company
8 Abbrev Abbreviation
9 PersDesig A person designator
10 CompDesig A company designator
11 Son Son(s)
12 Dir A compass direction
13 AlphaNum An alphanumeric expression
14 Day The name of a day
15 Month The name of a month
16 Adj An adjective
17 Noun A noun
18 Project Project(s)
19 System System(s)
20 Phase Phase(s)
21 Form Form(s)

Table 1: The tags used for text annotation.

pattern is 〈GivenName Initial Family-
Name & Son CompDesig〉.

For the purposes of machine learning, we then
encode each pattern in the following way. We
create an attribute for each of the 21 tag types
for each of the left and right sides of a conjunc-
tion, for a total of 42 attributes. The attributes
are of integer type with values {0, 1}, thus sig-
naling either the presence or absence of a token
of that type anywhere within either conjunct.
We will refer to this encoding as the Basic En-

coding.

On the basis of the results we obtained using
the Basic Encoding (see Section 5.1), we cre-
ated an additional five attributes for each con-
junct: GivenNameCount, FamilyNameCount, Ini-
tialCount, NounCount and AdjCount. They serve
as counts of the number of occurrences of the
relevant token types, and have non-negative in-
teger values. This extended set of 52 features
will be referred to as the Extended Encod-

ing.

With each data instance there is associated a
ConjType attribute with the values {A,B,C,D};
this is used to encode the category of the con-
junction in the training or test example.

The corpus used for our research consisted
of a 13460 document sub-corpus drawn from a
larger corpus of company announcements from
the Australian Stock Exchange. The documents

range in length from 8 to 1000 lines of text.
Choosing training and test examples was car-

ried out in a number of steps. First, candi-
date named entity strings containing sequences
of words with initial capitals, and an embed-
ded conjunction, were extracted using a Perl
script. This provided over 10560 candidate
named entity string instances, corresponding to
6645 unique forms. For this experiment we did
not collect candidate named entity strings con-
taining lowercased prepositions and determin-
ers such as of, in, a, and the, although clearly
many relevant named entities will contain these
elements.

From this set we randomly selected examples
for our training and test data sets. Each ran-
dom selection was followed by hand elimination
of examples that turned out to be wrongly iden-
tified as candidate named entity strings in the
text.6

The experiment consisted of two test runs,
one using the basic encoding and the second us-
ing the extended encoding, as described above.
In each case we used the same set of 348 train-
ing instances, and the same set of test data with
197 previously unseen examples.

Table 2 presents for each data set the distri-
bution of examples across the four categories of
conjunction.7

Data Set A B C D Sum

Training 135 160 35 18 348
Test 55 119 15 8 197

Table 2: Data sets sizes and example distribu-
tions in categories.

4 The Algorithms

The experiment was conducted using the
WEKA toolkit (Witten and Frank, 2005). This
provides implementations of several machine
learning algorithms, along with the data struc-
tures and code needed to perform data input

6Wrong identification occurred due to typographic
features such as ASCII formatted tables, paragraphs in
all upper case, sentences or titles where every word con-
tained an initial capital, and punctuation errors in the
source texts.

7By way of comparison, the corpus used for the
MUC-7 final evaluation contains 53 strings correspond-
ing to our category A and 124 strings for category B; the
data from the training phase of the competition contains
28 category A strings and 81 category B strings. Recall
from above that the MUC data does not recognize our
categories C and D.

10

and output, data filtering and results evalua-
tions and presentation.

After some initial exploration using a vari-
ety of algorithms for supervised machine learn-
ing available in WEKA, we chose six which
gave the best results: the Multilayer Percep-
tron, two lazy algorithms (IBk and K*), and
three tree algorithms: Random Tree, Logistic
Model Trees and J4.8. We also include here the
results for Näıve Bayes, given the popularity of
this method in the field.

5 Results

We observe (see Table 2) that conjunctions of
category B (Name External Conjunction) are
the most frequent in our annotated data set.
This gives us a simple baseline for comparison:
by choosing the most frequent category by de-
fault, we would achieve a correct classification
rate of 60.41%.

Tables 3 and 4 present detailed results of the
two test runs using the classifiers trained on
our feature set; recall that the extended encod-
ing takes account of the number of instances of
specific token types, rather than just a binary
distinction between presence and absence. We
show the number of correctly classified exam-
ples for both the training and test data sets.

Algorithm Training 348 Test 197

Näıve Bayes 71.84% 250 68.53% 135
Mult. Perc. 91.95% 320 80.20% 158
IBk 92.24% 321 74.62% 147
K* 92.24% 321 74.62% 147
Random Tree 92.24% 321 77.16% 152
LMT 92.24% 321 81.22% 160
J4.8 87.36% 304 77.67% 153

Table 3: Results for basic encoding.

Algorithm Training 348 Test 197

Näıve Bayes 70.11% 244 64.47% 127
Mult. Perc. 93.97% 327 77.67% 153
IBk 93.97% 327 75.13% 148
K* 93.97% 327 75.13% 148
Random Tree 93.97% 327 72.08% 142
LMT 93.68% 326 81.73% 161
J4.8 87.36% 304 77.67% 153

Table 4: Results for extended encoding.

5.1 Basic Encoding

When looking at the results from the classifiers,
it turns out that patterns like 〈Noun & Noun〉 or

〈Noun & Noun Noun〉 made the biggest contri-
bution to misclassification; also patterns built
from combinations of several Nouns and some
other tags such as Adj or Org had a significant
impact on making the results worse. An inter-
esting subgroup for us are patterns with tags
Project, System and Form. It turns out that
these domain specific tags were not sufficient
to categorize test instances correctly.

The third large group of difficult examples
are those that are represented by long patterns
that consist of several kinds of tags. They also
usually contain up to three Noun tags; examples
of these patterns are as 〈Noun GivenName Org
& Noun Noun Noun〉 and
〈Abbrev CompDesig & Adj Noun CompDesig〉.

The fourth group of problematic cases are
patterns based on the FamilyName tag:
〈FamilyName & FamilyName〉,

〈FamilyName & FamilyName Loc〉,

〈FamilyName Loc & FamilyName Loc〉,

〈FamilyName & FamilyName Noun〉,

〈FamilyName Noun & FamilyName Noun〉,

〈Initial & Initial FamilyName〉.

5.2 Extended Encoding

An observation we made as a consequence of the
results obtained for the basic encoding was that
complexity and length of conjuncts appeared to
play a role in misclassification; accordingly, for
the extended encoding we introduced ten new
attributes, in the form of five counters for each
side of a conjunction. It turned out that new in-
formation was only slightly helpful for K* and
LMT (in both cases the gain in performance
was one example); for two algorithms there was
no impact; and the Multilayer Perceptron and
Random Tree algorithms encountered a signifi-
cant drop in performance, by, respectively, five
and ten examples (see Table 4). For both the
Perceptron and Random Tree algorithms there
were some cases where classification improved,
and some for which it got worse.

For the Random Tree algorithm, nine addi-
tional examples were classified correctly; as ex-
pected, these were cases involving long patterns
of up to 9 tags. However, 19 examples that
were correctly classified using the basic encod-
ing were misclassified with the extended encod-
ing; most of these consisted of tags related to
people or company names.

For the Multilayered Perceptron algorithm,
the extended encoding improved performance
on short patterns but made things worse on long

11

patterns.

5.3 General remarks

All the algorithms presented here performed far
above the baseline in each test run. The results
for the training data from each test (Tables 3
and 4) show that, in the training data, there are
about 7% of examples which could be perceived
as genuinely ambiguous. On investigation, the
vast majority of these examples belong to sev-
eral (usually two) categories and the most am-
biguous are of 〈Noun & Noun〉 and 〈FamilyName
& FamilyName〉 patterns, which we discuss later.
The instances of these patterns appeared am-
biguous to a human annotator.

The best result, 81.7259% of examples classi-
fied correctly, was achieved with the LMT algo-
rithm and the extended set of attributes. The
precision, recall and F-measure for this case are
presented in Table 5. Table 6 provides a confu-
sion matrix with the desired and actual classifi-
cation of examples.

The LMT algorithm was also the best algo-
rithm in the test run using the basic encoding of
43 features. The second best algorithm was the
Multilayer Perceptron, which scored 80.2% and
78.2% with the basic and extended encodings
respectively. However, the difference between
the results for the two algorithms is not statis-
tically significant.

Category Precision Recall F-Measure

A 0.658 0.909 0.763
B 0.969 0.790 0.870
C 0.667 0.667 0.667
D 0.778 0.875 0.824

weighted mean 0.851 0.817 0.823

Table 5: Detailed accuracy by category of con-
junction for best result (LMT, Extended Encod-
ing).

A B C D → classified as ↓

50 22 3 1 A
1 94 2 0 B
4 1 10 0 C
0 2 0 7 D

Table 6: Confusion matrix for best result (LMT,
Extended Encoding).

6 Analysis

6.1 Data preparation

It is important to stress that our experiment
was conducted in the specific domain of com-
pany announcements from the Australian Stock
Exchange; these documents have some features
that are not necessarily typical for others. In
particular, texts in this domain frequently have
some of the characteristics of legal documents,
where many sometimes apparently arbitrary
elements are given initial capitals: typical ex-
amples from our corpus would be expressions
like Primary and Secondary, Profit & Loss, Re-
ceivers and Managers or Resource and Reserve.
Many of these are high frequency terms, and so
could be filtered out in a separate preprocess-
ing stage; however, a complicating factor here
is that casing is not used consistently by some
authors. A more general problem is that of ti-
tles, for example titles of books, documents and
document elements such as tables and headings;
the unrestricted productivity of these kinds of
terms means that they are not easily character-
isable by patterns of the kind explored here, and
would be more appropriately handled by a more
syntactically driven model.

The results of our conjunction disambigua-
tion process are very dependent on the tags as-
signed in the preprocessing stage. It can make a
big difference, for example, whether a substring
is recognized as a sequence of Nouns or as one
Location name. Extensive gazetteers can play
a role here, but some cases are ambiguous even
for humans. For example, Trustees Executors
is a company name;8 but if this is not detected
during tagging, it is tagged as 〈N N〉, which is
much more ambiguous and impacts on perfor-
mance. Similarly, a string like Boyer and Haro
Fields can be difficult to analyze correctly with-
out recourse to extensive world knowledge.

6.2 Error analysis

6.2.1 One Pattern, Many Categories

When investigating the misclassified strings we
found that there are many cases where a given
pattern belongs to more than one category. For
example, we have the following in the training
data:
String: Ernst and Young Consulting
Pattern: 〈FamilyName & FamilyName Noun, A〉

String: National Parks and Wildlife Service

Pattern: 〈Adj Noun & Noun Noun, A〉

8Trustees Executors was the first trustee company in
New Zealand, established in 1881.

12

but in the test data we have:
String: Boyer and Haro Fields
Pattern: 〈FamilyName & FamilyName Noun, C〉

String: General Meeting and Proxy Votes

Pattern: 〈Adj Noun & Noun Noun, B〉

The 〈Noun & Noun〉 and 〈FamilyName &
FamilyName〉 patterns are particularly prone to
this ambiguity; we discuss these cases further
below.

These examples suggest that our feature set is
not capturing enough distinctions to enable cor-
rect classification; providing richer information
about the candidate string would help, draw-
ing from morphological, syntactic, semantic and
even pragmatic features, should these be avail-
able.9

In different models created on the basis of
training data by individual classifiers, a differ-
ent category is assigned to these ambiguous pat-
terns. Since the number of examples of a given
pattern is not the same for particular categories,
the number of misclassified examples differs for
particular models. For example, there are ten
instances of 〈Noun & Noun〉 pattern in the test
data. Four of them are of category A, and six of
them are of category B. The LMT algorithm as-
signs for this pattern probabilities pA = 0.455,
pB = 0.409, pC = 0.136 and pD = 0. When
a 〈Noun & Noun〉 example from the test data is
to be classified, the classifier chooses category A
as the most likely. On the other hand, the Mul-
tilayered Perceptron algorithm derives the fol-
lowing probabilities: pA = 0.414, pB = 0.476,
pC = 0.110 and pD = 0. Consequently, it clas-
sifies all strings matching the 〈Noun & Noun〉
pattern as being of category B.

6.2.2 〈Noun & Noun〉

As noted in Section 5, some of the most am-
biguous candidate strings are those whose pat-
terns are based on nouns and adjectives. This
is not surprising, since these are very general
tags capturing everything which is not recog-
nized as a genuine proper name, an alphanu-
meric sequence of characters, or any of the spe-
cific distinguished terms captured by our other
tags. In these cases the correct categorisation
of the conjunction usually depends on the con-
text, which sometimes can be even the whole
text. General knowledge about the world is
sometimes also essential; consider, for example,

9In the example shown here, Ernst and Young could
also be detected during preprocessing on the basis of a
company name gazetteer, but such lists will never be
complete.

the strings Gummy & Kipper or Showtime and
Encore, whose nature is quite unclear without
recourse to other knowledge sources. This prob-
lem concerns mainly categories A and B, since
initcapped general terms can appear equally
freely in both cases.

In the test with the extended encoding, six
out of 36 incorrect classifications involved the
pattern 〈Noun & Noun〉; in each case, these
should have been categorised as instances of cat-
egory B (Name External Conjunction), but were
classified as category A (Name Internal Con-
junction). There were also another three exam-
ples of slightly more complex patterns contain-
ing more nouns:

String: Tourism and Hotel Management

Pattern: 〈Noun & Noun Noun〉

String: Placement Shares and Options

Pattern: 〈Noun Noun & Noun〉

String: Country Comfort and Chifley

Pattern: 〈Noun Noun & Noun〉

6.2.3 〈FamilyName & FamilyName〉

The 〈FamilyName & FamilyName〉 pattern also
causes problems in classification. Because many
company names are created as a conjunction
of two surnames, it happens that our training
data contains more examples of this pattern for
category A (Name Internal) than for category
B (Name External), and so the model built
by LMT considers category A to have proba-
bility of 0.704. However, there are still some
cases when 〈FamilyName & FamilyName〉 does
not denote an organization. So, regardless of
the quality of the training data, it is worth
checking whether somewhere in the text there
exists a corresponding string with the pattern
〈FamilyName & FamilyName CompDesig〉.

6.2.4 Domain Dependent Substrings

As for any domain, it may be possible to iden-
tify a set of specific recurring strings or patterns
that could be recognized in a preprocessing step,
so that the learning algorithm does not need to
deal with these cases. In our data, these turn
out to belong to the set of strings that cause a
range of problems. Two such examples are Ex-
planatory Notes and Proxy Form, Information
Memorandum and Proxy Form. In our corpus
of candidate named entities, the string Proxy
Form occurs 35 times. A reasonable strategy
would be to assume that any string of the form
... and Proxy Form involves the use of a Name
External conjunction.

13

7 Conclusions and Future Work

We have analyzed the problem of conjunctions
in candidate named entity strings; we distin-
guished four categories of conjunction that ap-
pear in these strings, noted that the appropri-
ate disambiguation of these is a problem that
requires attention, and defined the problem as
one of classification. We then conducted an ex-
periment whose aim was to determine whether
the problem could be solved by means of ma-
chine learning algorithms.

We have shown that there are instances of
conjunction which are difficult even for humans
to classify correctly. Very often the decision re-
quires extensive analysis of the content, and the
use of general world knowledge. Given the ex-
istence of such cases, the results demonstrated
here with machine-learned classifiers are very
encouraging. There are several regards in which
the work reported here can be improved further.

1. We have restricted ourselves to candidate
named entity strings which contain a single
conjunction; however, there are of course
cases where multiple conjunctions appear.
One category consists of examples like Au-
dited Balance Sheet and Profit and Loss
Account, where again the kinds of syn-
tactic ambiguity involved would suggest a
more syntactically-driven approach would
be worth consideration. Another category
consists of candidate named entity strings
that contain commas as well as lexicalised
conjunctions.

2. In the work described here, we did not dis-
tinguish between the two variants of the
lexicalised conjunction (i.e., & and and).
Obviously, these two forms are not used in
text completely interchangeably: for exam-
ple, it is relatively unusual to separate two
person names (as in Alex and Bill Smith)
using an ampersand.

3. Candidate named entity strings can con-
tain other closed class items, such as of
and the; extension of the treatment here to
this larger class of candidate strings will in-
troduce new complexities, but at the same
time these terms may provide useful disam-
biguating features.

An issue that may be restricted to corpora that
have a broadly legal character is the frequent
appearance of candidate named entities that
are made up of common nouns. In contrast

to a ‘substring recognition’ approach that re-
lies on information from gazetteers, many of
these cases might be amenable to a more syn-
tactically sophisticated analysis, and this is one
place where work on conjunction from a lin-
guistic perspective might provide some leverage;
however, there then remains the issue of deter-
mining which approach to use in a given case.
Named entities containing conjunctions, and
named entities separated by conjunctions, con-
stitute a form of ambiguity that needs to be
handled for high accuracy named entity extrac-
tion. We have shown that machine learning can
achieve good results in resolving these ambigu-
ities.

8 Acknowledgements

The work reported here was carried out while
the first author was a visiting scholar at the
Centre for Language Technology at Macquarie
University.

References

Amit Bagga. 2004. Cross-Document Corefer-
ence: Methodologies, Evaluations, and Appli-
cations. In António Branco, Tony McEnery,
and Ruslan Mitkov, editors, Proceedings of
5th Discourse Anaphora and Anaphor Resolu-
tion Colloquium, Portugal, 23-24 Sep., 2004.

R. Dale, R. Calvo, and M. Tilbrook. 2004. Key
Element Summarisation: Extracting Infor-
mation from Company Announcements. In
Proceedings of the 17th Australian Joint Con-
ference on Artificial Intelligence, 7th-10th
December 2004, Cairns, Queensland, Aus-
tralia.

Ralph Grishman and Beth Sundheim. 1996.
Message Understanding Conference-6:
A Brief History. In COLING 1996 Vol-
ume 1: The 16th International Conference
on Computational Linguistics, Los Altos, Ca.
Morgan Kaufmann.

A. Mikheev, C. Grover, and M. Moens. 1998.
Description of the LTG System Used for
MUC-7. In Seventh Message Understanding
Conference (MUC-7): Proc. of a Conf. held
in Fairfax, Virginia, 29 April-1 May, 1998.

M. Steedman. 1985. Dependency and Coordi-
nation in the Grammar of Dutch and English.
Language, 61:523–568.

Ian H. Witten and Eibe Frank. 2005. Data
Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Fran-
cisco, 2nd edition.

14

Proceedings of the Australasian Language Technology Workshop 2005, pages 15–23,
Sydney, Australia, December 2005.

Learning of Graph Rules for Question Answering

Diego MOLLA and Menno VAN ZAANEN
Centre for Language Technology, Macquarie University

Sydney,
Australia,

{diego,menno}@ics.mq.edu.au

Abstract

AnswerFinder is a framework for the devel-
opment of question-answering systems. An-
swerFinder is currently being used to test the
applicability of graph representations for the de-
tection and extraction of answers. In this paper
we briefly describe AnswerFinder and introduce
our method to learn graph patterns that link
questions with their corresponding answers in
arbitrary sentences. The method is based on
the translation of the logical forms of questions
and answer sentences into graphs, and the ap-
plication of operations based on graph overlaps
and the construction of paths within graphs.
The method is general and can be applied to
any graph-based representation of the contents
of questions and answers.

1 Introduction

Text-based question answering (henceforth QA)
is the process whereby an answer to an arbi-
trary question formulated in plain English is
found by searching through unedited text doc-
uments and returned to the user. The current
availability of increasingly large volumes of text
for human consumption has prompted an inten-
sive research in QA. A well-known forum for
the evaluation of QA systems is the question-
answering track of the Text REtrieval Confer-
ence1 (Voorhees, 2001), where systems devel-
oped by some of the most active researchers in
the area are compared within the context of a
common task. In addition, QA technology is
being deployed in practical applications. For
example, several Web-based question-answering
systems are currently available (e.g. START2,
AnswerBus3), and recently popular Web search
engines have started incorporating automated

1http://trec.nist.gov
2http://www.ai.mit.edu/projects/infolab/
3http://www.answerbus.com/index.shtml

question-answering techniques (e.g. Google4, as
for September 2005).

The development of successful QA technol-
ogy requires solid foundations both in the ar-
eas of software engineering and natural lan-
guage processing. The nature of text-based
question answering requires the use of a wide
range of techniques, some of which are described
in (Hirschman and Gaizauskas, 2001; Voorhees,
2001). For example, traditional document re-
trieval techniques are typically used to prese-
lect the documents or document fragments that
may contain the answer to the question. In
addition, information extraction techniques are
commonly used to extract all the named enti-
ties in the question and the preselected text,
on the ground that fact-based questions typi-
cally expect one of these named entities as an
answer. To analyse the questions, techniques
range from the use of regular expressions to the
use of machine-learning techniques that classify
the questions according to the type of the ex-
pected answer. Finally, to find the answer, tech-
niques may vary from a bag of words compar-
ison of keywords used in the question and the
answer sentence, to the use of full parsers and
logical proof tools such as OTTER5. Additional
resources are typically used, notably the Word-
Net lexical resource.6 Consequently, the most
successful QA systems are complex pieces of en-
gineering that require frequent development and
testing, such as (Moldovan et al., 2003). An un-
welcome side-effect of this is that much of the
effort spent in developing a QA system is spent,
not in the developing of QA methodologies, but
in defining the optimal parameters of a system.

On the other hand, QA presents challenging
theoretical issues. One of the most salient the-
oretical challenges is related to the problem of

4http://www.google.com
5http://www-unix.mcs.anl.gov/AR/otter/
6http://wordnet.princeton.edu/

15

paraphrasing. There are many ways of express-
ing the same piece of information. For example,
the simple question Where was Peter born? can
be similarly asked as:

1. In what city was Peter born?

2. What is Peter’s birthplace?

3. What is the birthplace of Peter?

4. Name Peter’s birthplace

Whereas it may not be difficult to manually
devise rules that account for the most popular
ways of rephrase a question, variations in the
sentences containing the answer are much less
predictable. A human would not have any prob-
lem to find the answer to the above questions
in the following examples:

1. Peter was born in Paris.

2. Paris is Peter’s birthplace.

3. Paris, Peter’s birthplace, is located in
France.

4. Mrs Smith gave birth to Peter in Paris.

However, a machine would need to have ac-
cess to lexical, syntactic, and world knowledge
information if it is to find the answer.

The above are simple constructed examples.
Real text with much more complex examples
abounds, but the examples above suffice to il-
lustrate the problem encountered by any text-
based question-answering system. For fur-
ther details about the problem of paraphrasing
within the context of QA, see (Rinaldi et al.,
2003).

Some systems have attempted to systemat-
ically build rules that link questions with an-
swer sentences. For example, (Soubbotin, 2001)
used a complex hierarchy of rules on surface
strings. Other systems, such as (Echihabi et
al., 2004), use a method for the automatic learn-
ing of surface-level rules. Other systems, such
as (Bouma et al., 2005), use hand-crafted rules
based on syntactic information.

Our hypothesis is that the accuracy of
question-answering systems would improve if
these rules are based on linguistic features lo-
cated at a deeper level. Furthermore, to handle
the problem of paraphrasing, the rules must be
automatically learnt based on a representative
corpus of questions and answers. In this paper
we present our current work for developing and

testing this hypothesis. Our work is being inte-
grated in the AnswerFinder QA system, which
is briefly described in Section 2. Section 3 de-
scribes the Logical Graph notation that we use
to represent the logical contents of questions
and answer sentences. Section 4 presents the
rules based on Logical Graphs, and how they
are automatically learnt from a corpus of ques-
tion/answer pairs. Section 5 shows the use of
these rules to find the exact answer to a ques-
tion, and Section 6 shows the results of our
evaluations. Sections 7 and 8 point to related
research and give the final conclusions, respec-
tively.

2 AnswerFinder, a Framework for
Question Answering

Our solution to the need to use software engi-
neering techniques for the development of prac-
tical QA systems is AnswerFinder. Initially de-
signed as a simple QA prototype, AnswerFinder
is currently being redesigned to allow the rapid
development and test of QA techniques. Its
primary application is the TREC Question An-
swering track,7 but we also envisage its use, di-
rectly or indirectly, in other evaluation frame-
works such as CLEF,8 DUC,9 and the PASCAL
Recognising Text Entailment challenge.10 For
this reason, AnswerFinder’s architecture is flex-
ible and configurable, allowing to plug and test
various modules easily.

The design of the system is functional and
object-oriented. Focusing on function (instead
of data) makes it easier to replace functions of
the system with others. The system is imple-
mented in C++. C++ was selected because it
is a high-level language on the one hand, but
can also be used in a more low-level way. It in-
terfaces well with C, which allows for easy inte-
gration of many external systems. Furthermore,
the resulting executable is relatively fast.

AnswerFinder consists of two main compo-
nents, the client and the server. The client can
get information from the server about the al-
gorithms and files/document collections it pro-
vides to clients. The client can also send in-
formation to the server requesting question(s)
to be processed using specific algorithms and
data collections. The server can be fully config-
ured via XML. For example, if the client calls

7http://trec.nist.gov
8http://www.clef-campaign.org/
9http://www-nlpir.nist.gov/projects/duc/

10http://www.pascal-network.org/Challenges/RTE/

16

the server without any configuration informa-
tion, the server replies with an XML document
listing all the available services. The client can
then call the server with an XML file containing
all the configuration information.

The request the server receives from the client
contains all information needed to process the
question(s). It specifies the document collection
and the algorithms that should be used. The
server then runs the required services by creat-
ing algorithm objects. An algorithm defines the
full question-answering process, and it may use
sub-algorithms for specific phases (such as ques-
tion classification, document preselection, etc).
The sub-algorithms are designed so that they
can be called by any algorithm. Thus, different
ways of trying QA techniques can be easily im-
plemented by defining new algorithms that call
the specific sub-algorithms with specific param-
eters.

The following sub-algorithms are currently
defined in AnswerFinder. They are classified
by the question-answering phase in which they
are used:
Document Selection. Sub-algorithms in
this phase are used to preselect the candidate
documents.

• NIST Doc Selection: This sub-
algorithm returns the documents provided
by NIST for the TREC QA task.

Question Classification. Sub-algorithms in
this phase are used to analyse and classify the
question.

• Regexp Q Classification: This is a set
of regular expressions that determines the
type of the expected answer according to a
simple hierarchy of types.

Sentence Selection. Sub-algorithms in this
phase are used to determine what sentences
are likely to contain an answer. These sub-
algorithms can be cascaded to provide the final
ranking of sentences.

• Word Overlap: Count the number of
words in common between the question and
the answer sentence. This sub-algorithm
allows the use of a list of stop words that
are not considered in the overlap.

• Grammatical Relations Overlap:
Count the number of grammatical rela-
tions in common. We used a subset of the

grammatical relations defined by (Carroll
et al., 1998).

• Logical Form Rules: Count the num-
ber of logical form predicates in common,
after applying a set of logical form rules.
The process is explained in (Mollá and Gar-
diner, 2004).

• Logical Graph Rules: Count the graph
overlap between the question and the an-
swer after applying graph transformation
rules. This process is explained in the re-
mainder of this paper.

Named Entity. sub-algorithms in this phase
are used to detect all named entities in the text
(person and organisation names, locations, etc).

• LingPipe: This sub-algorithm uses the
Alias-i LingPipe named entity recogniser.11

3 Logical Graphs

We are developing a graph notation for the
expression of the logical contents of questions
and answer sentences. Our Logical Graphs are
inspired on Conceptual Graphs (Sowa, 1979),
though our graphs do not attempt to encode
the full semantics of a sentence. Instead, the fo-
cus of our Logical Graphs is on robustness and
practicability.

Robustness. It should be possible to auto-
matically produce the Logical Graph of any sen-
tence, even of those sentences that are not fully
grammatical. The importance of this feature
becomes obvious once one looks at the quality
of the English used in typical corpora used for
QA.

Practicability. The Logical Graphs should
be automatically constructed in relatively short
run time. The operations with the graphs
should be computable within relatively short
time.

Like Sowa’s Conceptual Graphs, our Logical
Graphs are directed, bipartite graphs with two
types of vertices, concepts and relations:

Concepts. Examples of concepts are objects
dog, table, events and states run, love, and prop-
erties red, quick. Concepts may be arranged in
a network of word relations (such as ontologies),
though our method does not yet exploit this
possibility in full.

11http://alias-i.com/lingpipe/

17

Relations. Relations act as links between
concepts. Traditional examples of relations
are grammatical roles and prepositions. How-
ever, to facilitate the production of the Logical
Graphs we have decided to use a labelling of
relations which is relatively close to the syntac-
tic level of linguistic information. For example,
instead of using the usual thematic roles agent,
patient, and so forth, we use syntactic roles sub-
ject, object, etc. For convenience, and to avoid
entering into a debate about the possible names
of the syntactic roles, we have decided to use
numbers. Thus, the relation 1 indicates the link
to the first argument of a verb (that is, what is
usually a subject). The relation 2 indicates the
link to the second argument of a verb (usually
the direct object), and so forth.

Figure 1 shows various examples of Logical
Graphs. The first example shows the use of a
relation 1 to express the subject of the go event,
and two relations, to and by, that represent two
prepositions. The second example shows the use
of lattice structures to represent complex enti-
ties (such as the ones formed when a conjunc-
tion is used). This use of lattices is inspired from
the treatment of plurals and complex events
(Link, 1983; Mollá, 1997). Finally, the third ex-
ample shows the expression of clauses and con-
trol verbs. These examples only cover a few of
the linguistic features but we hope they will suf-
fice to show the expressive power of our Logical
Graphs.

The Logical Graphs are constructed auto-
matically from the output of the Conexor
dependency-based parser (Tapanainen and
Järvinen, 1997). The choice of the parser was
arbitrary, and it would be easy to produce the
same or similar graphs from the output of any
dependency-based parser. It would be also pos-
sible to use the output of a constituency-based
parser by applying well-known methods to con-
vert from constituency structures to depen-
dency structures like those described by Schnei-
der (1998), or practical methods like the one
described by Harabagiu et al. (2000).

4 Logical Graph Rules

The Logical Graph rules used by AnswerFinder
are based on the concepts of graph overlap and
path between two subgraphs in a graph.

The graph overlap between two sentences is
the overlap of the Logical Graphs of the two
sentences. A näıve definition of the overlap be-
tween two graphs would be the graph consisting

of all the common concepts and relations. The
actual definition of an overlap, however, must be
made more complicated on the light of the exis-
tence of repeated vertex labels. The third exam-
ple of Figure 1, for example, shows that the re-
lations named 1 and 2 appear twice in the same
graph. Concept labels can also be repeated in a
graph if the sentence uses the same word to ex-
press two different concepts. For example, the
sentence John bought a book and Mary bought a
magazine describes two distinct events of buy-
ing.

Graph overlaps must therefore be defined on
the basis of a correspondence relation so that
each vertex (edge) of a graph correlates with one
and only one vertex (edge) in the other graph
(Montes-y-Gómez et al., 2001). Thus, there is a
projection from the graph overlap to a subgraph
of each of the original graphs, such that there
is a correspondence from every vertex (or edge)
of the graph overlap to a vertex (or edge) of the
projected subgraphs. Figure 2 shows an exam-
ple of two graph overlaps and their projections
to subgraphs in the original graphs.

There could be several overlaps between two
graphs. Of these, the most useful ones are
the maximal overlaps, that is, the overlaps
that are not subgraphs of any other overlaps.
There could still exist several maximal overlaps
between two graphs. For example, Figure 2
shows two different maximal overlaps between
the Logical Graphs of two sentences.

A path between two subgraphs in a graph G
is a subgraph of G that connects the two sub-
graphs. As is the case with graph overlaps,
there may be several paths between two sub-
graphs, especially when the graphs have a high
density of edges.

Each rule r will contain three components.
For the sake of completion the components are
listed here but their use will be described in
detail in Section 5.

ro An overlap between a question and its an-
swer sentence. This overlap is used to de-
termine when the rule should trigger.

rp A path between the overlap and the actual
answer in the answer sentence. This path
is used to find the location of the exact an-
swer.

ra A graph representation of the exact answer.

18

john 1 go to boston

by

bus

John is going to Boston by bus

person 1 be between

≤rock ≤ place

prop

hard

A person is between a rock and a hard place
tom 1 believe 2

want1mary 2

marry1 2

sailor

Tom believes that Mary wants to marry a sailor

Figure 1: Examples of logical graphs

john 1 see 2 book

and and

table2see1mary

john 1 see 2 table2see1

john 1 see 2 table

Figure 2: Graph overlaps of sentences John saw a book and Mary saw a table and John saw a table.
The two overlaps are shown in thick lines. The dashed lines show the correspondence relation
from the graph vertices of each overlap and the projected subgraphs in the original graphs (the
correspondence relation from the edges is not shown to improve readability).

4.1 Learning of Logical Graph Rules

With the help of a training set of questions and
sentences containing the answers, a set of Log-
ical Graph rules can be learnt. Figure 3 shows
an example of a rule learnt between two sen-
tences. The graph notation has been simplified
by replacing the relation vertices with labelled
edges.

The algorithm for learning rules is fairly
straightforward and is shown in Figure 4. Rules
learnt with this algorithm are very specific to
the question/answer pair. For example, the

bear peter where1 2 prop

Q:Where was Peter born?

peter birthplace be paris
genitive 1 2

A:Peter’s birthplace was Paris

peter birthplace be paris
genitive 1 2

The Rule (ro in regular lines, rp in dashed
lines, ra in thick lines)

Figure 3: A logical graph rule

19

FOR every question/answerSentence pair
Gq = the graph of the question
Gs = the graph of the answer sentence
Ga = the graph of the exact answer
FOR every overlap O between Gq and Gs

FOR every path P between O and Ga

Build a rule R of the form
Ro = O
Rp = P
Ra = Ga

Figure 4: Learning of graph rules

rule in Figure 3 would only trigger for ques-
tions about Peter and it would not trigger, say,
for the question Where was Mary born?. The
rule needs to be generalised. Our generalisation
method is very simple: relations do not gener-
alise (relations express syntactic or semantic re-
lations and it is not advisable to over-generalise
them), and concepts generalise to “ ” (that is,
concepts that would unify with anything). The
generalisation process applies to every concept
except those that belong to a specific list of
“stop concepts” (in analogy to the idea of stop
words in Information Retrieval). The current
list of stop concepts is:

and, or, not, nor, if, otherwise, have,
be, become, do, make

The resulting generalised rules may then over-
generalise and therefore they must be weighted
according to their ability to detect the correct
answer in the training corpus. The weightW(r)
of a rule r is computed following the formula:

W(r) =
correct answers found

answers found

5 Graph-based Question Answering

Given a question q with graph Q and a sen-
tence s with graph S, the process to find the
answer iterates over all the rules. A rule r trig-
gers if the overlap component of the rule ro is a
subgraph of Q (which can be easily determined
by checking that ovl(ro, Q) = ro). When that
happens, the graph of the question is expanded
with the rule path rp, producing a new graph
Qrp . The resulting graph is more likely to pro-
duce a large overlap with an answer sentence
similar to the one that generated the rule and,

most importantly, the graph contains an indi-
cation of where the answer is located.

Once the graph of the question has been ex-
panded with the path, one only needs to com-
pute the overlap between this expanded graph
and that of the answer sentence ovl(Qrp , S). If
the overlap retains part of the exact answer that
was marked up by the graph rule, then we have
found a possible answer.

The above method will cover simple cases,
but it needs to be extended to cover two spe-
cial cases that arise from the fact that the ques-
tion/sentence pairs that generated the rule are
likely to be different from the actual question
and sentence being tested. First of all, a ques-
tion may trigger several rules, and each rule may
extract a different answer from the answer sen-
tence. And second, it is possible that the over-
lap between the expanded graph and the sen-
tence does not contain the complete answer but
part of it. We will explain how to handle these
two cases below.

To identify the correct answer among a set
of possible answers it is necessary to establish
a measure of “answerhood” so that the correct
answer has a higher score than the score of other
candidates. The rule weight gives an indication
of the quality of the answer extracted, but we
also need to keep in account the similarity (or
otherwise) between the text originating the rule
and the text being tested. Given that the graph
of the question has been expanded with the path
linking the question and the exact answer deter-
mined in the training corpus, then the size of the
overlap between the expanded graph of the test
question and the graph of the test answer can
be used as an estimation. Thus, the measure
of answerhood A(pa) of a possible answer pa is
the product of the weight of the rule used r, and
the size of the best overlap between the graph
of the question sentence expanded with the rule
path and the graph S of the answer sentence:

A(a) = W(r)× size(ovl(Qrp , S))

The size of a graph is computed as the
weighted sum of all concepts and relations in
the path. The formula to determine the weight
of each concept and relation is inspired on the
use of the Inverse Document Frequency (IDF)
measure used in Document Retrieval. The ac-
tual formula that we use is:

Wi =
1

log N
log

N

n

20

35.1
When did Jack Welch become chairman of General Electric?
Jack Welch took over GE in <answ>1981</answ>.
Welch became GE’s chief executive in April <answ>1981</answ>.
Welch was named chief executive in <answ>1981</answ>.

35.4
How many people did he fire from GE?
He sold off underperforming divisions and fired about <answ>100,000</answ> people.
More than <answ>100,000</answ> GE jobs have been axed under Welch.

Figure 5: Extract of the training corpus

n = total number of sentences using the concept
(or relation) i

N = total number of sentences

The formula includes the constant factor
1/ log N to ensure that the values range between
0 and 1.

6 Evaluation and Results

We have conducted an initial evaluation of the
use of these rules within the task of ques-
tion answering. For this evaluation we cre-
ated a training and testing corpus based on
the first 111 questions of the question-answering
track of TREC 2004 (Voorhees, 2004). For
each question, we applied Ken Litkowsky’s pat-
terns12 to automatically extract sentences in
the AQUAINT corpus containing possible an-
swers. These sentences were checked manually,
and only sentences containing the answer and a
justification were selected. As a result we ob-
tained about 560 question/answer pairs. The
exact answers in the answer sentences of the
training corpus were manually marked up to en-
sure a corpus without wrong answers. Figure 5
shows an extract of the training corpus.

The question/answer training corpus was
split in 5 sets, and a 5-fold cross-validation
was performed. Table 1 shows the results. In
this table, the accuracy indicates the percentage
of questions that are answered correctly. The
MRR measure is as used in the TREC eval-
uations (Voorhees, 2001), and it measures the
mean reciprocal rank for ranks from 1 to 5. For
example, if the correct answer was ranked 3 (i.e.
the system ranked two wrong answers higher
than the correct answer), then the reciprocal
rank is 1/3. If the correct answer was ranked

12Ken Litkowsky’s patterns are available from the
TREC website (http://trec.nist.gov).

beyond 5, then the reciprocal rank is 0. The
MRR is the mean of the reciprocal ranks across
all questions. Given that the results indicate an
MRR with value higher than the accuracy, we
can deduce that the system sometimes finds the
correct answer but it does not assign it the top
rank.

Accuracy MRR
Test 1 25.76% 28.91%
Test 2 26.92% 31.09%
Test 3 9.21% 16.56%
Test 4 26.47% 29.78%
Test 5 18.82% 23.53%
Average 21.44% 25.97%

Table 1: Graph-based question answering re-
sults. The accuracy is the percentage of ques-
tions that are correctly answered. The MRR
measure is as used in the TREC evaluations (see
text).

Figure 6 shows the distribution of weights
among the rules learnt (this is the sum of all
the rules produced in all the five runs). To avoid
computational overhead of handling rules with
low weight we decided to set a threshold of 0.5.
Any rules with weight below 0.5 were discarded.
The figure indicates two clear regions, one with
rules of weight lower than 0.6 and one with rules
of weight above 0.9. It is probably desirable to
set a threshold of 0.9 for a larger training cor-
pus to ensure that only good quality rules are
used. We refrained from doing so with our small
corpus to avoid ending up with too few rules.

It is difficult to compare the above results
with those of existing evaluations for various
reasons. First of all, the system used in our
evaluation did not have the usual modules of a
full-blown QA system as described in Section 1.
Second, the task is a simplification of a real QA

21

360

64 76 76

240

0.5 0.6 0.7 0.8 0.9 1.0

100

200

300

400

N
um

.
R
ul

es

Weight

Figure 6: Distribution of weights among the
rules learnt

task in that the answer is known to exist in the
answer candidate. An area of further work is
therefore to integrate this method into the An-
swerFinder QA system and to evaluate the sys-
tem in a task such as the QA track of TREC.

7 Related Work

There have been several attempts to automati-
cally learn the correspondence between a ques-
tion and an answer. For example, (Echihabi
et al., 2004) describes three approaches to use
question/answer rules, two of which use ma-
chine learning methods. In one approach, the
system uses a methodical series of web searches
containing a question phrase and the answer
to collect a corpus of substrings linking the
question phrase with the answer. The other
machine-learning method described by Echich-
abi et al. uses techniques based on statistical
machine translation to automatically learn the
“translation” between a question and an an-
swer.

A system that uses syntactic information in
machine learning for QA has been recently pub-
lished by Shen et al. (2005). This system is
based on the extraction of dependency chains
connecting a question word with an answer.
The information is combined with other statis-
tical features and fed to a Maximum Entropy
model that ranks the answer candidates. The
use of dependency chains in this system is sim-
ilar in principle with our use of graph paths in
that it provides a way to connect a question
with its answer. We have not had time however
to study this system in detail.

Another system that uses syntactic informa-
tion to develop patterns is described by Bouma
et al. (2005). Their system uses the output
of a dependency parser combined with a set of

equivalence rules between sets of dependency re-
lations that paraphrase each other. In contrast
with our method, however, the rules were de-
veloped manually and there were no indications
in the paper about how to develop a method
to automatically learn the rules. A method to
discover similar sets of dependencies has been
described by Lin and Pantel (2001), so in prin-
ciple it is feasible to learn paraphrase rules and
apply them to QA. However, the paraphrase
rules described by these two systems do not at-
tempt to connect a question with an answer, as
we do.

The only system using logical-form rules that
we are aware of is AnswerFinder at the time of
participation in TREC 2004 (Mollá and Gar-
diner, 2004). The rules were based on An-
swerFinder’s minimal logical forms, and they
were built manually. The system presented in
our paper is a continuation of this research.
Other than AnswerFinder, we are not aware
of any QA system that attempts to learn rules
based on logical forms.

There is some work on the use of concep-
tual graphs for information retrieval (Montes-
y-Gómez et al., 2000; Mishne, 2004). However,
we are not aware of any publication about the
use of conceptual graphs (or any other form
of graph representation) for question answering
other than our own.

8 Conclusions and Further Work

We have introduced a methodology for the
learning of graph patterns between questions
and answers. Rules are learnt on the basis of
two graph concepts: graph overlap, and paths
between two subgraphs in a graph.

The techniques presented here use graph rep-
resentations of the logical contents between
questions and answer sentences. These tech-
niques are being tested in AnswerFinder, a
framework for the development of question-
answering techniques that is easily configurable.

We believe that our method can generalise to
any graph representation of questions and an-
swer sentences. Further work will include the
use of alternative graph representations, includ-
ing the output of a dependency-based parser.

Finally, we plan to continue our evaluation
of the method by integrating it into the An-
swerFinder system and other QA systems to
fully assess its potential.

22

9 Acknowledgements

This research is funded by the Australian
Research Council, ARC Discovery Grant no
DP0450750.

References

Gosse Bouma, Jori Mur, and Gertjan van No-
ord. 2005. Reasoning over dependency rela-
tions for qa. In Proc. IJCAI-05 Workshop
on Knowledge and Reasoning for Answering
Questions, pages 15–20.

John Carroll, Ted Briscoe, and Antonio Sanfil-
ippo. 1998. Parser evaluation: a survey and
a new proposal. In Proc. LREC98.

Abdessamad Echihabi, Ulf Hermjakob, Eduard
Hovy, Daniel Marcu, Eric Melz, and Deepak
Ravichandran. 2004. How to select an an-
swer string? In Tomek Strzalkowski and
Sanda Harabagiu, editors, Advances in Tex-
tual Question Answering. Kluwer.

Sanda Harabagiu, Dan Moldovan, Marius
Paşca, Rada Mihalcea, Mihai Surdeanu,
Răzvan Bunescu, Roxana Gı̂rju, Vasile Rus,
and Paul Morărescu. 2000. Falcon: Boosting
knowledge for answer engines. In Ellen M.
Voorhees and Donna K. Harman, editors,
Proc. TREC-9, number 500-249 in NIST Spe-
cial Publication, pages 479–488. NIST.

Lynette Hirschman and Rob Gaizauskas. 2001.
Natural language question answering: The
view from here. Natural Language Engineer-
ing, 7(4):275–300.

Dekang Lin and Patrick Pantel. 2001. Discov-
ery of inference rules for question-answering.
Natural Language Engineering, 7(4):343–360.

Godehard Link. 1983. The logical analysis of
plurals and mass terms: a lattice-theoretical
approach. In Rainer Bauerle, Christoph
Schwarze, and Arnim von Stechov, editors,
Meaning, Use and Interpretation of Lan-
guage, pages 250–209. de Gruyter, Berlin.

Gilad Mishne. 2004. Source code retrieval us-
ing conceptual graphs. Master’s thesis, Uni-
versity of Amsterdam.

Dan Moldovan, Marius Pas ca, Sanda
Harabagiu, and Mihai Surdeanu. 2003.
Performance issues and error analysis in an
open-domain question answering system.
ACM Transactions on Information Systems,
21(2):133–154.

Diego Mollá and Mary Gardiner. 2004. An-
swerfinder - question answering by combining
lexical, syntactic and semantic information.
In Ash Asudeh, Cécile Paris, and Stephen

Wan, editors, Proc. ALTW 2004, pages 9–16,
Sydney, Australia. Macquarie University.

Diego Mollá. 1997. Aspectual Composition and
Sentence Interpretation: a formal approach.
Ph.D. thesis, University of Edinburgh.

Manuel Montes-y-Gómez, Aurelio López-López,
and Alexander Gelbukh. 2000. Information
retrieval with conceptual graph matching. In
Proc. DEXA-2000, number 1873 in Lecture
Notes in Computer Science, pages 312–321.
Springer-Verlag.

Manuel Montes-y-Gómez, Alexander Gelbukh,
and Ricardo Baeza-Yates. 2001. Flexi-
ble comparison of conceptual graphs. In
Proc. DEXA-2001, number 2113 in Lecture
Notes in Computer Science, pages 102–111.
Springer-Verlag.

Fabio Rinaldi, James Dowdall, Kaarel Kalju-
rand, Michael Hess, and Diego Mollá. 2003.
Exploiting paraphrases in a question answer-
ing system. In Proc. Workshop in Paraphras-
ing at ACL2003, Sapporo, Japan.

Gerold Schneider. 1998. A linguistic compar-
ison of constituency, dependency and link
grammar. Master’s thesis, University of
Zurich. Unpublished.

Dan Shen, Geert-Jan M. Kruijff, and Dietrich
Klakow. 2005. Exploring syntactic relation
patterns for question answering. In Robert
Dale, Kam-Fai Wong, Jian Su, and Oi Yee
Kwong, editors, Natural Language Processing
IJCNLP 2005: Second International Joint
Conference, Jeju Island, Korea, October 11-
13, 2005. Proceedings. Springer-Verlag.

M. M. Soubbotin. 2001. Patterns of potential
answer expression as clues to the right an-
swers. In Ellen M. Voorhees and Donna K.
Harman, editors, Proc. TREC 2001, number
500-250 in NIST Special Publication. NIST.

John F. Sowa. 1979. Semantics of conceptual
graphs. In Proc. ACL 1979, pages 39–44.

Pasi Tapanainen and Timo Järvinen. 1997. A
non-projective dependency parser. In Proc.
ANLP-97. ACL.

Ellen M. Voorhees. 2001. The TREC question
answering track. Natural Language Engineer-
ing, 7(4):361–378.

Ellen M. Voorhees. 2004. Overview of the trec
2004 question answering track. In Ellen M.
Voorhees and Lori P. Buckland, editors, Proc.
TREC 2004, number 500-261 in NIST Special
Publication. NIST.

23

Proceedings of the Australasian Language Technology Workshop 2005, pages 24–31,
Sydney, Australia, December 2005.

A Statistical Approach towards Unknown Word Type Prediction
for Deep Grammars

Yi Zhang and Valia Kordoni
Department of Computational Linguistics

Saarland University
Saarbrücken, Germany, D-66041

Abstract

This paper presents a statistical approach to un-
known word type prediction for a deep HPSG
grammar. Our motivation is to enhance robust-
ness in deep processing. With a predictor which
predicts lexical types for unknown words ac-
cording to the context, new lexical entries can
be generated on the fly. The predictor is a
maximum entropy based classifier trained on a
HPSG treebank. By exploring various feature
templates and the feedback from parse disam-
biguation results, the predictor achieves preci-
sion over 60%. The models are general enough
to be applied to other constraint-based gram-
mar formalisms.

1 Introduction

Deep processing delivers fine-grained syntactic
and semantic analyses which are desirable for
advanced NLP applications. However, speci-
ficity and robustness are the major difficulties
that deep processing has encountered for years.

Unlike shallow methods, which in most cases
deliver an expected number of analyses, the
number of output from deep processing is usu-
ally unpredictable, especially for open texts.
The specificity problem arises when there are
more analyses generated than expected. The
analyses might be linguistically sound, but prac-
tically uninteresting for real applications. Re-
cently, with more deep processing resources
made available (Oepen et al., 2002), the speci-
ficity problem is being alleviated with statistical
parse selection models (Toutanova et al., 2002).

As to robustness, more open questions remain
to be investigated. A deep grammar is normally
a complicated rule system. Whenever the input
varies, even slightly, beyond the grammar de-
velopers’ expectations, the output becomes un-
predictable.

Closer studies of deep grammars have shown
that lexicon coverage is one of the major barri-
ers preventing deep grammars from being used

for open text processing. Take the LinGO
English Resource Grammar (ERG) (Copestake
and Flickinger, 2000), for instance. The gram-
mar has been developed for more than 10 years,
and currently contains about 22K lexicon en-
tries. A recent test on the BNC corpus reported
that only 32% of the strings have full lexical
span, of which 57% get at least one parse (Bald-
win et al., 2004). About 40% of the parsing
failures are due to lexicon missing. Lexicalized
deep grammars rely on knowledge-rich lexicon.
However, the construction of a lexicon with de-
cent coverage requires a huge amount of human
effort and considerable linguistic proficiency.

A widely adopted approach towards robust
deep processing is to integrate shallow meth-
ods (Callmeier et al., 2004). However, most re-
cent approaches still work on various fall-back
strategies. When a deep processing component
fails to deliver output, intermediate or shallow
components are invoked to provide compatible
analyses. Practically valid, this approach does
not directly help to enhance the robustness of
deep processing itself.

Inspired by the statistical approaches in parse
selection (Toutanova et al., 2002), we pro-
pose a statistical approach for unknown word
type prediction. The experiments are carried
out on a broad-coverage linguistically-precise
HPSG grammar for English, the LinGO En-
glish Resource Grammar (ERG) (Copestake
and Flickinger, 2000). However the underlying
statistical model is general enough to apply to
other deep grammars. Also, by incorporating
the parse disambiguation result, we show that
the robustness is in nature a dual problem to
the specificity. And they can benefit from each
other’s improvements.

The remainder of the paper is structured as
follows: Section 2 gives the background about
the lexicon in HPSG; Section 3 describes our
statistical models for unknown word type pre-
diction and the various feature templates we

24

use; Section 4 shows how the parse selection
model can be incorporated to enhance the pre-
cision of prediction ; Section 5 reports on the
experiment results; Section 6 compares our ap-
proach to other related work; Section 7 con-
cludes our approach and presents some aspects
of our future work.

2 Lexicon Representation and
Definitions in HPSG

Head-driven Phrase Structure Grammar
(HPSG) (Pollard and Sag, 1994) is a widely
adopted constraint-based grammar formalism.
Based on typed feature structure (TFS) (Car-
penter, 1992), HPSG is highly lexicalized,
which means there is only a limited number of
highly generalized rules (ID Schemata & LP
rules). A knowledge-rich lexicon is organized
into a complex type hierarchy.

In HPSG, all the linguistic objects are mod-
eled by TFSs. Formally, a TFS is a directed
acyclic graph (DAG). Each node in the DAG
is labelled with a sort symbol (or type) corre-
sponding to the category of the linguistic ob-
ject. All the sort symbols are organized into an
inheritance system, namely the type hierarchy.
Two types are compatible if they share at least
one common subtype in the hierarchy.

The lexicon is also organized into the type hi-
erarchy. In principle, each lexical entry is a well-
formed TFS, which conveys a set of constraints.
The constraints include both feature-value ap-
propriateness and type compatibility. For in-
stance, Figure 1 is the TFS for the proper name
“Mary”.

word

phon

〈

“mary”

〉

synsem

synsem

loc

local

cat

cat

head

noun

[

case case

prd bool

]

val

valence

[

subj 〈〉

spr 〈〉

comps 〈〉

]

cont

nom-obj

ind 1

ref

[

per 3rd

num sg

gen fem

]

restrs

〈

naming

[

name Mary

bearer 1

]

〉

conx | bkgrd

〈

female

[

inst 1

]

〉

nonloc nonlocal

Figure 1: TFS of lexical entry for “Mary”

However in implementation, complete de-

scription is barely necessary. Most of the con-
straints will be conveyed via type inheritance.
Only entry specific information like the stem
and the semantic relation are required.

tsunami_n1 := n_intr_le &
[STEM < "tsunami" >,

SYNSEM [LKEYS.KEYREL.PRED
"_tsunami_n_rel",

PHON.ONSET con]].

admire_v1 := v_np_trans_le &

[STEM < "admire" >,
SYNSEM [LKEYS.KEYREL.PRED

"_admire_v_rel",

PHON.ONSET voc]].

Figure 2 gives part of the lexical hierarchy in
ERG under the type basic noun word. Types
with the suffix “le” are so-called leaf lexical
types and should be directly assigned to lexical
entries. These types are always mutually sep-
arated and incompatible. It is noticeable that
each lexical entry takes exactly one leaf lexical
type. When a word has more than one syntac-
tic and/or semantic behaviors, different lexical
entries will be created separately.

ERG1 defines in total 741 leaf lexical types,
of which 709 types are actually used in its lexi-
con with 12347 entries. A large number of these
lexical types are closed categories whose lexical
entries should already exist in the grammar. It
is obvious that missing lexical entries, in most
cases, should be in open categories. Verb, noun,
adjective and adverb are the major open cate-
gories. In ERG, the number of leaf lexical types
under these general categories are shown in Ta-
ble 1.

General Cat. Leaf Lex Types Num.
verb 261
noun 177

adjective 78
adverb 53

Table 1: Number of Leaf Lexical Types under
Major Open Categories in ERG

However, even for the open categories, the
distribution of existing lexical entries over dif-
ferent lexical types varies significantly. Table

1The June 2004 release of ERG was used through-
out this paper for experiments and statistics. This was
also the version used for building the latest version of
Redwood Treebank.

25

basic noun word

noun noninfl word basic n proper lexent

basic intr noun word n mass le n proper lexent

basic intr lex entry n proper le

n intr lex entry n ppof meas le

n intr le n intr nosort le

Figure 2: Part of the Lexical Hierarchy in ERG

2 lists the top 10 lexical types with maximum
number of entries in the ERG lexicon.

Leaf Lexical Type Num. of Entries
n intr le 1742

n proper le 1463
adj intrans le 1386
v np trans le 732

n ppof le 728
adv int vp le 390
v np* trans le 342

n mass count le 292
v particle np le 242

n mass le 226

Table 2: Number of Entries for Top-10 Leaf Lex-
ical Types in ERG

The top 10 verbal types count for about 75%
of the verbal entries. For nouns the figure is
about 95% and 90% for adjectives. Presumably,
the automated lexical extension for nouns will
be easier. This is plausible because verbal lexi-
cal entries normally require more detailed sub-
categorization information.

3 Statistical Unknown Word Type
Prediction Models

For open text processing, a static lexicon in-
evitably becomes insufficient. A better strat-
egy is to build an unknown word type predic-
tor which can “guess” the lexical type from the
available context, and generate lexical entries
on the fly.

As mentioned in Section 2, the lexicon of an
HPSG grammar is organized into a type hier-
archy. Each entry bears exactly one leaf lexical
type. So the predictor is actually a classifier,
which takes various context and morphological
forms of the unknown word into consideration,

and picks out the most suitable leaf lexical type
as output.

Such an unknown word type predictor is es-
sentially very similar to a part-of-speech (POS)
tagger. A typical POS tagger assigns a (unique
or ambiguous) part-of-speech tag to each token
in the input. A large number of current lan-
guage processing systems use a POS tagger for
pre-processing. The difference is that our un-
known word type predictor has a very larger
tagset. The tagset of a typical POS tagger usu-
ally contains tens of different tags. But our
predictor needs to handle hundreds of possible
types. In addition, an unknown word type pre-
dictor only predicts unknown words while a typ-
ical POS tagger generates tags for each token
on the input sequence. Another point is that
our unknown word type predictor can use any
context information available at the processing
stage. But normally a POS tagger only uses sur-
face context features because these are usually
used during pre-processing.

3.1 Maximum Entropy Classifier Based

Predition Model

Considering these difference, we have con-
structed our predictor based on a maximum en-
tropy classifier. The advantages of a Maximum
entropy model lie in the general feature repre-
sentation and in no independence assumptions
between features. A maximum entropy model
can also easily handle thousands of features and
large numbers of possible outputs.

For our prediction model, the probability of
a lexical type t given an unknown word and its
context c is:

p(t, c) =
exp(

∑

i θifi(t, c))
∑

t′∈T exp(
∑

i θifi(t′, c))
(1)

where feature fi(t, c) may encode arbitrary

26

characteristics of the context. The parameters
< θ1, θ2, . . . > can be evaluated by maximizing
the pseudo-likelihood on a training corpus (see
(Malouf, 2002)).

The basic feature templates used in our ME-
based model include the prefix and suffix of the
unknown word, the context words within a win-
dow size of 5, and their corresponding lexical
types.

3.2 Using Partial Parsing Results as

Features

Each lexical type is essentially a set of con-
straints on linguistic objects. If a word has a
specific lexical type, it must conform to all the
constraints demanded by the type, and hence it
can only appear in some specific linguistic con-
text. The constraints concern various linguistic
aspects, among which syntactic constraints are
predominant.

One advantage of using a maximum entropy
based model is that ME allows the combina-
tion of diverse forms of contextual information
in a principled manner, and it does not impose
any distributional assumptions on the training
data. So far, only the surface context features
(words and their lexical types) are used. It can
be presumed that the precision can be enhanced
by adding syntactic context as features into the
prediction model.

However, syntactic information is not avail-
able in a traditional pipeline processing model,
where the syntactic analysis will be the post-
processing module to the predictor. Also, when
there are unknown words in the input, a full
analysis of the sentence is not possible.

So we have modified our strategy by inserting
a partial parsing stage before the lexical type
predictor if there are unknown words on the in-
put sequence.

The partial parse needs some clarification. A
full parse can be represented by a set of edges
as shown in Figure 3(a). Each edge is derived
from a rule application. There is no more than
one edge between each pair of positions. And
there is always exactly one full span edge in a
full parse.

A partial parse of an input sequence is a set of
edges which composes a shortest path from the
beginning to the end of the sequence2. There

2Note that the edges on the full parse of the sentence
are not necessary in the corresponding partial parses if a
word is assumed to be unknown. However, partial parses
do reduce the number of candidate edges for considera-
tion.

might be more than one partial parse for a given
input sequence. As shown in Figure 3(b), when
the word between position 2 and 3 is unknown, a
dummy edge c is created. This dummy edge will
prevent further rule application. Both a− c− d
and b− c− d are partial parses.

0 1 2 3 4

(a)

0 1 2 3 4

a b

c

d

(b)

Figure 3: Parsing edges: (a) edges in a full
parse; (b) edges in partial parses.

From the partial parses, we collect all edges
that are adjacent to the left/right of the un-
known word, respectively. Then the rules that
generate these edges are counted according to
their application (once per edge). The most fre-
quently used rules to create left/right adjacent
edges are added as two features conveying syn-
tactic information into the ME-based model. A
complete list of all features templates used in
our predictor are listed in Table 3.

4 Incorporating Parse
Disambiguation Results

As mentioned before, deep lexical types nor-
mally encode complicated constraints that only
make sense when they work together with the
grammar rules. And some subtle differences be-
tween lexical types do not show statistical sig-
nificance in a corpus with limited size. So the
feedback from later stages of deep processing is
very important for predicting the lexical types
for the unknown words.

The partial parsing results break the pipeline
model. However, they might help only when the
unknown is not the head of the phrase. Other-
wise, the full parse crushes into small fragments,
and the partial parsing results normally make
no sense. An alternative way of breaking the
pipeline model is to help the parser to generate
full parses in the first place, and let the parsing
result tell which lexical entry is good.

27

Features
X is prefix of wi, |X| ≤ 4
X is suffix of wi, |X| ≤ 4

ti−1 = X, ti−2ti−1 = XY , ti+1 = X, ti+1ti+2 = XY
wi−2 = X, wi−1 = X, wi+1 = X, wi+2 = X

LP is the left adjacent most frequent edge of wi

RP is the right adjacent most frequent edge of wi

Table 3: Feature templates used in ME-based prediction model for word wi (tj is the lexical type
of wj)

In order to help the parser to generate a full
parse of the sentence, we feed the newly gen-
erated lexical entries directly into the parser.
Instead of generating only one entry for each
occurrence of unknown, we pass on top n most
likely lexical entries. With these new entries,
the sentence will receive one or more parses (as-
suming the sentence is grammatical and covered
by the grammar). From the parsing results, a
best parse is selected with the disambiguation
model, and the corresponding lexical entry is
taken as the final result of lexical extension.

Within this processing model, the incorrect
types will be ruled out if they are not compatible
with the syntactic context. Also the infrequent
readings of the unknown will be dispreferred by
the disambiguation model.

5 Experiments

Missing lexical entries can be discovered by lex-
icon checking. Precision is the only measure-
ment for the lexical type predictor. In this
section we will evaluate our models by exper-
iments.

5.1 Resources

Redwoods (Oepen et al., 2002) is a HPSG tree-
bank that records full analyses of sentences with
ERG. The genre of texts includes email corre-
spondence, travel planning dialogs, etc. The 5th
growth of Redwoods contains about 16.5K sen-
tences and 122K tokens3.

In all our experiments, we have done a 10-
fold cross validation on the Redwoods treebank.
For each fold, words that do not occur in the
training partition are assumed to be unknown.

A modified version of the efficient HPSG
parser PET (Callmeier, 2000; Callmeier, 2001)
has been used to generate the derivation tree
fragments of the partial parses.

3Sentences without a full analysis are neither counted
here nor used in experiments.

We have also modified LexDB (Copestake et
al., 2004) in order to be able to add temporal
lexical entries that are only active for specific
sentence.

The parse disambiguation model we have
used is a maximum entropy based model that
uses non-lexicalized features with 2 levels of
grandparnets (see (Toutanova et al., 2002) for
detailed discussion about parse disambiguation
models for HPSG grammars).

For maximum entropy parameter estimation,
we have used (Malouf, 2002)’s MaxEnt package.

5.2 Results

For comparison, we have built a baseline sys-
tem that always assigns a majority type to each
unknown according to the POS tag. More speci-
ficically, we tag the input sentence with a small
Penn Treebank-like POS tagset. Then POS tag
is mapped to a most popular lexical type for
that POS.4 Table 4 lists part of the mappings.

POS Majority Lexical Type
noun n intr le
verb v np trans le
adj. adj intrans le
adv. adv int vp le

Table 4: Part of the POS tags to lexical types
mapping

Again for comparison, we have built another
two simple prediction models with two popular
general-purpose POS taggers, TnT and MX-
POST. TnT is a HMM-based trigram tagger
while MXPOST is maximum entropy based.
We have trained the tagging models by using all
the leaf lexical types as the tagset. The taggers
tag the whole sentence. But only the output
tags for the unknowns are taken to generate the
lexical entries.

4This is similar to the built-in unknown word han-
dling mechanism of the PET system.

28

The maximum entropy based model is tested
both with and without using partial parsing re-
sults as features. To incorporate disambigua-
tion results, our predictor generates 3 entries
for each unknown and store them as temporary
entries into the LexDB.

Precisions of the different prediction models
are shown in Table 5.

Model Precision
Baseline 30.7%
TnT 40.4%
MXPOST 40.2%
ME(-pp) 50.0%
ME(+pp) 50.5%
ME(-pp)+ disambi. result 61.3%

Table 5: Precision of Unknown Word Type Pre-
dictors (+/-pp means w or w/o partial parsing
result features)

The baseline model achieves precision around
30%. This means that the task of unknown
word type prediction for deep grammars is non-
trivial. The general-purpose POS taggers based
models perform quite well, outperforming the
baseline by 10%. As a confirmation to (El-
worthy, 1995)’s claim, a huge tagset does not
imply that tagging will be very difficult. Our
ME-based model significantly outperforms the
taggers-based models by another 10%. This is
a strong indication of our model’s advantages.

By incorporating simple syntactic informa-
tion into the ME-based model, we get extra pre-
cision gain of less than 1%. It is worth notic-
ing that the syntactic features we used are still
naive. Better syntactic features remain to be ex-
plored in future work. Also, by applying partial
parsing, the computation complexity increases
significantly in comparison to our basic ME-
based model.

By incorporating the disambiguation results,
the precision of the model boosts up for another
10%. The computational overhead is propor-
tional to the number of candidate entries added
for each unknown word. However, in most cases,
introducing lexical entries with incorrect types
will end up to parsing failure and can be ef-
ficiently detected by quick checking. In such
cases the slowdown is acceptable.

In general, we have achieved up to 60% pre-
cision of unknown word type prediction for the
ERG in these experiments. Given the complex-
ity of the grammar and the huge number of pos-

sible lexical types, these results are satisfying.
Also, in real case of grammar adaptation for
new domains, a large portion of unknowns are
proper names. This means that the precision
might get even higher in real applications. A
test with some small text collection with real
unknown words 5 shows that the precision can
easily go above 80% with the basic ME model
without partial parsing features.

It should also be mentioned that some of
these experiments are also carried out for Dutch
Alpino Grammar (Bouma et al., 2001), and sim-
ilar results are obtained. This shows that our
method may be grammar and platform indepen-
dent.

6 Comparison with Related Work

This work is in essence very similar to the work
of deep lexical acquisition (DLA) in (Baldwin,
2005). A minor difference is that our model al-
ways generates (at least) one lexical entry for
the unknown, so that the deep processing does
not halt at the very beginning. A more impor-
tant difference is that, while (Baldwin, 2005)
focuses on generalizing the method of deriving
DLA models on various secondary language re-
sources, our work focuses more on how to utilize
the deep grammar itself as a source for enhanc-
ing robustness. The Redwoods Treebank is by
nature the output of the deep grammar. And
the parsing, as well as the disambiguation mod-
els are also part of the grammar that has even-
tually contributed to the unknown word type
prediction.

(Erbach, 1990; Barg and Walther, 1998; Fou-
vry, 2003) followed a different approach to-
wards unknown words processing for unification
based grammars. The basic idea was to use
the underspecified lexical entries, namely TFSs
with fewer constraints, in order to generate full
parses for the sentences, and then extract the
sub-TFS from the parses as a new lexical en-
try. However, lexical entries generated in this
way might be both too general and too specific.
And underspecified lexical entries with fewer
constraints allow more grammar rules to be ap-
plied while parsing. It gets even worse when

5We used a text set named rondane for training and
hike for testing. rondane contains 1424 sentences in
formal written English about tourism in the norwegian
mountain area, with an average sentence length of 16
words; hike contains 320 sentences about outdoor hik-
ing in Norway with an average sentence length of 14.3
words. Both contain a lot of unknowns like location
names, transliterations, etc.

29

two unknown words occur next to each other,
which might allow almost any constituent to be
constructed. Also, the underspecified lexical en-
try significantly increases computational com-
plexity. (van Schagen and Knott, 2004) took a
similar approach of interactive unknown word
acquisition in a dialogue context.

(Thede and Harper, 1997) reported an em-
pirical approach towards unknown lexical anal-
ysis using morphological and syntactic infor-
mation. The approach is similar to ours in
spirit. However, the experiments were done for
a shallow parser with a very limited number of
word classes. The applicability to lexicalist deep
grammars with lots of lexical types is unknown.

In (Malouf and van Noord, 2004), the max-
imum entropy models were used for wide cov-
erage parsing with the Alpino Dutch grammar
(Bouma et al., 2001). But the focus was on
parse selection, not unknown words processing.

Another related work is supertagging (Ban-
galore and Joshi, 1999). In supertagging, the
lexical items are assigned with rich descriptions
(supertags) that impose complex constraints in
a local context. Some statistical techniques
of assigning supertags to unknown words have
been reported. For example, (Bangalore and
Joshi, 1999) used a simple method of combin-
ing a probability estimate for unknown words
P (UKN |Ti) with a probability estimate based
on word features (capitalization, hyphenation,
ending of words) by:

P (Wi|Ti) = P (UNK|Ti) ∗ P (w feat(Wi)|Ti)
(2)

where UNK is a token associated with each su-
pertag and its count NUNK is estimated by:

P (UNK|Tj) =
N1(Tj)

N(Tj) + η
(3)

Nunk(Tj) =
P (UNK|Tj) ∗N(Tj)

1− P (UNK|Tj)
(4)

N1(Tj) is the number of words that are as-
sociated with the supertag Tj that appear in
the corpus once. From some aspect, this ap-
proach is similar to our work. But our ME-
based model allows more general feature repre-
sentation. Also the lexical types we used are
more general in the sense that both local and
non-local constraints are encoded.

7 Conclusion and Future Work

Several statistical unknown word type predic-
tion models are implemented and evaluated for

deep HPSG grammars. The general-purpose
POS taggers based approach delivers satisfying
precision. The maximum entropy based predic-
tor allows for more general feature representa-
tion. By incorporating parse disambiguation re-
sults, the unknown word type predictor achieves
precision over 60%.

Although the experiments are carried out
with the ERG, the underlying model is general
enough to be easily applied on other constraint-
based lexicalist grammars, provided the lexical
categories can be abstracted by a set of atomic
types.

Several aspects of this work need further ex-
ploration. More sophisticated syntactic features
should be investigated. Besides, the deep gram-
mar also provides semantic analyses which are
not available in shallow processing. The gen-
eral feature representation in our model allows
the incorporation of this orthogonal dimension
of information to enhance the precision of pre-
diction. Also, larger corpora in more variety
of genres are certain to generate better mod-
els. The application of the method to more deep
grammars is anticipated.

References

Timothy Baldwin, Emily M. Bender, Dan
Flickinger, Ara Kim, and Stephan Oepen.
2004. Road-testing the English Resource
Grammar over the British National Corpus.
In Proceedings of the Fourth International
Conference on Language Resources and Eval-
uation (LREC 2004), Lisbon, Portugal.

Timothy Baldwin. 2005. Bootstrapping deep
lexical resources: Resources for courses. In
Proceedings of the ACL-SIGLEX Workshop
on Deep Lexical Acquisition, pages 67–76,
Ann Arbor, Michigan, June. Association for
Computational Linguistics.

Srinivas Bangalore and Aravind K. Joshi. 1999.
Supertagging: an approach to almost parsing.
Computational Linguistics, 25(2):237–265.

Petra Barg and Markus Walther. 1998. Pro-
cessing unkonwn words in HPSG. In Pro-
ceedings of the 36th Conference of the ACL
and the 17th International Conference on
Computational Linguistics, Montreal, Que-
bec, Canada.

Gosse Bouma, Gertjan van Noord, and Robert
Malouf. 2001. Alpino: Wide-coverage com-
putational analysis of dutch. In Computa-
tional Linguistics in The Netherlands 2000.

Ulrich Callmeier, Andreas Eisele, Ulrich

30

Schäfer, and Melanie Siegel. 2004. The
deepthought core architecture framework. In
Proceedings of LREC 04, Lisbon, Portugal.

Ulrich Callmeier. 2000. PET – a platform for
experimentation with efficient HPSG process-
ing techniques. Journal of Natural Language
Engineering, 6(1):99–108.

Ulrich Callmeier. 2001. Efficient parsing
with large-scale unification grammars. Mas-
ter’s thesis, Universität des Saarlandes,
Saarbrücken, Germany.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge University Press,
Cambridge, England.

Ann Copestake and Dan Flickinger. 2000. An
open-source grammar development environ-
ment and broad-coverage english grammar
using hpsg. In Proceedings of the Second con-
ference on Language Resources and Evalua-
tion (LREC-2000), Athens, Greece.

Ann Copestake, Fabre Lambeau, Benjamin
Waldron, Francis Bond, Dan Flickinger, and
Stephan Oepen. 2004. A lexicon module
for a grammar development environment. In
Proceedings of the 4th International Confer-
ence on Language Resources and Evaluation
(LREC-2004), Lisbon, Portugal.

David Elworthy. 1995. Tagset design and in-
flected languages. In EACL SIGDAT work-
shop “From Texts to Tags: Issues in Multilin-
gual Language Analysis”, pages 1–10, Dublin,
Ireland, April.

Gregor Erbach. 1990. Syntactic processing of
unknown words. IWBS Report 131, IBM,
Stuttgart.

Frederik Fouvry. 2003. Lexicon acquisition
with a large-coverage unification-based gram-
mar. In Companion to the 10th of EACL,
pages 87–90, ACL, Budapest, Hungary.

Robert Malouf and Gertjan van Noord. 2004.
Wide coverage parsing with stochastic at-
tribute value grammars. In IJCNLP-04
Workshop: Beyond shallow analyses - For-
malisms and statistical modeling for deep
analyses.

Robert Malouf. 2002. A comparison of al-
gorithms for maximum entropy parameter
estimation. In Proceedings of the Sixth
Conferencde on Natural Language Learning
(CoNLL-2002), pages 49–55.

Stephan Oepen, Kristina Toutanova, Stu-
art Shieber, Christopher Manning, Dan
Flickinger, and Thorsten Brants. 2002.
The LinGO Redwoods treebank: Motiva-

tion and preliminary applications. In Pro-
ceedings of COLING 2002: The 17th Inter-
national Conference on Computational Lin-
guistics: Project Notes, Taipei.

Carl J. Pollard and Ivan A. Sag. 1994. Head-
Driven Phrase Structure Grammar. Univer-
sity of Chicago Press, Chicago, Illinois.

Scott M. Thede and Mary Harper. 1997. Analy-
sis of unknown lexical items using morpholog-
ical and syntactic information with the timit
corpus. In Proceedings of the Fifth Workshop
on Very Large Corpora, pages 261–272.

Kristina Toutanova, Christoper D. Manning,
Stuart M. Shieber, Dan Flickinger, and
Stephan Oepen. 2002. Parse ranking for a
rich HPSG grammar. In Proceedings of the
First Workshop on Treebanks and Linguis-
tic Theories (TLT2002), pages 253–263, So-
zopol, Bulgaria.

Maarten van Schagen and Alistair Knott. 2004.
Tauira: A tool for acquiring unknown words
in a dialogue context. In Proceedings of
the 2004 Australasian Language Technology
Workshop (ALTW2004), Macquarie Univer-
sity, Australia.

31

Proceedings of the Australasian Language Technology Workshop 2005, pages 32–39,
Sydney, Australia, December 2005.

Tagging Unknown Words with Raw Text Features

David Vadas and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{dvadas1,james}@it.usyd.edu.au

Abstract

Processing unknown words is disproportionately
important because of their high information con-
tent. It is crucial in domains with specialist vocab-
ularies where relevant training material is scarce,
for example: biological text. Unknown word pro-
cessing often begins with Part of Speech (POS) tag-
ging, where accuracy is typically 10% worse than
on known words.

We demonstrate that features extracted from large
raw text corpora can significantly increase accuracy
on unknown words. These features supply a large
part of what we are missing with unknown words:
context information about how the word is used. We
describe a Maximum Entropy modelling approach
which usesreal-valued featuresto represent unan-
notated contextual information. Our initial experi-
ments with real-valued features have resulted in an
increased accuracy from 87.39% to 88.85% on un-
known words.

1 Introduction

Part of Speech (POS) tagging involves assigning ba-
sic grammatical classes such as verb, noun and ad-
jective to individual words, and is a fundamental
step in many Natural Language Processing (NLP)
tasks. The tags it assigns are used in other process-
ing tasks such as chunking and parsing, as well as in
more complex systems for question answering and
automatic summarisation.

All POS taggers suffer a significant decrease in
accuracy onunknown words, that is, words that have
not been previously seen in the annotated training
set. A loss of up to 10% is typical for mostPOStag-
gers e.g. Brill (1994) and Ratnaparkhi (1996). This
decreased accuracy has a flow on effect for the accu-
racy of both followingPOS tags and later processes
which utilise them.

Unknown words also occur a significant amount
of the time, ranging from 2% – 5% (Mikheev, 1997),
depending on the training and test corpus. These
figures are much higher for domains with large spe-

cialist vocabularies, for example biological text.
We improve the performance of a Maximum En-

tropy POS tagger by implementing features with
non-negative real values. Although Maximum En-
tropy is typically described assuming binary-valued
features, they are not in fact required to be binary
valued. The only limitations come from the optimi-
sation algorithm. For example, the Generalised Iter-
ative Scaling (Darroch and Ratcliff, 1972) algorithm
used in these experiments imposes a non-negativity
constraint on feature values.

Real-valued features can encapsulate contextual
information extracted from around unknown word
occurrences in an unannotated corpus. Using a large
corpus is important because this increases the relia-
bility of the real-values. By looking at the surround-
ing words, we can formulate constraints on what
POS tag(s) could be assigned. This can be seen in
the sentence below:

(1) Thefrub house is up on the hill

Here,frub is the unknown word which, as com-
petent speakers of the language, we can surmise is
probably a noun or adjective. This is because it sits
between a determiner and a noun, which is a posi-
tion frequently assumed by words with these syn-
tactic categories. Also, if we can find the wordfrub
in other places, then we can get an even better, more
reliable idea of what its correct tag should be.

It is not necessary to know the correctPOS tags
for theandhouse. We can determine from the words
themselves thatfrub is occupying a position similar
to adjectives likebig or nouns likeclub.

The fact thattheprecedes our unknown word tells
us a lot by itself, as this is a very common word.
Since we see it so often, we know the types of words
that follow it quite well. Other words that occur less
frequently don’t give as strong an indication of what
is to follow, simply because the evidence is sparser.

Our aim then, is to take this intuitive reason-
ing for determining the correct tag for an unknown
word, and create features that aid the Maximum En-
tropy model in doing the same.

32

2 Unknown word processing
POStaggers have reached such a high degree of ac-
curacy that there remain few areas where perfor-
mance can be improved significantly. Unknown
words are one of these areas, with state-of-the-art
accuracy in the range 85 – 88%, which is well be-
low the∼97% accuracy achievable over all words.

The prevalence of unknown words is also prob-
lematic, although somewhat dependant on the size
and type of corpus being used. We train on sections
0–18 of the Penn Treebank (Marcus et al., 1993),
and test on sections 22–24. This test set then con-
tains 2.81% (approximately 4000) unknown words.
Also, when applying aPOS tagger to a specialised
area of text, such as technical papers, the number of
unknown words and their frequency would be ex-
pected to increase dramatically, due to specific jar-
gon terms being used.

Unknown words are also more likely to carry a
greater semantic significance than known words in
a sentence. That is, they will often contain a larger
amount of the content of the sentence than other
words. This is because unknown words are unlikely
to be from closed-class categories such as determin-
ers and prepositions, but quite likely to be in open-
class categories such as nouns and verbs. It is these
classes that generally convey most of the informa-
tion in a sentence. Further, rarer words often have
a more specialised meaning, and thereby classify-
ing them incorrectly will potentially lose a lot of
information. For these reasons, it is quite impor-
tant that unknown words are POS tagged correctly,
so that the information carried by them can be ex-
tracted properly in future stages of an NLP system.

Previous work on tagging unknown words has fo-
cused on morphological features, and using com-
mon affixes to better identify the correct tag. This
has been done using manually created, common En-
glish endings (Weischedel et al., 1993), with Trans-
formation Based Learning (TBL) (Brill, 1994), and
by comparing pairs of words in a lexicon for dif-
ferences in their beginnings and endings (Mikheev,
1997). Our existing tagger (Curran and Clark, 2003)
already makes use of such features, while we aim to
incorporate additional sources of information from
a larger unannotated corpus.

3 Maximum Entropy modelling
A Maximum Entropy model is defined in terms of a
number ofconstraintson the expected occurrences
of featuresthat represent the training data. Once
these constraints on the model are met, the model
assumes nothing further, giving a uniform distribu-
tion to all unknowns, that is, the model withmaxi-

mum entropy(Ratnaparkhi, 1996). In this way, the
model makes use of all the information available,
but does not favour any further unfounded hypoth-
esis, giving equal chance to all possibilities (Berger
et al., 1996).

The empirical expectation of these features, as
observed in the training data, is calculated by:

p̃(f) ≡
∑

x,y

p̃(x, y)f(x, y) (1)

We attempt to make our model’s estimated value:

p(f) ≡
∑

x,y

p̃(x)p(y|x)f(x, y) (2)

an accurate reflection of the training data, so that,

p(f) = p̃(f) (3)

and therefore,

∑

x,y

p̃(x)p(y|x)f(x, y) =
∑

x,y

p̃(x, y)f(x, y) (4)

The training algorithm we use to achieve this
is Generalised Iterative Scaling (GIS) (Darroch and
Ratcliff, 1972). Each iteration of the algorithm in-
volves updating allλi as follows:

λ
(t+1)
i = λ

(t)
i +

1

C
log

p̃(f)

p(t)(f)
(5)

whereC is the maximum of the sum of the feature
functions over all instances, and̃p(f) and p(t)(f)
are the expectations of the probabilities observed in
the training data, and the probabilities in the current
model respectively. If̃p(f) is greater thanp(t)(f),
then the log of the ratio will be positive andλi will
be increased. This will in turn increasep(t+1)(f),
and move towards convergence and equality be-
tween the two probability expectations. Conversely,
if p̃(f) is less thanp(t)(f), then λi will be de-
creased, again bringing the two expectations more
into line.

We also use a Gaussian prior (Chen and Rosen-
feld, 1999) which prefers weights close to a nor-
mal distribution. This form of smoothing alters the
function we are attempting to maximise, so that no
feature receives an inordinately high or low weight.
Our code is based on theC& C tagger. (Curran and
Clark, 2003).

4 Real-valued features
Maximum Entropy models have always been de-
fined in terms ofbinary features of the form:

f(x, y) =

{

1 if x andy = class
0 otherwise (6)

33

The fact that these are binary features, implies cer-
tain limitations of the representation, which make
them unsuitable for some attributes. For example,
the length of the word cannot be represented easily,
as this value could range from one to ten or more,
rather than being either present or absent.

Discretizing (or binning) the feature value is the
easiest way to get around this constraint. For exam-
ple, one scheme for encoding the length of the word
would involve bins of length 1-3, 3-6, 6-9, and 10
or more. Then each word would have a particular
feature present, depending on which bin they fitted
into. However, it may be hard to find a discretiza-
tion scheme that performs optimally.

Another problem with binary features that dis-
cretization fails to solve, is that they are unable to
capture the fact that certain values are related. The
values 1 and 50 would seem just as close as 2 and
3. Even worse, the model would be unable to gen-
eralise further, to say that 4 is between 2 and 7.

A better representation can be found usingreal-
valued features, such as in the example below:

f(x, y) = p(punctuation|x) andy = class (7)

Here,f(x, y) can take on any value between 0 and
1, inclusive, allowing a more continuous represen-
tation. Such features are commonplace when us-
ing other machine learners, but MaxEnt has, in most
previous implementations, always been restricted to
using binary features. This means that a large num-
ber of features are required for even simple pieces of
information. For example, rather that having a sin-
gle feature for the current word, there will instead be
one feature for each word, with only the one for the
current word turned on. MaxEnt classifiers are cer-
tainly capable of working in this manner, but real-
valued features are able to do much more.

Implementing real-valued features adds an extra
layer of complexity on top of binary features. With
the latter, one only needs to know the features that
are on for each training instance, since their values
will always be one. For real-valued features how-
ever, we also need to know the particular value the
feature holds in this instance. This is because the
same real-valued feature will probably have differ-
ent values in each instance.

5 Probabilistic contexts
The Associated Press section of the Aquaint corpus
(Graff, 2002), containing over 100 million words,
was used to calculate the probabilities for the real-
valued features described below. Using this corpus
gives us over a hundred times more words than the
Penn Treebank across a wider range of topics.

FEATURE UNKNOWN

original 87.39
pw the 87.39

nw comma 87.59
pw was 87.37

pw determiner 87.42
nw punctuation 87.70

Table 1: Results for Probabilistic Context Features

FEATURE UNKNOWN OVERALL

5 buckets, pw the 87.20 96.97
5 buckets, nw comma 87.34 96.98
10 buckets, pw the 86.76 96.94

10 buckets, nw comma 87.15 96.95
10 buckets, pw was 87.34 96.96

Table 2: Results using binned features

To begin with, we chose a simple feature, that
we can intuitively see should help discriminate be-
tween classes. This feature isprevious word
(pw) the, that is, a real-valued feature describing
the proportion of times in which we seethe before
the unknown word we are trying to find information
on, compared to how many times we see the word
at all. The idea of this feature is to tell when the
unknown word we are looking at is a noun. This is
because the determiner-noun pair is very common,
andthe is the most frequent determiner.

More potential features were identified by look-
ing at the most common errors made by the tagger.
We found that the most difficult distinction to make
is between adjectives and common nouns. It is obvi-
ous that a feature with a better chance of increasing
performance would solve the most common errors,
and from this analysis it should therefore differenti-
ate chiefly between nouns and adjectives. The fea-
ture we found that satisfies this property, isnext
word (nw) comma, that is, the proportion of times
that the word we are focusing on is followed by a
comma. Adjectives are only very infrequently fol-
lowed by a comma, while nouns are in such a posi-
tion quite often.

Another feature that was also tried, again in an
attempt to discriminate between the most problem-
atic cases, waspw was. This feature came from the
idea that adjectives will often follow the wordwas,
but nouns will not. The results from using each of
these three features is shown in Table 1.

As a comparison, we also experimented with us-
ing traditional binary features. We used the binning
technique mentioned in the previous section, with

34

five bins (divided as: 0, 0–1/3, 1/3–2/3, 2/3–1 and
1), and also ten equally spaced bins (0–0.1, 0.1–0.2,
etc). As can be seen in Table 2, representing the
information in this way actually causes a decrease
in accuracy. This demonstrates that real-valued fea-
tures can give an improvement that traditional bi-
nary features are unable to reproduce.

5.1 Higher frequency contexts
One reason why thepw was feature may not be as
effective asnw comma, is that the wordwasdoes
not occur as frequently as commas do. Commas
(andthe) occur about five times as often aswas. The
less frequent a word is, the less reliable it will be as
a feature in the way we are using it. The reason for
this it that it reduces the statistical reliability of the
counts we are using as input for the feature. The
counts overall will be lower, which increases the
chance that one unusual context will be seen more
than it should be, compared to the context in which
the word is normally seen. Also, there will be less
chance of finding counts greater than zero. There
may be many adjectives that are used a number of
times in the unannotated corpus, but still do not oc-
cur after the wordwas.

We next attempted to increase the counts ex-
tracted from the unannotated corpus. Seeing as the
idea of thepw the feature was to identify nouns
seen in a determiner-noun pair, one can expand the
feature to become:pw determiner. Although the
probabilities for what tags will follow a determiner
are actually very close to those for the wordthe, the
number of determiners in the unannotated corpus is
significantly larger than just the wordthe.

We can also apply this idea to ournw comma fea-
ture, by expanding it into anw punctuation fea-
ture. The results of experiments run with these new
expanded features are also shown in Table 1. One
can see that they were indeed more effective than
the simpler features they replaced.

5.2 Contexts from the Penn Treebank
In order to find new features, we are looking for
words that occur frequently and consistently have
a certain tag before or after them. A list of tokens
that meet these criteria can easily be found for each
tag, by analysing the Penn Treebank. The results of
this analysis are shown in Table 3.

This table shows the most frequent tokens follow-
ing nouns, and the percentage of the time that they
follow a noun. The first entry, which contains a fea-
ture we have already found to be useful, shows us
that this analysis could give us more effective fea-
tures. Some words however,million for example,
are overly optimistic due to source of this data. The

TOKEN # TAG % TOKEN # TAG %
, 11541 81 million 1755 99
. 7894 78 on 1368 55

and 4856 70 was 1340 74
of 4171 87 said 1323 69
in 3311 63 has 1211 69
is 2260 70 are 1196 73
’s 2173 95 will 1178 74
for 2029 64 from 1177 63

Table 3: Most frequent tokens that follow nouns

TOKEN # TAG % TOKEN # TAG %
than 1089 54 venture 82 52

quarter 717 75 ones 61 77
week 433 52 transactions 59 51

income 392 71 term 59 55
period 240 67 factors 52 63
estate 213 93 spring 50 52

German 99 62 subordinated 48 62
thing 91 58 ventures 42 67

Table 4: Most frequent tokens that follow adjectives

FEATURE UNKNOWN

original 87.39
nw of 87.42
nw for 87.50

nw preposition 87.56
nw to be verbs 87.48

nw modals 87.42
nw and 87.42

pw possessive pronouns 87.42
pw adjectives 87.45
pw adverbs 87.42

Table 5: Results using analysis of the Treebank

Wall Street Journal will clearly contain many such
words whose frequencies are not representative of
what they should be in more general text.

We can compare these words to the most com-
mon words that follow adjectives, shown in Table 4.
The obvious differences visible here mean that the
features we apply from this analysis should discrim-
inate between nouns and adjectives well. Using this
same technique for different classes, looking at pre-
vious word and next, we are able to find a number
of features, each of which supplies a minor increase
in performance. These are shown in Table 5.

6 Probabilistic lowercase features
Having explored features for better differentiation
between nouns and adjectives, we now move onto
features for improving some other grammatical cat-

35

1ST WORD 2 FEATURES UNKNOWN OVERALL

No No 87.83 97.01
No Yes 88.52 97.05
Yes No 87.86 97.01
Yes Yes 88.49 97.04

Table 6: Lower case frequency feature results

egories. One common problem is trying to deter-
mine whether a word is a proper noun or a common
noun. This becomes particularly difficult when the
best way of telling between these two classes: look-
ing at capitalisation of the first letter, is not infor-
mative. This can be the case when the word is the
first in the sentence or where the whole sentence is
in upper case. To solve this problem, we can use the
information from an unannotated corpus. If we see
a unknown word and it is capitalised, then we can
check the unannotated corpus for it, seeing whether
it ever occurs uncapitalised. If it does, then there is
a good chance that it is not a proper noun at all, but
has been capitalised in this case for another reason.

We will represent this information in the model
using a real-valued feature. It will be the proportion
of times in which the word occurs in the unanno-
tated corpus in lower case, compared to the number
of times it occurs at all.

We performed experiments firstly with the lower
case frequency of all words, and then using only in-
stances of a word that weren’t beginning a sentence.
This is because a word beginning a sentence is al-
ways capitalised in English, whether it is a proper
noun or not, which is precisely the bias we were try-
ing to avoid. We also tried using two features, with
one active for the first word in a sentence, while the
other was active for all other words. This is because
it is words that are first in the sentence that we are
specifically trying to correct errors with. With only
one feature, it would not get a strong enough weight,
since the information it is giving on words that are
not first in the sentence is not very useful. Having
two features however, frees them both to make bet-
ter decisions more specifically on the incorrect cases
we are trying to fix.

As can be seen from the results in Table 6, the
increase in performance was significantly more than
any that had been attained previously.

7 Probabilistic plural features

Next we attempt to solve the third most common
error that the model makes: incorrectly tagging sin-
gular proper nouns as plural proper nouns. The idea
we can use to distinguish between them, is that if we
find the unknown word in our unannotated corpus

with -son the end, then we can assume it is plural in
this case, and that it is singular where we are trying
to tag it. Although not all plurals are created by the
-sending, it is the case in the vast majority of times,
and so we believe it will be effective enough. Im-
plementing this as a feature, we attained an increase
in unknown word accuracy to 87.61%.

This increase is greater than what most other fea-
tures have achieved. It is interesting to note that
most of the errors of tagging singular proper nouns
as plural proper nouns consist of words such as
American Airlines. Here,Airlines should be tagged
as singular, but it still has the-sending, so we would
not expect our feature to help at all. An analysis of
the errors fixed by this new feature shows that it ac-
tually helped to distinguish between nouns and ad-
jectives. This can be understood, as if the unknown
word in the test corpus appears with an-s on the
end in our unannotated corpus, it suggests that it is
a noun in both cases. Adjectives are not affected
by the addition of an-s in any normal grammatical
way, and so we would expect the chance of seeing
such a construction to be much less.

8 Using multiple real-valued features
All the experiments we have described so far have
included only one feature at a time (with the excep-
tion of lower case frequency, which uses two). Of
course, we can use all of them at once, collecting
information from all of them.

We also tried combining the features in a differ-
ent way. Rather than having one feature for each
piece of information we are giving the model, we
could add up the counts used for each feature, cre-
ating one feature with larger, and hopefully more
reliable counts than any of those that it is made up
of. We then have one feature in the model for all
these pieces of information. The value for this fea-
ture could exceed one, and so we experimented with
limiting the value at one, or simply allowing it to
take on whatever value it would.

The features that we used included all those that
had individually given a positive result. Thelower
case frequency feature was also used, as was
word exists with -s, although these two were
not summed with the other features, as they are of a
different nature. The results achieved, are shown in
Table 7.

9 Analysis
Only about 3% of the words in the test set are un-
known words, while both the test and training sets
are made up of very similar text drawn from the
Wall Street Journal. What we would like, is to be

36

COMBINATION METHOD UNKNOWN OVERALL

original 87.39 96.99
all positive 88.82 97.05

all positive, summed 88.85 97.05
all positive, summed with a limit of 1 88.82 97.05

Table 7: Accuracies from combining all positive features

UNKNOWN ORIGINAL nw punctuation lower case freq. ALL POSITIVE

WORD % UNK . ALL UNK . ALL UNK . ALL UNK . ALL

1 2.81 87.39 96.99 87.70 97.00 88.52 97.05 88.82 97.05
1/2 4.15 86.49 96.61 86.63 96.62 87.89 96.68 88.35 96.71
1/4 6.08 86.22 96.28 86.65 96.31 87.42 96.37 87.97 96.44
1/8 8.56 85.67 95.53 85.94 95.56 86.60 95.64 87.34 95.81
1/16 11.99 84.90 94.73 84.95 94.76 86.02 94.91 86.65 95.18

Table 8: Results with reduced training data

able to test our new features on a corpus from a dif-
ferent domain, since this is the kind of application
where our features should perform the best. Unfor-
tunately, there is no such corpus that is substantial
enough for our purposes, which has the annotations
that we would need to measure accuracy. As a result
of this limitation, we will instead rely on a different
technique to simulate tagging a piece of text with
more unknown words.

9.1 Reducing the training dataset

We can reduce the amount of data used for train-
ing, thereby increasing the proportion of unknown
words. This will also mean the tagger has less idea
of the way words are used in general, which is an-
other effect that we would like to mimic. Although
the words themselves will still be drawn from the
same financial newspaper text, and therefore exhibit
all the same grammatical tendencies, we can still get
an idea of how effective our new features are in a
situation they are actually well-suited for.

Experiments were performed with a half, a quar-
ter, an eighth, and a sixteenth of the training data,
with the results shown in Table 8. The precentage
of unknown words grows exponentially as the size
of the training data decreases. This means that as
we move to smaller training sets, unknown words
rapidly become a more significant problem.

As would be expected, using a smaller training
set reduces the performance of the tagger quite con-
siderably. However, the improvements gained from
using the new features remain consistent.

Even more encouraging is the way the overall re-
sults begin to improve. This stems from the fact that
the unknown words are beginning to take up a more

significant proportion of the text. This demonstrates
that our new features are indeed able to raise accu-
racy in the area that they were designed to.

9.2 Cross Validation Experiments

We have also carried out an experiment using 10-
fold cross validation. We split the entire Penn Tree-
bank, putting every nth line into the nth fold. This
configuration results in a similar percentage of un-
known words as in previous experiments. The accu-
racy for the original system are 97.12% overall and
89.13% on unknown words only. Using the sum-
mation of all positive features, as well as the best
lower case frequency feature and theword
exists with -s feature, we achieved 97.15%
overall and 90.17% on unknown words. This is
an accuracy increase of 1.04% on unknown words
which confirms the statistical validity of the results
we have attained previously.

10 Named Entity Recognition

We have also experimented with the task of Named
Entity Recognition (NER) in almost the same man-
ner as we have described for POS tagging. We will
use contextual information from the same unanno-
tated corpus, in order to better classify a certain sub-
set of the test corpus. In this case, the named entities
themselves, while for POS tagging we looked at the
unknown words.

The data we used is from MUC7 (DARPA, 1998),
and uses seven entity categories: persons, organi-
sations, locations, dates, money amounts, percent-
ages, and times. 11% of the 84046 word-long cor-
pus is made up of these entities, which is signifi-
cantly more than the percentage of unknown words

37

FEATURE PRECISION RECALL F-SCORE

original 86.55 86.78 86.66
nw preposition 86.64 86.87 86.75
pw preposition 86.69 86.69 86.69

pw locative preposition 86.79 86.87 86.83
pw said 86.64 86.87 86.75

pw speech marks 86.55 86.78 86.66

Table 9:NER results

in our POS tagging corpus. We performed an anal-
ysis on this dataset, as we did for POS tagging, at-
tempting to find words that could be used as suitable
features. Some of those we found are shown in Ta-
ble 9, as well as the increases in accuracy that come
from using them. We also experimented with the
features that performed well in POS tagging, and
found that they did not work as well at this task.

We can see that use of thepw locative
preposition feature provided the greatest in-
crease in accuracy. This feature was specifically
used to identify locations, as they are often pre-
ceeded by words such asto, from, andin.

11 Discussion

What we have seen is thatnw punctuation per-
forms the best out of the next word/previous word
features, whileword exists with -s is also
useful, outperforming many of them. Lower case
frequency is quite easily our best feature, as it cor-
rects so many of the errors that occur with proper
nouns. Using all our features together, we find that
even the minor increases gained by some of the indi-
vidual features can be translated to an overall gain.

Our second technique for combining multiple
features, that of summing the feature values to-
gether, has also been shown to give satisfactory re-
sults. The effect of having larger, more reliable
counts was apparently able to compensate for the
conflation of some information upon amalgamation.

All of our experiments and analysis have sug-
gested two measurable quantities to identify a good
feature. The first of these is to discriminate well be-
tween two possible classes, especially those classes
that exhibit a high level of confusion. Here,pw the
was not able to differentiate between noun and ad-
jectives, whilenw commawas. The second measure
is the frequency of the word we are basing our fea-
ture upon, with more common words being better.
For example, thepw was feature did not perform
nearly as well asnw comma.

We used these ideas to find a number of produc-
tive features. Problem cases with the existing tag-
ger gave us particular areas for improvement, such

as the noun-adjective discrepancies. Further anal-
ysis of common word/tag combinations in the an-
notated corpus also gave us a number of worth-
while features. However, it should be noted that
we did require the annotations for this analysis, as
well as to implement some other features, such as
pw unambiguous adjective. Seeing as a large
annotated corpus, the Penn Treebank, is only avail-
able for English, we would have a problem shifting
our focus toPOStagging in another language.

One thing that we have achieved is the imple-
mentation and use of real-valued features. They
were able to outperform traditional MaxEnt fea-
tures, finding an increase in accuracy where dis-
cretized features could not. In particular, one would
not be able to represent the features that we are
using in the Maximum Entropy model, and still
gain an increase in performance, without using real-
valued features. One can easily see more possibil-
ities for their use, as they are a much more natural
way of representing many attributes in a machine
learner.

12 Future Work

The real-valued features we have described are
specifically designed at better classify unknown
words. We would therefore like to test our approach
in a domain where unknown words are more preva-
lent. We would also like to try using a different,
larger unannotated corpus, even when working with
the Penn Treebank test corpus.

Using a larger raw corpus would mean that more
of the unknown words could be found, and there-
fore that there would be a chance for correcting er-
rors with these unknown words. Also, the unknown
words that are already present in the Aquaint cor-
pus we used would have bigger counts in a larger
corpus. We would therefore be able to get more re-
liable information about them, and a better idea of
how they are used.

Another approach to reducing the effect that
small counts have is to perform smoothing on them.
The problem is that if a word is seen only once, then
one cannot be totally sure of its correct tag, no mat-

38

ter what context it is in. That one instance will make
the feature value either 0 or 1, the two most extreme
values, which may be tremendously misrepresenta-
tive of what the true value should be.

There are many smoothing methods that can help
with this problem. The Good-Turing estimation is
one approach which calculates estimated values us-
ing the observed counts for the next most frequent
word (Good, 1953). It is extremely effective for
words with low counts, and would therefore be able
to solve this problem quite well.

Another smoothing issue comes from the Gaus-
sian prior that is used within the Maximum Entropy
training code. This prior has the effect of keeping
the weights within a normal distribution, slightly re-
laxing the constraints upon the model. It has the
effect of not allowing any single weight to get too
large, which could mean many tagging decisions
were made on a single, possibly unreliable, feature.
However, the algorithm does not take into account
the introduction of real-valued features, and there-
fore the possibility of non-binary feature values. As
a result of this, some real-valued features may be
prevented from having as large a weight as they
should, and thus having reduced impact. An investi-
gation into what effects this problem has, as well as
changing the implementation to calculate the update
values more correctly, would be beneficial.

13 Conclusion

We aimed to use the information in an unannotated
corpus — in particular, the contexts surrounding un-
known words — in order to increase performance
on POS tagging unknown words. Although a num-
ber of techniques have been applied to this problem
in the past, none attempted to draw upon the infor-
mation that could be found in a larger amount of
raw text. The new feature types we have demon-
strated are quite different to those previously used,
and we have shown the increase in performance that
they can give. The advantage of this method is that
it can derive contextual information from any unan-
notated corpus, and so it is easily portable to another
domain.

In particular, the use of real-valued features re-
sulted in a much larger improvement than binary
or discretized features would have given us. Maxi-
mum Entropy features in the past have always been
limited in this respect, and seeing the results we
attained, one cannot doubt the benefits that real-
valued features can bring. The increased flexibility
they give us, and their ability to capture relation-
ships between values, make them extremely advan-
tageous. One can see that the kind of information

we were trying to represent was a good example
case for their usage, but there are many other fea-
tures that would also be intrinsically suited to them.

The increase of 1.46% on tagging accuracy for
unknown words raises the result to a state-of-the-art
level, which will translate to benefits when perform-
ing otherNLP tasks based onPOS tagging informa-
tion. The smaller increase forNER shows that these
methods are also feasible for other tagging tasks,
and demonstrates once again, the usefulness of real-
valued features.

Acknowledgements
We would like to thank members of the Language
Technology Research Group and the anonymous re-
viewers for their helpful feedback. This work has
been supported by the Australian Research Council
under Discovery Project DP0453131.

References
A. Berger, S. Della Pietra, and V. Della Pietra. 1996. A

maximum entropy approach to natural language pro-
cessing.Computational Linguistics, 22(1).

E. Brill. 1994. Some advances in rule based part-of-
speech tagging. InProceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, pages 722
– 727, Seattle, WA.

S. Chen and R. Rosenfeld. 1999. A gaussian prior for
smoothing maximum entropy models. Technical re-
port, Carnegie Mellon University.

J. R. Curran and S. Clark. 2003. GIS and smoothing
for maximum entropy taggers. InProceedings of the
11th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 91 – 98,
Budapest, Hungary.

DARPA. 1998. Proceedings of the seventh message un-
derstanding conference (MUC-7). Fairfax, Virginia.
Morgan Kaufmann Publishers, Inc.

J.N. Darroch and D. Ratcliff. 1972. Generalised iterative
scaling for log-linear models.Annals of Mathematical
Statistics, 43:1470 – 1480.

D. Graff. 2002. The AQUAINT corpus of English news
text. Technical Report LDC2002T31, Linguistic Data
Consortium, Philadelphia.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank.Computational Linguis-
tics, 19(2):313 – 330.

A. Mikheev. 1997. Automatic rule induction for un-
known word guessing.Computational Linguistics,
23(3):405 – 423.

A. Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of the EMNLP.

R. Weischedel, M. Meteer, R. Schwartz, L. Ramshaw,
and J.Palmucci. 1993. Coping with ambiguity and
unknown words through probabilistic models.Com-
putational Linguistics, 19.

39

Proceedings of the Australasian Language Technology Workshop 2005, pages 40–48,
Sydney, Australia, December 2005.

POS Tagging with a More Informative Tagset

Andrew MacKinlay† and Timothy Baldwin‡

†‡ Dept. of Computer Science and Software Engineering
University of Melbourne
Victoria 3010 Australia

‡ NICTA Victoria Research Lab
University of Melbourne
Victoria 3010 Australia

{amack,tim}@cs.mu.oz.au

Abstract

We investigate the impact of introducing finer dis-
tinctions into the tagset on the accuracy of part-
of-speech tagging. This is a tangential approach to
most recent research in the field, which has focussed
on applying different algorithms using a very simi-
lar set of features. We outline the basic approach
to tagset refinement and describe preliminary find-
ings.

1 Introduction

Most recent research on corpus-based part-of-
speech (POS) tagging has tended to focus on
applying new algorithms to an existing task
(Brill, 1995; Ratnaparkhi, 1996; Giménez and
Màrquez, 2004), or improving the efficiency of
an existing algorithm (Ngai and Florian, 2001).
While there has been some successful experi-
mentation with modifying the feature sets of
particular taggers (Toutanova and Manning,
2000), the various state-of-the-art taggers for
the most part use a very similar set of features
in determining the tag for a particular token:
some subset of the two preceding and two fol-
lowing tokens, and their tags. The different al-
gorithms have tended to plateau to a similar
“glass ceiling” in accuracy (96.9± 0.3% over all
tokens for the taggers in this paper) by using
these features.

POS tagging is essentially an optimisation
process over firstly the tag sequence and sec-
ondly the tag–word assignments for a given in-
put. The relative difficulty of this task hinges
on the internals of the POS tagset, and the tag-
ging performance over a given dataset can vary
greatly depending on the tagset used. In this
paper, we seek to enhance tagging performance
by adding a third dimension to the optimisation
process: the tagset. We explore the possibility
of transforming the tagset via reversible (loss-
less) mappings, to produce a dataset which is
more amenable to automatic tagging and thus

results in higher performance than the origi-
nal tagset. We follow the majority of recent
mainstream research on English POS tagging
in adopting as a baseline the tagset used in the
Penn Treebank (Marcus et al., 1993).

We evaluate two different approaches to iden-
tifying patterns of syntactic regularity with the
existing POSs. Our primary approach is lin-
guistic insight: we investigate a range of linguis-
tically motivated subdivisions which are either
designed to assist in a specific problematic in-
stance of disambiguation, or are linguistically
sensible enough to be applied for independent
reasons. Additionally we compare this with
a data-driven approach, where we attempt to
identify intra-POS groupings by running a clus-
tering algorithm over the words within a partic-
ular class using features derived from syntactic
context. We report the most promising results
achieved in both cases.

Section 2 outlines some diverse algorithms
which have been applied to POS tagging; Sec-
tion 3 gives some motivation for attempting in-
creases in accuracy; Section 4 describes details
of the tagset used in the Penn Treebank; Sec-
tion 5 outlines our method; in Section 6 we show
results for various strategies and in Section 7 we
discuss further work.

2 Tagging Algorithms

A large number of algorithms have been applied
to POS tagging; a brief treatment of those which
are relevant follows.

2.1 Transformation-Based POS tagging
The transformation-based learning (TBL)
paradigm as applied to POS tagging was
first described in Brill (1995); like all of the
taggers described here it is a corpus-based
method. In the learning phase, a TBL tagger
assigns each word the most-likely unigram tag
from the training data, and generates a large
set of possible transformational rules which

40

map the unigram tagger assignments onto the
gold-standard assignments, conditioned on
contextual word and tag features. It iteratively
selects from these the rule which minimizes
the number of errors, and applies that rule to
modify the assigned tags. The output is an
ordered list of rules which can then be applied,
in combination with the learned unigram tag
probabilities, to unseen data.

The TBL implementation used here is
fnTBL 1.1 (Ngai and Florian, 2001); it is equiv-
alent in power to Brill’s original but runs two
orders of magnitude faster due to optimisa-
tions which are not relevant here. The reported
accuracy in Brill (1995) was 96.6%/81.2% for
known/unknown words using 1M words of the
Penn Treebank WSJ Corpus as training data
and 200K words as test data.

2.2 Maximum Entropy POS tagging
The maximum entropy framework is a prob-
abilistic approach to NLP commonly used for
classification tasks including POS tagging. The
approach was applied specifically to POS tag-
ging in Ratnaparkhi (1996). The underlying
principle is that when choosing between a num-
ber of different probabilistic models for a set
of data, the most valid model is the one which
makes fewest arbitrary assumptions about the
nature of the data.

The probabilistic information in this case
comes from a set of binary-valued features
which in Ratnaparkhi (1996) are dependent
solely on local contextual features: the cur-
rent word and the two words on either side,
and the two preceding tags. In Toutanova
and Manning (2000) a number of other hand-
tuned features derived from a larger context
window are added to assist in disambiguation
in problematic words, and activated only upon
the occurrence of such words. These optimisa-
tions bring the accuracy from the baseline for
all/unknown words of 96.76%/84.5% (using a
subset of the feaures in Ratnaparkhi (1996)) to
96.86%/86.91%.

2.3 SVM POS tagging
Support vector machines (SVMs) have been ap-
plied to POS tagging in Giménez and Màrquez
(2004), inter alia. The features are parallel to
those used in a maximum entropy model: a set
of binary features conditioned on the presence of
words and tags within a local context window.
These features are then used to build an SVM
for each part of speech which contains ambigu-

ous lexical items (reportedly 34 for the Penn
Treebank WSJ corpus), and in the classifica-
tion stage, the most confident prediction from
all of the SVMs is selected as the tag for the
word. The accuracy reported is 97.16%/89.01%
for all/unknown words.

3 Motivation

As noted in Garside et al. (1997), the linguis-
tic quality of a tagset is determined by the ex-
tent to which each tag denotes a set of words
with a unique set of common syntactic proper-
ties, while the computational tractability of it is
determined by the ease with which the tag for
a particular token can be determined, and how
much each tag aids in the disambiguation of sur-
rounding words. The extreme cases of tagsets
with either one tag per word or one tag for all
words, are examples of tagsets which are highly
tractable in computational terms, but of very
little use linguistically, which perhaps serves to
indicate that these requirements sometimes con-
flict. However, the aim here is to test whether
there is always an inverse relationship between
the two. A tagset which encodes more sub-
tle distinctions is almost inevitably more use-
ful in linguistic terms unless the additional dis-
tinctions are entirely random; here we will test
whether the accuracy can be increased by cer-
tain carefully selected tagset subdivisions moti-
vated by linguistic intuition.

Indeed, in Klein and Manning (2003) it was
demonstrated that a finer-grained set of cate-
gory labels can markedly improve performance
in the related application of parsing, by pro-
viding more contextual information upon which
to base decisions in cases of ambiguity. This,
along with the demonstration by Toutanova and
Manning (2000) that there is potential to im-
prove POS tagging performance by adding lin-
guistically motivated features to the tagger sug-
gests that it may be possible to apply an anal-
ogous version of Klein and Manning’s method
to POS tagging. If we alter the tagset to en-
code more subtle distinctions within the word
classes, these new divisions could potentially
increase the computational tractability of the
tagset and hence improve the performance of
the tagger, since subtler distinctions can pro-
vide more useful information to disambiguate
surrounding words.

It is worth addressing the question here of
why it is worth striving for a small performance
improvement here. By NLP standards, accu-

41

racy of ∼97.0% seems astoundingly high, beg-
ging the question of whether there is any point
in attempting to raise this figure by a few frac-
tions of a percent. However, according to word-
by-word evaluation metrics, POS tagging is ac-
tually quite a simple task – as noted by Char-
niak et al. (1993), the unigram-based most-
likely tag (MLT) baseline for the task is around
91%.

The problem is POS tagging is generally a
pre-processing phase in NLP, which acts as in-
put to a second stage such as sentence-level
parsing. If we look at sentence-level accuracy
i.e. the proportion of sentences in which all to-
kens are correctly tagged, the POS tagging task
seems harder – with an average sentence length
of ∼24 words and assuming errors occur inde-
pendently we would expect a tagger which gives
97% accuracy over word tokens to achieve 49%
at the sentence level, while a tagger performing
at 98% should tag 62% of sentences correctly.

4 The Penn Treebank Tagset

The tagset for the Penn Treebank is based on
the tagset used for the original Brown corpus
(Francis and Kučera, 1979) but at 36 tags (ex-
cluding punctuation), it is small in comparison
to both the Brown tagset (75 non-compounded
tags1), and other related tagsets. This was
a deliberate design decision, in that Marcus
et al. (1993) set out to create “A Simpli-
fied POS Tagset for English” to alleviate prob-
lems of sparse data in stochastic applications
– thus increasing the computational tractabil-
ity of the tagset. The primary means by which
they achieved this simplification was with by
applying the notion of ‘recoverability’: if the
distinctions between several tags could be re-
covered from either syntactic information (avail-
able from the parse tree annotations) or lexical
information (the character string making up the
word), the tags could be conflated.

The avoidance of lexically recoverable distinc-
tions means that classes with just a single lex-
ical item are dispreferred – hence, for example,
the abandonment of the explicit POS distinc-
tion between auxiliary verbs and content verbs
which is made in most other tagsets derived
from the Brown tagset (Francis and Kučera,
1979; Garside et al., 1987; Garside et al., 1997).
Additionally the presence of syntactic informa-

1For comparison with the Penn Treebank, where the
’s suffix is split from the host noun, this figure excludes
12 possesive variants of other tags such as NN$

tion means that the traditional distinction be-
tween prepositions and subordinating conjunc-
tions can be removed as it can be recovered from
the phrasal category of the sibling (SBAR for a
subordinating conjunction and NP for a prepo-
sition).

However Marcus et al. (1993, p315) stress
that all of this information is available to users
of the corpus via additional sources:

...the lexical and syntactic recoverabil-
ity inherent in the POS-tagged ver-
sion of the Penn Treebank corpus al-
lows end users to employ a much richer
tagset than the small one described ...
if the need arises.

What is interesting here is that the tagset was
not designed to differentiate all possible distri-
butional differences when other information is
available, but in examples of POS tagging in the
literature, the tagset is invariably used in unal-
tered form despite the tagger having no explicit
access to the syntactic information required to
recover sub-usages of a given tag.

The lexical information is used, albeit im-
plicitly, by the inclusion of lexicalised features
in all of the state-of-the-art taggers mentioned
here. Ironically, the Penn Treebank tagset
was designed to be coarse to avoid problems
of data sparseness, and yet it is this coarse-
ness which contributes to the inevitable inclu-
sion of sparsely-populated lexicalised features to
achieve high accuracy. While there have been
examples of certain ad hoc modifications, Man-
ning and Schütze (1999) note that a systematic
study into the effect of the tagset has not been
explored. It seems the possibility of making ex-
plicit certain syntactic regularities within the
coarse Penn Treebank word classes for the pur-
poses of improving performance in POS tagging
is one worth investigating.

5 Method

We wish to investigate here whether we can im-
prove performance by helping the tagger make
syntactic generalisations which are not appar-
ent either from the coarse POS tags or from
the sparsely populated lexical feature vector.
Subdividing the tags in a linguistically sensible
way should hopefully provide this information.
However the presence of additional POSs clearly
has the potential to make the POS tagging task
more difficult. Thus, as shown in Figure 1, we
will map the tag of each token in the training

42

Figure 1: The experimental architecture

data appropriately to a particular new version
of the tagset, run the trained tagger over a test
corpus, and for purposes of comparison map
the finer-grained POS-tags back to the original
Penn Treebank tags before evaluating perfor-
mance. This method means that any increased
linguistic utility of the mapped tags is discarded
before evaluation, but for the purposes of this
experiment the linguistic utility is a means for
improving tagger performance rather than an
end in itself.

To facilitate the final stage of mapping the
tags back to original Penn tags, we place cer-
tain restrictions on allowable modifications: the
mapping function must be either be injective
from the old to the new tags, or any distinctions
which are collapsed must be unambiguously re-
coverable from the wordform so the equivalent
tags from the original tagset can be determined
reliably.

Our tag-mapping module enables any subset
of POS tag assignments to be translated using a
conjunctive or disjunctive combination of lexi-
cal and syntactic features. Syntactic features in-
clude the two surrounding tags, and the phrasal
categories of nearby nodes (as defined within
the treebank annotation): parent, grandparent,
immediately preceding or following siblings, or
all preceding or following siblings.

Initial experiments suggested that the
marginality of the performance improvements
we were aiming for over the data meant that
there was a risk of overfitting – even with 200K

words of test data, a global change of 0.05%
corresponds to only 100 words, or much less
over a specific POS; additionally, the inter-
annotator discrepancies noted in Ratnaparkhi
(1996) are likely to swamp any corpus-wide
generalisations. To alleviate this, we used
five-fold cross-validation over sections 00-22
of the Penn Treebank WSJ corpus, effectively
producing a development set of ∼1M words.
Rather than split the data by sections, the
data partitions were constructed by placing
one sentence from every five in each partition.
This tends to inflate performance figures,
however this is not a problem here since we are
purely looking for improvements relative to the
benchmark.

We selected fnTBL (Ngai and Florian, 2001)
as our first stage prototyping tool for a set
of tagset modifications, as it can complete a
five-fold cross-validation test-cycle in under two
hours. Any modification which had a large neg-
ative impact on performance at this stage was
generally not investigated further, since the tag-
gers use a similar set of features, and we were at-
tempting to find universally useful distinctions.
The SVM tagger SVMTool 1.2.2 (Giménez and
Màrquez, 2004), with a turnaround of under
seven hours, was used in subsequent experimen-
tation. Only the Stanford NLP Maximum En-
tropy tagger (Toutanova and Manning, 2000)
had a prohibitive training time, so for practical
reasons was used minimally, for benchmarking
and later-stage testing.

43

5.1 Evaluation Metrics

We evaluate the results using several evalua-
tion metrics. First, for comparison with previ-
ous work we use the global token-level accuracy
metric since it is the most widely-used metric in
tagging research. The token-level accuracy over
unknown words (i.e. those which did not appear
in the training data) is also crucial since this is a
major source of tagging errors – in our baseline
with an unmodified tagset, just 2.4% of the to-
kens in the training data were unknown but they
contributed 11-13% of errors. Additionally, we
show sentence-level accuracy, and precision, re-
call and F-score over individual POSs.

5.2 Sources of modified tagsets

The primary goal here is to apply linguistic in-
tuition to the task of tagset modification. Po-
tential modifications were drawn from a number
of sources, including grammars of English (such
as Huddleston and Pullum (2002)) and alterna-
tive tagsets, such as CLAWS7 (Garside et al.,
1997), and evaluated empirically.

An alternative line of investigation was more
data-driven: we investigated whether in a sepa-
rate stage to training the taggers, we could use
machine learning techniques to determine useful
subdivisions in the tagsets. To this end, we de-
fined a range of features which could help in de-
termining patterns of syntactic regularity. Some
of the features were syntactic, often correspond-
ing to layers of annotation used in Klein and
Manning (2003): phrasal categories of the par-
ent, grandparent, left sibling and right sibling,
and binary-valued features for whether a given
preterminal corresponds to a phrasal head, or
whether it is the only element in its phrase.
There were also a set of collocational features
corresponding more closely to the features avail-
able to the tagger, based on the two preceding
and two following POSs.

The nominal values of each feature were
extracted for each token in the train-
ing/development data then conflated by
word type and converted into a frequency
distribution across the possible feature values
for each word type. The value distribution for
each feature with n non-zero values was then
converted into a set of n real-valued features
for the word type using maximum likelihood
estimation. This method of combining feature
values is not ideal but was the most principled
way we could find of capturing a large amount
of distributional information manageably.

These feature values were then used as in-
put for the implementation of the EM algo-
rithm in the Weka toolkit (Witten and Frank,
2000). Several different combinations of fea-
tures were used; broadly, they were syntactic-
only, collocational-only and both.

6 Results

6.1 Baseline and Benchmark

The benchmark results from running each of
the publicly available taggers with the default
or recommended parameter settings are shown
in Table 1, with results over specific POSs in
Table 2. For a point of comparison, we also ap-
plied a suite of naively conceived modifications
to illustrate the effects of data sparseness. The
idea is borrowed from POS induction, which
involves determining word clusters (i.e. POSs)
from unannotated data. The task here is sim-
ilar except that we are looking for patterns of
regularity within a particular POS, so the base-
line used in Clark (2003) may be informative.
To subdivide a part of speech into n subclasses,
we assign each of the (n − 1) most frequently
seen word tokens from the class into (n − 1)
separate new classes and the remainder to a fi-
nal subclass. In Table 3, we present the results
for n = 2, 3, 4 over closed-class POSs of reason-
able size, after training and tagging with fnTBL
using the same broad indicators shown in Ta-
ble 1. The best-performing modification from
this selection, (i.e. for subdividing PRP, with
n = 1) was additionally tested using SVMTool
and the Stanford MaxEnt Tagger; these results
are shown in Table 1.

6.2 Linguistically Motivated
Modifications

We present here the results for a selection of lin-
guistically motivated modifications which were
most successful or most motivated from a the-
oretical point of view. One obvious candidate
modification is reversing the idiosyncratic con-
flation of prepositions and subordinating con-
junctions in the Penn Treebank. This could
have been achieved lexically, by extracting a list
of lexemes which frequently act as subordina-
tors in the training data, and mapping the tags
of the tokens accordingly. However, the most
successful and principled approach was using
syntactic features for each token and thus de-
ciding on a word-by-word basis. This captures
the fact that there are certain words such as be-
fore that are ambiguous between the two; we let

44

TBL SVM MaxEnt
All Unk Sent All Unk Sent All Unk Sent

Benchmark 96.842 81.94 51.77 96.852 84.62 50.72 97.056 87.34 53.72
Freq-based PRP:2 96.839 81.81 51.69 96.851 84.60 50.67 97.048 87.40 53.51
Freq-based RB:3 96.843 81.73 51.72 96.855 84.67 50.71 97.056 87.28 53.72
Clust: in, All 96.831 81.79 51.52 96.865 84.64 50.90 97.065 87.32 53.78
Clust: in, Coll 96.850 82.00 51.82 96.855 84.61 50.74 97.050 87.32 53.59
Ling: in—sub 96.842 81.76 51.63 96.855 84.65 50.77 97.050 87.37 53.51
Ling: rb–deg 96.818 81.66 51.69 96.847 84.72 50.63 – – –
Ling: in—rp 96.832 81.59 51.51 96.851 84.63 50.73 – – –

Table 1: Accuracy (%) of the best-performing or most motivated tag modifications for each of the broad
methods discussed using five-fold cross-validation over sections 0–22 of the WSJ corpus, with the highest
accuracy figure in each column in bold

TBL SVM
All Unk All Unk

JJ 91.66 76.01 92.22 80.84
JJR 87.55 34.86 88.41 41.44
JJS 93.26 73.87 95.46 70.33

NNPS 65.6 20.78 62.62 19.65
RBR 70.47 – 71.86 –
RBS 78.55 – 86.04 –
VBD 95.06 72.25 95.46 75.25
VBP 92.97 55.46 93.06 44.44

Table 2: Benchmark F-Score (%) over 1,047K words
of text, for selected POSs

the tagger resolve this ambiguity as appropriate.
Two syntactic features were used to determine
if a given IN token is a subordinating conjunc-
tion (preposition being the default): an SBAR
parent node or an S immediate right sibling.

The results for SVMtool showed very few dif-
ferences for recall and precision over individual
POSs compared to the benchmark: the largest
change was a 2% relative increase in F-score
over unknown VBPs (verb, present tense, non
third person singular) and a 3% relative increase
for unknown JJRs (comparative adjective). The
results for fnTBL in comparison were more var-
ied, with a 7% increase in F-score over known
members of RBS (superlative adverb), and for
unknown words, an 8% decrease for VBPs and
a 5% increase for JJRs. The changes in JJR
are probably due to than, which often occurs in
their vicinity (e.g. higher than) and is usually a
preposition by our definition but tends to occur
in different contexts to subordinating conjunc-
tions such as because. The other differences are
harder to account for, and are perhaps unpre-

dictable outcomes due to data sparseness.

Another candidate modification is based on
the observation that in the baseline taggers,
5.8-6.4% of tagging errors were due to a gold-
standard JJ (adjective) being tagged VBN
(verb past participle) or vice versa, with a fur-
ther 1.9-2.0% of errors due to the correspond-
ing JJ/VBG (verb present participle) confu-
sion. This distinction is notoriously difficult to
make, but we should be able to assist in dis-
crimination by utilising the linguistic tests dis-
tinguishing between the two: adjectives can be
modified by degree adverbs such as very, while
verbs cannot. Thus, the presence of a degree
adverb should indicate unequivocally that the
head word is an adjective. In reality there is
no clear boundary between degree adverbs and
the more common verb-modifying adverbs, and
empirically the most effective approach, as with
the in–sub modification, was to allow ambigu-
ity of degree adverb membership and condition
the tag mapping on syntactic features for each
token: an RB with either an RB or JJ as its
right sibling, or an ADJP (adjective phrase) as
parent was mapped as a degree adverb. This
modification is denoted rb–deg in Table 1.

Compared to the benchmark, the results for
SVMtool were again reasonably similar to the
baseline, with the only significant differences in
F-score being over unknown words: increases of
2% for JJS and VBP, and 3% for VBD which
were offset by decreases of 7% for JJR. fnTBL
over known words gave a 33% relative decrease
in F-score for members of RBS, and a 5% de-
crease for JJS (superlative adjective), while over
unknown words the largest changes in F-score
were a 54% increase for NNPS, a 3% increase
for VBP, as well as a 6% decrease for JJR. The

45

POS IN DT PRP
n 2 3 4 2 3 4 2 3 4

All Tokens 96.823 96.817 96.819 96.806 96.813 96.806 96.839 96.830 96.838
Unknown 81.40 81.78 81.57 81.61 81.78 81.64 81.81 81.95 81.71
Sentences 51.41 51.28 51.55 51.13 51.38 51.28 51.69 51.57 51.60

Table 3: Overall accuracy (%) with naively subdivided POSs using fnTBL

TBL SVM MaxEnt
All Unk Sent All Unk Sent All Unk Sent

Benchmark 96.68 83.71 49.52 96.75 87.23 49.76 96.99 88.50 52.92
Clust in, All 96.68 83.59 49.91 96.78 87.38 50.04 96.990 88.47 52.88
in–sub 96.70 84.07 50.00 96.77 87.32 49.94 96.971 88.29 52.70
vb–inf 96.73 84.10 49.94 96.75 87.26 49.74 – – –

Table 4: Accuracy (%) of selected tag modifications from Table 1 over the held-out 129K-token test set of
sections 22 and 23 of the WSJ corpus with sections 0–22 as training data

RBS/JJS differences are probably due to con-
fusions between each other for most which is of-
ten ambiguous when preceding prenominal ad-
jective phrases (e.g. the most ethical policies),
and RB-DEGs which occur in such ADJPs lead
to spurious generalisations. The differences over
unknown JJR are probably due to ‘degree ad-
verbs’ (by our syntactic criteria) such as much
which modify comparative ADJPs and operate
quite differently to words such as very. Again,
we must assume some changes are due to un-
predictable data sparseness.

A further round of tests was designed to in-
crease computational tractability with little ref-
erence to linguistic motivation. It concerns
the ambiguity between IN and RP (particle).
Again, these POSs are notoriously difficult to
distinguish between, since many words such as
on are systematically ambiguous between the
two. However, there are many members of IN
which have no homographs in the RP class. If
we map the ambiguous members of IN to a new
class, we are explicitly indicating to the tagger
whether or not a word is ambiguous between the
two POSs and could improve performance for
these particular words. Interestingly, this mod-
ification, denoted in–rp, achieved better per-
formance when applied in conjunction with the
in–sub modification mentioned (96.832% accu-
racy over all tokens) above than when it was
used alone (96.818% over all tokens).

Various other modifications included retag-
ging verbs based on their likely complements
(e.g. if its complement is likely to include a par-
ticle, bare infinitive or noun phrase), and sev-

eral sets of modifications for adverbs, including
locative adverbs and those homographic with
prepositions. Resultant accuracy using fnTBL
ranged from roughly equal to the reported fig-
ures to 0.3% below them.

6.3 Intra-POS Clustering Modifications

After running the clustering algorithms with
different feature sets as input, we selected a
large range of promising sets of POS clus-
ters with a qualitative examination of the clus-
tering output, then starting with fnTBL we
successively narrowed down the set of clus-
ters tested with each algorithm by select-
ing the more successful modifications for the
next stage (SVMTool), until finally testing the
best-performing modification with the Stanford
Maximum Entropy Tagger.

The best performing modification came from
using all of the syntactic and collocational fea-
tures mentioned and resulted in splitting IN
into four subclasses, corresponding roughly to
transitive prepositions (this however included
some types such as before which can be used
as subordinators), rare prepositions, subordina-
tors and a cluster containing only than. We
also show results for another effective cluster-
ing, which again dealt with IN using only col-
locational features. The clusters here do not
show such a discernible pattern. In both cases,
but particularly the latter, we suspect overfit-
ting due to the fact that the statistics for clus-
tering were derived from the entire combined
training/development set.

46

6.4 Final Testing
To evaluate the validity of our suspicions of
overfitting by the clustering algorithm we also
show in Table 4 a final round of testing using
sections 0-21 as training data and sections 22-
23 (which had been held out until this point
and were not used to generate clusters) as a
test set. This also facilated comparison be-
tween the linguistically motivated modifications
and the clustering modifications. We would
expect the linguistically motivated modifica-
tions, which were generated in a fairly data-
independent manner (apart from the selection
of different modifications on the basis of per-
formance over the development set) to display
more consistent improvments over held-out data
than the data-driven clusters.

7 Discussion

It is clear from the results shown here2 that
to an extent the intuitions of Marcus et al.
(1993) about data sparseness were justified. Ta-
ble 3 shows that coming up with a modifica-
tion which reduces performance is easy; we have
demonstrated here that finding a set of non-
detrimental modifications is difficult. There are
probably several reasons for this. It is the most
difficult 3% of tokens which we are attempt-
ing to tag correctly. Among these are words
which probably cannot be tagged correctly with
a small context window, words for which hu-
mans would have difficulty agreeing on a tag,
and words which are tagged incorrectly in the
gold standard (a fact which was explored in Rat-
naparkhi (1996)).

However despite this, there are still reasons to
believe that there is room for improvement. As
noted in Brill and Wu (1998), there is high de-
gree of complementarity in errors made by max-
imum entropy and TBL-based taggers (among
others), suggesting that even though these tag-
gers use similar contextual features, the differ-
ences in the way these features are combined
result in errors over different words. This tends
to imply that at least some of the time, there
is sufficient information available, but that the
different underlying algorithms fail to apply it
correctly in all cases.

Given this, the lack of success so far in apply-
ing linguistic intuition was surprising. While
the highest-performing modification was the

2For a more extensive set of results which support the
same conclusion, as well as a more detailed discussion of
methodology, see MacKinlay (2005)

linguistically-motivated reintroduction of sub-
ordinators, accuracy in this best case was not
significantly different from using an unmodified
tagset. However the worst of the linguistically
motivated modifications resulted in markedly
lower accuracy than the benchmark. Even mod-
ifications targeted at addressing a specific con-
fusion (such as rb–deg) actually reduced per-
formance. Additionally, most of these linguis-
tic modifications were outperformed by the best
naive frequency-based approach.

The clustering was not designed on a par-
ticularly firm theoretical basis; rather, we at-
tempted it as a comparison with the linguis-
tically motivated methods. Despite this, it
has produced some intra-POS clusters which
(slightly) improve performance, however some
of this may be due to overfitting. The perfor-
mance over the test set, at least for SVMTool,
could be seen to support the validity of the re-
sult. However examining the output from all
three taggers together shows there is very little
evidence of consistent improvement from any
individual mapping. While they can produce
slight improvements for certain taggers in cer-
tain cases, these improvements are not signifi-
cant, and there is little firm evidence on the ba-
sis of this experiment for the significant utility of
either the data-driven or linguistic approaches.

It is apparent from Table 1 that the best re-
sults from various methods seem to asymptote
towards the benchmark using the unmodified
tagset, which is indicative of the inherent dif-
ficulty of the task. Even when we make justi-
fiable modifications, the increased data sparse-
ness usually results in a net performance de-
crease. While we would not rule out improved
results from this line of experimentation, it is
likely at least that some variation on the strat-
egy will be necessary for an appreciable incre-
ment in tagging accuracy.

Possible further strategies we plan to inves-
tigate include adding a two-tiered classification
system, by systematically adding delimiters to
newly created tags, and adding contextual fea-
tures dependent on the portion of the POS
tag preceding or following the delimiter. Mul-
tiple levels of classification of POS tags are
used successfully in the jaws tagging system
(Garside et al., 1997) but do not appear to
have been applied to the the Penn Treebank.
This method would give the taggers access to
the more densely populated coarse-tag features
when necessary, but when the subtler distinc-

47

tions we have added are useful the taggers can
utilise them. This is of course a question requir-
ing further experimentation.

References

Eric Brill and Jun Wu. 1998. Classifier com-
bination for improved lexical disambiguation.
In 36th Annual Meeting of the Association for
Computational Linguistics and 17th Interna-
tional Conference on Computational Linguis-
tics, volume 1, pages 191–195, Montreal.

Eric Brill. 1995. Transformation-based error-
driven learning and natural language process-
ing: A case study in part-of-speech tagging.
Computational Linguistics, 21(4):543–65.

Eugene Charniak, Curtis Hendrickson, Neil Ja-
cobson, and Mike Perkowitz. 1993. Equa-
tions for part-of-speech tagging. In National
Conference on Artificial Intelligence, pages
784–789.

Alexander Clark. 2003. Combining distri-
butional and morphological information for
part of speech induction. In Proceedings of
EACL’03: 10th Conference of the European
Chapter of the Association for Computational
Linguistics, pages 00–00, Budapest, Hungary.

W. N. Francis and H. Kučera. 1979. Brown
Corpus manual: Manual of information to
accompany a standard corpus of present-day
edited American English for use with digital
computers. Brown University, Providence,
Rhode Island, USA.

Roger Garside, Geoffrey Leech, and Geoffrey
Sampson, editors. 1987. A Computational
Analysis of English. Longman Group UK, Es-
sex, England.

Roger Garside, Geoffrey Leech, and Anthony
McEnery, editors. 1997. Corpus Annotation:
Linguistic Information from Computer Text
Corpora. Addison Wesley Longman Ltd, New
York, USA.

Jesús Giménez and Llúıs Màrquez. 2004. SVM-
Tool: A general POS tagger generator based
on support vector machines. In Proceedings of
the 4th International Conference on Language
Resources and Evaluation, Lisbon, Portugal.

Rodney Huddleston and Geoffrey K. Pullum,
editors. 2002. The Cambridge Grammar of
the English Language. Cambridge University
Press, Cambridge, UK.

Dan Klein and Christopher D. Manning. 2003.
Accurate unlexicalized parsing. In Proceed-
ings of the 41st Annual Meeting of the Asso-

ciation for Computational Linguistics, pages
423–430, Sapporo, Japan.

Andrew MacKinlay. 2005. The effects of
part-of-speech tagsets on tagger performance.
Honours thesis, University of Melbourne.

Christopher D. Manning and Hinrich Schütze.
1999. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, Cam-
bridge, MA.

Mitchell P Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313–330.

Grace Ngai and Radu Florian. 2001.
Transformation-based learning in the
fast lane. In Second Meeting of the North
American Chapter of the Association for
Computational Linguistics, pages 40–7,
Pittsburgh, USA.

Adwait Ratnaparkhi. 1996. A maximum en-
tropy model for part-of-speech tagging. In
Eric Brill and Kenneth Church, editors,
Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing,
pages 133–142, Somerset, New Jersey. Asso-
ciation for Computational Linguistics.

Kristina Toutanova and Christoper D. Man-
ning. 2000. Enriching the knowledge sources
used in a maximum entropy part-of-speech
tagger. In 2000 Joint SIGDAT Conference
on Empirical Methods in NLP and Very Large
Corpora, Hong Kong, China.

Ian H. Witten and Eibe Frank. 2000. Data
Mining: Practical Machine Learning Tools
and Techniques with Java Implementations.
Morgan Kaufmann, San Francisco, CA.

48

Proceedings of the Australasian Language Technology Workshop 2005, pages 49–56,
Sydney, Australia, December 2005.

Augmenting Approximate Similarity Searching with Lexical Information

James Gorman and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{jgorman2,james}@it.usyd.edu.au

Abstract

Accurately representing synonymy using distribu-
tional similarity requires large volumes of data to
reliably represent infrequent words. However, the
naı̈ve nearest-neighbour approach to compare con-
text vectors extracted from large corpora scales
poorly. The Spatial Approximation Sample Hier-
archy (SASH) is a data-structure for performing ap-
proximate nearest-neighbour queries, and has been
previously used to improve the scalability of dis-
tributional similarity searches. We add lexical se-
mantic information from WordNet to theSASH in
an attempt to improve the accuracy and efficiency
of similarity searches.

1 Introduction

Lexical semantic resources and electronic thesauri
are regularly used to solveNLP problems, includ-
ing collocation discovery (Pearce, 2001), smooth-
ing and estimation (Brown et al., 1992; Clark and
Weir, 2001) and question answering (Pasca and
Harabagiu, 2001). These use similarity relation-
ships between words, as given in the resources, to
enhance corpus-based statistics.

It is difficult to account for the needs of the many
domains in whichNLP techniques are now being ap-
plied and for rapid change in language use. Manual
creation is expensive and time consuming, and open
to the problems of bias, inconsistency and limited
coverage. The assisted or automatic creation and
maintenance of these resources would be of great
advantage.

Much of the existing work on automatically ex-
tracting lexical semantic resources is based on the
distributional hypothesisthatsimilar words appear
in similar contexts. Terms are described by collat-
ing information about their contexts in a corpus into
a vector. Thesecontext vectorsare then compared
for similarity. Existing approaches differ primarily
in their definition of “context”, e.g. the surround-
ing words or the entire document, and their choice
of distance metric for calculating similarity between

the context vectors representing each term.
Finding synonyms using distributional similarity

requires a nearest-neighbour search over the context
vectors of each term. This is computationally in-
tensive, scaling to the number of terms and the size
of their context vectors. Curran and Moens (2002)
have demonstrated that dramatically increasing the
volume of raw input text used to extract context in-
formation significantly improves the quality of ex-
tracted synonyms. This will increase the size of
the vocabulary, decreasing the efficiency of a naı̈ve
nearest-neighbour approach.

Using a data-structure such as the Spatial Ap-
proximation Sample Hierarchy (SASH; Houle and
Sakuma, 2005) allows us to reduce the original

����

complexity (for an
�

term vocabulary) to
����� ��

(Gorman and Curran, 2005).
The SASH represents the distributional space as

a hierarchical directed graph in which each node is
connected to several near-neighbour children, deriv-
ing its structure from the distribution of the space
it represents. TheSASH is searched by traversing
these edges.

WordNet (Fellbaum, 1998) is an electronic lexi-
cal database. The main unit of organisation within
WordNet is the synset, which is a collection of syn-
onymous words. In the case of nouns, there is a sec-
ondary organisation based on hyponymy. The struc-
ture of WordNet was derived from a model of how
humans understand language.

WordNet has been used successfully to solveNLP

problems. Clark and Weir (2001) use the WordNet
hierarchy to improve probability models of noun-
predicate relationships. Pearce (2001) uses Word-
Net’s synsets to improve collocation discovery. We
investigate whether using WordNet can improve the
accuracy or the efficiency of theSASH algorithm
by informing the internal representation with gold-
standard lexical semantic knowledge.

2 Measuring Distributional Similarity
We are measuring two classes of semantic relation
using distributional similarity: synonymy and hy-

49

ponymy/hypernymy (Curran, 2004). It is hard to
distinguish between these two classes using distri-
butional similarity.

Synonymy relates to the nearness of word mean-
ing. Very few cases of true synonymy exist. Instead
what exists is near-synonymy, where two words are
not directly substitutable, but share some close com-
mon meaning. The distinction betweenloud and
noisy is an example of this. They both represent
the idea of high volume sound, butnoisy also has a
negative connotation not present inloud.

Measuring distributional similarity first requires
the extraction of context information for each of
the vocabulary terms from raw text. These terms
are then compared for similarity using a nearest-
neighbour search or clustering based on distance
calculations between the statistical descriptions of
their contexts.

2.1 Extraction Method

A context relationis defined as a tuple
�� � �� � ��

where
�

is a term, which occurs in some grammat-
ical relation

�
with another word

� �
in some sen-

tence. We refer to the tuple
��� � ��

as anattribute
of

�
. For example,(dog, direct-obj, walk) indicates

thatdog was the direct object ofwalk in a sentence.
Context extraction begins with a Maximum

Entropy POS tagger and chunker (Ratnaparkhi,
1996). The SEXTANT relation extractor (Grefen-
stette, 1994) produces context relations that are then
lemmatised using the Minnen et al. (2000) morpho-
logical analyser. The relations for each term are col-
lected together and counted, producing a vector of
attributes and their frequencies in the corpus.

The syntactic contexts that are extracted by SEX-
TANT are:

1. term is the subject of a verb

2. term is the (direct/indirect) object of a verb

3. term is modified by a noun or adjective

4. term is modified by a prepositional phrase

2.2 Measures and Weights

Both nearest-neighbour and cluster analysis meth-
ods require a distance measure to calculate the sim-
ilarity between context vectors. Curran (2004) de-
composes this intomeasureand weight functions.
The measurefunction calculates the similarity be-
tween two weighted context vectors and theweight
function calculates a weight from the raw frequency
information for each context relation.

For these experiments we use the JACCARD (1)
measure and the TTEST (2) weight functions, as
Curran (2004) found them to have the best perfor-

mance in his comparison of many distance mea-
sures.

����� 	
 � � �� �� ��� � �� � � � � � ����� � �� � � ��
� ���� 	
 � �� �� ����� � �� � � � � � ����� � �� � � �� (1)

� �� � �� � � � � � ��� �� � � �� �� � �� ��
�� ��� �� � ��� �� � �� �� (2)

2.3 Nearest-neighbour search

The simplest algorithm for finding synonyms is a
-nearest-neighbour (

-NN) search, which involves

pair-wise vector comparison of the target term with
every term in the vocabulary. Given an

�
term vo-

cabulary and up to! attributes for each term, the
asymptotic time complexity of nearest-neighbour
search is

��� "! �
. This is very expensive, with

even a moderate vocabulary making the use of huge
datasets infeasible. It is for this reason that theSASH

data-structure is used to reduce the time complexity.

3 The SASH

The SASH approximates a

-NN search by precom-

puting some near neighbours for each node (terms
in our case). This produces multiple paths between
terms, allowing theSASH to shape itself to the data
set (Houle, 2003). The following description is
adapted from Houle and Sakuma (2005).

The SASH is a directed, edge-weighted graph
with the following properties (see Figure 1):

• Each term corresponds to a unique node.

• The nodes are arranged into a hierarchy of lev-
els, with the bottom level containing

�
" nodes

and the top containing a single root node. Each
level, except the top, will contain half as many
nodes as the level below. These are numbered
from 1 (top) to#.

• Edges between nodes are linked from consecu-
tive levels. Each node will have at most� par-
entnodes in the level above, and$ child nodes
in the level below.

• Every node must have at least one parent so
that all nodes are reachable from the root.

Construction begins with the nodes being ran-
domly distributed between the levels. TheSASH is
then constructed iteratively by each node finding its
closest� parents in the level above. The parent will
keep the closest$ of these children, forming edges
in the graph, and reject the rest. Any nodes with-
out parents after being rejected are then assigned as
children of the nearest node in the previous level
with fewer than$ children.

50

A

B C D

E F G H

I J

K L

1

2

3

4

5

Figure 1: ASASH, where� � �, $ � � and
 � �

Searching is performed by finding the

nearest
nodes at each level, which are added to a set of
near nodes. To limit the search, only those nodes
whose parents were found to be nearest at the pre-
vious level are searched. The

closest nodes from

the set of near nodes are then returned. The search
complexity is$ ���" �

.
In Figure 1, the filled nodes demonstrate a search

for the near-neighbours of some node�, using
 � �.

Our search begins with the root node� . As we are
using

 � �, we must find the two nearest children
of � using our similarity measure. In this case,�
and� are closer than� . We now find the closest
two children of� and� . � is not checked as it
is only a child of� . All other nodes are checked,
including	 and
 , which are shared as children by
� and �. From this level we chose
 and� . We
then consider the fourth and fifth levels similarly.

At this point we now have the list of near nodes
� , �, � ,
 , � , � , , � and� . From this we chose
the two nodes nearest�: � and � marked in black.
These are returned as the near-neighbours of�.

can be varied at each level to force a larger num-
ber of elements to be tested at the base of theSASH

using, for instance, the equation:

 � � ��� � �� ������� � � �� � $ � (3)

This changes our search complexity to:

 �� ����� �
 ����� � � �

� $"� ���" �
(4)

(Houle and Sakuma, 2005). We use this geometric
function in our experiments.

4 WordNet
Within WordNet (Fellbaum, 1998), words are di-
vided into four syntactic categories: noun, verb, ad-
jective and adverb. Each of these categories has a
different structure, representing their use. We are

only concerned with nouns in these experiments
and, when referring to WordNet, we only refer to
this part of it.

The key building block of WordNet is thesynset:
a set of synonymous terms. Words in a synset may
not be fully interchangeable, but are in at least some
contexts. Because words are organised by concept,
polysemous words will appear in several synsets.

Synsets are arranged in a hierarchy based on hy-
ponymic relations. Those near the root are more
general, and those near the leaves are more specific.

WordNet 2.1 consists of 117,097 unique terms in
81,426 synsets. Of these terms 15,776 are polyse-
mous, yielding a total of 145,104 word-sense pairs.
Our experimental corpus consists of 246,067 unique
terms, of which 88,925 remain after a frequency cut-
off of 5 is applied. 22,537 terms occur in both Word-
Net and our corpus, yielding 32,057 senses.

A coarse-grained sense distinction is made by 25
lexicographer files (see Table 1). Each of these rep-
resent distinct conceptual and lexical domains and
were selected to cover all possible English nouns.
These map to the top most synsets in the WordNet
hierarchy, either uniquely or as hyponyms.

Table 1 also show the proportion of WordNet cov-
ered by each domain (by type), and the proportion
of the terms in both theBNC and WordNet in each
domain (by token from theBNC). We represent our
corpus statistics by token as this is indicative of how
reliable the context information is for each domain.
Where a term appears in several domains, its count
is divided by the number of domains and spread
evenly between them, following the Resnik (1995)
uniform mass splitting strategy.

WordNet itself can be used to measure semantic
similarity. Budanitsky and Hirst (2001) found the
method proposed by Jiang and Conrath (1997) to be
the most successful in malapropism detection. They
used information content to measure the conditional
probability of finding a child synset given a parent
synset.

Leacock and Chodorow (1998) measure the log

51

act, activity 7.0% 11.4% natural object 1.8% 1.7%
animal, fauna 10.9% 4.5% natural phenomenon 0.8% 0.8%
artifact 12.3% 16.1% person, human being 13.8% 14.7%
attribute 3.4% 6.5% plant, flora 12.6% 2.6%
body 2.8% 2.5% possession 1.1% 1.0%
cognition, knowledge 3.3% 4.9% process 0.9% 1.3%
communication 6.3% 7.8% quantity, amount 1.4% 2.0%
event, happening 1.2% 2.2% relation 0.5% 0.6%
feeling, emotion 0.6% 1.3% shape 0.4% 0.6%
food 2.8% 2.7% state 4.4% 5.2%
group, grouping 3.0% 2.2% substance 3.7% 4.7%
location 3.8% 1.1% time 1.3% 1.1%
motivation, motive 0.1% 0.1%

Table 1: 25 lexicographer files (Fellbaum, 1998)

of the path distance between two synsets, scaled by
the overall depth of the hierarchy. This performed
nearly as well as Jiang and Conrath’s method.

5 Evaluation
Our evaluation uses a combination of three elec-
tronic thesauri: the Macquarie (Bernard, 1990), Ro-
get’s (Roget, 1911) and Moby (Ward, 1996) the-
sauri. It is possible to use precision and recall mea-
sures to evaluate the quality of the extracted the-
saurus. To help overcome the problems of direct
comparisons we use several measures of system per-
formance: direct matches (DIRECT), inverse rank
(INVR), and precision of the top

�
synonyms (P(

�
)),

for
� � �, 5 and 10.

INVR is the sum of the inverse rank of each
matching synonym, e.g. matches at ranks 3, 5 and
28 give an inverse rank score of��

��
�"� . With

at most 100 synonyms, the maximum INVR score is
5.187. P(

�
) is the percentage of matching synonyms

in the top
�

extracted synonyms.
The same 300 single-word nouns were used for

the evaluation as used by Curran (2004) for his large
scale evaluation. These were chosen randomly from
WordNet such that they covered a range over the
following properties:

frequency Penn Treebank andBNC frequencies

number of sensesWordNet and Macquarie senses

specificity depth in the WordNet hierarchy

concretenessdistribution across WordNet subtrees

For each of these terms, the closest 100 terms and
their similarity score were extracted.

6 Experiments
The contexts were extracted from the non-speech
portion of the British National Corpus (Burnard,
1995). All experiments used the JACCARD measure
function, the TTEST weight function and a cut-off

frequency of 5. TheSASHwas constructed using the
geometric equation for

 �
described in Section 3.

The values 1–4, 2–8, 4–16, 8–32 and 16–64 were
chosen for number of parents (�) and children ($) in
the SASH, giving are range of branching factors to
test the balance betweensparsenessandbushiness.

As in Gorman and Curran (2005), we use the
brute force

-NN search (NAIVE) as our base-line

for all our experiments. We also reproduce the re-
sults for the fully random distribution (RANDOM),
when ordered by frequency (SORT) and whenfolded
about some number of relations (FOLD

�
).

RANDOM is consistent with the original design
of the SASH. In accordance with Zipf’s law (Zipf,
1949), the majority of the terms have low frequen-
cies, and comparisons with these low frequency
terms are unreliable (Curran and Moens, 2002),
SORT forces high frequency terms towards the root,
producing more accurate results by providing more
reliable initial search paths.

Unfortunately, these more reliable search paths
are also more expensive to calculate. To mitigate
this, FOLD

�
choosesmore accurate initial paths,

rather thanmostaccurate paths. For each term, if
its number of relations! � is greater than some cho-
sen number of relations

�
, it is given a new rank-

ing based on the score�
��
� . Otherwise its ranking

based on its number of relations. This has the ef-
fect of pushing very high and very low frequency
terms away form the root. The folding points this
was tested for were 500, 1000 and 1500.

7 Integrating WordNet

Integrating information from WordNet produces
much more complicated sorting schemes. The most
direct method of using WordNet would be tousethe
WordNet hierarchy as the top levels of theSASH.
Those terms present in our vocabulary and in Word-
Net would be inserted into theSASH in the same
order and with the same linkages as given by Word-

52

DIST c DIRECT P(1) P(5) P(10) INVR Time
NAIVE 5.29 60% 47% 39% 1.72 12217ms
RANDOM 8 4.93 61% 47% 39% 1.71 520ms
RANDOM 16 5.23 60% 48% 39% 1.73 872ms
RANDOM 32 5.30 60% 47% 39% 1.74 1899ms
SORT 8 4.89 62% 47% 39% 1.71 317ms
SORT 16 5.30 61% 48% 39% 1.75 677ms
SORT 32 5.32 60% 48% 39% 1.74 1709ms

Table 2: Evaluation of random and fully sorted distributions

Net. Those terms in our vocabulary and not in
WordNet would then be inserted into levels below
the already linked terms, and then normalSASH

building process would link them.
This method is very different to the original de-

sign of theSASH. Even when we order by frequency
or number of relations, the ordering of semantic re-
lations is still random because synonymy is not a
function of frequency. TheSASH relies on this ran-
domness to cluster the terms successfully.

Despite the paths in WordNet being between se-
mantically similar terms, the success of this method
is doubtful. Many terms at the top of the hierar-
chy, where searches begin, will not produce reliable
measurements. Some, such asthing, are too general
to narrow a search. Others, such aspsychological
feature, will occur with such a low frequency as to
make measurement unreliable.

The most specific terms at the bottom of the
WordNet hierarchy will have those terms not in
WordNet as children. These specific terms are likely
to have a lower frequency than terms in the middle
of the hierarchy. The low frequency WordNet terms
will produce less accurate paths when they find their
children during construction, resulting in unreliable
searches for terms not in WordNet. The fixed struc-
ture of the WordNet paths will also reduce the abil-
ity to find new similarities within WordNet as the
paths to these will not exist.

Rather than using the knowledge provided by the
synsets and hyponymy relations directly, we use the
knowledge that both WordNet and theSASHarrange
terms as a graph. From WordNet, use additional
knowledge from the 25 lexicographer files covering
distinct conceptual domains (Table 1).

An analysis of the terms occuring in both Word-
Net and our corpus shows an uneven distribution.
Theact, artifact andperson domains each represent
10–15% of these terms, while themotivation, re-
lation and shape domains represent less than 1%.
When randomly distributed, there will be many
more high frequency domains represented at the top
of the SASH. The initial paths formed at the top
of a SASH determine the accruacy of searches. If

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
In

vR

Avg Search Time (ms)

naive
fold1000

fold1000-wn1
fold1000-wn2

sort-wn1
sort-wn2

Figure 2: INVR against average search time

the initial path is innaccurate, then there is little
chance of finding correct near-neighbours. If a do-
main is not represented at the top of theSASH, any
searches for terms in that domain will first have to
pass through domains with which they have little
similarity. These paths are likely to be inaccurate,
reducing the accuracy for the whole search.

We want all conceptual domains represented
evenly at the top levels of theSASH, without overly
affecting the distribution of the terms themselves.
Both SORT and FOLD

�
improve the performance,

preserving the distribution of terms, but do not guar-
antee the even distribution of the domains. We want
to ensure this even distribution.

To combine information from WordNet and our
existing sorting techniques, we split our vocabulary
according to membership of domains. This provides
us with 25 lists of terms that appear in WordNet, and
single a list of those that do not.

Each of these lists are then sorted by one of
the sorting schemes (RANDOM, SORT or FOLD

�
).

The lists are then merged by taking the current top-
most term from each list and inserting it into a single
list that will be used to create theSASH. For poly-
semous terms appearing in several lists, the list with
the highest sorting is used.

Those terms not appearing in WordNet are treated
in two ways. The first (WN1) is to treat them as

53

DIST c DIRECT P(1) P(5) P(10) INVR Time
NAIVE 5.29 60% 47% 39% 1.72 12217ms
FOLD500 8 4.24 60% 45% 35% 1.60 185ms
FOLD500 16 5.15 62% 48% 39% 1.75 336ms
FOLD500 32 5.30 60% 48% 39% 1.74 961ms
FOLD1000 8 4.43 60% 46% 37% 1.64 180ms
FOLD 1000 16 5.21 61% 48% 39% 1.73 331ms
FOLD1000 32 5.31 60% 48% 39% 1.74 1015ms
FOLD1500 8 4.43 59% 45% 37% 1.62 236ms
FOLD1500 16 5.21 61% 48% 39% 1.74 366ms
FOLD1500 32 5.31 60% 48% 39% 1.74 1157ms

Table 3: Evaluation of folded distributions

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

In
vR

Avg Search Time (ms)

naive
random
fold500

fold1000
fold1500

sort

Figure 3: INVR against average search time

a twenty-sixth lexical category and merge them as
such. The second (WN2) is to place these terms after
those that appear in WordNet. This is more in the
spirit of the method, as those terms not in WordNet
are not all of a single domain.

Although it would seem that only having one
quarter of the terms in theSASHarranged by domain
would be too few to have an effect, this represents
the top thirteen levels of ourSASH, from at total of
fifteen. As noise is more significant in initial path
formation, the effect of changing the distribution at
the top of theSASH has more affect than changing
it at the bottom.

8 Results
Figure 2 plots the trade-off between accuracy and
efficiency after we have introduced WordNet infor-
mation into theSASH, using values of$ between 4
and 64. The initial sharp increase in efficiency is
for values of$ from 4 to 8. We see knee points be-
tween 400 and 600ms for the WordNet distributions,
and 300ms for FOLD1000, when$ is between 8 and
16. After the INVR exceeds NAIVE , we have a long
tail where INVR converges on NAIVE as the search
time increases. What is most interesting in thesharp
knee of FOLD1000-WN1. From performing worse

than FOLD1000, it increases sharply to an equiva-
lent performance, then converges to a an equivalent
INVR to NAIVE .

Figure 3 plots the trade-off between accuracy and
efficiency for RANDOM, SORT and FOLD1000 us-
ing INVR and search time, again using the values
of $ between 4 and 64. This can be contrasted with
Figure 2. Again we have an initial sharp increase
in efficiency, and a long tail converging to NAIVE .
All the SASH distributions have their knee points at
around 300-500ms, when$ is between 8 and 16.

Table 2 presents the results for the original
NAIVE , RANDOM and SORT experiments. These
have been run using an improved implementation
of the SASH from that used in Gorman and Curran
(2005). Only the results for$ � 8, 16 and 32 are
shown, as these span the knee point. SORT consis-
tently outperformed RANDOM in efficiency and out-
performed RANDOM in accuracy for$ � ��. Both
SASH solutions outperformed NAIVE in efficiency
by more than 14 times when$ � ��. At $ � ��,
SORT produced similar results for DIRECT and out-
performed in INVR by 1%. RANDOM produced a
similar INVR and was outperformed in DIRECT by
1%.

Table 3 presents the results for the folded dis-
tributions. At $ � ��, these produced accuracies
equivalent to RANDOM, at twice the speed of SORT

and 33 times the speed of NAIVE . FOLD1500 was
the slowest, although only by 30ms, which cannot
be considered significant. Its accuracy was 98% of
DIRECT and equivalent INVR of NAIVE . FOLD500
has the highest INVR at 1.75, but the lowest DI-
RECT at 97% of NAIVE . FOLD1000 provided the
best balance with the accuracy of FOLD1500 and
the speed of FOLD500.

Table 4 presents the results when WordNet in-
formation is used. RANDOM-WN1 similar accu-
racy to, but is nearly time as fast as RANDOM.
RANDOM-WN2 produces similar accuracy, but with
only a minor increase in efficiency. SORT-WN1

54

DIST DIRECT P(1) P(5) P(10) INVR Time
NAIVE 5.29 60% 47% 39% 1.72 12217ms
FOLD 1000 5.21 61% 48% 39% 1.73 331ms
RANDOM-WN1 5.24 59% 47% 39% 1.72 488ms
RANDOM-WN2 5.25 59% 48% 39% 1.73 773ms
SORT-WN1 5.26 59% 48% 39% 1.73 759ms
SORT-WN2 5.30 59% 48% 39% 1.74 737ms
FOLD1000-WN1 5.23 59% 48% 39% 1.73 686ms
FOLD1000-WN2 5.23 59% 48% 39% 1.73 686ms

Table 4: Evaluation of WordNet distributions

produces a similar accuracy SORT, but is slower.
SORT-WN2 is also slower and suffer a minor accu-
racy penalty. FOLD1000-WN1 produces a similar
accuracy to FOLD1000 and a similar search time.
FOLD1000-WN2 produces a similar accuracy and
is nearly twice as slow.

The consistent pattern in the results is that once
we order by frequency or relations, any improve-
ments in accuracy are not significant. In addition,
any improvements from using WordNet information
are inconsistent.

9 Analysis

The results for using theSASH without WordNet
show that it provides a significant improvement over
a naı̈ve search. It is less clear whether adding the
WordNet information brings further improvement.

FOLD1000-WN1 produces a result that is similar
to the best results for FOLD1000. RANDOM-WN1
is much faster than RANDOM without a loss in ac-
curacy All other results using WordNet are worse.

What we see most here is that there is no obvious
pattern to the effects of adding WordNet informa-
tion to theSASH. In most cases it simply degrades
performance, but sometime it improves aspects of it.
This occurs for bothWN1 andWN2, using different
base distributions. A deeper analysis is needed.

There was no general pattern where a distribution
of the SASH was more accurate for some term than
others except for approximately 25 terms which
scored consistently lower or higher when WordNet
information was used. These words were compared
for polysemy, lexical file membership, depth in the
hierarchy, distance, corpus frequency and number
of relations. None of these provided any pattern as
to identifying either high or low scoring terms.

The analysis of theSASH covered both the con-
struction and the searches. The construction con-
sidered the distribution of terms and the number of
children of each term. Term distribution was mea-
sured by calculating the proportion of terms shared
between two distributions for a certain number of
terms a the top the distribution. RANDOM distribu-

tions share an average of 1% of the top 1000 terms
with any other distribution. Between 57% and 69%
of terms were shared between distributions with and
without WordNet information. Although there was
a pattern following the distribution, there was none
that indicated its success.

Children were counted to determine if there was
a change in the bushiness of theSASH as the dis-
tribution changed. This was considered both glob-
ally and for each level of theSASH. Again trends
were only indicative of the distribution. This was
extended to consider the average distance to and the
number of relations of each child without yielding
further information.

Searches were analysed by measuring the propor-
tion of searching done at each level. This considered
the number of terms compared, the number num-
ber of relations compared and distance to the search
term. This showed no trends.

Given that no trends were found indicating which
broad structural and distributional changes had a
positive influence, we are left to conclude that the
problem lies in the way theSASHclusters particular
distributions.

When used as designed theSASH is robust. Our
initial distribution functions all produce stable re-
sults for various values of$ and� . WordNetinfor-
mation can improve the performance of the RAN-
DOM distribution, but our SORT and FOLD

�
order-

ing functions increase the stability of the data at the
top of theSASH, improving results without needing
additional lexical information.

10 Conclusion

We have used lexical semantic information from
WordNet to inform the internal structure of the Spa-
cial Approximation Sample Hierarchy (SASH). The
SASH has shown the current methods of improving
performance to be stable enough that adding this in-
formation does not provide any benefit.

That we had some positive results using Word-
Net, albeit inconsistently, indicates that using lex-
ical information may still provide some improve-

55

ment in accuracy or efficiency. What this informa-
tion is and how it should be combined are questions
that are yet to be answered. Although dismissed in
its simplest form, using WordNet more directly in
theSASH presents one possible direction.

We intend to further investigate using lexical se-
mantic information to improve performance, imple-
ment other term ordering strategies, as well as fur-
ther investigating the canonical vector heuristic pre-
sented in Gorman and Curran (2005).

Having set out with the aim of applying lexical
knowledge to approximate distributional similarity
searches, we have found that the existing methods
for improving the performance of theSASH are suf-
ficiently robust that this is unnecessary.

Acknowledgements
We would like to thank the anonymous reviewers
for their helpful feedback and corrections. This
work has been supported by the Australian Research
Council under Discovery Project DP0453131.

References
John R. L. Bernard, editor. 1990.The Macquarie Ency-

clopedic Thesaurus. The Macquarie Library, Sydney,
Australia.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza,
Jennifer C. Lai, and Robert L. Mercer. 1992. Class-
based n-gram models of natural language.Computa-
tional Linguistics, 18(4):467–479, December.

Alexander Budanitsky and Graeme Hirst. 2001. Se-
mantic distance in WordNet: An experimental,
application-oriented evaluation of five measures. In
Workshop on WordNet and Other Lexical Resources,
Pittsburgh, PA, USA, 2–7 June.

Lou Burnard, editor. 1995.Users Reference Guide
British National Corpus Version 1.0. Oxford Univer-
sity Computing Services, Oxford, UK.

Stephen Clark and David Weir. 2001. Class-based prob-
ability estimation using a semantic hierarchy. InPro-
ceedings of the 2nd Meeting of the North American
Chapter of the Association for Computational Lin-
guistics, pages 95–102, Pittsburgh, PA, USA, 2–7
June.

James Curran and Marc Moens. 2002. Scaling context
space. InProceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages
231–238, Philadelphia, PA, USA, 7–12 July.

James Curran. 2004.From Distributional to Semantic
Similarity. Ph.D. thesis, University of Edinburgh, Ed-
inburgh, UK.

Christiane Fellbaum, editor. 1998.WordNet: an elec-
tronic lexical database. The MIT Press, Cambridge,
MA, USA.

James Gorman and James Curran. 2005. Approxi-
mate searching for distributional similarity. InACL-
SIGLEX 2005 Workshop on Deep Lexical Acquisition,
Ann Arbor, MI, USA, 30 June.

Gregory Grefenstette. 1994.Explorations in Automatic
Thesaurus Discovery. Kluwer Academic Publishers,
Boston, MA, USA.

Michael E. Houle and Jun Sakuma. 2005. Fast approxi-
mate similarity search in extremely high-dimensional
data sets. InProceedings of the 21st International
Conference on Data Engineering, pages 619–630,
Tokyo, Japan, 5–8 April.

Michael E. Houle. 2003. Navigating massive data
sets via local clustering. InProceedings of the 9th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 547–552,
Washington, DC, USA, 24–27 August.

Jay J. Jiang and David W. Conrath. 1997. Semantic sim-
ilarity based on corpus statistics and lexical taxonomy.
In Proceedings of 10th International Conference on
Research in Computational Linguistics, pages 19–33,
Taipei, Taiwan, 22–24 August.

Claudia Leacock and Martin Chodorow. 1998. Com-
bining local context and WordNet similarity for word
sense identification. InFellbaum, 1998, pages 265–
283.

Guido Minnen, John Carroll, and Darren Pearce. 2000.
Robust applied morphological generation. InPro-
ceedings of the 1st International Natural Language
Generation Conference, pages 201–208, Mitzpe Ra-
mon, Israel, 12–16 June.

Marius Pasca and Sanda Harabagiu. 2001. The infor-
mative role of WordNet in open-domain question an-
swering. InProceedings of the Workshop on WordNet
and Other Lexical Resources: Applications, Exten-
sions and Customizations, pages 138–143, Pittsburgh,
PA, USA, 2–7 June.

Darren Pearce. 2001. Synonymy in collocation extrac-
tion. In Proceedings of the Workshop on WordNet
and Other Lexical Resources: Applications, Exten-
sions and Customizations, pages 41–46, Pittsburgh,
PA, USA, 2–7 June.

Adwait Ratnaparkhi. 1996. A maximum entropy part-
of-speech tagger. InProceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 133–142, 17–18 May.

Philip Resnik. 1995. Using information content to eval-
uate semantic similarity. InProceedings of the 14th
International Joint Conference on Artificial Intelli-
gence, pages 448–453, Montreal, Canada, 20–25 Au-
gust.

Peter Roget. 1911.Thesaurus of English words and
phrases. Longmans, Green and Co., London, UK.

Grady Ward. 1996.Moby Thesaurus. Moby Project.
George K. Zipf. 1949.Human Behaviour and the Prin-

ciple of Least Effort. Addison-Wesley, Cambridge,
MA, USA.

56

Proceedings of the Australasian Language Technology Workshop 2005, pages 57–63,
Sydney, Australia, December 2005.

Word Prediction in a Running Text: A Statistical Language Modeling
for the Persian Language

Masood Ghayoomi Seyyed Mostafa Assi
Institute for Humanities and Cultural Studies,

Tehran, 14374

Institute for Humanities and Cultural Studies,
Tehran, 14374

masood29@yahoo.com

s_m_assi@ihcs.ac.ir

Abstract

Word prediction is the problem of
guessing which words are likely to
follow in a given segment of a text to
help a user with disabilities. As the
user enters each letters of the
required word, the system displays a
list of the most probable words that
could appear in that position. In our
research we designed and
implemented a word predictor for the
Persian language. Three standard
performance metrics were used to
evaluate the system including
keystroke saving, the most important
one. The system achieved 57.57%
saving in keystrokes.

1. Introduction

A word prediction system facilitates typing
of a text for a user with physical or cognitive
disabilities. As the user enters each letter of
the required word, the system displays a list
of the most likely completions of the
partially typed word. As the user continues
typing more letters, the system updates the
suggestion list accordingly based on the new
context. If the required word is in the list, the
user can select it with a single keystroke.
Then, the system tries to predict the next
word. It displays a list of suggestions to the
user. If he finds the next intended word, he
selects it; otherwise he enters the first letter
of the next word to restrict the suggestions.
The process continues to complete the text.
For someone with physical disabilities, each
keystroke is an effort; as a result, the

prediction system saves the user's energy by
reducing his physical effort and also the
system assists the user in the composition of
the well-formed text qualitatively and
quantitatively (Fazly, 2002). Moreover, the
system increases user’s concentration (Klund
and Novak, 2001).
Traditionally, word predictors have been
built based on statistical language modeling
(SLM) (Gustavii and Pederssen, 2003). SLM
is based on the probability of a sequence of n
given words (n-gram). A number of word
prediction systems are available today for
English, Swedish, and other European
languages. Most of these systems have used
n-gram language modeling.
The current research deals with the design
and implementation of a word prediction
system based on SLM for the Persian
language.

2. Related Works

By looking back, early prediction systems
mostly were developed in the 1980s. They
were used as a writing assistance system for
the one with disabilities. In the early
systems, they only suggested the high
frequency words that matched the partially
typed word and ignored the entire previous
context (Swiffin et al, 1985). SoothSayer is
such a system. To make suggestions more
appropriate, some systems look at a larger
context by exploiting word bigram language
model beside the word unigram. WordQ
(Nantais et al, 2001; Shein et al, 2001) is a
system which is developed for English.
Profet (Carlberger et al, 1997a; Carlberger et
al, 1997b) is a system developed in four

57

languages: English, Norwegian, Polish and
French. PAL (Predicative Adaptive Lexicon)
is one of the major projects at ACSD
(Applied Computer Studies Division) at
Dundee University, Scotland (Booth et al,
1990). These systems have used word
unigrams and bigrams; also, the systems try
being adapted to the user’s typing behavior
by employing information on the user’s
recency and frequency of use.
Since there are no previous works of any
developed word prediction systems for
Persian, what we have done is the first
attempt to design and implement a word
predictor for this language. We have used
the experience of the developed systems for
the English and Swedish languages in our
research. Details are presented in Ghayoomi
(2004).

3. Some Facts about the Persian
Language

Persian is a member of the Indo-European
languages and has many features in common
with them in morphology, syntax, the sound
system, and the lexicon. Arabic is from the
Semitic family and differs from Persian in
many respects.
The Persian alphabet is a modified version of
the Arabic alphabet. Hence it is more
appropriate to the Arabic sound system and
less suitable for Persian. For instance ‘ذ‘ ,’ز’,
 are four alphabets both in ’ظ‘ and ’ض‘
Persian and Arabic, but all pronounced the
same /z/ in Persian and differently in Arabic.
So there is a little correspondence between
Persian letters and sounds. Although some
alphabets are written differently and there is
no difference in their pronunciations, they
make differentiations in the meanings of
words.
Letters have joined or disjoined forms; i.e.
based on the position that the letters appear
in a word, they have different forms.
Persian writing system is right to left, the
same as Arabic; but quite contrary to the
European languages that have left to right
writing system.
The vocabularies have been greatly

influenced by Arabic and to some extent by
French, and a great amount of words are
borrowed from these languages.
Talking about Persian syntax, only verbs are
inflected in the language. The subjective
mood is widely used in it. It is an SOV
language, and also a free word order
language. The language does not make use
of gender; not even the third person of he or
she distinctions that exists in English (Assi,
2004).

4. N-gram Word Model

The task of predicting the next word can be
stated as attempting to estimate the
probability function P:

P(Wn|W1,…, Wn-1)

In such a stochastic problem, we use the
previous word(s), the history, to predict the
next word. To give reasonable prediction to
the words which appear together, we try to
use Markov assumption that only the last
few words affect the next word. So if we
construct a model where all histories restrict
the word that would appear in the next
position, we have then an (n-1)th order
Markov model or an n-gram word model.
(Manning and Schüdze, 1999; Jurafsky and
Martin, 2000)
The aim of our study is to design a word
predictor that uses a unigram (n=1), bigram
(n=2), and trigram (n=3) word model for
Persian.

4.1. Word Prediction Algorithm

Suppose the user is typing a sentence and the
following sequence has been entered so far
from right to left based on Persian writing
system:

CWi Wi-1 Wi-2 …

where Wi-2 and Wi-1 are the most recently
completed words and CWi is the current
word that is going to be predicted or
completed. Let W be the set of all words in
the lexicon that likely would appear in that

58

position. A statistical word prediction
algorithm attempts to select the N most
appropriate words from W that are likely to
be the user’s intended words, where N is
usually between 1, 5, 9 or 10 based on the
experiment done by Soede and Foulds
(1986). The general approach is to estimate
the probability of each candidate word, wi ∈
W, being the user’s required word in that
context.

5. Methodology

5.1.Corpus

To do our research, we made a balanced
corpus in different genres from 8 months of
the on-line Hamshahri newspaper archive on
the web. Although the corpus was small, it
was a good representative for the Persian
language. The corpus contained
approximately 8 million tokens. After
downloading the web pages, HTML pages
were converted to their plain text
equivalents.

5.2. Annotation

The plain text corpus was annotated. One of
the annotations was replacing various
spellings of a word by a selected spelling. In
Persian, some words have various spellings
without any changes in the meaning. To
choose one spelling among various ones, the
highest frequency of use was used to
consider the word as the default spelling, and
the various spellings were replaced by the
selected one. Replacing was done manually.
By doing so, the distribution of frequencies
of a word with different spellings would be
gathered together to assign a single
frequency to the selected spelling; because
of the smallness of the corpus. For example,
these four words were found in the corpus:
 ,”/emrikā?i?/ امريکائی“ ,”/emrikāyi?/ امريکايی“
 .”/āmrikā?i?/ آمريکائی“ ,”/āmrikāyi?/ آمريکايی“
All the words mean “American”. Between
them, only the spelling “آمريکايی” with the
highest frequency of use was selected as
default and the other spellings were replaced
to that.

The other annotation was removing words or
phrases in the corpus from other languages
or other Persian dialects comparing to the
standard language that do not belong to
Persian at all and not be used by native
speakers of the language. Email or internet
addresses were removed from the corpus.
Headlines, footnotes and references in the
articles were also removed.

5.3.Tokenization

After annotation, the corpus was divided into
three sections: one was the training corpus
that contained 6258000 tokens, and 72494
types; the other section was used as the
developing corpus which contained 872450
tokens, and the last section was used as the
test corpus which contained 11960 tokens.
To do the tokenization process, the training
corpus was ran on NSP (N-gram Statistic
Package), a program which was written in
Perl in Linux (Banerjee and Pedersen, 2003),
and uni-, bi-, and trigram statistics were
extracted. Words with frequency of one and
two regarded as Out-Of-Vocabulary (OOV)
and only the most common sequence of
words with the frequency of three and more
were taken into account and the statistics of
word uni-, bi-, and trigrams were extracted.
In NSP a token is defined as a continuance
sequence of characters to be space delimited
alphanumeric strings or individual
characters.

5.4. Solving Sparseness

Since a big corpus includes only a fraction of
n-grams, increasing n makes the distribution
of the events rarer. We have used the Simple
Linear Interpolation (SLI) method (Manning
and Schüdze, 1999) to smooth the
probability distribution.

6. Implementation

6.1. The Algorithm

The architecture of our algorithm is shown in
figure 1. The system we developed has four

59

major components: a) the statistical
information extracted from the training
corpus for the prediction algorithm;
b) the predictive program that tries to
suggest words to the simulated user. This
component has two parts: one is word
completion and the other one is word
prediction. The prediction algorithm first
completes the partially spelled word and
then it predicts the probable words and
present them in the suggestion list; c) a
simulate user that types the test text. The
simulated typist is a perfect user who always
chooses the desired word when it is available
in the prediction list and does not miss it;
d) the component of updating the statistics of
the words’ recency of use and adding new
words along with their frequency of use. To
get the system adaptive to the user, two
processes will be done. One is extracting
word uni-, bi-, and trigrams from the current
text that is being entered. The other process
is saving and updating the recent extracted
statistical information in a dynamic file. The
recent information is related to the static file
which keeps the statistical information
resulted from the training corpus. When the
predictor tries to predict words, first it

weight to the words that are recently used;
then, it uses the statistical information of the
static file. Gradually as the user enters more
texts, the system saves and updates the
information and gets adapted to the user’s
style of writing and brings up more
appropriate suggestions in the prediction list.

searches the dynamic file and gives more

.2. Conditions

 addition to the word prediction algorithm

values 1, 5 and 9 for the number of

6

In
themselves, the parameter that varied in our
experiments was the number of suggestions
in the prediction list. It is assumed that the
higher number of words in the suggestion
list, the greater the chance of having the
intended word among the suggestions; but it
imposes a cognitive load on the user,
because it takes the search time for the
desired word longer and it is more likely that
the user would miss the word they are
looking for. Different users of word
prediction systems may prefer different
values for this parameter according to their
type and level of disabilities. As it has been
stated in section 4.1, Soede and Foulds
(1986) experimentally identified the number
of suggestions. In our work, we selected the

Simulated Typist

Computing
Probability

Computing Lambda
Value

Prediction

Test Corpus

Setting

Test Result

Training Corpus

N-gram Statistics Developing Corpus

Extracting Statistics

Updating,
Adding new word

Figure 1: The architecture of our algorithm

60

suggestions.
In our system, the sorting order of words in
the list is based on the frequency of use in

ith the Persian

mance Measures

hree standard
erformance metrics have been used in our

ng the

ppear in the suggestion list

er of keystrokes that the user

ystem, test corpus was given to
e simulated typist. The length of the test

ter. After

which the most probable words would
appear on the top of the list.
Also, in our research we designed a word
processor to be compatible w
specifications such as having a right to left
writing system to have the cursor in its right
direction.

6.3. Perfor

To evaluate our system, t
p
research (Woods, 1996; Fazly, 2002):
Keystroke Saving (KSS): The percentage of
keystrokes that the user saves by usi
word prediction system. A higher value for
keystroke saving implies a better
performance.
Hit Rate (HR): The percentage of correct
words that a
without entering any letters of the next word.
A higher hit rate implies a better
performance.
Keystroke until Prediction (KuP): The
average numb
enters for each word before it appears in the
prediction list. A lower value for this
measure implies a better performance.

7. Results

To test our s
th
corpus was 11960 words and contained
46637 characters without considering space
as a character. The reason of not considering
space is that after selecting any words a
space will be entered automatically and the
result is having a keystroke saving. On the
other hand, to select a word from the list one
of the Function Keys, F1 to F9, are required
to be pressed to drag and drop the intended
word to the text being typed. The result is
that the keystroke which is saved by entering
the automatic space would be lost.
The virtual typist is a Visual C++ program
that reads in each text letter by let

reading each letters, it determines what the
correct prediction for the current position is.
The prediction program then is called and a
list of suggestions is returned to the user.
The user searches the prediction list for the
correct prediction. If it is found in the list,
the user increases the amount of correct
predictions by the predictor. The correctly
predicted word is then completed and the
user continues to read the rest of the text.
The gained results are presented in table 1
for 1, 5 and 9 numbers of suggestions:

 KSS% HR% KuP
1 suggestion 31.67 5.56 2.66
5 sugg stions e 52.28 18.69 1.86
9 suggestions 57.57 24.42 1.65

Tab ary o ined b n

e test corpus

ble 1, clearly increasing the
umber of suggestions would increase the

 another experiment by
ividing the test corpus into 23 parts based

le 1: The summ f the ga results ased o
th

Based on ta
n
percentage of KSS, and HR; and decreasing
KuP. The highest KSS is achieved when the
numbers of suggestions are 9. The 57.57%
KSS means for each 100 characters that the
user is required to type to enter a text
segment, more than half of the text is entered
by the system, and the rest by the user.
24.42% of words appeared in the prediction
list before entering any letters of the next
word. On average 1.65 keystrokes were
needed to be pressed by the user to type any
words on the system. There is no valid
average word length for Persian, but based
on a sampling method from our Persian
corpus, the average length is 3.91.

8. Discussion

We conducted
d
on their subjects (genres) in the newspaper.
Each text segment equally contained 1000
characters, without considering space. Then
each text was given to the virtual typist one
by one. The results are available in table 2.
Using a development set, we found that by
using 9 numbers of suggestions we gained
the highest KSS. Therefore our final setup

61

uses the same 9 numbers of suggestions as
its default.

Subjects of News KSS % HR (9) % KuP
Arts 67.21 29.21 1.32
Arts and Literature 55.98 24.90 1.55
Cinema 62.50 29.57 1.42
City 62.48 32.22 1.36
Council 66.76 29.88 1.30
Disables 64.53 25.00 1.40
Economics 68.22 35.24 1.19
Education 73.57 40.84 1.03
Environment 61.83 29.85 1.39
Foreign News 69.83 34.76 1.16
Literature 51.54 29.59 1.46
Media 69.00 31.47 1.21
Music 51.53 22.67 1.76
Political News 72.22 38.33 1.07
Rights of Citizens 60.34 31.36 1.44
Science 65.21 30.48 1.27
Science and Culture 56.92 27.43 1.45
Social News 59.03 30.38 1.54
Society 64.08 30.51 1.29
Sports News 70.84 34.63 1.11
Tehran News 68.55 34.00 1.25
Thought 70.78 39.03 1.06
World Sports 63.41 29.14 1.45

Table 2: KSS, HR

ifferent genres
 and K orma sur

 of test co 1000 c aracter

SS increases, HR increases, and KuP

t

result would be

d, implemented and tested a
ord predictor for Persian. To the best of our

k

dding a spell-checker to
e system to replace various spellings of a

) “Persian language and IT” In
roceedings of the 2nd Workshop on Information

esign, implementation and use of the Ngram

1990)
I know what you mean”. Special Children, pp.

er, A. and T. Magnuson and J. Carlberger
nd H. Wachtmeister and S. Hunnicutt. (1997a)

uP perf
rpora with

nce mea
h

es for
s d

By comparing the results, we observed when
K
decreases; and vice versa. This observation
shows that there is a one-to-one
correspondence between KSS and HR but
they are quite contrary to KuP. Some
subjects (genres) such as Education achieved
the highest KSS, the highest HR and the
lowest KuP. But Music achieved the lowest
KSS, the lowest HR, and the highest KuP.
In general, we saw based on the sequence of
words in different genres, it has differen
effects on the gained results. It seems that
the texts on the subjects of Thought, Sports
News, Political News, and Education which
gained the keystroke saving of more than
70%, have more words and sequences of
words in common, and the words are more
predictable as a result. It means the
dependency of words with each other being
collocated is high. But the texts on the
genres of Music, Literature, Arts and
Literature, Science and Culture, and Social

News which gained the keystroke saving of
less than 60% have some words that are not
available in the lexicon of the program
and/or the sequence of the words that come
together on these genres are rare and less
predictable consequently.
Of course by adapting the system for a
special purpose, a better
gained as it was described in section 6.1.

9. Conclusion

We have designe
w
knowledge this is the first attempt for the
language. Using such a system saved a great
number of keystrokes; and it led to reduction
of user’s effort.

10. Further Wor

Our future work is a
th
word to the available word in the lexicon of
the system, adding syntactic and later
semantic information of the Persian language
to the system to make predictions more
appropriate syntactically and semantically.

Bibliography

Assi, S.M. (2004
P
Technology and Its Disciplines (WITID), Kish
Island, Iran, Feb. 24-26, 2004, pp. 85-94.

Banerjee, S. and T. Pedersen. (2003) “The
d
Statistics Package (NSP).” In Proceedings of the
4th International Conference on Intelligent Text
Processing and Computational Linguistics,
Mexico City, pp. 370-381.

Booth, L. and W. Beattie and A. Newell (
“
26-27.

Carlbeg
a

62

“Probability-based word prediction for writing
support in dyslexia.” In Barner, R., Heldner, M.,
Sullivan, K., and Wretling, P., editors,
Proceedings of Fonetik '97 Conference, Volume
4, pp. 17-20.

Carlberger, A. and J. Carlberger and T.

agnuson and M.S. Hunnicutt and S.E.

e of Syntax in Word
ompletion Utilities. Master dissertation.

 Prediction in
omputational Processing of the Persian

wedish
rammar for Word Prediction. Stockholm:

. Martin. (2000) Speech and
anguage Processing: An Introduction to

Novak (2001) “If word
rediction can help, which program do you

)
oundations of Statistical Natural Language

and M. Johansson.

001) “Efficacy of the word prediction

ntais and R. Nishiyama and
. Tam and P. Marshall. (2001) “Word cueing

oulds (1986) “Dilemma of
rediction in communication aids and mental

in, A.L. and J.A. Pickering and J. L. Arnott,
nd A. F. Newell (1985) “PAL: An effort

tactic Pre-Processing
 Single-Word Prediction for Disabled People.

M
Palazuelos-Cagigas and S.A. Navarro. (1997b)
“Profet, a new generation of word prediction: An
evaluation study.” Copestake, A., Langer, S. and
Palazuelos-Cagigas S., editors, Natural Language
Processing for Communication aids, In
Proceedings of a workshop sponsored by ACL,
Madrid, Spain, pp 23-28.

Fazly, A. (2002) The Us
C
Canada: University of Toronto.

Ghayoomi, M. (2004) Word
C
Language. Master dissertation. Iran: Islamic
Azad University, Tehran Central Branch.

Gustavii, E. and E Pettersson (2003) A S
G
Uppsala University

Jurafsky, D. and J.H
L
Natural Language Processing, Computational
Linguistics, and Speech Recognition. New
Jersey: Prentice-Hall.

Klund, J. and M.
p
choose?”
http://trace.wisc.edu/docs/wordprediction2001/index.htm

Manning, C.D., and H. Schütze. (1999
F
Processing. The MIT Press.

Nantais, T. and F. Shein

(2
algorithm in WordQTM.” In Proceedings of the
24th Annual Conference on Technology and
Disability, RESNA.

Shein, F. and T. Na
C
for persons with writing difficulties: WordQ.”
The16th Annual International Conference on
Technology and Persons with Disabilities,
California State University at Northridge, Los
Angeles, CA, March.

Soede, M. and R.A. F
p
load.” In Proceedings of the 9th Annual
Conference on Rehabilitation Technology, 357-
359.

Swiff
a
efficient portable communication aid and
keyboard emulator.” In Proceedings of the 8th
Annual Conference on Rehabilitation
Technology, pp. 197-199.

Wood, M.E.J. (1996) Syn
in
Ph.D. dissertation. University of Bristol, Bristol.

63

Proceedings of the Australasian Language Technology Workshop 2005, pages 64–70,
Sydney, Australia, December 2005.

Using Diverse Information Sources to Retrieve Samples of
Low-Density Languages

Andrew MacKinlay
Department of Computer Science and Software Engineering

University of Melbourne
Parkville VIC 3051 Australia

Abstract

Language samples are useful as an object of
study for a diverse range of people. Samples
of low-density languages in particular are often
valuable in their own right, yet it is these sam-
ples which are most difficult to locate, especially
in a vast repository of information such as the
World Wide Web. We identify here some short-
comings to the more obvious approaches to lo-
cating such samples and present an alternative
technique based on a search query using pub-
licly available wordlists augmented with geospa-
tial evidence, and show that the technique is
successful for a number of languages.

1 Introduction

The utility of language samples to anyone with
an interest in a given language is obvious: they
can be valuable to linguists, language technolo-
gists and speakers of the language, among oth-
ers. The World Wide Web (WWW) is vast
repository of information with potentially large
numbers of samples1 of many languages, but
locating these samples reliably is a non-trivial
task. While language-specific search tools on
search engines such as Google are useful for
the languages they cover, for the vast majority
of languages which have fewer speakers and a
smaller online presence (low-density languages)
they provide no information, and it is these
lesser-known languages for which language re-
sources are likely to be most useful to language
researchers.

There are existing online resources which pro-
vide varying degrees of coverage for a large num-
ber of languages but the amount of data stored
in these for even the best covered languages is
generally quite limited. It is likely that there
is a large number of documents on the WWW

1In the context of this paper, we define a sample of
a particular language as a webpage with a substantial
proportion of content written in the language

which for a variety of reasons have not made
their way into these repositories.

When we expand our focus to include the en-
tire Web, it essentially becomes a problem of
language classification, but instead of looking
at just a handful of documents as is often the
norm in language classification tasks, the num-
ber of potential matches is all of the ∼8 billion
documents on the WWW indexed by Google.
This means the first stage of the classification
will necessarily be a search to vastly cut down
the number of potential matches.

There are of course other alternatives to find-
ing web-based data for these low-density lan-
guages. The most obvious choice of a WWW
query using the name of a language works in
some cases, but there are of course complica-
tions. Languages often have more than one
name, such as Adamawe Fulfulde (Niger-Congo,
West Africa) which has roughly 33 distinct
names including vastly different names such as
Biira, Gapelta and Taareyo2, and, language
names can co-incide with words in high-density
languages, such as Even (Altaic, Russia). Of
course, webpages may not even mention the lan-
guage in which they are written. The sparseness
of these languages means that is crucial to have
more than one approach to finding data in order
to maximise recall.

The focus here is to investigate an alternative
method for classifying and obtaining webpages
with a substantial proportion of content writ-
ten in a given low-density language based on
a list of words known to be in the language,
and show the additional classification steps re-
quired (specifically, analysis of locations men-
tioned in each document, and a word-unigram
classifier) to produce reasonable precision in
the documents returned. We have deliberately
avoided alternative search methods such as the
language-name based web searches mentioned

2Source: http://www.rosettaproject.org/

64

above to focus on the utility of a particular tech-
nique.

Section 2 describes the the components of the
technique we use, section 3 shows a feasibility
test and results for some low-density languages
and in section 4 we discuss successes and short-
comings.

2 Method

2.1 Word Unigram-Based Querying
and Classification

There are a number of features of a document
which can be used to identify its language; our
focus here on web-based data retrieval and the
word-based nature of most search engines leads
naturally to using the presence of particular
word-unigrams as our first stage discriminator.
For example, a document containing the word
‘the’, even with uniform prior probabilities for
all languages, has a very strong chance of being
at least partly in English. For many languages,
we can pick a small set of words which will be
entirely or partially included in any document
in the target language.

Obviously a prerequisite for word-based lan-
guage sample retrieval is a word list to act as
a seed for the search process. For low-density
languages, locating such a word-list can be non-
trivial. Initially, when we are simply trying to
identify candidate documents, the words need
not be the most likely words of the language,
although if such a list was available it would pro-
vide higher initial precision and recall. Assum-
ing that we know very little about the language,
a list of words known to be in the language will
suffice. Such lists are already available online
for some 1,400 languages at the Rosetta Project
website. The website contains ‘Swadesh lists’
for many languages comprised of the transla-
tions of a fixed set of 100 or 200 English word-
forms.

These Swadesh lists are the basis of the first
step of the heuristic described here. To find po-
tential language samples, we obtain a machine-
readable version of the Swadesh list (manually
converted from the online version due to the
presence of idiosyncrasies in individual lists).
All of the words are potential search queries;
before performing the query, the first stage of fil-
tering takes place, in which the words are com-
pared against a list of stopwords from 17 high-
density languages3 and words that co-incide
with these stopwords are removed to avoid too

3These are from some of the most widely spoken

many erroneous matches. In stage 1 of the
classification process, the remaining words are
passed one-by-one as search queries using the
Google Web API to give a list of possible lan-
guage samples, and the ten top-ranked pages
for that search term (this being the maximum
allowed by the API) are retrieved and all non
plain-text elements removed.

One problem with this search technique is
caused by the the Google’s page-ranking tech-
nique. Samples of low-density languages are
unlikely to be among the ten highest ranked
documents returned using the Web API, since
these ranks are determined by a version of
the PageRank algorithm (Brin and Page, 1998)
which assigns a ranking based on the number
of hypertext links to a webpage. This is prob-
ably the largest schortcoming of our technique.
Ideally, it would be preferable to use a search en-
gine which ranks pages based on the well-known
TF-IDF metric used in information retrieval,
however it is also important that the search en-
gine has good coverage and an interface for au-
tomated querying. We were not able to locate
a search engine which definitely fulfilled all of
these criteria, not least because the details of
the underlying ranking algorithms are generally
trade secrets so determining the extent of TF-
IDF usage is almost impossible. These consid-
erations encouraged persisting with the default
choice of Google.

The only way we found to alleviate the prob-
lem is based on the observation that if a query
term produces just a few search results, there
is a reasonable chance one of our target docu-
ments occurs in the top ten, but as the num-
ber of results becomes larger, the likelihood of
this decreases. Therefore, if we group retrieved
pages by the query term which produced them,
and rank them in increasing order according to
the number of hits produced by the query term,
the most likely matches will be ordered first.
This information can then be used as a heuristic
to guide the manual refinement stage discussed
below. Note that, while the motivation dif-
fers somewhat, in practice this is essentially the
same as the inverse document frequency in the
well-known TF-IDF metric used in information
retrieval, since we are effectively weighting each
term with a function which decreases monoton-
ically as its document frequency increases.

Roman-script languages including most crucially En-
glish, French, German and Spanish, the four most com-
mon languages for web content according to Google

65

2.2 Adding Geospatial Evidence
After fetching the query matches, the set of pos-
sible samples of the target language contains a
high proportion of false positives, and in line
with the assumption that we have very little in-
formation on the language, we assume we do not
have a language classifier trained to distinguish
between the documents. Clearly another layer
of refinement is necessary, but it cannot depend
on knowledge of the language.

For this, we use another piece of supporting
evidence for the language of a document: the
geospatial locations mentioned in it. Webpages
frequently include local references and we would
expect that, since lower-density languages tend
to be confined to one geographic area, the lo-
cations mentioned in such documents will show
similar geographic restrictions. Thus, the pres-
ence in a document of a reference to a loca-
tion which we know to be in the area where the
language in question is spoken provides reason-
able evidence for the language of a document –
not indisputable evidence, but certainly a sign
that the document should be considered quite a
likely candidate. This classification method will
be denoted LLC for ‘location lookup classifier’

To obviate the need for a location tagger
trained specifically for the language, we take
what amounts to a ‘brute force’ approach for
stage 2 of the classification process. The tar-
get locations are taken to be any location in the
countries where the language, according to the
Rosetta Project site, is spoken. The list of cities
and region in each country is easily obtainable
from the UN LoCODES database.4 The appro-
priate locations are extracted from the file, and
we perform an uninformed linear search over
each putative sample for any of the location
names. Any documents which contain an ap-
propriate location reference are tagged as such.

2.3 Further Refinement and Manual
Analysis

One final layer of refinement is applied to the
data to vastly cut down the manual analysis
work. An existing language classifier trained
on the high-density languages, such as van No-
ord’s implementation TextCat5 of the algorithm
in Cavnar and Trenkle (1994), is used to test
any documents which were candidate matches
according to the previous two criteria. If the
classifier can unambiguously determine the lan-

4http://www.unece.org/locode
5http://odur.let.rug.nl/˜vannoord/TextCat/

guage of the document, it is almost certainly a
sample of that language rather than of the tar-
get language. However, if there is any ambigu-
ity, the document is deemed worthy of further
examination by a human.

Applying the filters described so far cuts the
number of potential samples from ∼4 billion to
a much more manageable number. From the re-
sults obtained, the number of potential matches
at this point is between zero and 600. At this
point a manual analysis to find at least one
matching document is quite feasible by looking
at the set of search results ranked in order of
the number of query-term matches.

There is an obvious difficulty of determining
whether a document is in a language with which
we are not familiar. In practice there are a large
number of hints we can use: the URL or the
presence of the name of the language, or the
aforementioned lexical resources. At this point
most of the potential matches are pathologi-
cal webpages containing very few words, gen-
uine incorrect languages that TextCat failed to
recognise unambiguously, documents containing
more than one language, samples of similar lan-
guages, and genuine samples of the target lan-
guage. Of these only the samples of similar lan-
guages are any trouble to distinguish from gen-
uine samples, and bilingual documents can be
set aside for reference.

Once at least one potential sample is identi-
fied, we use it to train some sort of probabilistic
classifier to identify other samples either in the
remainder of the possible matches from stage 2
if the number was large, or in the residue of doc-
uments retrieved in stage 1 but discarded due
to the absence of an appropriate location. We
are simply trying to make the binary distinc-
tion between genuine and spurious samples, so
any legitimate Bayesian classifier at this stage
would suffice, as long as it could be trained on
a single document and achieve reasonable per-
formance. As noted by Dunning (1994) a word
unigram-based classifier should produce accept-
able performance in this case, given that we are
only interested in samples of reasonable length,
and these are the samples on which such a clas-
sifier can perform well. Additionally it has the
advantage of being able to easily produce a list
of the most likely words.

We simply obtain a word unigram frequency
distribution from one document and produce a
smoothed probability distribution from it using
Witten-Bell discounting (Jurafsky and Martin,

66

2000). Then, simplifying the method of Dun-
ning (1994), we use the distibution to determine
the logarithm of the probability of each test doc-
ument according to the model as the sum of
log probabilities of each word according to the
model. This is then divided by the number of
tokens in the document to give a normalised
mean log probability per token for each docu-
ment according to the trained model, which is
essentially the cross entropy of each test docu-
ment.

Since each document needs only to be clas-
sified as a positive or negative sample, they
are classified as genuine or spurious on the ba-
sis of their cross entropy relative to a thresh-
old. Any estimate of the appropriate cutoff
value amounts to making arbitrary assumptions
about the distribution. Instead we arbitrarily
choose a cutoff point between the ranges of the
minimum and maximum entropy values, which
is empirically determined. In practice the value
is used to rank the documents and it is a sim-
ple task for a human annotator to determine a
reasonable cutoff in each case.

At this point we hopefully have a reasonably
sized list of language samples. If this is the
case, the same classifier is then trained on all of
the documents and the most probable words are
output. The number here can vary – ideally we
would like 5-7 common words (probably stop-
words of that language) after the stop-words
from the high-density languages have been re-
moved. This is a manageable number that can
them form the basis of a new round of Google
queries, but since we have the most common
words of the language a query on the words in
combination can be almost guaranteed to in-
clude any valid samples of the target language
(albeit possibly not in the top 10), but is a more
restrictive query, thus avoiding large numbers of
spurious matches. So at this stage we perform
a Google query on every possible combination
of one or more of the common words. Since
we have restricted the number of words, this is
quite manageable: 2n − 1 for n words, giving
127 queries for 7 words.

The result of this query is new set of pages
which should be even more likely to be lan-
guage samples than in the previous iteration of
the process. The previous refinement stages can
then be run again in a similar fashion, and at
this stage assuming no bottlenecks in the pro-
cess, we have a set of sample documents as well
a set of stopwords which can be used for further

queries.

3 Results

3.1 Feasibility testing

The initial phase of testing was determining the
feasibility of the method. To achieve this, it was
necessary to choose languages for which there
was a clear easily accessible gold-standard. The
obvious choice was to use languages identifiable
by TextCat. We chose four arbitrary medium
density languages: Finnish, Polish, Rumanian
and Icelandic. The method obviously differs
slightly from that outlined above – we check to
see whether TextCat exactly guesses the target
language, rather than whether it is unsure of
the language.

We evaluated the stages of the technique in
several ways. In table 1 we evaluate the preci-
sion at each stage of the refinement process. It
is clear that the technique of a Google query on
the terms in a language works reasonably well
in producing a reasonable proportion of genuine
samples, and also that precisions ranging from
acceptable to very impressive can be obtained
through the combination of a web-query and
geospatial location lookup. In Table 2 we show
the precision and recall for the location lookup
method relative to the refined set of language
samples retrieved from the web-query. We in-
cluded this to show that, working from the sam-
ple space of the URLs fetched in stage 1, the
location-lookup method retrieves a reasonable
proportion of the positive samples from all of
the possible samples it receives. Note that the
figures for precision are identical in tables 1 and
2 since we are looking at the same set of classi-
fications each time.

It is also necessary to evaluate the validity of
the technique of using word unigram cross en-
tropy estimation and picking an arbitrary cut-
off point. We selected a random correctly clas-
sified sample as training data, and for each
of the genuine and spurious matches from the
documents classified positively after a location
lookup and web-query we calculated the cross
entropy relative to this training data. This en-
abled evaluation of the precision and recall we
would have achieved by selecting a particular
cutoff value for the cross entropy. If we have
minimum and maximum cross entropy values
Hmin and Hmax respectively, and an absolute
cross-entropy cutoff Hthresh, the factor k in ta-

67

Language Icelandic Finnish Rumanian Polish
Documents Retrieved in web query 1314 2090 1765 1921
True Samples Retrieved 438 912 385 673
Precision of Rosetta-based query 33.3% 43.6% 21.8% 35.0%
Positive Classifications by Location Lookup 153 261 340 481
Genuine Samples in Positives 146 176 267 389
Precision of Location Lookup/web query 95.4% 78.5% 67.4% 80.9%

Table 1: Precision of Rosetta-seeded web query and location lookup/web query combined

Language Icelandic Finnish Rumanian Polish
Genuine Samples Previously Retrieved 438 912 385 673
Positive Classifications 153 261 340 481
Genuine Samples in Positives 146 176 267 389
Recall 33.3% 19.3% 69.4% 57.8%
Precision 95.4% 78.5% 67.4% 80.9%
F-Score (α = 0.5) 49.4% 30.0% 73.7% 67.4%

Table 2: Precision, Recall and F-Score of location lookup relative to retrieved query matches

ble 3 is calculated as:

k =
Hthresh −Hmin

Hmax −Hmin

Here the exemplifying language was Romanian;
other languages give similar results. Clearly a
high F-score can be obtained by careful selection
of the cutoff point.

3.2 Genuine Low Density Languages

These results make it clear that the technique is
at least worth pursuing. While we would only
expect the results to get worse when we move
into lower density languages, there is certainly
enough accuracy that we can reasonably expect
the technique to work in some cases.

In Table 4 the number of documents in each
classification stage are shown with ‘LLC +’ de-
noting the number of documents positively clas-
sified by LLC and ‘TC ?’ denoting the number
of documents ambiguous or unknown according
to TextCat (which, as we have explained above,
are the documents which are possible samples
of the language). The results were obtained by
checking whether there was at least one poten-
tial training document, and selecting an appro-
priate document from this set as training data
for classifying genuine samples, then using all
sufficiently uniform genuine samples as train-
ing for the purpose of extracting the most fre-
quent words. Five or six infrequent words which
did not coincide with stopwords for high-density

languages were then selected for the second it-
eration.

As mentioned above, the number of genuine
samples here was determined by manually ex-
amining documents in order of cross-entropy
relative to a suitable training document and
determining a cutoff point. Note that uncer-
tainty figures are due to the presence of non-
canonical documents in the word-list such as
bilingual documents often containing little ob-
servable structure (such as many retrieved from
a Pampangan web forum) and very short doc-
uments for which the language was unclear. In
the second iteration, some of the documents
retrieved were repetitions of pages already re-
trieved; the column labelled “New” only counts
those that were unique to the second iteration.

While from these figures it may appear that
the location lookup in the second iteration
achieved very little, some additional experi-
ments tended to indicate that no extra samples
wore omitted by this technique.

4 Discussion and Further Work

While there are some encouraging results, cer-
tain aspects of the technique were not as useful
as we had predicted. One aspect worth com-
menting on is that the crude location lookup
was often less useful than we expected from our
experiments with medium density languages. In
many cases (notably the two where the most
samples were retrieved for the genuine low-
density languages), this stage of refinement re-

68

Cutoff k 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Samples Included 44 82 128 150 173 195 216 230 251 259
Precision 100.0 100.0 100.0 100.0 96.0 88.3 80.2 75.8 69.4 67.6
Recall 25.7 47.4 73.7 86.3 95.4 98.9 99.4 100.0 100.0 100.0
F-Score (α = 0.5) 40.9 64.3 84.9 92.6 95.7 93.3 88.8 86.2 82.0 80.6

Table 3: Precision, Recall and F-Score (%) over Romanian documents for different cross entropy
cutoffs

Language 1st Iteration 2nd Iteration
URLs LLC + TC ? Genuine URLs LLC + TC ? Genuine New

Mikir 1557 104 31 1 64 11 5 2 0
Fasu 1494 106 32 0 – – – – –
Hixkaryana 620 580 181 0 – – – – –
Hmong Daw 841 830 299 120±10 117 116 60 30±5 30±5
Mopon Maya 769 26 4 0 – – – – –
Pampangan 1839 1797 621 22 ±8 110 109 45 8 5
Warao 998 27 6 0 – – – – –
Fasu 1046 84 25 0 – – – – –
Tulu 852 80 18 0 – – – – –
Quiché 625 29 7 3 97 5 5 5 3

Table 4: Number of Documents at Each Stage of Classification

moved less than 10% of the possible samples,
even though in subsequent stages many were
positively identified as samples of other lan-
guages by TextCat and consequently removed.
It would be possible to refine this aspect by ap-
plying the TF-IDF metric to the LLC method;
this is an area for furher work.

The technique could also be augmented with
other search techniques such as as the obvious
web query for the name(s) of the language. Al-
ternatively, one or more stages could be used
in a more comprehensive language retrieval sys-
tem.

4.1 Shortcomings and Solutions
While there is some promise to the technique,
here we note a number of areas of weakness of
this work-in-progress, with potential solutions
where they can be identified:

1. There is no obvious starting point when
there is no Rosetta wordlist or when the
wordlist exists but the orthography is non-
standard, either because no standard or-
thography exists or because the contributor
failed to use it. In cases like these obviously
another wordlist could be substituted, or if
a training document is available we could
render the first stage of the iteration unnec-
essary. While documents obtained in an ad
hoc fashion could be used for this purpose,

there are freely accessible repositories of
possible training documents. The UN Dec-
laration of Human Rights has been trans-
lated in over 300 languages 6, and while
this does not approach the coverage of the
Rosetta lists, the UN documents avoid the
aforementioned problems with orthography
in these lists.

2. The Google page-rank problem already
outlined is an obvious issue. In the first it-
eration many possible matches are missed.
We might expect that the second iteration
would obtain some of these missed docu-
ments with its more precise queries, but
the top-ranked among these tend to be
the same documents previously retrieved,
meaning that some proportion of the top-
10 list will be wasted, and the number of
douments retrieved is still limited. We have
already discussed in Section 2.1 the desir-
ability of a search engines with different un-
derlying algorithms, and the difficulty of lo-
cating such a search engine. It is difficult
to tell whether the tests in table 4 which
produced no results did so because of the
page-rank problem or because such a small
amount of data is available.

3. There are of course other possible charac-
6Source: http://www.unhchr.ch/udhr/navigate/alpha.htm

69

teristics of the language which could ren-
der them unsuitable for this method. It
will work best on isolating languages, as
will probably be the case for any word-
based search. For languages with large
amounts of morphology, such as polysyn-
thetic languages in the extreme case, the
existence of large numbers of wordforms
for any lemma means that this technique is
less likely to work. Nonetheless, it is clear
that technique works effectively on at least
one agglutinative language (Finnish) and
one inflectional one (Icelandic). Indeed,
this possibly explains some of the varia-
tion between results. One way to allevi-
ate the problem might be to replace word
unigrams in the classifier with character n-
grams, which are a well-studied method for
language identification described by Dun-
ning (1994), or even to use the documents
as training data for a TextCat-like classi-
fier (which is also n-gram based albeit with
no reference to cross-entropy). The rela-
tive performance of such a technique would
need to be evalutated empirically.

5 Conclusion

We have presented an alternative technique
for locating samples of low-density languages
based on web queries using publicly available
wordlists, and refining the results using geospa-
tial evidence and existing language identifica-
tion algorithms. Despite the novelty of the tech-
nique presented and the crude underlying meth-
ods in certain parts, we have shown it can in
certain cases be an effective means of retrieving
samples of low-density languages, free of some
of the shortcomings of more obvious techniques.

6 Acknowledgements

We thank Steven Bird and Baden Hughes for
guidance and formulating the original idea, and
the anonymous reviewers for many helpful com-
ments which have contributed to this final pa-
per.

References
Sergey Brin and Lawrence Page. 1998. The anatomy of

a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems, 30(1–7):107–117.

William B. Cavnar and John M. Trenkle. 1994. N-gram-
based text categorization. In Proceedings of SDAIR-
94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, pages 161–175, Las Vegas,
US.

Ted Dunning. 1994. Statistical identification of lan-
guage. Technical Report MCCS 940-273, Computing
Research Laboratory, New Mexico State University.

Daniel Jurafsky and James H. Martin. 2000. Speech and
Language Processing. Prentice Hall Series in Artificial
Intelligence. Prentice-Hall.

70

Proceedings of the Australasian Language Technology Workshop 2005, pages 71–77,
Sydney, Australia, December 2005.

Faking it: Synthetic text-to-speech synthesis for under-resourced languages –
Experimental design

Harold Somers
School of Informatics

University of Manchester
Manchester, UK

Harold.Somers@manchester.ac.uk

Abstract

Speech synthesis or text-to-speech (TTS)
systems are currently available for a number
of the world’s major languages, but for
thousands of the world’s ‘minor’ languages no
such technology is available. While awaiting
the development of such technology, we
would like to try the stop-gap solution of using
an existing TTS system for a major language
(the base language) to ‘fake’ TTS for a minor
language (the target language). This paper
describes the design for an experiment which
involves finding a suitable base language for
the Australian Aboriginal language
Pitjantjajara as a target language, and
evaluating its usability in the real-life situation
of providing language technology support for
speakers of the target language whose
understanding of the local majority language
is limited, for example in the scenario of going
to the doctor.

1. Introduction

Speech synthesis systems, in particular text-to-
speech (TTS) systems which ‘read out’ ordinary
text on the computer, are now fairly widespread
and are sufficiently reliable and of a suitable
quality for wide acceptance and use. However, this
is only true for the ‘major’ languages. For
example, Microsoft’s Agent includes American and
British English, Dutch, French, German, Italian,
Japanese, Korean, Portuguese, Russian and
Spanish. Scansoft’s RealSpeak provides for all of
the above, plus Basque, Cantonese, Mandarin,
Danish, two varieties of Dutch, Australian and
Indian English, Canadian French, Norwegian,
Polish, and two varieties of Portuguese. The list is
impressive, but there are still thousands of
languages not covered.

Our interest is in providing language
technology-based support for speakers of ‘minor’
languages1 when they find themselves in situations

1 A ‘minor’ language is any language which is not a

where their lack of ability in another language is a
significant disadvantage: we have been focusing on
the case of newly arrived immigrants seeking
healthcare (a visit to the doctor), but the
possibilities are almost endless. This is the scenario
envisaged by the CANES framework,2 as described
by Somers and Lovel (2003) and Somers et al.
(2004). This envisages software support for getting
general information about healthcare problems,
arranging an appointment at the clinic or hospital,
understanding information leaflets and instructions
regarding treatment and drugs, and of course face-
to-face meetings with healthcare providers, notably
GPs and nurses. Other projects in this field have
focused on spoken language translation (SLT) of
the doctor–patient interview (Rayner et al., 2003;
Narayanan et al., 2004). We have recognized that,
while face-to-face dialogues have an important role
in the pathway to healthcare, other means of
communication play an equally important role,
some of them text-based. In all these cases, we see
TTS as an essential technology, particularly for
users who not only may have limited or no
English, but also whose reading ability in their
own language may be poor, whether due to low
literacy, dyslexia or visual impairment.

A long-term solution is of course to develop
TTS tools for more languages, but this is by no
means trivial. Currently, development of a TTS
system depends on an extensive phonological
analysis of the language to identify the individual
speech sounds (phonemes) and their variants
(allophones); development of text-to-phoneme
rules to identify how the orthography of the
language relates to the phonology, and rules to
determine the pitch and duration features
(prosody); and, depending on the approach taken,
recording of human speech and extracting

‘major’ language, as (extensionally) defined above. This
is not to be confused with a ‘minority’ language, since
the list of minor languages includes some of the most
widely spoken languages in the world (e.g. lists of
languages with the most speakers include Bengali,
Hindi/Urdu and Arabic in the top 5 or 6).
2 Computer Assistance for Non-English Speakers.

71

hundreds of individual speech elements (diphones,
triphones or demisyllables) or modelling a similar
number of elements using a formant synthesizer.

While waiting for this work to be done, in
the meantime we want to try using an existing
major-language TTS system, as is, to fake TTS for
a minor language, in this case, the Australian
Aboriginal language Pitjantjatjara.3 We are
undertaking a similar experiment with Somali
(Somers et al., 2006)

The idea has been briefly explored by Evans
et al. (2002), who have dubbed the process
‘gibbering’,4 whereby speech synthesizers for new
languages that are suitable for use with a screen
reader are produced with a minimum amount of
development time, and can be made available at no
cost to the user. They suggest that

… the minimum requirement is that the speech
has to be consistent and understandable, but does
not necessarily have to be the especially natural
sounding or indeed linguistically accurate. The
key requirement is that the speech synthesiser
speaks the language consistently and can be fully
understood by a speaker of the language. (p. 576)

2. Text-to-speech synthesis

Most TTS systems consist of two elements: a text-
to-phoneme stage, where the basic pronunciation
of the text is determined, and a phoneme-to-speech
stage, where the actual speech sounds are
generated. It is beyond the scope of this paper to
describe detail how TTS works, but we do need to
explain how the basic design of TTS systems
relates to faking it.

2.1. Text to phonemes

The first stage involves identifying the phonemes
to be uttered, but also the pitch and duration, in
order to produce appropriate prosody (intonation
and stress). This is generally done on the basis of
letter-to-sound mapping rules, together with a
dictionary where any irregular cases are made
explicit. As well as cases of anomalous spellings,5

3 This work was initiated while the author was on study
leave at the Centre for Language Technology,
Macquarie University , Sydney.
4 To ‘gibber’ is to talk foolishly, or in a way that cannot
be understood, hence ‘gibberish’. In our case, the input
to the TTS system is gibberish from the system’s point
of view, but, we hope, meaningful to the listener.
5 It is interesting that most laypersons usually assume
that if a word is not pronounced as it is spelt it is
because the pronunciation is anomalous; however, since
writing is a representation of speech and not vice versa,
it is of course the written form that is ‘wrong’.
Whichever view is taken, it is clear that we must have a
list of words for which the ‘rules’ do not apply.

the dictionary must ‘spell out’ abbreviations,
numbers, symbols (e.g. &)6 and so on. The text-to-
phoneme module must also contain rules that
indicate unusual readings for sequences of
symbols, e.g. $5 is pronounced <five dollars> , not
<dollar five> . In addition, most languages have
homographs, the pronunciation of which may need
more or less sophisticated syntactic analysis to
determine. This analysis may also contribute
information about prosody.

The problems with this module for faking it
arise first from differences in the letter-to-sound
mapping rules between the language for which the
TTS system was designed (henceforth, following
Evans et al. (2002), the ‘base language’, BL) and
the language we are trying to produce (the ‘target
language’, TL). For example, while a j is
pronounced [d�] in English, in Spanish it is [x].
Further, some words in the TL may be written the
same way as words in the BL, but pronounced
differently, e.g. train in English [t�ein] and French

[t���]. The rules for reading symbols are generally
language-specific, as are any rules relating to
prosody.

It may be of course that the TL does not use
the same writing system as the BL, or does not
have a writing system at all.

In all the above cases, one thing we can do is
to try to rewrite the TL word so that it follows the
rules of the BL, for example rewriting French train
as <tran> (though see next section on phoneme-to-
speech).

Some TTS synthesizers accept as input
streams of phonemes instead of plain text.
Depending on the software, these may be in a kind
of transcription (e.g. <dh-ah-s> for thus), or IPA
symbols may be used. In their approach, Evans et
al. (2002) go somewhat further:

The rules [for text-to-phoneme translation] are
contained in a text-based table and applied by a
generic piece of software that is capable of
applying any appropriately specified rule set.
Thus, to construct a new language the text to
phoneme rules for the target language need to be
developed and encoded in a table. (p. 578)

In fact, this approach is a significant
alternative to our method, with some advantages
and disadvantages. They have to define the
mapping for all the phonemes, whereas we only
define the ones that are different. But they

6 In this paper the following conventions are used: text
strings and graphemes are shown in italics; strings to be
read out by the TTS system are shown <in angle
brackets>; as is customary, IPA phonetic symbols are
shown in square brackets [ð�s], while slant brackets / /
are used to indicate phonemes.

72

potentially have more control over intonation, and
can define a dictionary of special pronunciations,
e.g. for the numbers and symbols.

2.2. Phonemes to speech

In the second stage, the actual speech sounds are
generated, whether by concatenating prerecorded
human speech or by formant synthesis. The main
problem for faking it is that the set of speech
sounds for the TL will almost certainly not be the
same as for the BL, and even if they are similar, it
is likely that the rules for allophonic variation will
be different. Some phonemes from the TL will
simply be missing; others may be similar to
phonemes in the BL, but may differ in the
realization of different allophones.

The trick is obviously to choose a BL where
this problem is minimized, though there may be a
considerable trade-off between finding a BL with a
good overlap in the letter-to-sound mapping rules
mentioned in the previous section, versus good
coverage of the target phonemes and allophones.

One of the goals in the research described
here is to try to evaluate which of a number of BLs
is most suitable for a given TL, and to identify
which factors make identifying the best BL easier.

3. Faking it for Pitjantjatjara

Pitjantjatjara is an Australian Aboriginal language,
spoken by the Anangu people, best known to
tourists as the traditional owners of the land which
includes Uluru, formerly known as Ayers Rock, in
Northern Territory. Pitjantjatjara has about 1,300
speakers, but is one of a group of mutually
intelligible dialects which form the Western Desert
language group which, with around 4,000 speakers
is one of the three or four ‘largest’ Aboriginal
languages. According to Eckert and Hudson
(1991), Pitjantjatjara has been written in the
Roman alphabet since the 1940s, and the
orthography has been more or less standardized
since the 1979 meeting of Pitjantjatjara literates,
and confirmed by the publication in 1987 of a
Pitjantjatjara–English dictionary (Institute for
Aboriginal Development, Alice Springs).

3.1. Pitjantjatjara phonology

Like many Aboriginal languages, Pitjantjatjara has
a relatively simple set of consonant phonemes
(Table 1). Five places of articulation are used:
bilabial, alveolar, retroflex, palatal and velar, with
a single plosive and nasal phoneme at each place.
There are three lateral phonemes, and three
approximants, plus a trill or flap alveolar /r/ sound.
There are no fricatives. As in other Aboriginal
languages, there is no phonemic distinction
between voiced and voiceless consonants.

Pitjantjatjara has six vowel phonemes, long
and short [i], [u] and [a]. In the orthography, long
vowels are doubled, ii , uu, aa. Syllables are highly
constrained: all syllables are (C)V(C): there are no
consonant clusters except across syllable
boundaries. Most word-final syllables are CV.
Word stress in Pitjantjatjara is quite regular,
always on the first syllable, with subsequent
syllables receiving equal prominence.

3.2. Choosing a BL for faking Pitjantjatjara

Perhaps the most difficult part of the experiment is
to choose the best BL for our fake Pitjantjatjara
TTS system. Nowadays, as mentioned in the first
paragraph, developers of TTS systems are
marketing more and more versions, often of
surprisingly good quality. Practically speaking, we
cannot test all of them on native speakers, so we
need to have some criteria to enable us to narrow
down the field. Three factors, possibly conflicting,
will guide our decision: phoneme sets, comparative
prosody, and orthographic mapping.

3.2.1. Phoneme sets
Perhaps the most obvious requirement is to find a
BL which as nearly as possible covers the same set
of phonemes as the TL. There are two sides to this
problem: (a) when the TL phoneme has no
equivalent in the BL, or (b) when the ‘equivalent’
phoneme is significantly different.

The first case may not be as important as it
may seem: Pitjantjatjara for example has retroflex
and palatal consonants which we may not find in
any of the candidate BLs. But we can find a way
around this: sequences of BL phonemes may sound
sufficiently like the target phonemes, e.g. <rd> for
[�]. Alternatively, if the BL is forced to conflate a
phonemic distinction, this may result only in the
synthetic speech ‘having an accent’, rather than
rendering it incomprehensible.

Possibly more damaging will be the second
scenario. Thinking again of the ‘r’-like sounds in
Pitjantjatjara [r �] plus the retroflex sounds [� 	
],
BLs such as French and Portuguese which have an
/r/ phoneme realised as a uvular fricative are
probably not going to be suitable. Vowel

 bilabial alveolar retroflex palatal velar

plosive [p] p [t] t [�] t [c] tj [k] k

nasal [m] m [n] n [] n [�] ny [ŋ] ng

trill/flap [r] r

lateral [l] l [
] l [�] ly

approximant [w] w [�] r [j] y

Table 1: Pitjantjatjara consonants: phonetic
symbol in [] and standard orthography in italics.

73

phonemes could be a significant problem for other
applications, though fortunately for us the
Pitjantjatjara vowel system is about as simple as
any found in all the languages of the world.

3.2.2. Prosody
Prosody plays a big part in how realistic a TTS
system is judged to be, and developers of TTS
systems work very hard to get this right. Even
when given ‘gibberish’ to read, good TTS systems
will do so with the appropriate intonation and
accent, which can be very distinctive. The typical
prosody for Pitjantjatjara is rather flat, so any BL
with a wide-ranging prosody, such as Swedish and
Danish, may well be ruled out. The stress patterns
of Pitjantjatjara are also very simple, with word-
initial stress, and evenly stressed syllables. This
makes languages like English, which almost never
has word-initial stress on long words, quite
unsuitable. Intuitively, of the BLs available,
Basque turns out to be a better bet, with its flat
intonation and syllable-timed rhythm, despite the
fact that Basque words are said to be stressed
word-finally.

3.2.3. Text-to-phoneme mapping
Against the phoneme and prosody match is the
question of the built-in text-to-phoneme mapping
rules. Again there are two sides to this: How are
the individual letters in the BL pronounced? And
what is the likelihood of TL words being the same
as BL words, but with a different pronunciation?

Since Pitjantjatjara orthography is based on
English, there is in general a good text-to-phoneme
mapping between English and Pitjantjatjara. The
writing system is also largely ‘phonetic’, by which
we mean that there is a simple mapping between
letters and phonemes. Thinking of other BL–TL
pairings, typical ‘problem letters’ are c, g, j, v, w,
x, y and z, and all vowels, plus digraphs. This
problem is minimised for Pitjantjatjara, since only
12 consonant letters and 3 vowel letters are used.
The writing system has 4 digraphs (tj, ny, ly, ng),
the 4 underlined letters representing retroflex
sounds (t, n, l, r), plus the three long vowel
digraphs. None of the digraphs found in English
(such as ch, sh, th) appear in (native) Pitjantjatjara
words.

Bearing in mind the comments relating to
prosody, if we choose Basque as the BL, we have
to consider its orthography. Fortunately, Basque
too has only recently had its orthography
standardized (in 1964), and so we find that the
letter-to-phoneme mappings are quite straight-
forward. Table 2 shows the mapping between
Pitjantjatjara phonemes and Basque spelling. Note
that the letter y has to be avoided (it only occurs in

borrowings in Basque, when it has its Spanish
value [i]). The palatal sounds are well catered for
in Basque: the palatal stop, written <tt>, is used in
diminutives and childish forms, while Spanish <ñ>
and <ll> are needed for Spanish borrowings, and
so give us palatal ny and ly.

3.3. Implementation

All the transliterations identified in Table 2 can be
applied to Pitjantjatjara text by a simple string-
substitution program. Examples (1) and (2) show
Pitjantjatjara texts in standard orthography (a) and
as they are input to the Basque TTS (b).

(1) a. Tjitji nyanga kati atjupitilakutu.
 b. ttitti ñanga kati attupitilakutu.
 ‘Take this child to the hospital.’

(2) a. Yaaltjitu arana tjikinma?
 b. iaalttitu ararna ttikinma?
 ‘How many times should I drink it?

4. Evaluation

Evans et al. (2002) describe a modest evaluation of
a prototype Greek synthesizer using both English
and Spanish as the BL with just three native Greek
speakers who were also fluent English speakers. A
first evaluation involved a variation of the
Modified Rhyme Test (House et al. 1965, Miner
and Danhauer, 1976, Logan et al. 1989, Goldstein
1995) in which subjects must match from a list of
five options the word which they think they have
heard. The subjects underwent 15 tests, with 5
words in each test. Evans et al. report that “with
the Spanish synthesiser … there were a total of 7
errors in 45 trials”, a 97% success rate.7 With the
English synthesizer there were 10 errors (96%). A
second evaluation involved the use of nonsense
words, with much lower recognition rates (50% for
both systems). In a third evaluation, the subjects
were tested with a number of complete sentences,
including “common simple sentences and a small
number of ‘tongue-twisters’”. Correct identi-
fication in this case was 100%, though it is unclear
whether subjects had to identify what they heard,

7 It is not explicitly stated, but Evans (personal
communication) confirms that the 45 trials were 15 tests
× 3 subjects. Since each test had 5 items, the total
number of items is 225.

p <p> t <t> t <rt> tj <tt> k <k>

m <m> n <n> n <rn> ny <ñ> ng <ng>

 r <rr>

 l l <rl> ly <ll>
w <w> r <r> y <i>

Table 2: Mapping from Pitjantjatjara orthography
in italics onto Basque ‘letters’ in<angle brackets>.

74

or choose from a number of alternatives.
Evans et al. readily admit the shortcomings in

this evaluation, mentioning the small sample size,
and the fact that all the subjects were fluent
English speakers, long-term UK residents,
therefore familiar with English phonemes and
prosody. In addition, they note that the tests did not
reflect the actual intended use of the software, in
their case as a screen reader.

Our evaluation attempts to bypass these
shortcomings: we aim to recruit sufficient subjects
to make the results statistically significant; English
(or Basque) language ability will not play a role in
the experiment; and experience/exposure to
English is more or less constant for all
Pitjantjatjara speakers; and, most important of all,
we attempt to simulate better the situation in which
the software might be used.

4.1. A realistic scenario

Our methodology is based on the method used by
Somers and Sugita (2003) in their evaluation of
SLT software. SLT research, almost without
exception, focuses on one particular type of
application, namely task-oriented co-operative
dialogues, for example, scheduling a meeting, or
arranging travel. Accordingly, Somers and Sugita
chose to evaluate the SLT software by translating
phrases taken from a tourist’s phrasebook.
Importantly, they were interested in “the subject’s
ability to infer correctly the intended meaning of
the utterance” (emphasis added) rather than the
grammar or style of the translation. In a similar
manner, we are interested above all in whether the
faked output is intelligible, with little interest in
naturalness and phonetic accuracy, unless it
impinges on intelligibility, in our healthcare
scenario.

In our experiment, participants will be told
(in their own language by a native speaker
experimenter) to imagine that they have gone to
the doctor’s office with some specific medical
problem, say, respiratory difficulties, and that
whatever the doctor says is going to be translated
and ‘spoken’ by the computer. They will then be
asked to listen to the synthesised speech, and to tell
the experimenter what they understood. Because
the syntax etc. of the ‘translation’ is not an issue, it
will be acceptable if they simply repeat verbatim
what they have heard. The experimenter will make
a judgment about whether they have understood,
and will ask clarificational questions if necessary.
Sessions will be recorded to enable judgments to
be corroborated.

As in the Somers and Sugita (2003)
experiment, five different sub-scenarios will be
presented, each with a contextualisation (e.g. the

doctor asks you about your symptoms, the nurse
will explain the treatment, the receptionist wants to
make a follow-up appointment), with five phrases
in each, giving a total of 25 phrases (see
Appendix). Sessions should last about 15 minutes.
Phrases have been specifically tailored so as to
contain essential information which must be
repeated by the participant if the experimenter is to
judge the phrase to have been understood, e.g.
Take two puffs every four hours. At the end of each
session, the experimenter will elicit any general
reactions and opinion from the participants in an
informal interview.

If enough subjects can be found, a variant of
the experiment will use human recordings (rather
than synthetic speech) for a selection of the
phrases, to provide a base-line control.
Alternatively, it would be interesting to contrast
the use of Basque as the BL, with preprocessing to
adapt the orthography, against the cheaper but
‘dumber’ implementation using the free English-
based TTS software typically available on most
computers (e.g. using the voices of Microsoft Sam
and Microsoft Mary).

In our experiments with Somali (Somers et
al., 2006), we have tested several different
implementations, combining the approach
described here with the ‘gibbering’ approach of
Evans et al. (2002), as mentioned above. We have
told the subjects that the computer would have
several different ‘voices’, and fitted the scenario
around this, with each section associated with a
different speaker: a receptionist, the doctor, a
pharmacist, and so on. Obviously we need to
sample each ‘voice’ with each section, so the
experimental set-up is a Latin square of voices ×
sections, which determines the minimum number
of participants needed. As each different voice is
introduced, a sample is introduced and played: for
example, the experimenter will say “The doctor
says: I want to get some background details”, and
then plays the sample.

5. Pilot studies

At the time of writing we are still hoping to set up
an experiment with Pitjantjatjara speakers via a
number of agencies. During pilot experiments with
Somali speakers (Somers et al., 2006), a number of
interesting elements have led us to adjust the
experimental design.

The first of these concerns the translations.
It will not come as a surprise to find that
Pitjantjatjara does not have its own words for some
vocabulary items such as pollution, medical
history. There are also some constructions which
are hard to render in Pitjantjatjara, for example
comparatives (e.g. Is it worse at night?). It might

75

even turn out that asthma is not an appropriate
testbed for that particular locale. The significance
of these is that, as we quickly discovered with the
Somalis, loanwords were difficult to understand:
subjects who otherwise were obtaining good scores
for comprehension were baffled by Somali words
such as dhamb ‘damp’, boolushan ‘pollution’ and
hayla ‘inhaler’.

A second idea to emerge from the pilot
experiments was to adjust our scoring system. We
have found that subjects would like to hear each
sample two or three times, and they typically ‘get’
more of the message on each hearing. So we are
devising a scoring method which takes this into
account, and quantifies not just whether the
subjects could understand the synthetic speech, but
how many repetitions they need (up to, say, three).
In a practical situation it is not unreasonable to ask
to hear something again.

Finally, we have noticed that subjects
quickly get used to the voice, and seem to have a
better level of recognition towards the end of the
test. This is something we should try to measure,
although the experimental design with multiple
‘voices’ may mask this effect considerably.

We look forward to reporting results of the
experiment in due course.

Acknowledgements

Our thanks go to Andrew Longmire at the
Department of Environment and Heritage’s
Cultural Centre, Uluru–Kata Tjuta National Park,
Yulara NT, and to Bill Edwards, of the Unaipon
School, University of South Australia, Adelaide,
for their interest in the experiment, and, we hope
eventually, for their assistance in conducting it.

Appendix – Rubric and test items to be
translated into Pitjantjatjara

[The text in italic is spoken by a human – the
experimenter – in the participant’s own language –
text in bold represents the sample in each case]

You are going to hear some sentences spoken by
the computer. I want you to tell me in your own
words what you understand the computer to be
saying. You don’t have to answer the questions. I
can play them up to three times each. Don’t worry
if you don’t really understand it – it’s not you who
is being tested!

The computer has different voices. Each time I will
play you an example and tell you what it is saying.

Please imagine that you want to see the doctor
because you have difficulty with breathing.

1. The receptionist says: First we have to make an
appointment.

a. What is your name?
b. Have you been to this clinic before?
c. Can you come next Thursday?
d. How about ten o’clock?
e. Do you want an appointment card?

2. The doctor’s assistant says: I am going to ask
you some questions about your circumstances.

a. Do you smoke, or have you ever smoked?
b. Do you have any pets?
c. Do you take regular exercise?
d. Does anyone in your family have asthma?
e. Is your home dry?

3. The doctor says: I want to get some background
details.

a. When did you first have difficulty with
breathing?

b. Is your breathing worse at any particular
time of day?

c. Does it prevent you from sleeping?
d. Is it worse after strenuous activity?
e. Does it depend on the weather?

4. The nurse says: I will make some suggestions.

a. Your asthma may be triggered by the
weather.

b. Check your bathroom for mold.
c. Use the brown inhaler if you have a mild

attack.
d. Use it once a day for a week after an

attack.
e. Take two puffs every four hours.

5. The pharmacist says: Your prescription is
ready.

a. Are you taking any other medication?
b. What is your name and address?
c. Take this three times a day.
d. Are you entitled to a free prescription?
e. That will be six dollars fifty please.

References
Eckert, P. and J. Hudson (1991) Wangka Wiru: A

Handbook for the Pitjantjatjara Language
Learner. Underdale, SA: University of South
Australia.

Evans, G., K. Polyzoaki and P. Blenkhorn (2002)
An approach to producing new languages for
talking applications for use by blind people. In
K. Miesenberger, J. Klaus and W. Zagler (eds)
8th ICCHP, Computers Helping People with
Special Needs, (LNCS 2398), Berlin: Springer
Verlag, pp. 575–582.

Goldstein, M. (1995) Classification of methods
used for assessment of text-to-speech systems

76

 according to the demands placed on the listener.
Speech Communication 16:225–244.

House, A.S., C.E. Williams, M.H.L. Hecker and
K.D. Kryter (1965) Articulation-testing methods:
Consonant differentiation with a closed-response
set. Journal of the Acoustic Society of America
37:158–166.

Logan, J., B. Greene and D. Pisoni (1989)
Segmental intelligibility of synthetic speech
produced by rule. Journal of the Acoustical
Society of America 86:566–581.

Miner, R. and J.L. Danhauer (1976) Modified
rhyme test and synthetic sentence identification
test scores of normal and hearing-impaired
subjects listening in multitalker noise. Journal of
the American Audiological Society 2:61–67.

Narayanan, S., S. Ananthakrishnan, R. Belvin, E.
Ettelaie, S. Gandhe, S. Ganjavi, P.G. Georgiou,
C.M. Hein, S. Kadambe, K. Knight, D. Marcu,
H.E. Neely, N. Srinivasamurthy, D. Traum, and
D. Wang (2004) The Transonics spoken dialogue
translator: An aid for English-Persian doctor-
patient interviews. In: T. Bickmore (ed.),
Dialogue Systems for Health Communication:
Papers from the AAAI Fall Symposium, Menlo
Park, CA: The AAAI Press, pp. 97–103.

Rayner, M., P. Bouillon, V. Van Dalsem, H.
Isahara, K. Kanzaki and B.A. Hockey (2003) A

limited-domain English to Japanese medical
speech translator built using REGULUS 2.
Companion Volume, 41st Annual Meeting of the
Association for Computational Linguistics,
Sapporo, Japan, 137–140.

Somers, H., G. Evans and Z. Mohamed (2006)
Developing speech synthesis for under-resourced
languages by ‘faking it’: An experiment with
Somali. Paper submitted to LREC 2006 (Genoa).

Somers, H. and H. Lovel (2003) Computer-based
support for patients with limited English.
Association for Computational Linguistics EACL
2003, 10th Conference of The European
Chapter, Proceedings of the 7th International
EAMT Workshop on MT and other language
technology tools, Budapest, pp. 41–49.

Somers, H., H. Lovel, M. Johnson and Z.
Mohamed (2004) Language technology for
patients with limited English. EACH
International Conference on Communication in
Healthcare, Bruges, P04.09.

Somers, H. and Y. Sugita (2003) Evaluating
commercial spoken language translation
software. MT Summit IX: Proceedings of the
Ninth Machine Translation Summit, New
Orleans, pp. 370–377.

77

Proceedings of the Australasian Language Technology Workshop 2005, pages 78–86,
Sydney, Australia, December 2005.

Dual-Type Automatic Speech Recogniser Designs for Spoken Dialogue Systems

Jason Littlefield and Michael Broughton
Command and Control Division,

Defence Science and Technology Organisation
PO Box 1500

Edinburgh, Australia, 5111
Jason.Littlefield@dsto.defence.gov.au

Michael.Broughton@dsto.defence.gov.au

Abstract
A Dual-Type automatic speech recogniser
(ASR) is a multi-pass ASR system that
incorporates both a speaker-independent (SI)
and a speaker-dependent (SD) ASR. The
purpose of this approach is to improve the
robustness of spoken dialogue systems for a
broader range of applications. This paper
identifies feasible Dual-Type multi-pass ASR
system designs that are intended to overcome
limitations arising from the use of a single type
of ASR. Implementation issues are also
discussed.

1.Introduction

Current implementations of Spoken Dialogue
Systems (SDS) are developed around a single
ASR. This design limits the overall system’s
recognition accuracy to the performance of the
installed ASR, while the useability is determined
by the individual ASR type. ASRs can be
categorised into two types, either SD or SI, with
each having their own strengths and weaknesses.

SI ASRs have the advantage of not requiring a
prior enrolment or customised training session for
their end users, thereby allowing any user of a
given regional dialect to effectively use the system.
These systems rely on an underlying grammar that
typically needs to be relatively small, or at least,
only have a small portion of the grammar active at
any point in time. Due to requiring limited
grammar size for optimum recognition accuracy,
these systems are often used in a system led
interaction, whereby the machine asks questions of
the user that elicit simple responses. These
responses may be single words, or small
continuous strings.

SD ASRs, on the other hand, require training for
each individual user. This training is relatively
short, generally less than ten minutes, and involves
the speaker reading aloud a prepared text, which is
analysed by the ASR for generation of the

speaker’s acoustic model. A speaker profile is
created by combining this acoustic model with a
vocabulary and a regional language model. SD
systems are adaptive and have the advantage of
being able to recognise free speech or constrained
grammar speech, although extracting semantic
content from the free speech is more difficult than
with a formalised grammar.

In addition to the fundamental differences
between the two ASR types, there are also
individual differences within each ASR type. The
various commercial and research implementations
are developed from different algorithms and
techniques, typically providing varying output for
the same paragraph of spoken text.

 ASRs are also further classified by their speech
continuity as well as grammar and vocabulary size.
Speech continuity describes whether words are
spoken in isolation, as connected speech or as
continuous speech (Zue et al., 1997). Connected
speech ASRs require pauses between multiple
word phrases, whereas continuous speech ASRs do
not. The grammar and vocabulary size refers to
the number of phrases and words that can be
spoken and recognized. A grammar can be
characterised by the number of plausible
alternatives (perplexity), the number of rules and
the number of words (Gibbon et al., 1997).

A prototype Multimodal Dialogue System,
incorporating an SDS, has been developed for the
Future Operations Centre Analysis Laboratory
(FOCAL) at Australia’s Defence Science and
Technology Organisation (DSTO). FOCAL is a
collaborative environment that is exploring new
paradigms for situation awareness and command
and control in military command centres (Wark et
al. 2004). An SDS was initially implemented for
FOCAL to enable natural dialogue with its Virtual
Advisers (Broughton et al. 2002) using an SD ASR
and later using an SI ASR (refer section 3). These
Virtual Advisers are real-time animated talking
heads that can deliver briefs or be queried for
additional information. Figure 1 shows some of
FOCAL’s Virtual Advisers on the main display
during an interactive briefing session.

78

SDSs rely on accurate speech-to-text
transcription (spoken utterance decoding) from
their ASR to perform well. State-of-the-art ASRs
perform optimally in quiet environments but are
sensitive to interference from ambient noise,
overlapping speech and reverberation (Littlefield et
al., 2002). Due to the 3.6 metre radius 150°
spherical screen, the reverberation characteristics
of FOCAL are less than ideal, particularly near the
focal point of the screen. This causes degradation
in performance of ASRs used in this environment.

Figure 1: Photograph of FOCAL with screen.

To overcome these limitations, we are interested
in the development of multi-pass systems, those
requiring two or more ASR engines to improve
robustness and overcome deficiencies in single
ASR based SDSs. The ASR engines can either be
of the same or different type, with the overall aim
of improving recognition accuracy in a broader
range of applications, by utilising the best features
of each ASR in the SDS system. An example of an
existing multi-pass system is SpeechMAX™
(Custom Speech USA, 2005), a dual-engine system
that utilises two SD ASRs, in this case Scansoft’s
Dragon NaturallySpeaking and IBM’s ViaVoice
(ScanSoft, 2005). Pellom and Hacioglu (2003)
incorporated two passes in the University of
Colorado’s SONIC ASR to improve robustness in
noisy environments. Furthermore, Pérez-Piñar
López and García Mateo (2005) use a multiple-
pass ASR system where the ASRs have language
models adapted from distinct topics.

We are interested in a new area of research that
incorporates a Dual-Type ASR to improve SDS
robustness. A Dual-Type ASR is a multi-pass ASR
that incorporates both a SI and a SD ASR. As
discussed, SD and SI ASRs have differing
advantages and disadvantages to each other, and
the aim of this proposed research is to exploit the
benefits of these systems to improve recognition
accuracy in situations that would normally be

detrimental to these systems if used in a traditional
single-pass design. Hockey et al. (2003) have
developed an SDS that uses two ASRs, a grammar-
based SI primary ASR a Statistical Language
Model ASR

Section 2 introduces components of an SDS
while section 3 describes the past and present SDS
in FOCAL. Components of a Dual-Type ASR are
identified and explained in section 4. Section 5
describes the alternative designs for a Dual-Type
ASR and issues common to all the designs are
examined in section 6. Section 7 describes future
implementation and experimentation. Finally, the
conclusion is provided in section 8.

2.Components of an SDS

The components of an SDS include a
microphone, an ASR, a grammar and a Dialogue
Manager.

 The microphone physical design, directionality,
frequency response and electrical output are
characteristics that help describe different
microphone types and aid in the correct
microphone selection for specific applications.
The microphones that are used in the FOCAL
environment include analogue and digital super-
cardioid headset microphones, and analogue super-
cardioid gooseneck microphones.

An ASR decodes audio from spoken utterances
into one or more recognition results in the form of
text. By default ASRs often display only one
speech-to-text interpretation, the most probable
interpretation. However, ASRs can produce a list
of alternative interpretations, each with a
confidence score expressed as a probability or
percentage. It is useful to use more than one
interpretation in an SDS when another component,
such as the Dialogue Manager, has more
contextual information than the ASR to select the
most likely recognition result.

A speech recognition grammar is a list of rules
and symbols that can be spoken and recognised by
an ASR, often represented as a context free
grammar (CFG). The format of the CFG used by
an ASR is usually a standard format, such as
Nuance Grammar Specification Language (GSL)
(Nuance, 2001) or Java Speech Grammar Format
(JSGF) (Sun Microsystems, 1998).

The Dialogue Manager controls the flow of
dialogue with the user and coordinates system
responses. The Dialogue Manager, as implemented
within FOCAL, can receive one or more
recognition results from the ASR system. The
additional recognition results are compared within
the current dialogue context to improve likelihood
of correct recognition.

79

3.FOCAL’s Current SDS

FOCAL's initial SDS (Broughton et al. 2002) was
developed around the SD ASR Dragon
NaturallySpeaking™, chosen because of its high
recognition accuracy, availability and developer
support. Additional software for natural language
understanding and dialogue management was
developed using Natlink (Gould, 2001). Natlink
enabled the development of macros and grammars
for Dragon NaturallySpeaking. This initial concept
system demonstrated the ability to interact with
FOCAL’s Virtual Advisers. However, the major
limiting factor of SD ASRs meant that only those
trained with the ASR could use the system. More
sophisticated grammars also needed to be
implemented to enable scalability of the system.

To address these issues, a second SDS was
developed using a SI ASR and a more
sophisticated Dialogue Manager based on an
agent-based architecture (Estival et al., 2003). In
this system, Nuance 8.0 (Nuance, 2001) was
chosen as the SI ASR as it provided high
reliability, a developer’s toolkit, and an Australian-
New Zealand acoustic language model. Regulus
(Rayner et al., 2001, Regulus, 2005) was
incorporated for language processing, enabling the
development of typed unification grammars and
their compiling into Nuance compatible context-
free grammar language models. The agent-based
dialogue management system was incorporated
into the larger FOCAL agent architecture (Wark et
al., 2004) to enable broader application within
FOCAL. Currently this system has been
implemented to enable users to dialogue with the
Virtual Advisers during their presentation of a
brief. It enables any one of four Virtual Advisers to
be asked questions relevant to their presented
information.

The SI ASR in FOCAL’s current SDS has two
functions. Firstly, it detects, records and saves the
audio from spoken utterances as wavefiles.
Secondly, it decodes the audio input from the
spoken utterance into recognition results. The
recognition results are a set of text strings that
most closely match rules in the ASR’s small CFG.

The Queensland University of Technology
Universal Background Model (QUT-UBM)
Speaker Identification System (SID) (Pelecanos
and Sridharan, 2001) which recognises a person
from the sound of their voice, has also been
integrated into FOCAL. The SID performs
acoustic analysis of the audio from a spoken
utterance and tries to match the pattern with that of
a trained target user model. The system’s response
is either the name of the matched target user model
or “unknown”.

In addition to our current SDS with the Virtual

Advisers, we are also exploring multimodal input
with an immersive geospatial application (Wark et
al., 2005). This system builds on our current SDS,
to enable deictic referencing from pointing
devices.

4.Components of a Dual-Type ASR

The components of a Dual-Type ASR include a
microphone, spoken Utterance Recorder, speech
recognition grammar, SI ASR, SD ASR coupled
with an SID, and recognition result Error Detector
and Reconciler. Configurations of these
components are described in section 5.

The Utterance Recorder is used to detect, record
and save the audio from spoken utterances as
wavefiles. Although ASRs are capable of
recording spoken utterances, we propose that the
use of an independent spoken utterance recorder
will lead to a more scalable and flexible system.
This is important because more than one of the
components requires the audio from spoken
utterances at the same time. However, this incurs a
delay, since the ASRs cannot begin to decode a
spoken utterance until that utterance has finished
and has been saved as a wavefile. It takes roughly
as long as the duration of an utterance to decode an
utterance from a wavefile.

Because there is an independent Utterance
Recorder, the SI ASR is only required to decode the
audio input from spoken utterances into
recognition results.

The SD ASR also decodes the audio input from
the spoken utterance into a set of recognition
results. However, because this ASR has a more
accurate model of a speaker’s voice pattern than
the SI ASR, it can use larger grammars. Hence,
SD ASRs can operate in at least two different
modes: large vocabulary continuous speech
(dictation mode) or small vocabulary connected
speech (command mode). The dictation mode uses
a large vocabulary of 20000 words or more (Zue et
al., 1997). The command mode employs a user-
defined CFG in a standard format.

Since the SD ASR needs to know the speaker’s
identity, we couple a SID system with the SD ASR
in an attempt to automate this process.

The Error Detector will select the best
recognition result interpretations, measure
agreement between the best interpretations, and
identify erroneous segments of interpretations.

The recognition results from each ASR include
an ordered list of possible interpretations within
the grammar, with each interpretation having a
confidence score associated with it. The best
interpretations will be selected by examining the
confidence scores and choosing those above a

80

predefined threshold.
 The interpretation with the highest confidence
score from each ASR will be compared for
agreement. The assumption here is that if the
ASRs produce the same recognition result and this
recognition result receives a high confidence score,
then it is likely to be correct. In this case a second
ASR reinforces the best result of the first ASR.
This comparison will be accomplished using Sclite
(NIST, 2001), a software tool from the US
National Institute of Standards and Technology,
that provides word error rate between the two
strings, a reference and a hypothesis. If the word
error rate is zero, the Error Detector will flag
agreement. Since there is only one recognition
result in this case, the Reconciler is not required,
and is bypassed. If the word error rate is greater
than zero, the recognition results are aligned and
compared again using Sclite. Sclite aligns the
strings and identifies substitution, insertion and
deletion misalignments. Part of an example report
from Sclite for insertion, substitution and deletion
misalignments follows.

REF: the brown ** fox JUMPED over THE lazy dog
HYP: the brown IN fox LUMPED over *** lazy dog
Eval: I S D

Note that the reference (REF) is only the best
recognition result based in confidence scores, not
necessarily a correct recognition result. Hence, the
substitution, deletion and insertion misalignments
are only possible sources of errors.

The degree of agreement (word error rate
produced by Sclite) and the location and type of
misalignments will be passed on to the Dialogue
Manager which will lead to a response to query the
user about the error. The best recognition results
will be passed on to the Reconciler to process.

It is expected that the Error Detector will require
minimal processing for smaller grammars due to
the high recognition accuracy achievable with
them. The high recognition accuracy will provide
identical outputs from both the SD and SI systems
and therefore minimal work for the error detection
system. As the grammars become more complex
however, variation between the two ASRs is
expected and providing the correct output in this
situation is one of the aims of this research.

The Reconciler will receive a set of recognition
results from more than one ASR and produce the
most probable interpretation. The Reconciler will
use an existing system in the speech and language
technology domain that makes a selection from
multiple output strings. Multi-engine machine
translation systems require a component similar to
the recognition result Reconciler presented here.
DEMOCRAT is an example of such a component

for deciding between multiple outputs created by
automatic translation (van Zaanen and Somers,
2005).

 The best two or three interpretations from each
of the ASRs will be sorted in order of confidence
and passed on to DEMOCRAT. However, the
relationship between the confidence scores from
one ASR to another is unknown. The Reconciler
will need to take this into account when selecting
the best candidate interpretations. DEMOCRAT
will produce a consensus interpretation by taking
the best segments of each interpretation (van
Zaanen and Somers, 2005).

5.Proposed Dual-Type ASR Designs

The following Dual-Type ASR designs we have
proposed incorporate one or more ASR to decode
the audio input from spoken utterances into
recognition results. Each iteration through an ASR
is a recognition pass, and therefore, a design using
one ASR is a single-pass system, and a design
using two ASRs is a two-pass system and so on.

The four proposed Dual-Type ASR designs are:
1. Single-pass ASR
2. Two-pass ASR in parallel
3. Two-pass ASR in parallel with error

detection
4. Three-pass ASR in parallel with error

detection.

The first Dual-Type ASR system design being

proposed is a single-pass ASR which includes a
Utterance Recorder followed by a SID system
where the speaker’s identity is decoded. This
design is illustrated in figure 2.

Figure 2: System design of the Dual-Type single-
pass ASR.

If the speaker is identified, then the wavefile for

the utterance is passed to the SD ASR for decoding
into a recognition result. If the speaker is not
identified then the wavefile for the utterance is

81

passed to the SI ASR for decoding. This assumes
that the SD ASR is at least as accurate as the SI
ASR for large vocabularies as referred to by
Merino (2001). This system does not require a
Reconciler or Error Detector component.

The second system design, shown in figure 3,

proposes a two-pass ASR in parallel where two
ASRs decode all spoken utterances concurrently.
A spoken utterance recorder detects and records
utterances as wavefiles, which are then decoded
simultaneously using a SI ASR and a SD ASR
incorporating a SID system. The Reconciler
compares the recognition results and provides a
reconciled result for the SDS Dialogue Manager.

Figure 3: System design for the Dual-Type two-
pass ASR in parallel.

The third Dual-Type ASR system design being
proposed is an extension of the second system. It
is a two-pass system, where two ASRs decode all
spoken utterances in parallel, with the addition of
an Error Detector. In an effort to be more efficient,
a first-pass using a SI ASR will be used every
time, whereas the second-pass using a SD ASR
will be used only if the Error Detector decides it is
required.

As before, a spoken utterance recorder detects
and records utterances as wavefiles and the spoken
utterances are decoded by the SI ASR and the SD
ASR incorporating a SID system. However, the SI
ASR recognition result is assessed for errors. If an
error is detected, then the result is passed to the
Reconciler and compared to the SD ASR
recognition result. The Reconciler then passes a
reconciled result to the SDS Dialogue Manager. If
no errors are found, then the Reconciler is
bypassed, and the result from the SI ASR is passed
on directly to the SDS Dialogue Manager. Figure
4 illustrates the Dual-Type two-pass ASR in
Parallel with Error Detection system design.

Figure 4: System design of the Dual-Type two-
pass ASR in Parallel with Error Detection.

The last proposed design shown in figure 5
incorporates three recognition passes. As in
proposal 3 (figure 4), the SI and SD ASR will be
used in parallel with error detection. The third
pass in this proposal is another SD ASR in
dictation mode without a constrained grammar.
This would be a useful approach in situations
where there are out of vocabulary errors using
constrained grammars. The SD ASR in dictation
mode has a much larger vocabulary, which could
help overcome out of vocabulary errors with
constrained grammars and potentially provide a
more accurate recognition result.

Figure 5: System design of the Dual-Type three-
pass ASR in Parallel with Error Detection.

82

6.Pro and Cons of Each Proposed Design

The speed, accuracy and complexity of each
proposed design and its effect on SDS robustness
will be compared to determine the most promising
approach. A breakdown of the time delay overall
is discussed in section 7.1. In the single-speaker
situation, the speed of each proposed Dual-Type
ASR is estimated to be 2t + 2 seconds, where t is
the length of the spoken utterance in seconds. This
assumes the Error Detector and Reconciler incur a
negligible time delay.

The accuracy and robustness of each proposed
design will be determined through
experimentation. Proposed designs 3 and 4 are
expected to perform better due to the use of the
Error Detector component. This is due to the
agreement of recognition results with high
confidence scores between ASRs. Also, the
additional alignment data enables the Dialogue
Manager to query the user when conflicting
recognition results occur. That is the ability to
query the user for clarification of an utterance
segment when required.

The complexity of each of the proposed designs
can be described in terms of the number of ASR
passes and the number and type of required
components. Table 1 shows these terms for each
of the proposed designs, 1 though 4. The more
complex the design, the more effort required to
build and maintain.

Design No. of

Passes
SI

ASR
SID SD

ASR
Rec. Err.

Det.

1 1

2 2

3 2

4 3

Table 1: Required components for each proposed
Dual-Type design.

7.Foreseeable Design Issues

Before implementing these proposed designs for
experimentation, there are some design issues that
need to be considered.

7.1.Time Delay

The time delay between the end of spoken
utterance and the SDS executing an action is
crucial to user satisfaction. A brief investigation
was conducted into the duration of spoken
utterances and SDS response times in FOCAL.
Short sentences, such as ‘Yes’ or ‘No’, were about

0.5 second long, while the longest sentence was
about 4 seconds long. The corresponding SDS
response times were estimated to be between 5 and
10 seconds depending on the complexity of the
sentence and resulting action.

The proposed Dual-Type ASR designs incur
further time delay. The Utterance Recorder takes
the duration of the spoken utterance, which is
between 0.5 and 4 seconds, to detect, record and
save an utterance. The SID system takes about 2
seconds to identify speakers, while both types of
ASRs take about the length of the utterance to
produce recognition results. However, if the SD
ASR needs to load a different speaker profile, there
is an additional delay. Dragon NaturallySpeaking 8
takes about 6 seconds to do this. The recognition
result Reconciler and Error Detector have not been
implemented yet, however for small grammars
their duration is expected to be negligible.

Hence, for spoken utterances of between 0.5 and
4 seconds the estimated overall delay for an SDS
incorporating a proposed Dual-Type ASR design
will be between 8 and 26 seconds. Note that the
Dual-Type ASR is responsible for between 3 and
16s of this estimate. In a multi-speaker
environment, the SD ASR will only need to load a
speaker profile if the speaker changes. This is not
the case all the time. Table 2 shows the
breakdown of estimated time delay for 0.5 and 4
second long utterances with and without a change
in speaker. The time delay will be measured in
future experimentation.

SD. ASR Utt

& UR
SID

Loading Transcribing
DM Total

0.5s 2s - 0.5s 5s 8s
4s 2s - 4s 10s 20s

0.5s 2s 6s 0.5s 5s 14s
4s 2s 6s 4s 10s 26s

Table 2: Estimated time delay for responses with
an SDS incorporating a proposed Dual-Type ASR.

The breakdown includes the utterance duration
(Utt.), the utterance recorder (UR), the SID system,
the SD ASR (loading and transcribing) the
Dialogue Manager (DM) and the total.

7.2.Speaker Identification Accuracy

A preliminary trial was conducted by Zschorn
(2005) testing a SID system across different
spoken utterance lengths. The results
demonstrated that for utterance lengths of 0.5, 2.0,
4.0 and 8.0 seconds, the error rates were 57%,
18%, 10% and 6% respectively. Initial
investigations into the length of typical spoken
utterances using a question-answer (QA) SDS were
between 0.5 and 4 seconds. Hence, the accuracy of
the SID for very short utterances is expected to be

83

poor. Both the length of spoken utterances and SID
error rates will be measured in future
experimentation.

7.3.Grammar Compatibility

In a system where SD and SI ASRs are used in
parallel, a single grammar format would be ideal.
However there are many different grammar
formats. SI ASRs such as Nuance uses GSL and
Sphinx 4 uses JSGF. SD ASRs such as Dragon
NaturallySpeaking use the Microsoft Speech API 4
(SAPI 4) BNF grammar format and Microsoft’s
Speech Recognition Engine (MSRE) 5.1 uses
GRXML.

SAPI 4
Engine

SAPI 5
EngineNuance 8.0

Java Speech
API

JSGF GrammarGSL Grammar

Nuance API

Regulus 2 Grammar
GSL to JSGF
 conversion

Grammar
Builder

Grammar
Format

API

ASR

Figure 6: Grammar format and APIs for leading
commercial ASRs.

The grammars for the SDS in FOCAL are
generated using a grammar building tool called
Regulus (Rayner et al., 2001). Regulus can build
grammars in GSL format for Nuance. For SD
ASRs, any SAPI 4 or SAPI 5 compliant ASR can
use JSGF via the Java Speech API (JSAPI),
including Dragon NaturallySpeaking, IBM
ViaVoice and Microsoft’s SAPI 5.1 engine. GSL
and JSGF are commonly used standard grammar
formats endorsed by World Wide Web Consortium
(W3C) in the VoiceXML 2.0 specification. Figure
6 illustrates the relationship between grammar
format, API and ASR engines. A GSL to JSGF
grammar conversion tool would simplify
integration of a Dual-Type ASR. This will be the
topic of a Summer Vacation student project at
DSTO during the summer 05-06.

8.Implementation

Development of a Dual-Type ASR and
integrating it with the SDS in the FOCAL agent-
based architecture has already begun. The
components of the Dual-Type ASR will be
integrated in the current agent-based framework
(Estival et al., 2003) so that each of the proposed
designs can be tested for experimentation. An
agent will be created for the Utterance Recorder,
SID system, SD ASR and SI ASR. These agents
will interact via a Dual-Type ASR Speech Input

agent that will direct data as required. The Dual-
Type ASR Speech Input agent will also handle the
functions of the recognition results Error Detector
and Reconciler as required and interact with the
existing Multimodal Input Processor (MIP) in the
SDS. The MIP fuses input from multiple
modalities and forwards this to the Dialogue
Manager (DM). Figure 7 shows the overall design
of the Dual-Type ASR and the SDS.

The Utterance Recorder agent will detect spoken
utterances, record begin and end timestamps and
saves the audio as a wavefile independently.

The SID agent uses the QUT-UBM SID system
to decode the identity of the speaker.

CoAbs
Grid

Dual-type ASR Speech Input Agent

Utterance
Recorder

Agent
SID AgentSD Agent

(Dragon NS)

Nuance
Server

Program

TCP/IP

SI Agent
(Nuance
Client)

Microphone

Reconciler

Error Detector
No Yes

Multimodal
Input

Processor

Dialog
Manager

Grammars User Models

Response

Figure 7: Proposed Dual-Type ASR Speech Input
agent with independent Utterance Recorder.

The SD agent will return recognition results. The
SD agent consists of the JSGF Grammar and a SD
ASR such as Dragon NaturallySpeaking, IBM
ViaVoice or MSRE 5.1 integrated using
CloudGarden’s TalkingJava JSAPI (CloudGarden,
2005). In a multi-speaker environment, the time
delay incurred by the SD ASR switching user
profiles can be eliminated by using one computer
per participant, each with a SD agent. The SI agent
consists of the GSL Grammar and Nuance Client.
The Nuance Client communicates with the Nuance
Server via TCP/IP. This implementation will allow
each of the proposed designs will be tested by
modifying the routing procedure within the Dual-
Type ASR Speech Input agent.

84

9.Conclusion

In this paper we have presented four alternate
designs for a Dual-Type ASR, a system that
combines both SI and SD ASRs. The motivation is
to provide a more robust SDS system than is
currently achievable with a single ASR of either
type. We aim to achieve improved robustness
through the provision of alternate recognition
results from different types of ASR. The designs
enable improved user flexibility over a SD system
by also providing a SI alternative.

The final design of the Dual-Type ASR system
may incorporate several of the proposed designs to
maximise the available advantages. These will be
reported after the planned development and
evaluation of these initial designs.

Acknowledgements
We wish to thank Dr Dominique Estival for her

continued guidance and Andrew Zschorn for his
consistent contribution to spoken dialogue systems.
We would also like to thank Nuance
Communications for providing Research
membership support for their products.

References

Broughton, M., Carr, O., Taplin, P., Estival, D.,
Wark, S. and Lambert, D. 2002. Conversing with
Franco, FOCAL's Virtual Adviser. Proc. Virtual
Conversational Characters (VCC) Workshop,
Human Factors Conference (HF2002),
Melbourne, Australia.

CloudGarden. 2005. TalkingJava SDK with Java
Speech API implementation,
http://www.cloudgarden.com/JSAPI/, last
accessed 2 November 2005.

Custom Speech USA.. 2005. SpeechMax,
http://www.customspeechusa.com/, last accessed
20 August 2005.

Estival, D., Broughton, M., Zschorn, A. and
Pronger, E. 2003. Spoken Dialogue for Virtual
Advisers in a semi-immersive Command and
Control environment, 4th SIGdial Workshop on
Discourse and Dialogue, Sapporo, Japan.

Gibbon, D., Moore, R. and Winski, R. 1997.
Handbook of standards and resources for spoken
language systems, Walter de Gruyter & Co., pp.
839-852 (Glossary).

Gould, J. 2001. Implementation and Acceptance of
NatLink, a Python-Based Macro System for
Dragon NaturallySpeaking. The Ninth
International Python Conference, March 5-8,
California.

Hockey, B. A., Lemon, O., Campana, E., Hiatt, L.,
Aist, G., Hieronymus, J., Gruenstein, A., and
Dowding, J. 2003. Targeted help for spoken
dialogue systems: intelligent feedback improves
naive users' performance. In Proceedings of the
Tenth Conference on European Chapter of the
Association For Computational Linguistics -
Volume 1, Budapest, Hungary, April 12 - 17,
2003, European Chapter Meeting of the ACL.
Association for Computational Linguistics,
Morristown, NJ, pp. 147-154.

Littlefield, J. and Hashemi-Sakhtsari, A. 2002. The
Effects of Background Noise on the Performance
of an Automatic Speech Recogniser, Research
Report DSTO-RR-0248, Defence Science &
Technology Organisation.

Merino, D. 2001. Speaker Compensation in
Automatic Speech Recognition. In J.-C. Junqua
and G. van Noord (Eds.), Robustness in
Languages and Speech Technology, pp. 47-100.
Telefónica. Netherlands.

NIST. 2001. NIST sclite version 2.2, part of
Speech Recognition Scoring Toolkit (SCTK)
version 1.2, http://www.nist.gov/speech/tools/,
last accessed 11 August 2005.

Nuance. 2001. Nuance Speech Recognition
System, Version 8.0: Introduction to the Nuance
System, Nuance Communications, Inc.

Pelecanos, J. and Sridharan, S. 2001. Feature
Warping for Robust Speaker Verification, in
Proc. ISCA Workshop on Speaker Recognition –
2001: A Speaker Odyssey, June 2001.

Pellom, B. and Hacioglu, K. 2003. Recent
improvements in the CU SONIC ASR system for
noisy speech: The SPINE task, in Proc. IEEE
International Conference on Acoustics, Speech
and Signal Processing, 2003, pp.14-17.

Pérez-Piñar López, D. and García Mateo, C. 2005.
Application of confidence measures for dialogue
systems through the use of parallel speech
recognizers, In Interspeech 2005, pp.2785-2788.

Rayner, M., Dowding, J., Hockey, B.A. 2001. A
Baseline Method for Compiling Typed
Unification Grammars into Context Free
Language Models, in Proc. of Eurospeech 2001,
Aalborg, Denmark.

Regulus. 2005. Sourceforge Project: Regulus,
https://sourceforge.net/projects /regulus/, last
accessed 11August 2005.

ScanSoft. 2005. Dragon NaturallySpeaking and
IBM ViaVoice, http://www.scansoft.com/, last
accessed 5 September 2005.

85

Sun Microsystems. 1998. Grammar Format
Specification, http://java.sun.com/, last accessed
10 September 2005.

van Zaanen, M. and Somers, H. 2005.
DEMOCRAT: Deciding between Multiple
Outputs Created by Automatic Translation, To
appear in Proc. of 10th Machine Translation
Summit, Phuket, Thailand.

Wark, S., Broughton, M., Nowina-Krowicki, M.,
Zschorn, A., Coleman, M., Taplin, P. and Estival,
D. 2005. The FOCAL Point - Multimodal
Dialogue with Virtual Geospatial Displays, in
Proc. SimTecT 2005, Sydney, Australia.

Wark, S., Zschorn, A., Broughton, M., and
Lambert, D. (2004) FOCAL: A Collaborative
Multimodal Multimedia Display Environment.
Proc. SimTecT 2004.

Zschorn, A. 2005. Speaker Identification Test
Results, DSTO informal report.

Zue, V., Cole, R.A. and Ward, W. 1997. Spoken
Language Input: 1.2 Speech Recognition, In
Cole, R.A., Mariani, J., Uszkoreit, H., Zaenen, A.
and Zue, V. editors. Survey of the State of the Art
in Human Language Technology, Cambridge
University Press, Cambridge, UK, 1997.

Phillips, S. and Rogers, A. 1999. Parallel Speech
Recognition, International Journal of Parallel
Programming, Volume 27, Issue 4, Aug 1999,
pp. 257 – 288.

86

Proceedings of the Australasian Language Technology Workshop 2005, pages 87–95,
Sydney, Australia, December 2005.

Efficient Knowledge Acquisition for Extracting Temporal Relations

Son Bao Pham and Achim Hoffmann
School of Computer Science and Engineering

University of New South Wales, Australia
{sonp,achim}@cse.unsw.edu.au

Abstract
We present KAFTIE – an incremental knowledge
acquisition framework which utilizes expert knowl-
edge to build high quality knowledge base annota-
tors. Using KAFTIE, a knowledge base was built
based on a small data set that outperforms machine
learning algorithms trained on a much bigger data
set for the task of recognizing temporal relations. In
particular, this can be incorporated to bootstrap the
process of labeling data for domains where anno-
tated data is not available. Furthermore, we demon-
strate how machine learning can be utilized to re-
duce the knowledge acquisition effort.

1 Introduction
Recent years have seen growing interests in tempo-
ral processing for many practical NLP applications.
For example, question answering tasks try to find
when and how long an event occurs or what events
occur after a particular event.

Several works have addressed temporal process-
ing: identification and normalization of time ex-
pressions (Mani and Wilson, 2000), time stamping
of event clauses (Filatova and Hovy, 2001), tempo-
rally ordering of events (Mani et al., 2003), recog-
nizing time-event relations in TimeML (Boguraev
and Ando, 2005). At a higher level, these temporal
expressions and their relations are essential for the
task of reasoning about time, for example, to find
contradictory information (Fikes et al., 2003).

In this emerging domain, there is a clear lack of
a large annotated corpus to build machine learning
classifiers for detecting temporal relations. We pur-
sued the idea that an incremental knowledge acqui-
sition approach could be used to develop a knowl-
edge base of rules that utilizes experts’ knowledge
to overcome the paucity of annotated data. In fact,
this approach could be combined nicely with the
process of annotating data. When a new piece of
data is annotated differently to what an existing KB
proposes, the annotator specifies a justification for
the decision in the form of a rule which is added

to the knowledge base. Our experience shows that
the time it takes to formulate a rule explaining why
the data is annotated in a certain form is not much
if the users have already spent time on deciding on
the annotation. This is particularly true for complex
tasks e.g. annotating relations between temporal ex-
pressions where it is not obvious whether there is
any relation between temporal expressions. Impor-
tantly, rule formulation time does not depend on the
size of the knowledge base.

Our incremental knowledge acquisition frame-
work is inspired by Ripple Down Rules (Compton
and Jansen, 1990) which allows users to add rules
to the knowledge base (KB) incrementally while au-
tomatically ensuring that the knowledge base is al-
ways consistent. A new rule added to the KB is only
applicable to those cases where the current knowl-
edge base did not perform satisfactorily according
to the users. This effectively avoids the adverse in-
teractions of multiple rules in the KB.

We show that with our framework KAFTIE
(Knowledge Acquisition Framework for Text clas-
sification and Information Extraction), we can
quickly develop a large KB based on a small data
set that performs better than machine learning ap-
proaches trained on a much bigger data set on the
task of recognizing temporal relations.

2 TimeML
TimeML is intended as a Metadata Standard for
Markup of events, their temporal anchoring and
how they relate to each other (Pustejovsky et al.,
2003). It aims at capturing the richness of time
information by formally distinguishing events and
temporal expressions in text. TimeML defines four
temporal elements as tags with attributes: TIMEX3,
SIGNAL, EVENT and LINK. TIMEX3 is mod-
elled on TIMEX (Setzer and Gaizauskas, 2001) and
TIMEX2 (Ferro et al., 2001). It marks up explicit
temporal expressions such as times, dates, durations
etc. SIGNAL is used to annotate function words
that indicate how temporal objects are to be related
to each other e.g. temporal connectives (when) or

87

temporal prepositions (on, during). The EVENT
tag covers elements in a text describing situations
that occur or happen. Syntactically, EVENTs are
tensed verbs, event nominals, stative adjectives and
modifiers. The LINK tag encodes various relations
that exist between temporal elements of a docu-
ment which is divided into three subtypes namely:
TLINK, SLINK and ALINK. TLINK is a temporal
link representing a relation between an event and
a time or between two events. SLINK represents
a subordination relation between two events or an
event and a signal. ALINK represents an aspectual
relationship between two events.

In this paper, we report results on recognizing
TLINK between an event and a time expression.
The main reason for focusing on this subtask is to
enable comparison with existing works. In fact, our
approach is not geared towards this task and is gen-
eral enough to be applicable to recognize other link
types as well.

3 Knowledge Acquisition Methodology
In this section we present the basic idea of Ripple-
Down Rules (Compton and Jansen, 1990) which in-
spired our approach. RDR was first used to build
the expert system PEIRS for interpreting chemical
pathology results (Edwards et al., 1993). PEIRS ap-
pears to have been the most comprehensive medical
expert system yet in routine use, but all the rules
were added by pathology experts without program-
ming skill or knowledge engineering support whilst
the system was in routine use. Ripple-Down Rules
and some further developments are now success-
fully exploited commercially by a number of com-
panies.

Knowledge Acquisition with Ripple Down
Rules: Ripple Down Rules (RDR) is an unortho-
dox approach to knowledge acquisition. RDR does
not follow the traditional approach to knowledge
based systems (KBS) where a knowledge engineer
together with a domain expert perform a thorough
domain analysis in order to come up with a knowl-
edge base. Instead a KBS is built with RDR incre-
mentally, while the system is already in use. No
knowledge engineer is required as it is the domain
expert who repairs the KBS as soon as an unsatis-
factory system response is encountered. The expert
is merely required to provide an explanation for why
in the given case, the classification should be differ-
ent from the system’s classification.

Suppose the system’s classification was produced
by some rule RA. The explanation would refer to at-
tributes of the case, such as patient data in the medi-
cal domain or a linguistic pattern matching the case

in the natural language domain. The new rule RB

will only be applied to cases for which the provided
conditions in RB are true and for which rule RA

would produce the classification, if rule RB had not
been entered. I.e. in order for RB to be applied to
a case as an exception rule to RA, rule RA has to
be satisfied as well. A sequence of nested excep-
tion rules of any depth may occur. Whenever a new
exception rule is added, a difference to the previous
rule has to be identified by the expert. This is a nat-
ural activity for the expert when justifying his/her
decision to colleagues or apprentices. A number of
RDR-based systems store the case which triggered
the addition of an exception rule along with the new
rule. This case, being called the cornerstone case
of the new rule R, is retrieved when an exception to
R needs to be entered. The cornerstone case is in-
tended to assist the expert in coming up with a justi-
fication, since a valid justification must point at dif-
ferences between the cornerstone case and the case
at hand for which R does not perform satisfactorily.

Single Classification Ripple Down Rules: A
single classification ripple down rule (SCRDR) tree
is a finite binary tree with two distinct types of
edges. These edges are typically called except and if
not edges. See Figure 1. Associated with each node
in a tree is a rule. A rule has the form: if α then
β where α is called the condition and β the conclu-
sion.

Cases in SCRDR are evaluated by passing a case
to the root of the tree. At any node in the tree, if
the condition of a node N ’s rule is satisfied by the
case, the case is passed on to the exception child of
N . Otherwise, the case is passed on the N ’s if-not
child. The conclusion given by this process is the
conclusion from the last node in the RDR tree which
fired. To ensure that a conclusion is always given,
the root node typically contains a trivial condition
which is always satisfied. This node is called the
default node.

A new node is added to an SCRDR tree when
the evaluation process returns the wrong conclusion.
The new node is attached to the last node evaluated
in the tree provided it is consistent with the exist-
ing rules. If the node has no exception link, the new
node is attached using an exception link, otherwise
an if not link is used. To determine the rule for the
new node, the expert formulates a rule which is sat-
isfied by the case at hand.

4 Our KAFTIE framework
We use SCRDR for building knowledge bases in the
KAFTIE framework. While the process of incre-
mentally developing knowledge bases will eventu-

88

R1:
({VG.hasAnno==EVENT_I}):RDR1_vg1
({PP}?):RDR1_pp1
({PP.hasAnno==TIMEX3_R}):RDR1_pp2
Conclusion: INCLUDES

R3:

Conclusion: INCLUDES

R8:

Conclusion: NONE

R196:

Conclusion:AFTER

R10:
({RDR3_np1.hasAnno==TIMEX3,

RDR3_np1.hasAnno==EVENT_I})
Conclusion: NONE

{RDR1_pp2,Token.string==after}

{RDR1_pp2,Token.string==below}

({NP.hasAnno==EVENT_I}):RDR3_np1

({PP.hasAnno==TIMEX3_R}):RDR3_pp1

Conclusion:NONE

R0: true except except

except

false

false

Figure 1: An extract of a KB for recognizing
TLINK between an EVENT and a TIMEX3. Note
that SCRDR is different from a decision tree: rules
in internal nodes can be used to give conclusions to
input cases.

ally lead to a reasonably accurate knowledge base,
provided the domain does not drift and the experts
are making the correct judgements, the time it takes
to develop a good knowledge base depends heav-
ily on the appropriateness of the used language in
which conditions can be expressed by the expert.

Some levels of abstraction in the rule’s condition
is desirable to make the rule expressive enough in
generalizing to unseen cases. To realize this, we use
the idea of annotations where phrases that have sim-
ilar roles (belong to the same concept) are deemed
to belong to the same annotation type. Annotations
contain the annotation type, the character locations
of the beginning and ending position of the anno-
tated text in the document, and a list of feature value
pairs.

4.1 Rule description
A rule is composed of a condition part and a con-
clusion part. A condition is a regular expression
pattern over annotations. It can also post new an-
notations over matched phrases of the pattern’s sub-
components. The following is an example of a pat-
tern which posts an annotation over the matched
phrase:

({Noun}{VG.type==FVG}{Noun}):MATCH

This pattern would match phrases starting with a
Noun annotation followed by a VG, which must
have feature type equal to FVG, followed by another
Noun annotation. When applying this pattern on a
piece of text, MATCH annotations would be posted
over phrases that match this pattern. As annotations
have feature value pairs, we can impose constraints
on annotations in the pattern by requiring that a fea-
ture of an annotation must have a particular value.

A piece of text is said to satisfy the rule condi-
tion if it has a substring that satisfies the condition
pattern. The rule’s conclusion contains the classifi-
cation of the input text. In the task of recognizing

temporal relations between a pair of temporal ex-
pressions (event or time), the conclusion is either
the relation type or NONE.

Besides classification, our framework also offers
an easy way to do information extraction. Since
a rule’s pattern can post annotations over compo-
nents of the matched phrases, extracting those com-
ponents is just a matter of selecting appropriate an-
notations. In this paper, the extraction feature is not
used, though.

4.2 Annotations and Features
Built-in annotations: As our rules use patterns
over annotations, the decision on what annotations
and their corresponding features should be are im-
portant for the expressiveness of rules. Following
annotations and features make patterns expressive
enough to capture all rules we want to specify for
various tasks.

We have Token annotations that cover every to-
ken with string feature holding the actual string, cat-
egory feature holding the POS and lemma feature
holding the token’s lemma form.

As a result of the Shallow Parser module, which
will be described in the next section, we have sev-
eral forms of noun phrase annotations ranging from
simple to complex noun phrases, e.g. NP (simple
noun phrase), NPList (list of NPs) etc. All forms
of noun phrase annotations are covered by a general
Noun annotation.

There are also VG (verb groups) annotations with
type, voice, headVerbPos, headVerbString etc. fea-
tures and other annotations e.g. PP (prepositional
phrase), SUB (subject), OBJ (object).

An important annotation that makes rules more
general is Pair which annotates phrases that are
bounded by commas or brackets. With this anno-
tation, the following sentences:

[PP On [TIMEX3 Monday TIMEX3] PP] [NP the
company NP] [VG bought VG]
[PP In [TIMEX3 recent months TIMEX3] PP] [NP
a group of lenders NP] [Pair , led by Bank of Amer-
ica , Pair] [VG has extended VG]

could be covered by the following pattern:
{PP.hasAnno == TIMEX3}{NP}
({Pair})?{VG.type == FVG}

Every rule that has a non-empty pattern would post
at least one annotation covering the entire matched
phrase. Because rules in our knowledge base are
stored in an exception structure, we want to be able
to identify which annotations are posted by which
rule. To facilitate that, we number every rule and
enforce that all annotations posted by rule number
x have the prefix RDRx . Therefore, if a rule is an

89

exception of rule number x, it could use all annota-
tions with the prefix RDRx in its condition pattern.

Apart from the requirement that an annotation’s
feature must have a particular value, we define ex-
tra constraints on annotations namely hasAnno, has-
String, underAnno, endsWithAnno. For example,
hasAnno requires that the text covered by the an-
notation must contain another specified annotation:

NP.hasAnno == TIMEX3

only matches NP annotations that has a TIMEX3
annotation covering its substring. This is used, for
example, to differentiate a TIMEX3 in a noun group
from a TIMEX3 in a verb group.

Custom annotations: Users could form new
named lexicons during the knowledge acquisition
process. The system would then post a correspond-
ing annotation over every word in those lexicons.
Doing this makes the effort of generalizing the rule
quite easy and keeps the knowledge base compact.

4.3 The Knowledge Acquisition Process in
KAFTIE

The knowledge acquisition process goes through a
number of iterations. The user gives a text segment
(e.g. a sentence) as input to the KB. The conclusion
(e.g. classification) is suggested by the KB together
with the fired rule R that gives the conclusion. If it
is not the default rule, annotations posted by the rule
R are also shown (see section 6.3) to help the user
decide whether the conclusion is satisfactory.

If the user does not agree with the KB’s per-
formance, there are two options of addressing it:
adding an exception rule to rule R or modifying rule
R if possible. In either case, user’s decision will be
checked for consistency with the current KB before
it gets committed to the KB.

To create a new exception rule, the user only has
to consider why the current case should be given a
different conclusion from rule R. This effort does
not depend on the knowledge base size.

Modification of existing rules in the KB is not
normally done with RDR as it is viewed that every
rule entered to the KB has its reason for being there.
However, we find that in many natural language ap-
plications it is desirable to modify previously en-
tered rules to cover new cases.

To inspect results of a new exception rule or a
modified rule R, the user can inspect the annota-
tions posted by the rule of interest through a user
interface shown in figure 2.1 The user can quickly
check the impact of the rule on a document or even

1The interface design is inspired by Boguraev’s work.

Figure 2: Display of Concordance list to quickly in-
spect results of rules.

on the whole training corpus. If the corpus is anno-
tated, statistical performance of the rule will also be
collected. It is found that a good GUI is necessary
to productively create and test rules.
5 Implementation
We built our framework KAFTIE using GATE
(Cunningham et al., 2002). A set of reusable mod-
ules known as ANNIE is provided with GATE.
These are able to perform basic language process-
ing tasks such as POS tagging and semantic tagging.
We use Tokenizer, Sentence Splitter, Part-of-Speech
Tagger and Semantic Tagger processing resources
from ANNIE. Semantic Tagger is a JAPE finite state
transducer that annotate text based on JAPE gram-
mars. Our rule’s annotation pattern is implemented
as a JAPE grammar with extensions to enable extra
annotation feature constraints. We also developed
additional processing resources for our tasks:

Shallow Parser: a processing resource using
JAPE finite state transducer. The shallow parser
module consists of cascaded JAPE grammars rec-
ognizing noun groups, verb groups, propositional
phrases, different types of clauses, subjects and ob-
jects. These constituents are displayed hierarchi-
cally in a tree structure to help experts formulate
patterns, see e.g. Figure 3. The Shallow Parser
module could be refined as needed by modifying its
grammars.

All these processing resources are run on the
input text in a pipeline fashion. This is a pre-
processing step which produces all necessary anno-
tations before the knowledge base is applied on the
text.

6 Experiments
We build a knowledge base using KAFTIE to rec-
ognize TLINK relations between an EVENT and a
TIMEX3 using the TimeBank corpus.

90

Figure 3: The interface to enter a new rule where the
rule is automatically checked for consistency with
the existing KB before it gets committed. Annota-
tions including those created by the shallow parser
module are shown in the tree in the structure box.

6.1 The TimeBank corpus
The TimeBank corpus is marked up for tempo-
ral expressions, events and basic temporal relations
based on the specification of TimeML. Currently,
the TimeBank corpus has 186 documents.

Excluding TIMEX3 in document’s meta-data
(doc creation time), the majority of TLINKs is be-
tween EVENTs and TIMEX3s within the same sen-
tence. Hence, in all of our experiments, we focus on
recognizing intra-sentential temporal relations.

The TimeBank annotation guidelines suggest
distinctions among TLINK types between two
EVENTs but do not explicitly specify how those
types are different when it comes to relations be-
tween an EVENT and a TIMEX3. In fact, some
of the TLINKs types between an EVENT and a
TIMEX3 are hard to distinguish and a number of
cases inconsistency is observed in the corpus. In this
paper, we group similar types together: BEFORE
and IBEFORE are merged, AFTER and IAFTER
are merged and the rest is grouped into INCLUDES.

6.2 KAFTIE for extracting Temporal
Relations

For the task of extracting EVENT-TIMEX3 tem-
poral relations, we consider all pairs between an
EVENT and a TIMEX3 in the same sentence and
build a knowledge base to recognize their relations.
The sentence containing the pair is used as the input
to the knowledge base. As there could be more than
one EVENT or TIMEX3 in the same sentence, we
change the EVENT and the TIMEX3 annotations in
focus to EVENT I (instance) and TIMEX3 R (re-
lated to) annotations respectively. This enables our
rule’s pattern to uniquely refer to the pair’s argu-
ments. For each pair, the KB’s conclusion is the

type of its temporal relation if there exists a relation
between the pair’s arguments or NONE otherwise.

6.3 How to build a Knowledge Base
The following examples are taken from the actual
knowledge base (KB) discussed in section 6.4 and
shown in figure 1. Suppose we start with an empty
KB for recognizing temporal relations between an
EVENT and a TIMEX3 within the same sentence.
I.e. we would start with only a default rule that al-
ways produces a NONE conclusion. When the fol-
lowing sentence is encountered:

Imports of the types of watches
[VG [EVENT I totaled EVENT I] VG]
[PP about $37.3 million PP]
[PP in [NP [TIMEX3 R 1988 TIMEX3 R] NP]
PP], ...

our empty KB would use the default rule to suggest
the relation between EVENT I and TIMEX3 R is
NONE i.e. no relation exists. This can be corrected
by adding the following rule to the KB:

Rule 1:
(({VG.hasanno==EVENT I}):RDR1 vg1
({PP }?):RDR1 pp1
({PP.hasAnno == TIMEX3 R}):RDR1 pp2
):RDR1
Conclusion: INCLUDES

Each of the component in the rule’s pattern is auto-
matically assigned a tag which will effectively post
a new annotation over the matched token strings of
the component if the pattern matches a text. New
tags of rule i always start with RDRi . This rule
would match phrases starting with a VG annotation
which covers the EVENT I annotation, followed by
an optional PP annotation followed by a PP annota-
tion covering the TIMEX3 R annotation. When the
sentence containing the pair EVENT I-TIMEX3 R
is matched by this rule, the pair is deemed to be
of INCLUDES relation type. Once matched, new
annotations RDR1 vg1, RDR1 pp1 and RDR1 pp2
will be posted over the first VG, the first PP and the
last PP in the pattern respectively. This is to enable
exception rules to refer to the results of previously
matched rules. Notice here that the first PP compo-
nent is specified optional. It could be that the ex-
pert already anticipates future cases and make the
current rule more general. Alternatively, experts al-
ways have a choice of modifying existing rule to
cover new cases.2 When we encounter this pair:

The company’s shares
[RDR1 vg1 [VG are [EVENT I wallowing

2Automatic recommendation on which existing rules and
how to modify to cover new cases is reported in (Pham and
Hoffmann, 2005).

91

EVENT I] far VG] RDR1 vg1]
[RDR1 pp2 [PP below [NP their [TIMEX3 R
52-week TIMEX3 R] NP] PP] RDR1 pp2]
high....

Rule R1 fires and suggests that the pair has IN-
CLUDES relation with the newly posted annotation
highlighted in bold face. This is incorrect as there is
no relation between the pair. The following excep-
tion rule is added to fix the misclassification:

Rule 8:3

({RDR1 pp2,Token.string==below}):RDR8
Conclusion: NONE

This rule says that if the second PP matched by Rule
1 (RDR1 pp2) starts with a token string below then
there is no relation between the pair. Notice that the
sentence could have different PP annotations. As
each rule posts unique annotations over the matched
phrases, we can unambiguously refer to relevant an-
notations.

However, when we encounter the following case
It [RDR1 vg1 [VG is deeply [EVENT I discour-
aging EVENT I] VG] RDR1 vg1]
[RDR1 pp1 [PP for [NP the family NP] PP]
RDR1 pp1]
[RDR1 pp2 [PP after [NP [TIMEX3 R 22 months
TIMEX3 R] NP] PP] RDR1 pp2] but

This case will be classified as INCLUDES type by
Rule 1 while it should belong to AFTER type. We
can add an exception to Rule1 catering for this case:

Rule 196:
({RDR1 pp2,Token.string==after}):RDR196
Conclusion: AFTER

6.4 Experimental results
Out of 186 documents in the TimeBank corpus, we
randomly took half of that as training data and keep
the remaining half for testing. Using our KAFTIE
framework, we built a knowledge base of 229 rules
to recognize relations between an EVENT and a
TIMEX3 in the same sentence using the training
data.4 The knowledge base uses NONE as its de-
fault conclusion. In other words, by default and ini-
tially when the KB is empty, all EVENT-TIMEX3
pairs are deemed not to have any TLINK relations.
The overall results are shown in table 1 for two

3We only select some rules to show as examples, hence in-
dices of rules are not consecutive

4To evaluate the TLINK recognition task alone, we use
the EVENT and TIMEX3 annotations in the TimeBank cor-
pus. That would also enable us to make a fair comparison with
(Boguraev and Ando, 2005) as they also used perfect EVENT
and TIMEX3 annotations from TimeBank.

Methods 3 types w/o typing
F-m Acc. F-m Acc.

KAFTIE 71.3% 86.1% 75.4% 86.7%
J48 (5-folds) 62.3% 78.7% 66.4% 81.2%
SMO (5-folds) 61.4% 77.4% 63.1% 78.7%

Table 1: Results on recognizing TLINKs for w/o
typing and 3 types settings.

settings: 3 types (BEFORE, INCLUDES and AF-
TER see section 6.1) and without typing - collapsing
all TLINK types into one type, effectively detect-
ing if the pair has a TLINK relation regardless of
the type. While the accuracy reflects performance
on the test data across all types including NONE,
the F-measure is based on only TLINKs types, i.e.
excluding NONE.5 On the without typing setting,
the built knowledge base achieved an F-measure of
more than 75% and an accuracy of 86.7%.

Comparison with machine learning: For com-
parison with standard machine learning approaches,
we use Weka’s J48 and SMO (Witten and Frank,
2000) as implementations for C4.5 and support vec-
tor machine algorithms respectively. To adapt ma-
chine learning algorithms to the task of extract-
ing relations, we define the following feature rep-
resentation which is capable of capturing the rela-
tion arguments (EVENTs and TIMEX3s) and the
surrounding context. We break up the sentence
containing the EVENT-TIMEX3 pair into five seg-
ments namely: spans of the two arguments (EVENT
and TIMEX3), span between the two arguments
and spans to the left/right of the left/right argu-
ments. From each segment, we use token strings,
token lemmas, parts-of-speech, bigrams of parts-
of-speeches and all annotations from the Shallow
Parser as features.

J48 and SMO are run using 5-fold cross valida-
tion. As the result could vary depending on the seed
used for the cross validation, we report results aver-
aged over 100 runs with different random seeds.As
can be seen in table 1, the knowledge base built us-
ing our framework significantly outperforms stan-
dard J48 and SMO. In fact, our knowledge base with
the initial 60 rules (as the result of seeing roughly
60 TLINK pairs) already outperforms J48 and SMO
(see figure 4).

7 Reducing Knowledge Acquisition
In this section, we investigate how machine learning
could be used to reduce the knowledge acquisition

5The NONE type occurs approximately 2.5 times more of-
ten than the TLINK types.

92

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250
Number of rules

Rule Impact on test data

Precision
Recall

F-measure

Figure 4: Impact of incrementally adding rules to
the KB.

effort. A knowledge acquisition (KA) session corre-
sponds to the creation of a new rule as a result of the
KB performing incorrectly on a particular case. No-
tice that the KB’s default rule is quite simple. It al-
ways returns the default conclusion which is NONE
for the task of recognizing temporal relations. We
conjecture that if we start with a better default rule
then the number of knowledge acquisition sessions
can be reduced. One way of doing it is to take some
training data to train a classifier as the default rule.
We carry out the following experiment:

We focus on the task of recognizing temporal re-
lation in the without typing setting and use the exact
training and test data from the previous section to
build and test a KB respectively. The difference is
that we now split the training data into two parts i.e.
ML data and KB data. The ML data is used to train
a classifier as a default rule in a KB while the KB
data is used to add exception rules to the KB.

Instead of having real experts involved in the pro-
cess of creating exception rules, we simulate it by
consulting the KB built from the previous section,
called oracleKB. For each example in the KB data
that is misclassified by the current KB, we use the
fired rule for the example from the oracleKB i.e. the
rule that the oracleKB would use on the example.

Table 2 shows the results of using J48 and SMO
which are trained on varying portions of the train-
ing data. Specifically, it shows the f-measure of the
classifier alone, the KB with the classifier as the de-
fault rule on the test data as well as the number of
rules in the KB. The number of rules in the KB re-
flects the number of KA sessions required for build-
ing the KB. All figures are averaged over 20 differ-
ent runs using different seeds on splitting the train-
ing data into ML data and KB data.

As we increase the percentage of ML data, the
number of KA sessions required gets smaller. Ide-
ally, we want to minimize the number of KA ses-

sions while maximize the f-measure. At one ex-
treme end when the ML data is empty (0% of the
training data), we effectively rebuild a KB in the
same fashion as in the previous section with differ-
ent orders of examples. The f-measure of 75.1%
suggests that the performance of our approach are
independent of the order of examples presented to
the experts.

As it can be seen from table 2, the f-measures
of the KBs with a classifier as the default rule fol-
low the same trend. It first degrades as we start
giving some data to the classifier and improves as
more data is used to train the classifier. After certain
thresholds, the f-measures start degrading again as
we get less data for experts to add exception rules
while the classifiers do not improve their perfor-
mance.

Depending on the task and the classifier used, we
can choose an appropriate amount of data to train a
classifier as the default rule in order to substantially
reduce the number of KA sessions involved while
still achieve a reasonable performance. For exam-
ple with J48 the best performance is at 72.5% when
we use 60% of the training data for training J48 and
the rest to add exceptions rules. Compared to a fully
manual approach (using 0% data for the classifier),
we achieve a 60% reduction in the number KA ses-
sions.

As the oracleKB is built with the assumption that
the default rule always returns NONE, all of the ex-
ception rules at level 1 (exception rules of the de-
fault rule) are rules covering INCLUDES instances.
Even though rules at level 2 cover NONE instances,
they have limited scopes because they were created
as exceptions to level 1 rules. When the default
rule gives an incorrect INCLUDES conclusion, it is
likely that we would not be able to consult the or-
acleKB for an exception rule to fix this error.6 It
therefore suggests that if we use real experts, we
could achieve a better result.

8 Discussions and Conclusions
Among the pioneering works on linking time and
event expressions (Mani et al., 2003; Boguraev
and Ando, 2005), only (Boguraev and Ando, 2005)
reported results on publicly available data (Time-
Bank) which allows us to carry out performance
comparison.7 They use a robust risk minimization
classifier utilizing a complex set of features includ-
ing syntactic constructions derived from finite state

6A better simulation is to build another oracleKB with the
default rule always returning INCLUDES conclusion.

7To the best of our knowledge, this is the only work done on
TimeML compliant analyser using TimeBank corpus to date.

93

% j48 j48 #KA smo smo #KA
+kb +kb

0% 0 75.1 173 0 75.1 173
0.5% 28.4 66.4 146 27 68.6 151

1% 33.5 65.2 143 27.3 71.6 158
5% 45.3 67.2 138 54.3 71.9 142

10% 53.3 69 131 61.7 72.4 133
20% 62.9 72.3 117 64.3 72.7 118
30% 64.2 71.9 103 65.6 72.7 108
40% 66.6 71.9 91 66.1 72 93
50% 67.6 72.2 78 66.6 71.8 84
60% 68.5 72.5 65 67 71.7 70
70% 68.9 71.7 51 66.7 71 59
80% 69 71.3 38 66.3 70.2 44
90% 68 70.3 22 66 68.5 25

Table 2: Results of using j48/smo as the default rule
for KBs averaged over 20 different random seeds.
The first column is the percentage of the training
data used to train a classifier (j48/smo). j48 column
contains the f-measures of the classifier alone on the
test data. j48+kb column contains the f-measures of
the KB with j48 as the default rule on the test data
with the number of rules in the KB shown in column
#KA. The last three columns are similar for the smo
classifier.

analysis. We would assume that their features are
geared towards the task, and presumably took sub-
stantial time to develop. Our rules created by the ex-
perts use annotations generated by a shallow parser.
Importantly, our shallow parser is of a general pur-
pose nature and does not generate extensive clause
structures like in (Boguraev and Ando, 2005). In
fact, we reuse the shallow parser developed for a
different task in the technical papers domain (Pham
and Hoffmann, 2004) with minor modifications. It
indicates that our approach is not domain and task
dependent as rules are crafted based on annotations
generated by a general purpose shallow parser. It
can be seen from table 3 that the KB built using
our framework results in a better F-measure on all
3 settings of limiting the token distance between the
EVENT and TIMEX3.

It should be noted that we used only half of
the data for building the KB, while (Boguraev and
Ando, 2005) used 80% of the data for training. Fig-
ure 4 shows the performance of our knowledge base
on the test data as rules are incrementally added.
Given the upwards trend of the graph as more rules
are added, it is plausible that our KB would get to
even higher performance had we used 80% of the
available data for building the knowledge base.

We have shown that with our unconventional KA

Distance Method w/o typing
any KAFTIE 75.4%

Boguraev&Ando 74.8%
distance ≤ 16 tokens KAFTIE 77.2%

Boguraev&Ando 76.5%
distance ≤ 4 tokens KAFTIE 82.8%

Boguraev&Ando 81.8%

Table 3: Comparison with (Boguraev and Ando,
2005), who used 5-fold cross validation, i.e. 80%
of the data for training while we only used 50% of
the data to build the KB.

approach, namely RDR, we could quickly build a
knowledge base that performs better than existing
machine learning approaches while requiring much
less data. As demonstrated in section 7, the pro-
cess of building a KB can be boostraped by using
machine learning algorithms. Looking at this from
a different view, machine learning algorithms’ per-
formance can be improved by augmenting the KB
built in KAFTIE.

Independent of the knowledge base size, it took
7 minutes on average to create one rule. This in-
cludes the time needed to read the sentence to un-
derstand why there is a certain relation between the
pair of an EVENT and a TIMEX3 as well as the
time required to test the new rule before committed
to the KB. If the users have to classify the pair’s re-
lation from scratch, when we do not have annotated
data, then the actual time spent on creating a rule
would be much less, as understanding the sentence
takes most of the time. Importantly, we do not need
to spend time engineering the features representa-
tion/selection for the task at hand which is usually
done in machine learning approaches.

Thus our approach is particularly suitable for new
tasks, when annotated data is not available or lim-
ited. Annotators could use KAFTIE to build an an-
notated corpus as well as a classifier at the same
time. By requiring users to justify, in the form
of rules, their decisions every time they annotate
a case, it helps to annotate the corpus consistently.
Furthermore, it also bootstraps the whole process as
shown in section 6.4: after looking at half of the
data to build a KB, the KB’s accuracy on the other
unseen half of the data is 86.7% in the ‘without typ-
ing’ setting.

References
Branimir Boguraev and Rie Kubota Ando. 2005.

TimeML-compliant text analysis for temporal
reasoning. In Proceedings of IJCAI, UK.

Paul Compton and R. Jansen. 1990. A philosoph-

94

ical basis for knowledge acquisition. Knowledge
Acquisition, 2:241–257.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. Gate: An
architecture for development of robust hlt appli-
cations. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguis-
tics(ACL), Philadelphia, PA.

G. Edwards, P. Compton, R. Malor, A. Srinivasan,
and L. Lazarus. 1993. PEIRS: a pathologist
maintained expert system for the interpretation of
chemical pathology reports. Pathology, 25:27–
34.

Lisa Ferro, Inderjeet Mani, Beth Sundheim, and
George Wilson. 2001. TIDES temporal annota-
tion guidelines, MTR 01W0000041 MITRE tech-
nical report.

Richard Fikes, Jessica Jenkins, and Gleb Frank.
2003. JTP: A system architecture and component
library for hydbrid reasoning. In Proceedings
of the 7th World Multiconference on Systemics,
Cybernetics and Informatics, Orlando Florida,
USA.

Elena Filatova and Eduard Hovy. 2001. Assign-
ing time-stamps to event-clauses. In Proceedings
of the 10th Conference of the EACL, Toulouse,
France.

Inderjeet Mani and George Wilson. 2000. Robust
temporal processing of news. In Proceedings of
the 38th annual meetings of the ACL, Hong Kong.

Inderjeet Mani, Barry Schiffmann, and Jianping
Zhang. 2003. Inferring temporal ordering of
events in news. In Proceedings of the NAACL,
Edmonton, Canada.

Son Bao Pham and Achim Hoffmann. 2004. Ex-
tracting positive attributions from scientific pa-
pers. In 7th International Conference on Discov-
ery Science, Italy.

Son Bao Pham and Achim Hoffmann. 2005. In-
telligent support for building knowledge bases
for natural language processing. In Workshop
on Perspective of Intelligent System Assistance,
Palmerston North, New Zealand.

J. Pustejovsky, J. Castano, R. Ingria, R. Sauri,
R. Gaizauskas, A. Setzer, G. Katz, and D. Radev.
2003. TimeML: Robust specification of event
and temporal expressions in text. In AAAI Spring
Symposium on New Directions in Question An-
swering., Standford, CA.

A. Setzer and R. Gaizauskas. 2001. A pilot study
on annotating temporal relations in text. In Work-
shop on temporal and spatial information pro-
cessing, ACL, Toulouse.

Ian H. Witten and Eibe Frank. 2000. Data Mining:

Practical machine learning tools with Java im-
plementations. Morgan Kaufmann.

95

Proceedings of the Australasian Language Technology Workshop 2005, pages 96–104,
Sydney, Australia, December 2005.

Formal Grammars for Linguistic Treebank Queries

Mark Dras
Centre for Language Technology

Macquarie University
madras@ics.mq.edu.au

Steve Cassidy
Centre for Language Technology

Macquarie University
Steve.Cassidy@mq.edu.au

Abstract

There has been recent interest in looking at what

is required for a tree query language for linguis-

tic corpora. One approach is to start from exist-

ing formal machinery, such as tree grammars and

automata, to see what kind of machine is an ap-

propriate underlying one for the query language.

The goal of the paper is then to examine what is

an appropriate machine for a linguistic tree query

language, with a view to future work defining a

query language based on it. In this paper we

review work relating XPath to regular tree gram-

mars, and as the paper’s first contribution show

how regular tree grammars can also be a basis for

extensions proposed for XPath for common lin-

guistic corpus querying. As the paper’s second

contribution we demonstrate that, on the other

hand, regular tree grammars cannot describe a

number of structures of interest; we then show

that, instead, a slightly more powerful machine

is appropriate, and indicate how linguistic tree

query languages might be augmented to include

this extra power.

1 Introduction

There has been recent interest in looking
at what is required for a query language
for annotated linguistic corpora (Lai and
Bird, 2004). These corpora are used in a
range of areas of natural language processing
(NLP)—parsing, machine translation, and so
on—where they form the basis of training
data for statistical methods; and also in lin-
guistics, where they are used to extract ex-
amples of particular phenomena for analy-
sis and testing of hypotheses. As noted by
Lai and Bird, the prototypical hierarchical
linguistic annotation is the syntax tree, and

consequently the type of query language that
is of interest is a tree query language.

One approach to deciding what is required in
a tree query language, taken by Lai and Bird
(2004), is to examine and compare a range
of existing ones: for example, TGrep2 (Ro-
hde, 2001), TIGERSearch (König and Lez-
ius, 2001), or Emu (Cassidy and Harrington,
2001). One of their goals is to understand
better the formal properties required of query
languages.

It has been noted in a number of places
that treebank querying is in essence a spec-
ification of a tree pattern, which matches
against the desired trees in the treebank cor-
pus (Abiteboul, 1997). These tree patterns
can be described by existing formal machin-
ery such as tree grammars and automata.
An approach complementary to the one men-
tioned above is thus to examine the extent
to which this formal machinery is adequate
for describing tree patterns relevant for the
sorts of queries of interest in NLP or linguis-
tics, and then to link this to a query lan-
guage. A reason for being interested in this
link between tree query languages and for-
mal machinery is that standard results are
available for these latter. For example, an
algorithm for recognition exists that is linear
in the number of nodes in the tree and the
size of the automaton; it is decidable whether
the set of matches will be empty; and so on
(Comon et al., 1997). Further, there is the
promise of the availability of standard tools
and efficient techniques that could be used by
a tree query language. This is the case for
formal machines over strings (for example,
the library of finite-state string transducers

96

of Mohri (1997)), although not yet for trees.

A number of researchers have looked at this
complementary approach. One alternative is
to design from scratch a tree query language
derived from a tree grammar or automaton;
this is taken by, for example, Chidlovskii
(2000). Another is to relate an existing query
language to a formal machine: Murata et al.
(2000) present a taxonomy of XML schema
languages using formal language theory.

In this paper, we follow the second of these
alternatives. Existing work, mostly focussed
on XML, has looked only at regular tree
grammars and automata for modelling query
languages; we examine the extent to which
this is the case for linguistic treebanks, and
what other machinery might be appropriate
for a linguistic tree query language. We ar-
gue that while regular tree grammars might
be satisfactory for a querying a broad range
of phenomena, not all queries over trees rep-
resenting natural language can be based on
a regular tree grammar. This is a structural
analogue of the work of Shieber (1985), which
showed that natural language as a string lan-
guage cannot be generated by a context-free
grammar, which corresponds at the tree level
to a regular tree grammar.

In Section 2 we give the definition of regu-
lar tree grammars, along with an approach
used to relate them to XPath. In Section 3
we look at extensions to XPath that Cassidy
(2003) argues are necessary for linguistic cor-
pus querying, and show that these can be
captured by regular tree grammars. In Sec-
tion 4, however, we present some examples
from Dutch from the work of Bresnan et al.
(1982) to show that not all desired queries
can be represented by regular tree grammars,
and examine the question of what strong gen-
erative capacity is necessary in a tree gram-
mar for representing natural language. Sec-
tion 5 gives the definition of a more power-
ful grammar, the context-free tree grammar,
and shows how this can describe queries re-
lated to the Dutch instance, along with what
properties a query language based on these
might have. Finally, Section 6 concludes.

2 Regular Tree Grammars

Regular tree grammars (RTGs) are in essence
those trees whose paths are defined by reg-
ular grammars. Comon et al. (1997) pro-
vide an introduction to necessary concepts
in tree grammars, along with well known
results such as that the string languages
yielded by RTG trees are the context-free
languages. In their treatment they divide
tree representations into two types: those for
ranked trees (that is, where each symbol has
a fixed number of children, with this num-
ber constituting the rank of the symbol), and
those for unranked trees. XML schema lan-
guages typically use unranked trees, so we
adopt, slightly modified, the definitions of
these from Brüggemann-Klein et al. (2001)
and Murata et al. (2000).

A regular tree grammar is a 4-tuple G =
(Σ, N, P, S) such that

• Σ is a finite set of terminal symbols;

• N is a finite set of nonterminal symbols;

• P is a finite set of productions of the
form X → a(R), where X ∈ N , a ∈ Σ,
and R is a regular expression over N∪Σ;
and

• S is the start symbol, S ∈ N .

Derivation ⇒ (with transitive closure
∗
⇒) is

defined in the usual way, with nonterminals
symbols rewritten by means of production
rules, starting from the start symbol S. ε is
the conventional null terminal symbol. The
set of trees generated by G is L(G).

Example 2.1 Let G1 = (Σ, N, P, S) such
that Σ = {a, b}, N = {S,X}, and P = {S →
a(aSa), S → a(bXb), X → b(bXb), X → b}.
A sample derivation is given in Figure 1.
L(G1) is thus the set of ternary-branching
trees over the symbols a and b, where all
nodes to a certain depth D are a nodes, and
all below are b nodes.

To relate this to a query language, we now re-
view the approach presented in Wood (2003)
to relate these regular tree grammars to

97

S
∗
⇒ a

a a

b X b

a

∗
⇒ a

a a

b b

b b b

b

a

Figure 1: Derivation for RTG G1

XPath (XPath, 1999). XPath is a lan-
guage for selecting nodes from XML docu-
ment trees, and is thus an important part of
XSLT and XQuery. Expressions in XPath in
themselves can be seen as simple queries over
trees.

An XPath expression is a mapping from a
node (the context node) to the set of all nodes
reachable by the specified path. A path ex-
pression is written as a series of steps where
each step defines the axis used to reach new
nodes and a node test used to restrict the set
of nodes reached along the axis. Axes in-
clude child, descendent, following, attribute

and self. Node tests consist of two parts: a
restriction on the element name and an op-
tional predicate expression. Other features,
such as built-in functions, are also allowed.
Notationally, a null axis stands for the child
axis, // the descendent axis, the wild card *
any node label, and [] a predicate expression.
The full XPath expression definition is fairly
complex, and can be found at XPath (1999);
here we give an example.

Example 2.2 [From Wood (2003)] The
XPath query a//b[∗/i]/g selects nodes la-
belled with g (called g-nodes for short) that
are children of b-nodes, such that the b-nodes
are both descendants of the root a node and
have an i-node as a grandchild. In the left-
hand tree in Figure 2, these would be the
nodes in bold font. (The return value of the
XPath expression would be the node g, but
here we are only concerned with the trees
that would be matched.)
The possibility of arbitary functions for node
tests means that XPath can be augmented to
be arbitrarily powerful. To investigate ques-
tions of formal power, then, only subsets of
XPath are examined. Wood’s paper notes
that, for this reason, a number of other re-

b

c a

c

b

d

i

g

d

a

...

b

*

i

g

Figure 2: Tree matching a//b[∗/i]/g, and
corresponding tree pattern

searchers have been interested in the proper-
ties of different fragments of XPath, denoted
XP{[]}, XP{[],∗} and XP{[],∗,//}, depending on
which XPath constructs are included in the
fragment. The work of Wood himself is on
the fragment XP{[],∗,//} and the question of
whether the containment problem—whether
one query is subsumed by another—under a
Document Type Definition can be decided
in the complexity class ptime. To demon-
strate that this is the case he conceives of
XPath queries as tree patterns (Abiteboul,
1997; Deutsch et al., 1999), which can be de-
scribed by regular tree grammars. For exam-
ple, the XPath query of Example 2.2 could
be pictured as the tree pattern on the right
in Figure 2, where the dotted line indicates
non-immediate dominance.

An RTG then describes all trees matching
this tree pattern. In order to define this
RTG, Wood defines some shorthand nota-
tion, which we will also adopt. For an alpha-
bet Σ = {a1 , . . . , ak}, we write n → Σ(r) for
the set of productions {n → a1 (r), . . . , n →
ak (r)}.

In order to generate an arbitrary tree over Σ,
we define a nonterminal nΣ by the shorthand
production nΣ → Σ((nΣ)∗).

Example 2.3 For the query Q = a/b over
alphabet Σ, the productions for the corre-
sponding RTG are

na → a((nΣ)∗ nb (nΣ)∗)
nb → b((nΣ)∗)

An additional shorthand is to compress the
ordering of siblings implicit in RTGs. Each
permutation of children at a node would re-
quire a separate production, so as shorthand

98

the & symbol is used: a&b represents ab and
ba (a, b ∈ Σ).

Example 2.4 The productions from the
query a[b][c] are

na → a((nΣ)∗ &nb &(nΣ)∗ &nc &(nΣ)∗)
nb → b((nΣ)∗)
nc → c((nΣ)∗)

Example 2.5 The productions for the
query a//b are

na → a((nΣ)∗ nb (nΣ)∗)
nb → b((nΣ)∗)
nb → Σ((nΣ)∗ nb (nΣ)∗)

Wood then defines the following procedure
for constructing an RTG G from a query Q,
given an alphabet Σ = {a1 , . . . , ak , ∗} and Q
in XP{[],∗,//}. First, each node in Q is num-
bered uniquely, with the root node numbered
1. Then G is given by (Σ, N, P, n1), where
N = {n1 , . . . , nm , nΣ}, and P is constructed
inductively as follows.

1. If node i in Q is a leaf, then P includes
ni → aj ((nΣ)∗) if i has label aj ∈ Σ, or
ni → Σ((nΣ)∗) if i has label *.

2. If node i in Q has child nodes j1 , . . . , jm ,
then P includes ni → al ((nΣ)∗ &nj 1 &
(nΣ)∗ & . . . &(nΣ)∗ &njm &(nΣ)∗) if i
has label al ∈ Σ, or
ni → Σ((nΣ)∗ &nj 1 &(nΣ)∗ & . . .
&(nΣ)∗ &njm &(nΣ)∗) if i has label *.

3. If node i in Q is connected to its parent
by a descendent edge, then P includes
ni → Σ((nΣ)∗ ni (nΣ)∗)

3 XPath Extensions and RTGs

Cassidy (2003) presented some extensions to
XPath, based on the requirements of typi-
cal linguistic queries. An example is that of
finding matches for a given syllable structure:
“Find sequences of any number of consonant
phonemes followed by a single vowel follow-
ing by any number of consonants”. This
would require a regular expression (C+VC+)
over the /following axis. Under the cur-
rent definition of XPath, it is not possible

to specify regular expressions over axes; nor
is it possible to specify more complex defi-
nitions of where conditions on nodes should
be applied. Cassidy consequently specifies
an extension that allows this, which has the
following components:

axis This is as for the axes in the standard
XPath definition.

step This determines how many steps
should be taken along the axis, and takes
the form of a list of positive integers or a
special value inf. A path length is allowed
if it matches one of the integers in the list;
any path length is allowed if only the value
inf is given; path lengths greater than the
highest integer are allowed if the list contains
both integers and the value inf. For exam-
ple, [2, 3, 4] allows paths only of lengths 2, 3
or 4; [1, 10, inf] allows paths of length 1 or
of length greater than 10.

condition This is a general boolean condi-
tion on nodes in the same sense as XPath.

where This specifies where on the path the
condition must hold, via a list of positive in-
tegers or the special values inf or end. An
integer in the list means that the condition
is applied to that node; inf means that the
condition must hold for all nodes in the path;
end means that the condition applies to the
final node on the path. For example, the list
[1, 2, end] would find paths where the condi-
tion was satisfied by the first, second and last
nodes on the path.

A proposed syntax for this, in keeping with
the XPath syntax, would be

/axis{step}::condition::{where}

The step and where components would de-
fault to their XPath values (1 and end re-
spectively).

Example 3.1 Cassidy gives an example
for the C+VC+ query which uses the
/following axis. An analogous example us-
ing the axes already presented in Section 2
would be one to match trees with a chain of
VP nodes followed immediately below by a
chain of NP nodes, such as the one in Fig-
ure 3. Such a query could be expressed as

99

S

NP VP

Adv VP

Adv VP

V NP

NP PP

Figure 3: Tree with sequence of VPs and NPs

/child{0,inf}::VP::{0,all}

/child{0,inf}::NP::{0,all}

The question is then, Can this extension be
represented by RTGs? The intuition is that
it can—the essence of this aspect of the ex-
tension is to allow regular expressions over
paths, which is also the essence of RTGs.
We demonstrate this below by giving a con-
struction of an RTG for each extended XPath
query. As with the construction in Sec-
tion 2, we will look at just a restricted sub-
set of this XPath extension: axis /child and
/descendent (which is in fact just an infinite
/child); step as defined above; condition

only labels on nodes, or *; and where as
above. We call this XP-ext.

Example 3.2 The query in Example 3.1
would be represented by the RTG
({VP,NP, ∗}, {nS , nV , nN }, P, nS}), where
P is the set of productions

nS → Σ((nΣ)∗ nV (nΣ)∗)
nV → VP((nΣ)∗ nV (nΣ)∗)
nV → VP((nΣ)∗ nN (nΣ)∗)
nN → NP((nΣ)∗)
nN → NP((nΣ)∗ nN (nΣ)∗)

To derive an RTG corresponding to a query
in XP-ext, we identify the corresponding tree
pattern(s). First, to allow regular expres-
sions over paths in tree patterns, we make
a further notational extension, either adding
the symbol c next to the non-immediate
dominance link in the tree pattern, to indi-
cate that the condition holds over the non-
immediate dominance link, or the symbol ∗
if it does not.

Now, we need to look at two separate cases.
The first case is the general one: in aim-
ing only to match sets of trees by tree pat-
terns, only one tree pattern is generally nec-
essary, regardless of the number of elements
specified in the step and where components.
This is because although one pattern tree
might be expected for each step value, in
fact one describing the smallest step suffices,
as it subsumes any other. For example, in
the query /child{2,4}::S::{2,4}, any tree
which matches the appropriate pattern tree
of height 4 will match the pattern tree of
height 2. Note that these different steps and
wheres are differentiated with respect to the
XPath return values; however, that is beyond
the scope of this paper, which concerns itself
only with trees matched.

The second case deals with the specific case
of where value end; the subsumption rela-
tionship does not hold here. For example,
consider the query /child{2,4}::S::{end}
over trees consisting of a single path. There
will be trees where the end of the path (step)
of length 2 (matching the label S) do not have
an S node at the end of the path of length 4,
and vice versa; that is, there is no subset re-
lation between the sets of trees specified for
steps of lengths 2 and 4.

We define these two cases below. In these
definitions, we take axis /child and condi-

tion (i.e. node label) c.

Case 1 For query Q with step

[i1 , . . . , in , inf] (i1 < . . . < in), and where

[j1 , . . . , jm , inf] (j1 < . . . < jm < inf),
we construct a tree pattern of height
ip , where ip is the smallest element of
[i1 , . . . , in , inf] with label c for each node jp

(p < m, jp < ip). If ip is inf, we label the
non-immediate dominance edge c if where

contains inf, * otherwise.

Case 2 For query Q with step

[i1 , . . . , in , inf] (i1 < . . . < in), and
where [end], we construct one tree pattern
for each element of step, with the last node
in each tree pattern labelled c, and any
non-immediate dominance edge labelled ∗.

Example 3.3 The query in XP-ext

100

*

S

*

... (S)

S

Figure 4: Pattern tree for Example 3.3

/child{inf}::S::{1,3,inf} would give
the pattern tree in Figure 4.

Our construction for an RTG is then as for
the construction in Section 2, but with part
3 replaced by with 3’:

3’ If node i in Q is connected to its par-
ent by a non-immediate dominance edge
labelled with a ∈ Σ, then P includes
ni → a((nΣ)∗ni(nΣ)∗) or if unlabelled,
then P includes ni → Σ((nΣ)∗ni(nΣ)∗)

4 Non-Regular Queries

However, some queries that are of interest to
(computational) linguists are not able to be
expressed by RTGs. There was much discus-
sion in the mid- to late-twentieth century re-
garding whether natural languages could be
described by context-free (string) grammars
(CFGs). A fairly common belief was that
they could not be, accompanied by attempts
to prove this; Pullum and Gazdar (1982) re-
futed these earlier arguments, and it was not
definitively shown that natural language as a
string language was not context-free until the
work of Shieber on Swiss German (Shieber,
1985).

Bresnan et al. (1982), in addition, made
an argument based on syntactic structure,
using the example of Dutch. We re-
present their argument, where they show
that an RTG cannot describe this kind of
structure—which obviously has some linguis-
tic interest—and hence neither can any tree
query language based on it. We then con-
sider what formal tree machine is minimally
needed for describing natural language.

Cross-serial dependencies occur when de-
pendencies in a sentence are interleaved

with each other, such that in a string
a1 a2 . . .anb1 b2 . . .bn there are dependencies
between elements ai and bi (i ∈ {1 . . . n}).
A well known example from Dutch, given in
Bresnan et al. (1982), is in Figure 5.

Pullum and Gazdar (1982) showed that it
was possible to describe the string language
using a CFG, but noted that the associated
structure would not necessarily be useful.
Bresnan et al. (1982) then comprehensively
investigated what structures would be appro-
priate on linguistic grounds. One proposal
they considered was for a flat structure of
NPs, with right-branching VPs, as in the left-
most tree of Figure 5, with evidence for the
right-branching VPs coming from possibili-
ties of conjunctions in Dutch. However, they
noted that the sequence of NPs has more con-
stituent structure than indicated in the left-
most tree of Figure 5, and conclude that the
structure in the centre of Figure 5 is the one
that is consistent with the data. They note
that this proposed structure should be un-
controversial, as it embodies only predicate-
argument relations, rather than any aspects
of syntax whose representations may be more
open to question.

They use a pumping lemma for regular tree
languages to demonstrate that sets of these
sorts of trees from Figures 5 cannot be gen-
erated by RTGs. Comon et al. (1997) give
a more precise definition, but broadly, for
any tree T of height greater than some con-
stant k in a tree language L, there is a non-
trivial segment of T that can be ‘pumped’
in a manner analogous to in the pumping
lemma for regular string grammars; and any
tree formed from T with an arbitrary num-
ber of these segments inserted appropriately
will also be in L. In the case of the centre
tree of Figure 5, there is no segment of the
tree that can be chosen to be pumped that
will maintain equal numbers of NPs and Vs
(that is, specifying the same tree language).
Roughly speaking, there cannot be counting
or matching of numbers of internal symbols
in tree patterns.

We note here that there is an additional pos-
sibility that they do not discuss that is also

101

consistent with the data, differing only in the
placement of the subtree headed with the V ′;
this is the rightmost tree in Figure 5. The
same pumping lemma shows that the set of
these trees also cannot be generated by an
RTG.

5 Context-Free Tree Grammar

What, then, can generate these sets of trees?
One possibility is a context-free tree gram-
mar (CFTG). The basic idea of these is that,
whereas trees generated by RTGs have regu-
lar paths, CTFGs have context-free paths.

CFTGs were introduced in Rounds (1970).
We do not have space for a full formal pre-
sentation of them, and we would also note
that unlike the RTGs defined above they are
defined over ranked trees. However, here is
a brief definition, along with an example.
A context-free tree grammar G is a 4-tuple
(F,Φ, P,K0) where F is a finite ranked al-
phabet; Φ = {K0 ,K1 , . . . ,Kn} is a finite
ranked alphabet of nonterminals; P is the
set of production rules, a finite set of pairs
(Ki (x1 , . . . , xm), tx), where i = 0, . . . , n,
K i ∈ F , xi are variables, and tx is a tree
over F , Φ and variables xi ; and K0 is the
initial nonterminal.

An application of a production rule to a tree
T involves choosing a nonterminal Ki with
m children, taking a rule with lefthand side
Ki (x1 , . . . , xm), identifying the m subtrees
of Ki in T with the variables x1 , . . . , xm ,
and replacing the chosen subtree of T rooted
in Ki with the righthand side of the rule
along with appropriately substituted vari-
ables x1 , . . . , xm .

No CFTG is possible for the leftmost tree
of Figure 5, as symbols are ranked, and
that tree would require an infinite number
of ranked symbols with label S to describe
the unbounded number of children NP.

A CFTG to describe the centre tree of Fig-
ure 5 would be G = (F,Φ, P,K0), where
F = {S,NP,VP,V’}, Φ = {K0 ,K1 }, and P
is the set of productions given in Figure 6.

A CFTG to describe the rightmost tree of
Figure 5 would be G′ = (F,Φ, P ′,K0), where

K0 → S

NP K1

NP VP

NP

V’

V1 V’

V2 V’

V3

K1

x1 x2 x3

→ K1

x1 VP

NP x2

V’

V x3

K1

x1 x2 x3

→ VP

x1 x2 x3

Figure 6: CFTG for cross-serial option 2

K0 → S

NP VP

K1

V’

V

K1

x1

→ VP

NP K1

V’

V x1

K1

x1

→ VP

NP VP

V’

V x1

Figure 7: CFTG for cross-serial option 3

F and Φ are as for G above, and P ′ is the
set of productions in Figure 7.

In essence, CFTGs allow ‘counting’ through-
out a tree—in the examples above, the counts
of NPs and Vs match—in the same way
as CFGs allow counting in a string. Thus
CFTGs might be a suitable backbone for a
tree query language. However, they are not
computationally very attractive. Just as the
string languages yielded by RTGs are the
context-free languages, the string languages
yielded by CFTGs are the indexed languages,
which include exponentially increasing lan-
guages such as {a2n

|n ≥ 1} that are not a
feature of any human language.

However, the sets of productions P and P ′

are actually quite different. It is straight-
forward to demonstrate that those in P ′ are
in fact spinal-formed under the definition
of Fujiyoshi and Kasai (2000). In essence,
a spinal-formed CFTG disallows duplication
of counts along different paths (as in the
duplicate counts of NPs and Vs in sepa-
rate subtrees of the centre tree of Figure 5).
Spinal-formed CFTGs form a proper sub-
set of CFTGs with much restricted power;
interestingly, their string languages have
been proved by Fujiyoshi and Kasai (2000)
to be the class of mildly context-sensitive
languages, and recent work (Fujiyoshi and
Kawaharada, 2005) has included promising

102

(1) . . . dat
. . . that

Jan
Jan

Piet
Piet

Marie
Marie

de
the

kinderen
children

zag
see-past

helpen
help-inf

laten
make-inf

zwemmen
swim-inf

. . . that Jan saw Piet help Marie make the children swim

S

NP1 NP2 . . . V’

V1 V’

V2 V’

V3 . . .

S

NP1 VP

NP2 VP

NP3 . . .

V’

V1 V’

V2 V’

V3 . . .

S

NP1 VP

NP2 VP

NP3 . . .

V’

V1 V’

V2 V’

V3 . . .

Figure 5: Proposals for cross-serial dependencies

results on recognition complexity.

This rightmost tree of Figure 5, then, estab-
lishes that a language to query trees repre-
senting the syntax of natural language re-
quires an underlying tree machine beyond
RTGs, but not necessarily beyond the power
of spinal-formed CFTGs.

An additional result of Fujiyoshi and Kasai
(2000) is the definition of a Linear Pushdown
Tree Automaton (L-PDTA) that recognises
exactly the class of trees generated by spinal-
formed CFTGs. These are similar to the au-
tomata that recognise the tree sets of RTGs,
but have a non-duplicable stack in operation
as the automaton walks a path of a tree; that
is, the stack can only be passed along a single
branch of the tree.

This suggests that a similar mechanism
might be appropriate for a tree query lan-
guage that would allow limited counting. Us-
ing the notation of Section 3, we might have
a query to find trees with (not necessarily
balanced) NPs and Vs with the structure of
the rightmost tree of Figure 5) as follows:

/child{0,inf}::VP[/child::NP]::{0,all}
/child::VP
/child{0,inf}::V[/child::V’]::{0,all}

We would then extend this so that
the number of nodes matching
/child{0,inf}::VP[/child::NP]::{0,all}
would be one less than
the number matched by
/child{0,inf}::V[/child::V’]::{0,all}

in order to match only those trees with
appropriately paired NPs and Vs.1 Nota-
tionally, this might be represented as:

/child{X=|{0,inf}|}::VP[/child::NP]::{0,all}
/child::VP
/child{X=|{0,inf}|}::V[/child::V’]::{0,all}

where X is a variable containing the count of
nodes matched by the particular components
of the query, and |Y | represents the number
of steps actually matched for list of steps Y .

To restrict this to match only those trees de-
scribable by spinal-formed CFTGs, passing
counts down through predicate expressions,
which would in effect permit stack duplica-
tion, is disallowed (e.g. VP[/child::NP]).

However, this is just an indication of the form
that an XPath-like query language based on
a spinal-formed CFTG might take, and is in-
tended only to be the starting point for fu-
ture work.

6 Conclusion

The aim of this paper has been to examine
what formal machinery is necessary for lin-
guistic tree query languages. Existing tree
query languages are typically related to reg-
ular tree grammars, although these query
languages are almost exclusively for non-
linguistic XML documents. The first con-
tribution of the paper has been to show

1The topmost NP in the tree, under the S, is not

matched by the query.

103

that regular tree grammars can be used as
the basis for a range of proposed extensions
to XPath motivated by linguistic considera-
tions, for very typical sorts of queries such
as those representing a search for a regular
expression over axes. The paper’s second
contribution has been to demonstrate that
regular tree grammars cannot, however, be
a basis for some queries of linguistic inter-
est. We have shown that machines with at
least the power of spinal-formed context-free
tree grammars, with their limited ability to
count, can describe those constructions that
are beyond RTGs, and made initial sugges-
tions on how this ability to count could be
incorporated into a query language.

There is much scope for future work in this
direction. To deal with XPath return val-
ues we are interested in transducers based
on (subtypes of) context-free tree grammars
which have not yet been defined; many of the
properties of the formal mechanisms remain
to be investigated; and, most relevant to this
paper, it is an open question as to how pre-
cisely a query language can be defined based
on this mechanism.

References

Serge Abiteboul. 1997. Querying Semi-
Structured Data. In Foto Afrati and Phokion
Kolaitis, editors, Database Theory—ICDT’97,
pages 1–18. Springer-Verlag.
Joan Bresnan, Ronald Kaplan, Stanley Peters,
and Annie Zaenen. 1982. Cross-serial Dependen-
cies in Dutch. Linguistic Inquiry, 13(4).
Anne Brüggemann-Klein, Makoto Murata, and
Derick Wood. 2001. Regular tree and regular
hedge languages over unranked alphabets. Tech-
nical Report HKUST-TCSC-2001-05, Hong Kong
University of Science and Technology.
Steve Cassidy and Jonathon Harrington. 2001.
Multi-level annotation in the Emu speech
database management system. Speech Commu-
nication, 33(1–2):61–77.
Steve Cassidy. 2003. Generalizing XPath for di-
rected graphs. In Proceedings of Extreme Markup
Languages 2003.
Boris Chidlovskii. 2000. Using Regular Tree Au-
tomata as XML schemas. In Proceedings of IEEE
Advances in Digital Libraries, pages 89–104.
H. Comon, M. Dauchet, R. Gilleron,
F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. 1997. Tree Automata Tech-
niques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata.
Release October 1st 2002.
Alin Deutsch, Mary Fernandez, Daniela Florescu,
Alon Levy, and Dan Suciu. 1999. A Query Lan-
guage for XML. In Proceedings of the 8th Inter-
national World Wide Web Conference, pages 77–
91.
A. Fujiyoshi and T. Kasai. 2000. Spinal-Formed
Context-Free Tree Grammars. Theory of Com-
puting Systems, 33:59–83.
A. Fujiyoshi and I. Kawaharada. 2005. Deter-
ministic Recognition of Trees Accepted by a Lin-
ear Pushdown Tree Automaton. In Proceedings
of the Tenth International Conference on Imple-
mentation and Application of Automata.
Esther König and Wolfgang Lezius. 2001. The
TIGER language—a description language for
syntax graphs. Part 1: User’s guidelines. Tech-
nical report, IMS, University of Stuttgart.
Catherine Lai and Steven Bird. 2004. Query-
ing and Updating Treebanks: A Critical Sur-
vey and Requirements Analysis. In Proceedings
of the Australasian Language Technology Work-
shop 2004.
Mehryar Mohri. 1997. Finite-state transducers
in language and speech processing. Computa-
tional Linguistics, 23(2):269–311.
Makoto Murata, Dongwon Lee, and Murali Mani.
2000. Taxonomy of XML Schema Languages us-
ing Formal Language Theory. In Proceedings of
Extreme Markup Languages 2000.
Geoffrey Pullum and Gerald Gazdar. 1982. Nat-
ural languages and context-free languages. Lin-
guistics and Philosophy, 4:471–504.
Douglas Rohde, 2001. TGrep2 User Manual.
William Rounds. 1970. Mappings and Gram-
mars on Trees. Mathematical Systems Theory,
4:257–287.
Stuart Shieber. 1985. Evidence against the
context-freeness of natural language. Linguistics
and Philosophy, 8:333–343.
Peter Wood. 2003. Containment for XPath Frag-
ments under DTD Constraints. In Proceedings
of the 9th International Conference on Database
Theory, pages 300–314.
XPath. 1999. XML Path Language
(XPath), Version 1.0. Available on:
http://www.iw3.org/TR/xpath.

104

Proceedings of the Australasian Language Technology Workshop 2005, pages 105–112,
Sydney, Australia, December 2005.

Extracting Exact Answers using a
Meta Question Answering System

Luiz Augusto Sangoi Pizzato and Diego Mollá-Aliod
Centre for Language Technology

Macquarie University
2109 Sydney, Australia

{pizzato, diego}@ics.mq.edu.au
http://www.clt.mq.edu.au/

Abstract

This work concerns a question answering tool
that uses multiple Web search engines and Web
question answering systems to retrieve snippets
of text that may contain an exact answer for
a natural language question. The method de-
scribed here treats each Web information re-
trieval system in a unique manner in order to ex-
tract the best results they can provide. The re-
sults obtained suggest that our method is com-
parable with some of today’s state-of-the-art
systems.

1 Introduction

Text-based Question Answering (QA) focuses
on finding answers for natural language ques-
tions by searching collections of textual docu-
ments. This area of research has become espe-
cially active after the introduction of a question
answering task in TREC-8 (Voorhees, 1999),
which was based on open-domain question an-
swering. The result of this research is a number
of systems and QA methodologies not only for
generic domains (Moldovan et al., 2003), but
also for restricted domains (Mollá et al., 2003)
and Web-based systems (Zheng, 2002).

Each type of QA system has specific issues
and methodologies. Thus, open-domain QA
can rely on generic tools and resources such
as parsers, named-entity recognisers, and lex-
ical resources like WordNet (Fellbaum, 1998).
This can be seen in recent TREC confer-
ences (Voorhees, 2004b) where some of the par-
ticipants used readily available third-party re-
sources to quickly build systems that obtained
satisfactory results for the amount of effort in-
vested.

On the other hand, restricted domain QA can
take advantage of deep knowledge of the cov-
ered area by using resources that are specific to
the domain such as terminology lists and ontolo-
gies, for example in the domain of biomedicine
(Zweigenbaum, 2003).

Finally, web-based QA can take advantage
of the enormous amount of data available on
the World Wide Web and use data-intensive ap-
proaches that exploit the inherent redundancy
to find answers (Brill et al., 2001). Our system
belongs to this category.

The satisfaction of the user with a certain
answer will depend on various factors. For in-
stance, someone who wants to find some spe-
cific fact would be satisfied with a short and
brief answer while someone else may require a
more detailed answer. These kind of differences
between casual users of generic domain QA sys-
tems make the establishment of personalized an-
swer models difficult.

One way that may satisfy both types of users
is by providing an exact answer while at the
same time showing a snippet of the original
text from where the answer was extracted. This
kind of response was required from the partici-
pant systems of the main task of the QA-track
of TREC-2003 (Voorhees, 2004a). We have
adopted this approach by providing the exact
answer, a summary, and a link to the source
document.

According to Voorhees (2003), an exact an-
swer is defined as a string that does not contain
any extraneous information but the answer in
it. For instance Brasilia is the answer for What
is the capital of Brazil?, but the city of Brasilia
or Brazilian capital Brasilia are not.

In order to find the exact amount of text
containing an answer, we used an approach
that combines the results of several Web search
engines and Web QA systems. Our system
works in a similar way of those known as meta-
search engines (Metacrawler1, Mamma2 and
Profusion3 just to name a few), however we do
differentiate between the search engines used

1http://www.metacrawler.com
2http://www.mamma.com
3http://www.profusion.com

105

in order to extract the best information they
may provide. Although finding more informa-
tion for a question helps to retrieve their an-
swers, we believe that the assistance of several
search engines can cause improvement when the
best information of each one are extracted and
weighted.

The common framework for question answer-
ing systems consists of three main phases:

Question Analysis: The question is classified
into several types, possibly forming a classi-
fication hierarchy such as (Moldovan et al.,
1999). The question type is typically re-
lated to the type of the expected answer,
which in turn is typically related to the
named-entity types available to the system.
The question classification can be based
on regular expressions (Mollá-Aliod, 2004;
Chen et al., 2002; Hovy et al., 2000) or ma-
chine learning (Li and Roth, 2002; Zhang
and Lee, 2003). Apart from the question
type and expected answer type, this phase
may return the question focus and other
important words or concepts found in the
question.

Information Retrieval: The question and/or
the question features obtained by the ques-
tion analysis are fed to an information re-
trieval system that returns the documents
or document fragments that may contain
the answer. Typically a generic document
retrieval system is used or even a web
search engine, though there are suggestions
that the type of information retrieval re-
quired for this phase is different from the
generic one. This phase is crucial, since rel-
evant documents that fail to be retrieved
will be ignored in the next phase.

Answer Extraction: The retrieved docu-
ments or passages are analysed in order
to find the exact answers. Techniques to
find the answer range from the selection of
named-entities that are compatible with
the expected answer type to the use of
logical methods to find and/or validate the
answer.

As it can be observed in Figure 1, our system
structure is very similar to the common frame-
work, however the approaches for performing
each of the tasks are different. The question
analysis is performed using the Trie-based ques-
tion classifier (Pizzato, 2004; Zaanen et al.,

Trie-based
Question Analyser

Information Retrieval

Google Altavista AskJeeves

Brainboost START

Answerbus

Gigablast

MSNSearch

Answer Extraction

Named Entity
Recognition

Lexical
Rules

LingPipe

N-Grams

Mutual
Information

WordNet

snippets

User answerquestion

Figure 1: Overview of the system’s architecture

2005) trained over the set of near 5500 questions
prepared by Li and Roth (2002). As already
stated, the information retrieval stage is a com-
bination of several Web search engine results,
and the answer extraction combines named-
entity, n-grams and lexico-semantic information
from WordNet (Fellbaum, 1998).

In the next section we show some of the
characteristics of the Web search engine we ex-
plored. Then, in Section 3, we address our
method of combining the results and how we
used named-entities and n-grams to pinpoint
the answer location. In Section 4 we show an
evaluation of our technique, while in the last
section we present the concluding remarks and
future work.

2 Web search results combined

According to Oztekin et al. (2002), the com-
bination of search engine results is not a new
approach for improving information retrieval.
Many meta Web search engines provide a better
retrieval by combining results of several search
engines and re-ranking their results according
to techniques such as the linear combination of
scores described by Vogt and Cottrell (1998).
However it seems that most approaches do not
consider the differences between search engines.
In this work, we take into account the best of
each search engine used and, since our goal is
to find exact answers to a question, we explored
the characteristics of these search engines in or-
der to answer questions.

Because of their availability on the Web, we
also used the results of three Web QA systems

106

(Start4, Answerbus5 and Brainboost6). These
systems perform their jobs using very different
approaches and they do not provide exact an-
swers (in the same sense of Voorhees (2003)),
but only snippets of text where the answers are
expected to be.

As stated we extracted the best of several
search engines. Let’s list some of their char-
acteristics.

Start: Combines predefined Web databases
to provide answers to Geography; Science
and Reference; Arts and Entertainment;
and History and Culture. The answers are
normally structured as tables, sentences or
even images and graphics.

Answerbus: Question Answering system that
provide answers in a snippet-like format.

Brainboost: Provides answers to natural lan-
guage questions in a similar way to Answer-
bus.

Altavista7: Well established search engine
with a large amount of indexed Web pages.

AskJeeves8: It provides very useful informa-
tion regarding specific questions on famous
people, movies, definitions of words, and
current weather.

Gigablast9: It has the feature, referred to
as Gigabits, that presents related concepts
to the search results. There is no disclo-
sure on how this information is calculated
(we would guess n-grams computation from
every search result), but it is possible to no-
tice that the answer for a question is likely
to appear in the list of Gigabits.

MSN Search10: The Microsoft search engine
has the ability to answer some NL ques-
tions by using encyclopedia information, as
well as providing definitions for words, and
a way to make measurement conversion.

Google11: It is considered one of the best
Web search engines available. It also
provides some information on definitions
questions like: What is a platypus? or

4http://www.ai.mit.edu/projects/infolab
5http://www.answerbus.com
6http://www.brainboost.com
7http://www.altavista.com
8http://www.ask.com
9http://www.gigablast.com

10http://search.msn.com
11http://www.google.com

define:platypus. Following MSN Search,
Google has recently acquired the ability to
answer encyclopedia questions. We under-
stand that this is a good feature to be used
in our system, and we are planning to in-
corporate this. However the version and
results we describe in this paper does not
yet consider the QA ability for Google.

The results obtained from the search engine
were combined into four different sets:

1. Answers from MSN Search;

2. Answer summaries from Start, Answerbus
and Brainboost;

3. Definitions from Google, MSN Search and
AskJeeves;

4. Summaries of the results from every Web
search/QA system used;

The exact answer was extracted using these
sets in a slightly different manner. For in-
stance we observed that, the encyclopedia an-
swers from MSN Search are of a high quality
and they are easily pinpointed due to the fixed
format and the short size of the passage used.
The not-yet incorporated QA feature of Google
will fit into this first set when implemented.

The answer snippets from Start, Answerbus
and Brainboost do not have the high quality
of MSN Search, but they normally contain the
right answer within their results.

For definition questions we checked the de-
finition results of Google, MSN Search and
AskJeeves. If they are not present and the ques-
tion asks for a definition, we rephrase the ques-
tion to the search engine submitting a query
in the format define [question focus] or de-
fine:[question focus] (on Google) in order to ob-
tain a definition if available.

Because it is not possible to delimit an exact
answer in definitions, we state that for these
type of questions an exact answer is a brief de-
scription of the question subject (focus).

The last set involves all the snippets of docu-
ments obtained from the Web search engines.
We used the top-50 documents provided by
every search engine appended to each other. We
did not merge common documents, since we be-
lieve that the process of finding the correct an-
swer will take advantage of the several instances
of the same information.

107

3 Exact answer extraction

A good approach for answering questions is
to provide an exact answer combined with a
snippet of text supporting the answer. This
may boost the satisfaction of the users of a
QA system since the validation of the answers
is fast and straightforward. The approach
used for pinpointing the exact answer location
uses named-entity recognition combined with n-
grams extraction and word overlap. We also
make use of the semantic classification of terms
in WordNet (Fellbaum, 1998).

We first established some priorities in the sets
of answers retrieved. If the answer requires a
definition, the set of definition answers is evalu-
ated, if this set is empty we try to rephrase the
question forcing the search engines to provide a
definition if one exists. In case a definition could
still not be found, we give up this approach since
the information may not be available in a dic-
tionary or even the question analyser may have
made a mistake when defining the expected an-
swer category. Giving up the approach means
that we will try to find the answer as if the ques-
tion did not require a definition.

For exact answers, we found that in the rare
cases when MSN Search answers questions, they
are normally correct. Because of this, we first
consider the summary of MSN Search answers
if present to extract the exact answer. Other-
wise we evaluate the set of answers from the QA
systems. If no answer could be found, the set of
all search engine responses is analysed.

If still no answer can be found, we relax the
expected answer category to all the fine grained
categories that the question classification re-
turned. If by this time still no answers are
found, the coarse grained categories are used.

3.1 Pinpointing an exact answer
Given the preferences explained above, we de-
fine the exact answer by extracting all the
named-entities that match the expected answer
category provided by our question analyser.
The answer categories follow Li and Roth (2002)
classification. They are divided into coarse and
fine grained categories as shown on Table 1.

We used a large collection of gazetteer files,
involving most types of named-entities, along
with the LingPipe named-entity recognizer12

for the definition of persons, organization and
location names. In the spirit of Mikheev et
al. (1999), we developed a set of internal and

12http://www.alias-i.com/lingpipe/

Table 1: Answer classification and examples

Coarse Fine Example
HUM IND Who killed JFK?
HUM GR What ISPs exist in the NYC?
LOC CITY What is the capital of Brazil?
NUM SPEED How fast is light?
NUM MONEY How much does the President

get paid?
DESC DEF What is ethology?
ENTY ANIMAL What is a female rabbit called?
ENTY FOOD What was the first Lifesaver flavor?
ENTY SUBSTANCE What is a golf ball made of?
ENTY DISMED What is a fear of disease?
ENTY TERMEQ What is the name of the Jewish

alphabet?

HUM (human) IND (individual) GR (group)
LOC (location) NUM (number) DESC (description)
DEF (definition) ENTY (entity) DISMED (disease)
TERMEQ
(equivalent term)

external lexical patterns in order to define the
remaining types of named-entities.

For every named-entity found we calculate
a score according to their average distance
from all question words. Consider F =
{f1, f2, . . . , fn} to be the sequence of words in
the question focus, and δ(a, b) the distance in
words between two terms a and b in the sum-
maries retrieved by the search engines. The
score S(E) of a named-entity E is computed
as follows:

S(E) =
n∑

i=1

δ(E, fi)−1

n

The S(E) scoring assumes that possible an-
swers are more likely to be close to the question
focus words (Pasca, 2003; Kwok et al., 2001).

Although this provides a measure showing if a
named-entity is likely to be the answer in a cer-
tain piece of text, we consider that the presence
of the same answer string in different passages
provides more hints that the answer string is the
answer. In order to take advantage of the redun-
dancy the Web provides (Brill et al., 2001), we
sum the scores that a named-entity receives for
every passage found.

We also have two extra processes that help
to improve the answer extraction. The first one
uses the Gigabits from Gigablast search engine.
If an identified named-entity is in the Gigabits
set, the score S(E) is summed to a percentage
value given by Gigablast.

The last ranking process uses n-grams infor-
mation. Unigrams, bigrams and trigrams are
extracted from all the responses from the search
engines and the mutual information of the n-
grams are extracted. The mutual information

108

I(a, b) is calculated as follows:

I(a, b) = log
P (a, b)

P (a)P (b)

Observe that P (a, b) is the probability of oc-
currence of the unigram a followed by unigram
b (bigram (a, b)) and P (x) is the probability of
occurrence of unigram x.

Since there is no mutual information for un-
igrams, we calculated a similar measure by the
natural logarithm of the product of the prob-
ability of finding a certain unigram (P (u) =
freq(u)/corpus size in unigrams) by the num-
ber of different unigrams in the collection of all
retrieved summaries.

Those n-grams representing question words
and stopwords are discarded and the values
from the mutual information that are larger
than one13 are tested on the upper hypernym
hierarchy of WordNet. We assumed that if an
n-gram is a hyponym of a question word, it may
increase the chance that this hyponym is the an-
swer of a question. This helps to answer ques-
tions like Which breed of dog has a blue tongue?.
By using this technique we increase the score of
any breed of dog found within the search engine
results.

We may still use n-grams that are not in
WordNet, however we assign a very low score
to them. If the n-gram was also identified as a
named-entity, their scores are summed, other-
wise it becomes the score for the n-gram alone.
The score used by the n-grams is only a frac-
tion of the mutual information calculation. We
empirically defined the added value for n-grams
found in WordNet hyponyms as a tenth of the
mutual information value, while the added value
for non-WordNet n-grams was defined as a 20th
part.

This seems useful in two distinct cases. First,
when the question analysis module fails we are
still able to retrieve the correct answer; Second,
it gives perspectives on answering multilingual
questions. The second case is feasible, however
it needs a list of the language stopwords and if
possible a lexico-semantic database like Word-
Net.

After these scoring procedures take place, we
collapse and sum scores of different numeric
named-entities if their values are the same. For

13A mutual information value larger than one means
that the n-gram occurs more often than its probability
of random occurrence.

<RANKED_ANSWERS>

<QUESTION str="What is the capital of Brazil?"/>

<ANSWER str="Brasilia" id="1" score="3.22">

<DOC url="http://www.brazzil.com/p35nov95.htm">

<TITLE>BRAZZIL - News from Brazil - FOOD -

BRASILIA’S RECIPES

</TITLE>

<SUMMARY>

Brasilia, the capital of Brazil, is better

known for its prize-winning ultramodern

design and for the unfriendliness of the

city to the people who live there

</SUMMARY>

</DOC>

<DOC url="http://gosouthamerica.about.com/b/a/

065069.htm">

<TITLE>Brasilia, Capital of Brazil</TITLE>

<SUMMARY>

Brasilia, Capital of Brazil. South America

for Visitors Blog. ... Brasilia, Capital

of Brazil Brasilia is a monument to what

Brazilians can do and have done.

</SUMMARY>

</DOC>

</ANSWER>

</RANKED_ANSWERS>

Figure 2: System current output

instance ‘Two million’ is the same as ‘2 million’
or even ‘2,000,000’. However, though this idea
is promising we haven’t had the time to imple-
ment more information clusters. In the same
manner of Kwok at al. (2001), information clus-
ter would help to improve the system precision
by grouping similar strings of text. Other infor-
mation cluster could also include measurement
conversions (i.e. 1 km = 1000 meters) and syn-
onyms.

With this final score, every exact answer is
ranked and then presented to the user with their
source passages. Current results are shown into
a XML-like structure containing all the answers
and their passages. The idea is to develop a
Web interface that will allow users to find an-
swers with a minimum effort and also to provide
feedback on the answer quality. An example of
the current system output is shown in Figure 2.

The evaluation of the method was performed
in a similar way as the main task of the QA
track of TREC-2003 (Voorhees, 2004a) as we
describe in details in Section 4.

4 Evaluation

The QA track of TREC conferences (Voorhees,
2004a) provides a common environment where
QA systems can be tested and evaluated under
the same measures. The main task for QA re-
quired exact answers from the participant’s sys-
tems. They were required to provide the answer

109

and indicate one document in the AQUAINT
corpus supporting that answer. The systems’
results were manually evaluated from NIST per-
sonnel and the answers/systems scores were cal-
culated in a different way for factoid, list and
definition questions.

We performed the evaluation of our method
only for factoid questions. The system was
evaluated using the Mean Reciprocal Rank
(MRR) measure of previous TREC QA tracks
(Voorhees, 2002). This measure is the aver-
age of the precision for every question on it’s
first correct answer. The MRR is calculated as∑k

q=1
1
r1

, where r is the ranking of the first cor-
rect answer and k is the number of questions.

To obtain the accuracy of our system for fact-
based questions we ran the 413 questions of this
type from the QA track of TREC-2003 using our
system and performed an automatic evaluation
using the answer patterns provided by NIST.

As expected these answers did not reflect
every answer found in the Internet. Many ques-
tions had a correct answer that could not be
identified by the patterns. The reasons for this
may vary from the lack of answers representa-
tions to different or updated answers. For in-
stance our system identified 6000 degrees Cel-
sius as the answer for How hot is the sun?, but
the automatic evaluation could only validate an-
swers that follow the patterns of Table 2.

Table 2: TREC-2003 patterns for automatic
evaluation of answers.

6500 Celsius
6,?000 degrees Centigrade
two million degrees centigrade

Since the patterns are based on the answers
supported by the AQUAINT corpus, some may
contain outdated information, for instance How
many NFL teams are there? requires 31 as its
answer according to the patterns, however to-
day’s NFL is played with 32 teams.

Because of the reasons listed above, we pre-
evaluated our system using the TREC answer
pattern in order to adjust some of its parame-
ters, and then we performed a manual evalua-
tion in a slightly different way than the NIST
guidelines. Due to time limitations we could
not verify all the information sources for un-
supported answers. Therefore the answers were
assigned only as right or wrong.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 10 All

Top-N Answers

Percentage of Answered Questions MRR Score

Figure 3: Results for the Top-n answers re-
turned

As observed in Figure 3 using this approach
for factoid questions we obtained an accuracy
of 30% for the first answer. This result is rea-
sonable considering that it is of the same value
of the average results of TREC-2003 systems.
This result places our system among the top-5
competitors of the main task for factoid ques-
tions.

We should stress that our system does not
provides answers using the AQUAINT corpus,
nor indicates a document to support the an-
swers in that corpus. We also did not compute
the NIL recall and precision since some NIL an-
swers (answer that AQUAINT corpus did not
provide an answer) could be found by using the
Internet.

We can observe from these results that the
exact answer could be found almost half of
the times by considering up to 5 answers for
every question, giving a reasonable MRR score
of 0.36. With these results we may say that
the performance obtained by our system could
be compared with some of the best systems in
TREC.

5 Concluding Remarks

In this work, we develop a meta-QA system
that combines the results of different Web
search/QA systems in order to provide exact
answers for natural language questions. By us-
ing a trie-based question analysis, named-entity
recognition, n-gram computation and lexico-
semantic information from WordNet, we were
able to achieve results comparable to some best
state-of-the-art QA systems.

Even though our system regards heavily in
third-part systems for information retrieval, we
showed that it is possible to use and combine the

110

results from these systems in order to extract
exact answers.

Since the developed system is highly modu-
larized, it is possible to remove and add search
engines, making the use of those here cited just
the first trial for this approach. Further work
is needed in order to identify the gain in per-
formance by adding, replacing, removing and
promoting search engines. There is also a need
for the evaluation of the best weights for the
features used to pinpoint the location of the an-
swers, and the feasibility of using language inde-
pendent methods such as n-grams and mutual
information to perform a multilingual QA.

Other interesting aspect of this approach is
the capacity of taking advantage of certain fea-
tures provided by search engines. For instance,
by restricting the search domain by Web site,
language, country or even neighborhoods, it
is possible to restrict the QA domain as well.
We already performed some minor tests asking
questions in the Macquarie University Web site
showing promising results.

We may say that the success of a Web ques-
tion answering system may not only depend on
the precision of its answer. We believe that an
effort has to be made in the user interface allow-
ing them to easily verify the answer provided.
Further work is needed to be done on developing
such a user interface.

References

Eric Brill, Jimmy Lin, Michele Banko, Su-
san Dumais, and Andrew Ng. 2001. Data-
intensive question answering. In Ellen M.
Voorhees and Donna K. Harman, editors,
Proc. TREC 2001, number 500-250 in NIST
Special Publication. NIST.

J. Chen, A.R. Diekema, M.D. Taffet, N. Mc-
Cracken, N. Ercan Ozgencil, O. Yilmazel,
and E.D. Liddy. 2002. Question answering:
CNLP at the TREC-10 question answering
track. In Proceedings of TREC-2001, pages
485–494.

C. Fellbaum, editor. 1998. WordNet: An elec-
tronic Lexical Database. MIT Press.

E. Hovy, L. Gerber, U. Hermjakob, M. Junk,
and C. Y. Lin. 2000. Question answering
in webclopedia. In Proceedings of TREC-9,
pages 655–654.

Cody Kwok, Oren Etzioni, and Daniel S. Weld.
2001. Scaling question answering to the web.
ACM Trans. Inf. Syst., 19(3):242–262.

X. Li and D. Roth. 2002. Learning question

classifiers. In Proceedings of the COLING-02,
pages 556–562.

Andrei Mikheev, Marc Moens, and Claire
Grover. 1999. Named entity recognition
without gazetteers. In Proceedings of the
ninth conference on European chapter of the
Association for Computational Linguistics,
pages 1–8. Association for Computational
Linguistics.

D. Moldovan, S. Harabagiu, M. Paşca, R. Mi-
halcea, R. Goodrum, Roxana Gı̂rju, and
Vasile Rus. 1999. Lasso: A tool for surf-
ing the answer net. In Voorhees and Harman
(Voorhees and Harman, 1999).

Dan Moldovan, Marius Paşca, Sanda
Harabagiu, and Mihai Surdeanu. 2003.
Performance issues and error analysis in an
open-domain question answering system.
ACM Trans. Inf. Syst., 21(2):133–154.

D. Mollá-Aliod. 2004. Answerfinder in TREC
2003. In Proceedings of TREC-2003.

D. Mollá, F. Rinaldi, R. Schwitter, J. Dowdall,
and M. Hess. 2003. Extrans: Extracting an-
swers from technical texts. IEEE Intelligent
Systems, 18(4):12–17.

B. Uygar Oztekin, George Karypis, and Vipin
Kumar. 2002. Expert agreement and content
based reranking in a meta search environ-
ment using Mearf. In WWW ’02: Proceed-
ings of the eleventh international conference
on World Wide Web, pages 333–344. ACM
Press.

Marius Pasca. 2003. Open-Domain Question
Answering from Large Text Collections. CSLI
Publications, Stanford California, USA.

Luiz Augusto Sangoi Pizzato. 2004. Using a
trie-based structure for question analysis. In
Ash Asudeh, Cécile Paris, and Stephen Wan,
editors, Proceedings of the Australasian Lan-
guage Technology Workshop 2004, pages 25–
31, Macquarie University, Sydney, Australia,
December. ASSTA. ISBN: 0 9581946 1 0.

Christopher C. Vogt and Garrison W. Cot-
trell. 1998. Fusion via a linear combination of
scores. Information Retrieval, 1(3):151–173,
October.

Ellen M. Voorhees and Donna K. Harman, ed-
itors. 1999. The Eighth Text REtrieval Con-
ference (TREC-8), number 500-246 in NIST
Special Publication. NIST.

Ellen M. Voorhees. 1999. The TREC-8 ques-
tion answering track report. In Voorhees and
Harman (Voorhees and Harman, 1999).

Ellen M. Voorhees. 2002. Overview of the

111

TREC 2001 question answering track. In
Proceedings of The Tenth Text REtrieval
Conference (TREC 2001).

Ellen M. Voorhees. 2003. Overview of the
TREC 2002 question answering track. In
Proceedings of TREC-2002.

Ellen M. Voorhees. 2004a. Overview of the
TREC 2003 question answering track. In
Proceedings of TREC-2003.

Ellen M. Voorhees. 2004b. Overview of TREC
2003. In Proceedings of TREC-2003.

Menno Van Zaanen, Luiz Augusto Pizzato, and
Diego Molla. 2005. Question classification
by structure induction. In Proceedings of the
Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI-2005)., Edin-
burgh, Scotland, August.

Dell Zhang and See Sun Lee. 2003. Question
classification using support vector machines.
In Proc. SIGIR 03. ACM.

Zhiping Zheng. 2002. Answerbus question an-
swering system. In Human Language Tech-
nology Conference (HLT 2002), San Diego,
CA, March 24-27.

Pierre Zweigenbaum. 2003. Question answering
in biomedicine. In Proc. EACL2003, work-
shop on NLP for Question Answering, Bu-
dapest.

112

Proceedings of the Australasian Language Technology Workshop 2005, pages 113–119,
Sydney, Australia, December 2005.

Multimedia presentation of grammatical description: design issues

Simon MUSGRAVE
School of Languages, Cultures and Linguistics

Monash University
Victoria 3800 Australia

Simon.Musgrave@arts.monash.edu.au

Abstract
In this paper, I argue that grammatical
description of language is a type of
information which is ideally suited to
presentation as a multimedia object structured
with hypertext. I examine three existing
language resources, constructed for different
audiences, and discuss various features of each
which bear on the design issues relevant to
grammatical description. From my
examination of these exemplars, I argue for
four guidelines in the design of a multimedia
grammar: data centricity, multiple linking,
exhaustive coding in data structures, and user
control of the amount of information accessed.

1.Introduction
Any reasonably complete description of a

language is a complex object. Traditionally, such
works are divided into various components: a
grammar, a dictionary and a text collection. But of
course these are really highly inter-related. For
example, a single entry in the dictionary is of little
value without the general information about words
of that class which can be found in the grammar,
and any point made in the grammar may be hard to
grasp without extensive exemplification from
texts..

An impression of the complexity involved can
be gauged from the following comments by two
reviewers of a description published as three
separate volumes (Heath 1980, 1982, 1984):
“Unfortunately, F[unctional] G[rammar of]
N[unggubuyu] is a very demanding work, both
because of the inherent complexity of the language
and because it requires the reader to make constant
reference to the text volume.” (Blake 1985: 310);
“the work is particularly difficult to read. H[eath]
makes no pedagogical concessions to the reader.
One must look up the attestations for every major
grammatical point in another volume.” (Haiman
1986: 654-655).

The interrelatedness of the various components
discussed above immediately suggests that
hypertext would be a better means of presentation

and additional benefits could come from making
the grammatical description a multimedia object,
rather than a text object. Examples could be heard
in the original sound recorded by the researcher, or
even seen as video clips where such presentation
would aid the consumer (for example, where
gesture added an important element of meaning to
the utterance). In addition to the improved
accessibility of the descriptive information, such
presentation would bring the consumer much
closer to the primary data, actual language in use,
and therefore multimedia language description
would increase substantially the standard of
accountability in linguistics.

However, the standard paper and ink
presentation of grammatical description has an
established linear format which is not suitable for
the new medium. In this paper, I examine three
existing presentations of language data as
multimedia: an online documentation, a
documentation published as CD-ROM, and an
online language learning site. I suggest that each of
these exemplars can provide important hints to the
most appropriate structure for multimedia
grammatical description.

1. The organization of grammatical description
Most grammatical descriptions published in

book format follow more or less closely a standard
format. The presentation begins with background
information on the language and its speakers, the
relationship of the language to other languages,
and a survey of previous research. The description
proper then follows, moving through phonetics and
phonology (the sounds of the language and how
they are organized into a system), morphology
(word-formation processes), and clausal syntax.
Some discussion of syntax above the level of the
individual clause and of textual organization may
follow. If example texts are included in the
volume, as is common, they will come after this,
with word lists after them.

The organization of a grammar in this style is
linear, that is, one sort of information is presented
before another. And the linearity is to a large
extent well-motivated. It is generally not easy to
understand the morphological processes of a

113

language before one understands the phonology; it
is hard to understand syntax (combinations of
words) before one understands morphology
(word-formation).

Linearity of presentation is also a consequence
of the medium. Paper and ink objects are read
normally in sequence; even if one reads only a
short section of a larger work, one starts at a
particular place and reads on in sequence for as
long as necessary. The reservations of the
reviewers of Heath’s work quoted previously are
reflections of their frustration at an organization
which attempted to subvert this linearity.

Hypertext, on the other hand, is a non-linear
medium and the metaphor of a web is entirely
appropriate for such presentation. As already
mentioned, hypertext has clear benefits for the
presentation of grammatical description, but it is
desirable that at least some of the linear logic of
the paper and ink model should be accessible in the
new medium. Various questions at the conceptual
level must therefore be addressed in order to
exploit the technological possibilities to their full.
These include:
• what should be the starting point for the

consumer’s navigation of the multimedia
object?

• how much linear ordering can or should be
built into the interlinking of individual objects?

• how rich can the interlinking be before it
becomes confusing for the consumer to
navigate?

Underlying all of these questions, is the
assumption that all of the coding necessary for full
interlinking of information in the description is
present in the data structures on which the
presentation object is based. I return to this issue in
section 3.

2.Three exemplars

2.1.Online documentation of Kolyma
Yukaghir (Nikolaeva and Mayer 2004)

2.1.1.Description
This resource (afterwards ODKY) is a

documentation of an endangered language (see
Himmelmann 1998 for discussion of the notion of
documentation). It contains introductory material,
texts, dictionaries and images (pictures and maps).
The texts are presented so that an entire text can be
heard as audio in one track, while a translation is
viewed, or the text can be viewed broken into
units, with morpheme-by-morpheme glossing and
links to audio for each unit. For some text units,
notes on grammatical or cultural matters are

provided. In this view, many morphemes and
words are also linked to the dictionaries. There are
two dictionaries, one a listing of Yukaghir stems,
the other a listing of affixes. The dictionaries give
rather limited information: a short definition, a
note if a word is a loan from another language, and
a concordance of occurrences of the morpheme in
the text collection. All entries in the concordance
are links to the relevant text unit. The concordance
lists are exhaustive, and this is unwieldy in the case
of common items. For example, the verb ‘to be’
has a concordance list of around 500 occurrences.
Where a morpheme has more than one form, the
various possibilities are linked to the form
considered basic. Links between words in texts and
images are used in a limited way, the most
noticeable being that a picture of the speaker who
produced a text is often available.

2.1.2.Discussion
The nature of a documentation has influenced

the design of ODKY. The aim is to provide a
record of the language and of the linguistic
behaviour of its speakers. Detailed grammatical
description is not a part of the intention, rather the
documentation is intended to serve as the basis for
description by future scholars. Nevertheless certain
features are of interest.

Firstly, the presentation of the material is not
complex. There is very little annotation added to
the data, and therefore linking paths through the
material are straightforward. There are no
instances where multiple links lead from a single
location, and therefore no design is imposed at the
level of hypertext linking.

Secondly, the presentation of the material is
centred on actual data. Texts, as audio and as
transcriptions constitute the greater part of the
documentation. Supporting annotation is minimal;
for example, the information given in dictionary
entries includes only a single word gloss and a
concordance. Not even word class labels are given,
let alone more detailed definitions or
encyclopaedic information.

Thirdly, concordances are used in the
dictionaries. It is a very significant advantage of
presenting language data via computer that all of
the data relevant to some particular question can be
accessed quickly (assuming the underlying
annotation is rich enough – see discussion in
section 3). However, the way that this feature is
exploited in ODKY raises the question of whether
it is necessary or desirable to always present such
information exhaustively. For example, in a
resource based on English data, it may not be
useful to have every occurrence of the definite

114

article listed in the dictionary entry for that word,
although in order to answer certain questions one
would like to be able to access the information
when it is needed. We return to discussion of this
question in section 3 below.

2.2.Spoken Karaim (Csato & Nathan 2003)

2.2.1.Description
This source (afterwards SK) embodies a rather

more sophisticated approach to the possibilities of
multimedia than that discussed in section 2.1. To
some extent, this is a result of delivery via CD
rather than online. But in many cases, the design
features are not dependent on the delivery medium.
For example, the SK environment uses multiple
windows to present various types of information
on a single screen. Such presentation is an option
available in web browsers, but one not exploited
by ODKY.

This resource presents a variety of information
about the Karaim people of Lithuania, including
general cultural information along with
information about the Karaim language. The
package was developed in close collaboration with
the community (Csato and Nathan 2004), and
therefore the intended audience is different from
that for ODKY. The specifically linguistic
information is viewed across three windows: one
large window contains a text unit in Karaim with
an English translation, with a button on a control
bar beside the screen allowing access to audio; a
second smaller window displays a single item from
the lexicon; and a third window, also small,
displays the lexicon as a list. In the last two
windows, various options are offered. The lexicon
list can be viewed in either Karaim or English, or a
third option labelled ‘Grammar’ can be selected.
This third option does not give access to
descriptive material, but only to a list of the
grammatical categories which are represented in
the language, for example names of nominal cases.
Selecting from any of the three possible views in
the lexicon list window results in the chosen item
being displayed in the lexicon item window. The
division between the dictionary of words and the
dictionary of grammatical categories is in effect
almost identical to the division between the word
dictionary and the affix dictionary used by ODKY.

The information displayed in the dictionary entry
window is similar to that given in the ODKY
dictionary, that is, simple translations and no word
class information. In some cases, some more
encyclopaedic information is provided (e.g. kibin
‘kibin (Karaim national dish, pirog filled with meat
or cabbage)’). Additional options offered in this
window include links to pictures in some cases,

links to related words, and a morphology
demonstration module. For nouns, identified by a
graphic signal beside the word, it is possible to
display various inflected forms by clicking and
dragging on buttons at the top of the window. This
feature is intended as an aid to language learners; it
does not provide exhaustive information even for
nominal morphology.

A short section of grammar notes can be viewed
in the main window, that in which text is viewed.
These notes are very brief and are not linked at all
to text examples. They are also not complete even
at the level of detail provided. The section on
morphology discusses only some nominal
morphology, while the list of grammatical
categories, read in conjunction with the dictionary
entries, makes it clear that the language also has a
considerable amount of verbal morphology.

2.2.2.Discussion
 SK shares with ODKY the first two features

discussed above, simple annotation and therefore
no complex paths of links through the material,
and being data-centred. There is no possibility of
extracting groups of data in this resource, such as
is offered by the dictionary concordance in ODKY.
The main feature of interest in SK is that
mentioned already at the start of this section: the
presentation of various types of information in
different areas of the screen. The value of this
technique in presenting linguistic data has also
been demonstrated for the Shoebox/Toolbox
software package (distributed by SIL:
<http://www.sil.org/computing>) by Austin
(2002).

One other issue concerning SK should be
mentioned. This resource is presented in a
specially designed environment, it does not use a
standard web browser as does ODKY and the
Nahuatl Learning Environment (see section 2.3).
With dissemination via a CD, this poses no
problems for the user, however it does raise
questions about the portability of the design. Use
of open source tools throughout the design,
implementation and delivery of any resource is
clearly desirable.

2.3.Nahuatl Learning Environment (Amith n.d.)

2.3.1.Description
The Nahuatl Learning Environment (afterwards

NLE) is an even more ambitious project which
aims to present online a corpus of texts in the
Nahuatl language, along with a reference grammar
and a comprehensive dictionary. Various
possibilities for linking between these modules are
planned, although only some are currently
implemented. In its current form, this resource

115

provides a rich dictionary of the Nahuatl language,
a corpus of texts which are linked to varying
degrees to other information, and grammatical
description which is only available as
downloadable text files.

Texts are presented with an entire text on a
single page with a single link to audio provided for
each text. No morpheme-by-morpheme glossing is
given for texts, but some complex words are active
links with parses displayed as a pop-up on rollover.
If the link is clicked, a new window opens with the
dictionary entry for the root of the complex word.
In comparison to ODKY and SK, these dictionary
entries are very detailed with word class
information, definitions for multiple senses and
supporting examples, and links to related entries
and audio. It is also possible to follow links from
texts, or from an open dictionary entry, which
automatically generate queries to the lexical
database.

Some specific notes on grammar are present as
footnotes in the texts, accessed via links. These are
currently the only links to grammatical description
in NLE, although in documentation, it is claimed
that it is possible to view for example sets of verbs
of the same subcategory via links which
automatically query the database.

The dictionary module of NLE is based on a
database application (Hyperlex2), and offers
powerful query facilities (regular expression
searches etc.). Other features include the
possibility to switch between English and Spanish
as the metalanguage, and detailed encyclopaedia
information on topics such as botanical knowledge
among the Nahuatl people.

2.3.2.Discussion
Of the three resources discussed here, NLE

shows the greatest development of the possibilities
of linking between various parts of the available
information. As the available information is
significantly richer than that in ODKY and SK, for
example in the dictionary entries, the presentation
does become complex. However, this complexity
is currently restricted to the amount of information
available on the screen at a single time. Complex
paths through the information and multiple linking
are not offered. Thus, a link from a complex word
form in a text shows a parse of the word and leads
to a dictionary entry for the root morpheme. But
there is, for example, no path to the other
morphemes which occur in the complex form. The
implementation of the linking is also less than
optimal, with the dictionary entry appearing as a
pop-up area which overlays the text from which
the user has started. The text is therefore no longer
fully visible. The use of separate screen areas, as in

SK, seems a more satisfactory solution.

2.4. Summary

Table 1 summarises the features of the three
language resources discussed in this section.

3. Design guidelines for multimedia grammar
Various guidelines for the design of a

multimedia grammar emerge from a consideration
of the characteristics of the three resources
surveyed in section 2, and additional ones can be
inferred from the features which are lacking in
those resources. Here, I concentrate on four of
these: the data-centric nature of such a grammar,
the multiple pathways between data and
annotation, the exhaustive coding of properties
needed in underlying data structures, and the
possibility that the user should have some control
over the degree to which information is presented
exhaustively.

As noted in section 2, all three of the resources
surveyed are centred on data. Actual language
data, transcribed text or the original audio
recording, is the point from which the user gains
access to other information. In some cases,
descriptive and analytic information can be
accessed without viewing or hearing a text, but this
is not the preferred mode of use. In these
resources, any descriptive annotation has value in
relation to the concrete examples provided by real
data. This can be seen as both a practical and a
philosophical decision. Practically, the
combination of description with data provides a
richer and more rapid understanding to the user.
Philosophically, the great advantage of multimedia
as the means for presenting linguistic material is
that it allows for easy access to large amounts of
data, and this imposes accountability on the
analyst. Therefore, I suggest that these resources
are following the correct approach and that being
data-centric is a desideratum for the design of
multimedia grammatical description.

It is clear that there is a huge potential problem
in the design of multimedia grammars which arises
from the fact that any single piece of data can
potentially be linked to multiple annotations. A
single word in a text can be linked to a
morphological analysis of the word, to dictionary
entries for each individual morpheme, as well as
(perhaps) a dictionary entry for the whole word, to
information on phonology, on syntax and other
possibilities. Only NLE has any kind of rich
linking of various sources of information in its
structure. In at least one case, the potential problem
is handled by dividing the work up: rolling over
some complex word forms gives a pop-up window

116

with a morphological parse of the word, while the
word in the original text is a live link to dictionary
information. In the case where three or more links
are needed, such a solution will not work, but the
use of pop-up menus on rollover is an elegant
solution to making several choices available.

 Multiple paths through the available information
will also be necessary. For example, a word form
in a text might be linked to annotations concerning
both morphology and phonology, but the
phonological process in question might be
dependent on the morphological environment. In
such a case, a direct link would exist between the
word form and the phonological discussion, but an
indirect link would also have to exist via the
material on morphology. Note that such paths of
linking will mimic some of the linear structure of a
book grammar: if one phenomenon cannot be
understood without knowledge of some other
phenomenon, then the presentation of the one
logically precede that of the other. Linear sequence
handles this logic in a book, linking paths can
handle it in hypertext. Note also that the cases
where cross-references are used in a book to
circumvent linear sequence are handled in exactly
the same way in hypertext – linear and non-linear
relationships between material are identical.

The type of rich linking just discussed can only
be implemented if the underlying data structures
contain all the information needed. Logically, this
means that every item in every text has to be
explicitly coded for its relationship to every subject
covered in the grammatical description. This is an
extremely onerous job, although there are
undoubtedly some possibilities to automate the
coding by triggering mark-up from, for example,
word classes. There are additional problems to be
faced in deciding how to deal with syntactic
description. Is it necessary to represent syntactic
structure in the data structures in order to ensure
that the linking paths needed will exist? And how
should links to syntactic units be implemented:
should each word of the unit have a link, should
the head word of the unit have a link, or should the
link be attached to some abstract location in the
text? These are complex questions which I leave
for further research.

Following from the point made in the previous
paragraph, I would like to suggest that a highly
desirable feature in a multimedia grammar will be
the possibility for the user to have some control
over the amount of information recovered via
certain links. ODKY uses concordance lists in its
dictionary, and NLE has the possibility of
generating lists of words sharing certain features.
Such functionality for grouping and recovering
data is obviously useful and desirable, but it has to

be handled with care. It is not particularly useful
(at least in most circumstances) to have to
negotiate a list of all the occurrences of a plural
marker, for example (as mentioned previously, in
ODKY the list for a common item has several
hundred entries). But such information will always
be recoverable, given the nature of the coding that
I have just argued is needed in underlying data
structures, and it is certainly possible to imagine
situations in which such exhaustive information
will be exactly what the user wants. The ideal
solution would therefore seem to be to allow the
user to control the amount of information which is
retrieved by some functions, rather than having
exhaustive lists generated as a default.

4.Conclusion

The presentation of grammatical description as a
multimedia object is potentially an extremely
exciting development for linguists and others
interested in language data. However, the design
problems which must be faced, both conceptual
and implementational, are complex.

Here, I have discussed some of the conceptual
issues on the basis of an examination of three
existing multimedia language resources. Four
design guidelines have been identified from this
process: making the presentation data-centric,
allowing for complex and multiple paths of linking
through the available information, the necessity for
very detailed coding in underlying data, and the
need for the user to control the level of detail
presented in some cases. These guidelines are
certainly not sufficient to give solutions to all the
problems which will be encountered in
constructing a multimedia grammar, but I believe
that they will be of assistance to anyone who
undertakes such a project.

I have touched on several problems for the
implementation of a multimedia grammatical
description above, such as the structure of the data
storage to be used, the nature of the presentation
software, and the importance of achieving a
platform-independent solution, preferably using
open-source software. I also consider that the
relationship between a multimedia grammatical
description and a printed version of some of the
material is a problem of implementation. The ideal
solution will be that the traditional book grammar
can be easily derived from the multimedia product
via some type of transformation process. That is,
the textual parts of the description should be
exportable into a format suitable for printing, with
examples and internal cross-references generated
as part of the export process. This goal is an
additional goal which should be kept in mind in the

117

design phase of any attempt to construct a
multimedia grammar.

Acknowledgements

This research is supported by a Monash
University Grant under the Arts/IT Small
Grants Scheme and is part of a collaborative
project with John Hurst. School of
Computer Science and Software
Engineering, Monash University. I am
grateful to Mark Donohue, Nick Thieberger
and two anonymous reviewers for helpful
comments.

,

References
Amith, Jonathan D. n.d. Nahuatl Learning Environment

<http://nahuatl.ldc.upenn.edu/> (Login as ‘guest’,
password ‘nahuatl’)

Austin, Peter K. 2002. Developing interactive knowledge
bases for Australian Aboriginal languages –
Malyangapa. MS, University of Melbourne, 14pp.

Blake, Barry J. 1985. Review of Heath 1984. Australian
Journal of Linguistics 5:304-310

Csato, Eva A. and David Nathan. 2003. Spoken Karaim.
(CD-ROM)

Csato, Eva A. and David Nathan. 2004. Multimedia and
documentation of endangered languages. In Peter K.
Austin (ed) Language Description and Documentation
Vol.1, 73-84. London: SOAS.

Haiman, John. 1986. Review article on Heath 1980, 1982,
1894. Language 62: 654-663

Heath, Jeffrey. 1980. Nunggubuyu Myths and
Ethnographic Texts. Canberra: Australian Institute of
Aboriginal Studies.

Heath, Jeffrey. .1982. Nunggubuyu Dictionary. Canberra:
Australian Institute of Aboriginal Studies.

Heath, Jeffrey. 1984. Functional Grammar of
Nunggubuyu. Canberra: Australian Institute of
Aboriginal Studies

Himmelmann, Nikolaus P. 1998. Documentary and
descriptive linguistics. Linguistics 36:161-195

Nikolaeva, Irina and Thomas Mayer. 2004. Online
Documentation of Kolyma Yukaghir. <http://ling.uni-
konstanz.de/pages/home/nikolaeva/documentation/intro.
html>

118

C

om
po

ne
nt

s
D

el
iv

er
y

Sc
re

en
 P

re
se

nt
at

io
n

A
nn

ot
at

io
n

D
at

a
G

ro
up

in
g

an
d

R
ec

ov
er

y

O
D

K
Y

Te

xt
 (+

 a
ud

io
)

D
ic

tio
na

ry

Im
ag

es

W
eb

 b
ro

w
se

r
Si

ng
le

 sc
re

en

M
in

im
al

C

on
co

rd
an

ce

SK

Te
xt

 (+
 a

ud
io

)
D

ic
tio

na
ry

A

nn
ot

at
io

ns

Im
ag

es

C
us

to
m

 e
nv

iro
nm

en
t

Sp
lit

 sc
re

en

M
ed

iu
m

, m
or

e
cu

ltu
ra

l
no

te
s r

at
he

r t
ha

n
la

ng
ua

ge
 m

at
er

ia
l

N
on

e

N
L

E

Te
xt

 (+
 a

ud
io

)
D

ic
tio

na
ry

A

nn
ot

at
io

ns

Im
ag

es

W
eb

 b
ro

w
se

r
Si

ng
le

 sc
re

en
 w

ith
 p

op
-u

ps

an
d

ro
ll-

ov
er

s
M

ed
iu

m
–h

ig
h,

 la
ng

ua
ge

an

d
ge

ne
ra

l m
at

er
ia

l
Q

ue
ry

 fu
nc

tio
n

to
 le

xi
ca

l
da

ta
ba

se

T

ab
le

 1
 –

 S
um

m
ar

y
of

 fe
at

ur
es

 o
f t

hr
ee

 m
ul

tim
ed

ia
 la

ng
ua

ge
 r

es
ou

rc
es

O
D

K
Y

:
N

ik
ol

ae
va

, I
rin

a
an

d
Th

om
as

 M
ay

er
. 2

00
4.

 O
nl

in
e

D
oc

um
en

ta
tio

n
of

 K
ol

ym
a

Y
uk

ag
hi

r.
SK

:

C
sa

to
, E

va
 A

. a
nd

 D
av

id
 N

at
ha

n.
 2

00
3.

 S
po

ke
n

K
ar

ai
m

. (
C

D
-R

O
M

)
N

LE
:

A

m
ith

, J
on

at
ha

n
D

. n
.d

. N
ah

ua
tl

Le
ar

ni
ng

 E
nv

ir
on

m
en

t

119

Proceedings of the Australasian Language Technology Workshop 2005, pages 120–126,
Sydney, Australia, December 2005.

Structuring Documents Efficiently

Robert Marshall, Steven Bird and Peter J. Stuckey∗

Department of Computer Science and Software Engineering
University of Melbourne, Victoria 3010, Australia
{robertgm,sb,pjs}@csse.unimelb.edu.au

∗NICTA Victoria Laboratory

Abstract
Documents are typically marked up to enable ren-
dering and to facilitate reuse. However, retargetting
a document often requires pervasive changes to the
markup. Power et al. have proposed a new level
of representation called document structure which
captures just those aspects of graphical organisation
that are significant for conveying meaning. These
document structures can be generated automatically
from rhetorical structures, abstract representations
of the meaning of a text. The mapping is highly
indeterminate, being governed by a large number of
interacting constraints. We present a constraint pro-
gramming approach to the problem, and report on
early experiments with an implementation in Pro-
log.

1 Introduction
Documents are typically marked up to enable ren-
dering and to facilitate reuse. Simple adjustments in
layout and style can be implemented without touch-
ing the source document. However, retargetting a
document often requires pervasive changes to the
markup itself — e.g. changing a bulleted list to an
inline list — a fact which suggests that the markup
is not sufficiently abstract.

Recent research by Power et al. (2003) has iden-
tified a new level of representation called document
structure which captures just those aspects of graph-
ical organisation that are significant for conveying
meaning. These representations can be generated
automatically from rhetorical structures, abstract
representations of the meaning of a text.

Different document structures corresponding to
the same rhetorical structures represent different
realizations of the text. We may want to consider
different document structures for the same
rhetorical structure for a number of reasons. One
document structure may be easier to understand
than another for the same rhetorical structure. For
example a bulleted list usually provides a clearer
separation of which items form part of the list

than an inline comma separated list. Alternatively,
some document structures may have a much more
compact representation which may be essential
for viewing on a PDA screen with limited size,
a constraint that is irrelevant when viewing the
same document on a large screen. In this paper
we concentrate on finding document structures that
minimize the number of “defects”, a somewhat
artificial measure of comprehensibility flaws from
Power et al. (2003).

The mapping from rhetorical structure to docu-
ment structure is highly indeterminate, being gov-
erned by a large number of interacting constraints.
The existing implementation method is to generate
all possible document structures corresponding to a
given rhetorical structure, evaluate them against the
constraints, and find the best solution (minimizing
“defects”). However, this method does not scale
since the search space is exponential in the size of
the document.

We present a constraint programming approach
to the problem, in which an objective function is
stated in advance in order to greatly prune the search
space. We report on early experiments with an
implementation in SICStus Prolog.

This paper is organized as follows. First, in §2
we review the work of Power et al. (2003) on
document structure, the mapping from rhetorical
structure, and the scoring metrics. Next, in §3 we
report on our constraint programming implementa-
tion, before reporting on the results of our exper-
imental work in §4. We close by presenting our
conclusions and identifying issues for future inves-
tigation.

2 Review of document structure
Natural language generation systems produce for-
matted text from abstract meaning representations.
Power et al. (2003) have demonstrated that the
graphical organization of this text – e.g. its head-
ings, fonts, and linebreaks – can convey meaning.
They propose to capture those aspects of graphical
organisation which carry meaning using a new level

120

Elixir is safe to use since

• the medicine has been thoroughly tested,

• it has no significant side effects.

(a) Bulleted List Format

The medicine has been thoroughly tested; it has no sig-
nificant side-effects. Therefore, Elixir is safe to use.

(b) Inline List Format

evidence

“Elixir is safe to use” list

“the medicine has been
thoroughly tested”

“it has no signifi-
cant side effects”

(c) Common Rhetorical Structure

Figure 1: Two formats for an excerpt from a patient
information leaflet, and the underlying rhetorical
structure, from (Power et al., 2003).

of representation called document structure. Power
et al. (2003) define document structure as “the orga-
nization of a document into graphical constituents
like sections, paragraphs, sentences, bulleted lists,
and figures; it also covers some features within sen-
tences, including quotation and emphasis.” They
argue that the same document structure can be ren-
dered into formatted text in multiple ways, as illus-
trated in the patient information leaflet text in Fig-
ure 1(a) and 1(b).

Rhetorical structures represent the meaning of a
text independently of its realization as a document
(see Figure 1(c)). Power et al. (2003) use logic
programming techniques to convert rhetorical struc-
tures into document structures which realise a given
rhetorical structure. This generates a large number
of candidates, and these are evaluated for confor-
mance to a variety of heuristics such as “satellite
precedes nucleus.”

2.1 Rhetorical structure
Rhetorical structure is intended to represent the
meaning of a text independently of its realisation
as a document (Mann, 1999). Two documents with
different formatting, using different words—or
even written in different languages—could have the
same rhetorical structure.

New New World
World Guide Guide

to Wines to Wines

Figure 2: Example of how layout affects meaning
(Power et al., 2003)

Rhetorical structure is expressed by rhetorical
relations, which describe the relationship between
facts, or between other rhetorical relations. A
rhetorical relation consists of a type and some
parameters, e.g. justify(A, B) has type
justify and parameters A and B, and has the
interpretation that we believe A to be true based
on evidence B. Parameters may be other rhetorical
relations, or they may be elementary propositions
which are not dependent on any other information.
Rhetorical relations are divided into two categories.
Nucleus-satellite relations generally take two
parameters: the nucleus is the central piece of
information, and the satellite supports it (e.g.
justify). Multinuclear relations can take many
parameters, each of which is of equal importance to
the others (e.g. list).

2.2 Document structure

The theory of document structure was originally
proposed by Power et al. (2003). The central insight
is that the layout of a document affects its mean-
ing. A simple illustration of this point appears in
Figure 2 (Scott, pers. comm.). Power et al. (2003)
contend that all texts have layout, even if it is very
basic.

Document structure is related to markup
languages such as HTML and LATEX, which
allow us to describe the structure of a document
independently of its presentation. However,
such markup languages are only suggestive of
document structure, for they inconveniently blur the
distinction between descriptive and presentational
markup—c.f. (Coombs et al., 1987).

The formal theory of document structure is based
around document units. Document units are ele-
ments such as phrases, sentences, paragraphs and
chapters. Each unit can be made up of one or more
sub-units, giving rise to a tree structure.

A document unit is represented by the following
four variables: level, indentation, position, and con-
nective.

Level: This represents the level of importance of
the unit in the realised document. It is an integer
from zero to five, corresponding to a realisation as

121

list

“the FDA approves Elixir+” “the FDA bans Elixir”

• The FDA approves Elixir+, and

• the FDA bans Elixir

(a) Bulleted List Format

list

concession

“the FDA approves Elixir+” “the FDA bans Elixir”

“...”

• The FDA approves Elixir+, but the FDA bans
Elixir.

• ...

(b) Inline List Format

Figure 3: Two different rhetorical structures that
lead to level zero and indentation one for the ele-
mentary units.

a phrase (comma-terminated), clause (semicolon-
terminated), sentence, paragraph, section, or chap-
ter, respectively. In Figure 1, the children of the
list relation are level zero in the first realisation,
and level one in the second realisation.

Indentation: A document unit may be indented
from its parent, allowing such items as bulleted lists.
Power et al. (2003) represent indentation as an
integer, indicating how many times a unit has been
indented relative to the root node. In Figure 1, the
list is indented in the first realisation, but not the sec-
ond. However, we contend that the most important
feature is not the total amount of indentation in an
element, but rather whether it is indented relative to
its parent.

If an element is indented relative to its parent, it
must be realised on its own line and with its own
bullet point, whereas if its parent is at the same
level, it can be part of a larger structure, which is
all indented. Consider the two rhetorical structures
and realisations shown in Figures 3(a) and 3(b).

In both cases, the elementary units have level zero
and indentation one, meaning that they are realised
as phrases which are terminated with a comma, and
are indented once from the base. However, in the

first case they are rendered on separate lines, while
in the second they are on the same line.

The reason for this is that in the first case, they are
list elements, while in the second, they are both part
of a concession. It is clear that when list elements
are indented, they should each be realised on a sep-
arate line, but this is not actually spelled out in the
document structure. While this can be inferred from
the relative indentations of the elementary units to
their parents, it adds unwanted complexity to the
implementation, as well as violating the modularity
of the document units.

Accordingly, we define IndentationHere as
a binary variable, indicating whether a given docu-
ment unit is indented relative to its parent. Note that
the indentation at any given node is just the sum of
the IndentationHere variables for it and each
of its ancestors.

Position: The position variable indicates the order
in which the nucleus and satellite occur. The two
realisations in Figure 1 show alternate positionings
of the nucleus and satellite of the evidence rela-
tion. Because all of the children of a multinuclear
relation are of the same importance, we have the
freedom to reorder them in any way. But for the pur-
poses of this paper these reorderings will not change
the evaluation of the realised document, hence they
are always rendered in the same order that they
occur in the rhetorical structure.

Connective: A discourse connective is always
used to denote the rhetorical relationship between
different document units. The only exception is for
the leaf nodes of the document structure, which
represent basic propositions. Figure 1 shows two
different connectives for the evidence relation.

2.3 Discourse connectives
Discourse connectives indicate the rhetorical rela-
tionships between consecutive spans of text in a dis-
course.

Power et al. (1999) model discourse connectives
with four attributes: relation, locus, phrase and syn-
tactic type. These specify: the rhetorical relation
which the connective represents; whether it should
be attached to the nucleus or satellite; the text which
realises it; and the syntactic restrictions on where
the connective can be used. They side-step the ques-
tion of whether a discourse connective should be
realized overtly, insisting that there be a one-to-one
relationship between rhetorical relationships in the
rhetorical structure and discourse connectives in the
generated text.

They define three syntactic types: parenthetical,
coordinating or subordinating. Coordinating

122

The FDA bans Elixir; however, the FDA approves
Elixir+.

(a) A parenthetical connective

Although the FDA bans Elixir, the FDA approves
Elixir+.

(b) A coordinating connective

The FDA bans Elixir, but the FDA approves Elixir+.

(c) A subordinating connective

Figure 4: Examples of the different types of dis-
course connectives

connectives force the children to be of level zero.
Subordinating and parenthetical connectives require
that the satellite to appear before the nucleus, with
parenthetical connectives additionally forcing the
children to be of level greater than zero.

For example, the rhetorical relation concession
can be realised by the discourse connectives how-
ever, although and but. These connectives are of
parenthetical, coordinating and subordinating types,
respectively. We give three different realisations
of the same rhetorical structure in Figure 4. Note
that the order of the two elements is reversed for
the coordinating connective, and the different levels
(sentences, phrases or clauses) used in each exam-
ple.

2.4 Generating a document structure
Power et al. (2003) examine the task of determin-
ing a document structure from a given rhetorical
structure, which they call “document structuring”
(Power, 2000; Power et al., 2003), and implement it
in a system called ICONOCLAST (Integrating Con-
straints on Layout and Style). The input consists of
a collection of simple propositions organized into a
rhetorical structure tree. The document structurer
arranges these into a coherent collection of para-
graphs, text-sentences and the like. This is then
converted into an actual document by a syntactic
realiser.

Each node on the rhetorical structure tree corre-
sponds to a node on the document structure tree.
The four variables associated with the node are con-
strained in various ways. First, the level of a child
unit must be less than or equal to that of its parent,
and equal to that of its siblings. The only exception
is when the child unit is indented, in which case its
level is independent of its parent, although it must

still be equal to that of its siblings. Second, the
indentation of a child unit must be either equal to
or one greater than that of its parent. The posi-
tions of siblings must obviously be distinct. Third,
the connective must realise the rhetorical relation.
Finally, the type of the connective places additional
constraints on the level and position of the children
of the current unit, which must be satisfied.

Power et al. (2003) implement this process using
logic programming. The different choices in map-
ping the rhetorical structure to the document struc-
ture are represented by constraints in the logic pro-
gram, with the exception of discourse connectives.
These set choicepoints, as in a standard logic pro-
gram.

Moreover, they evaluate the defects of a struc-
ture (as described in the following section) after
it has been completely generated. These factors
force them to generate all possible document struc-
tures for a given rhetorical structure, using both a
branch-and-bound and standard Prolog backtrack-
ing, before they can choose the best structure.

There are exponentially many (in the number of
nodes in the rhetorical structure) candidate docu-
ments for any rhetorical structure. The number of
candidates quickly blows up so that the approach is
impractical for rhetorical structures with more than
10 nodes.

2.5 Scoring document structures
In order to choose between different document
structures, Power et al. (2003) generate all valid
document structures, then score each one by
counting its undesirable features. The larger the
score, the worse the structure. They give an
example of a rhetorical structure with one relation
between two facts, with seven renderings, and one
with three relations and four facts, which has 58
renderings. They identify six kinds of undesirable
features, which we describe below.

Nucleus before satellite: The nucleus appears
before the satellite. This is undesirable, according
to Power et al. (2003), because of psycholinguistic
evidence which suggests that the more important
information should be placed at the end of a
sentence (and this is the common practise in
English). The first realisation in Figure 1 shows a
nucleus before satellite defect.

Left-branching structure: The left side of
the document structure tree branches, while the
right side does not. The second realisation in
Figure 1 contains a left-branching structure, as the
list child of the root node is realised before the
elementary child.

123

Lost rhetorical grouping: The document struc-
ture can conflate distinct levels of the rhetorical
structure. That is, a child and parent (and possibly
higher-level ancestor) nodes in the rhetorical struc-
ture can be realised at the same level in the docu-
ment structure. This makes it more difficult to infer
the underlying structure from the text. For example,
in Figure 4 the second and third examples contain
this defect, while the first does not.
Single-sentence paragraph: A paragraph
contains only one sentence.
Oversimple text-clauses: A sentence is com-
posed of two text-clauses (clauses separated by
a semi-colon), each of which expresses a single
elementary proposition. The first sentence of
the second realisation in Figure 1 contains is an
oversimple text-clause.
Repeated discourse connective: A single rhetor-
ical structure is represented twice in the document
structure, by the same connective, and in such a way
that one of the occurrences is on a descendent node
of the other.

2.6 Summary
Rhetorical structures represent the meaning of a text
independently of its realisation. Document struc-
tures include those realisation details which are rel-
evant to its meaning. A document structure can
be generated from a rhetorical structure using a
constraint-based approach as described in (Power
et al., 2003), but the current implementation is too
inefficient to be used on large rhetorical structures.

3 Constraint Programming
Implementation

Constraint programming (Marriott and Stuckey,
1998) allows us to specify relationships between
variables, without having to actually calculate the
values that the variables may take. In this work
we use constraint logic programming over finite
domains (Van Hentenryck, 1989), which augments
a traditional logic programming language with the
capacity to apply mathematical constraints over
Boolean and integer variables over fixed ranges.

In order to express the complex constraints that
arise in defining document structure and defects we
make use of reified constraints. These allow us to
attach a Boolean variable to the result of a con-
straint. For example B ⇔ X > 3 is a constraint
that holds if B = 1 and X takes a value greater than
3, or B = 0 and X takes a value less than or equal
to 3.

We implemented a document structurer in SIC-
Stus Prolog, using the same constraint model as

Power et al. (2003). However, our program differs
in that it simultaneously evaluates both the required
constraints to create the document structure, and the
constraints required to find the defects. It produces
as output both a document structure and a count of
its defects. By contrast, the document structurer of
Power et al. (2003) produces a document structure
which must then be evaluated. Moreover, our docu-
ment structure contains positioning information for
each word in the output.

Mapping a rhetorical structure to a document
structure involves a large number of independent
choices. As the rhetorical structure grows, the
number of corresponding document structures
grows exponentially. We would like to choose only
those with less than a fixed number of defects,
or perhaps the one having the fewest defects.
Generating all possible document structures,
to only choose one, is both unnecessary and
impractical as the number of candidates grows so
rapidly.

Our constraint programming model constrains
the count of defects while we are generating
document structures. This allows us to stop
generating a structure as soon as it has more defects
than the upper limit (for minimization this limit is
defined by the number of defects in the best answer
so far). Moreover, because a partially generated
document structure may in fact lead to several
document structures, each of which will have at
least as many defects as the partially generated
structure, we can prune entire branches from the
search tree.

We accomplish this by expressing the rules for
the defects as constraints. Each constraint is eval-
uated at every node on the document structure tree,
indicating whether or not the defect occurs at that
point. We simply sum them all to obtain the total
count of defects found so far. The constraints are
stored for each node, along with the other docu-
ment structure parameters. The rules for the nucleus
before satellite and left-branching defects are given
below. In the following, PN and PS are the posi-
tions of the nucleus and satellite nodes, while EN

and ES are Boolean variables indicating whether
the nucleus and satellite are elementary.

PN < PS ⇒ NucleusBeforeSatellite

(EN ∧ ¬ES ∧ PS < PN)
∨(ES ∧ ¬EN ∧ PN < PS)

⇒ LeftBranching

Because the total number of solutions to be
checked is exponential in the size of the structure,
the problem can easily become intractable for large

124

structures. Therefore, we set a maximum number
of assignments which can be made, and simply fail
to find any solutions after this point, and return the
best solution which has been found thus far.

3.1 Improving the searching efficiency
Expressing the entire model in a constraint-based
form allows us to search for a solution with the
fewest defects more quickly than a non constraint-
based implementation. However, the search space
is still very large, so we have implemented several
other techniques to improve the searching.
Labelling order: Because labelling one type of
variable will affect the domain of others, the order in
which variables are labelled can make a significant
difference. For example, if we set the connective
to a coordinating type, then the levels of any child
nodes must be zero, while the converse does not
necessarily hold. Therefore, at least in this case, it
will be more efficient to label the connective before
the level. The relationships between the variables
are relatively complicated, so it is unclear what
the best labelling order is without conducting some
experiments. We test two methods for ordering vari-
ables. One approach is to label the document struc-
ture by traversing the tree, depth-first. We make one
pass for each variable type. For example, we might
first label all the Indentation variables, then all
the level variables, and so on.

The other method we use is known as first fail
labelling (Haralick and Elliott, 1980). Using this
method, we label the variables in order of domain
size, starting with the smallest. This is intended to
reduce the amount of branching which occurs, and
prune large regions of the search space as early as
possible. Either of these methods can be used in
conjunction with any of the following strategies.
Iterating through the goal variable: One tech-
nique which can improve efficiency is to iterate
through the variable to be minimised, starting from
zero, attempting to find a solution at each value.

While it may seem inefficient, this procedure can
sometimes be faster than a simple search, because
the goal variable is constrained to just one value for
each call. Moreover, as soon as one of the calls
succeeds, we are guaranteed to have the minimum
value of the goal variable. Using a simple minimi-
sation search, it is generally not immediately clear
if a given solution is in fact the minimum, requiring
further search.
Limited-discrepancy search: Limited-discrep-
ancy searching (Harvey and Ginsberg, 1995)
requires a heuristic, which guesses the best value
for each labelling choice. Any choice which differs

from the heuristic is called a discrepancy. Using this
method, we search as before, but with the number
of discrepancies limited to some upper bound.
This has the effect of reducing the search space,
potentially rejecting many possible solutions, but
also allowing for a much faster search.

Our heuristic works as follows. If the level vari-
able is not already set, we choose the second largest
possible value for it. We are attempting to avoid two
nodes having the same level, thereby incurring a lost
rhetorical grouping defect. The larger the value, the
more values will be available for descendant nodes
to use, but the largest possible value will generally
be the same as its parent.

We always choose to indent multinuclear rela-
tions, thereby allowing children to take any avail-
able level, and place the satellite first, avoiding a
nucleus before satellite defect.

Subordinating connectives place the least restric-
tive constraints on the connected nodes, followed
by parenthetical and then coordinating connectives.
In particular, we do not wish to use a coordinating
connective, as it forces the nucleus and satellite (and
hence any child nodes they may have) to be of level
zero, and will incur a lost rhetorical grouping defect
on all further child nodes. Hence, we choose a sub-
ordinating connective if one is available; otherwise
a parenthetical one, and finally a coordinating con-
nective.

Unfortunately, it is unclear how many discrep-
ancies to allow when using limited-discrepancy
searching. We have tested our implementation
using a maximum of both 3 and 10 discrepancies,
but these choices are quite arbitrary.

Optimistic partitioning: Optimistic partitioning
(Prestwich and Mudambi, 1995) requires no fur-
ther information except the total range of the search
space, which is from zero to the total number of
nodes multiplied by 6 (the number of defect types).
We split the search space in two and search for a
solution in the first half of the space. If one is
found, we partition again, using this solution as the
new upper bound. If there is no solution in the first
half, we search again, in the upper half of the search
space. If there is a solution in the upper half, we
partition again, using the midpoint and the solution
in the second half of the search space as the lower
and upper bounds, respectively.

In either case, we store the current solution as the
best one thus far, and if at any time we fail to find
a solution in the given range, then we know that the
previous best solution is the overall minimum.

125

Restricting the number of assignments: A final,
crude method of improving performance is to sim-
ply restrict the total number of assignments which
can be made. Once we have reached this limit, we
can simply return the best solution found up to that
point. While it is preferable to find the best solution,
the search space is exponential, and there may be
cases in which this problem is intractable.

4 Results
Our testing data comes from Marcu’s rhetorical
structure corpus (Marcu, 2000). We have chosen a
particular article from his corpus, and rendered the
individual rhetorical structures which make up this
article.

The rhetorical relations used in this corpus gen-
erally do not specify corresponding discourse con-
nectives, so we used random placeholders. While
this produces rather ugly output, it is sufficient for
the purposes of testing the efficiency of the various
labeling techniques.

As described in §3.1, we iterate through the doc-
ument structure tree several times, once for each
variable type. We have tested all 24 possible vari-
able orderings. The numbers given in Table 1 repre-
sent the number of variable assignments required to
find the optimal solution, divided by the number of
variable assignments required by the most efficient
variable ordering for the same structure.

The order in which variables are labelled has
a large impact on the efficiency of the search,
by a factor of about 4 on our testing data. The
fastest method seems to be to label the Level

and Position variables first, and then either of
the other two. For the next table, we used the
“Level,Position,IndentationHere,ConnectiveIndex”
labelling strategy.

We have tested all of the search strategies dis-
cussed in the previous section, using both the tree-
traversal and first-fail methods of choosing which
variable to label. We forced all searches to termi-
nate after 100,000 assignments and return the best
solution found at that point, in order to prevent inor-
dinately long execution times. Results are shown
in Tables 2 and 3. We show the number of nodes
in the rhetorical structure, Size, as well as the min-
imal number of defects possible (if known), Min
Defects. The remaining columns give the number
of assignments required to find the best solution,
except the column First which gives the number of
assignments to find the first solution with simple
search. Basic is the simple minimization search,
Iterating iterates the defect count upwards from
0, OP uses optimistic partitioning, FF is first fail

search, and LD(n) is limited discrepancy search
with a max discrepancy of n. If the best solution
found is not optimal it is shown in parentheses after
the number of assignments figure. A dash indicates
no solution was found with 100,000 assignments.
Note that we have not normalised these results, as
it is sometimes unclear which is the best solution;
some strategies may perform faster than others but
return a non-optimal solution, and some are termi-
nated early for the sake of tractability.

For the search strategy, limited-discrepancy
search and iterating through the defect variable
(using tree-traversal labelling) seem to require the
least number of assignments in order to find a
solution. However, the best search strategy varies
considerably, depending on the structure. However,
if we reach the maximum number of assignments
without finding an optimal solution, iteration
cannot provide a sub-optimal solution, because by
definition, the first solution it finds is the optimal
one. For this reason, limited-discrepancy may be a
better choice when realising large structures.

Limited-discrepancy search often does not find
a solution when used with first-fail labelling. We
believe that this is because first-fail labelling will
choose labelling variables from all over the docu-
ment structure. Therefore, once a discrepancy has
been incurred, the next variable to be labelled may
be from an entirely different part of the document
structure. This may happen several times, causing
several discrepancies to occur, before the choices
which have been made can affect new ones.

By contrast, when using tree-traversal labelling,
once a discrepancy has been incurred, the next vari-
ables to be labelled will come from the same node,
or its children, which will be constrained by the
choice which has just been made.

Tree-traversal labelling seems to outperform first-
fail labelling in most other cases too, but much less
dramatically.

Basic search performs more poorly than the other
methods in most cases, as we might expect. Opti-
mistic partitioning represents an improvement on
this, but not as much as limited-discrepancy or iter-
ative searching.

Finding the first solution is generally quite fast,
but the first solution is almost never optimal. It
is also interesting to note that even merely find-
ing the first solution is often slower than finding
the optimal limited-discrepancy solution, indicating
that our heuristic is improving performance consid-
erably.

Overall, the iterating approach followed by a lim-
ited discrepancy search when this fails to find the

126

Ordering Max Min Average
IndentationHere,Level,ConnectiveIndex,Position 57.1 1.00 7.52
IndentationHere,Level,Position,ConnectiveIndex 1.78 1.00 1.28
IndentationHere,ConnectiveIndex,Level,Position 46.9 1.00 6.24
IndentationHere,ConnectiveIndex,Position,Level 19.0 1.00 3.15
IndentationHere,Position,Level,ConnectiveIndex 2.79 1.00 1.38
IndentationHere,Position,ConnectiveIndex,Level 2.65 1.00 1.47
Level,IndentationHere,ConnectiveIndex,Position 57.2 1.00 7.52
Level,IndentationHere,Position,ConnectiveIndex 1.75 1.00 1.29
Level,ConnectiveIndex,IndentationHere,Position 116 1.00 14.04
Level,ConnectiveIndex,Position,IndentationHere 57.1 1.00 7.50
Level,Position,IndentationHere,ConnectiveIndex 1.75 1.00 1.27
Level,Position,ConnectiveIndex,IndentationHere 1.75 1.00 1.27
ConnectiveIndex,IndentationHere,Level,Position 65.0 1.00 8.38
ConnectiveIndex,IndentationHere,Position,Level 37.1 1.00 5.38
ConnectiveIndex,Level,IndentationHere,Position 74.1 1.00 9.20
ConnectiveIndex,Level,Position,IndentationHere 46.9 1.00 6.18
ConnectiveIndex,Position,IndentationHere,Level 19.0 1.00 3.24
ConnectiveIndex,Position,Level,IndentationHere 19.0 1.00 3.08
Position,IndentationHere,Level,ConnectiveIndex 4.56 1.00 1.65
Position,IndentationHere,ConnectiveIndex,Level 3.82 1.00 1.73
Position,Level,IndentationHere,ConnectiveIndex 2.40 1.00 1.31
Position,Level,ConnectiveIndex,IndentationHere 2.40 1.00 1.31
Position,ConnectiveIndex,IndentationHere,Level 3.08 1.00 1.47
Position,ConnectiveIndex,Level,IndentationHere 3.08 1.00 1.39

Table 1: Comparative number of variable assignments required to find optimal solution for various labelling
strategies.

Size Min Defects First Basic Iterating OP LD(3) LD(10)
3 0 15 (2) 29 15 30 14 14

28 2 699 (20) 100000 (3) — 100000 (4) 21008 (9) 100000
45 ? — — — — 20666 (17) 100000 (11)
17 1 220 (12) 1167 392 1062 1677 (5) 1115
10 0 50 (6) 197 50 150 209 232
13 6 194 (9) 2626 2617 2953 455 1504
31 3 2310 (26) 100000 (8) — 100000 (12) 100000 (6) 100000 (6)
3 0 15 (1) 20 15 30 16 16

13 0 136 (9) 520 65 436 350 345
8 0 40 (5) 143 40 120 91 91
5 3 25 (4) 53 49 74 28 28
7 5 35 (6) 85 117 151 46 50
9 1 45 (7) 189 45 135 93 93

21 1 596 (16) 42410 40363 41634 9155 39894
3 0 15 (2) 29 15 30 14 14

15 0 214 (13) 1137 75 697 92 92

Table 2: Comparison of number of valuations required by different searching strategies, using a tree-traversal
system for choosing labelling variable.

solution appears to be the most robust combination.
By comparison, the prototype system demonstrating
the work in Power et al. (2003) generates all solu-
tions and then chooses the best one. This approach
will not scale to large rhetorical structures, which is

why we have not attempted to compare the systems
directly.

5 Conclusion

We have examined Power et al’s theory of doc-
ument structure, and implemented their document

126

Size Min Defects First Basic Iterating OP LD(3) LD(10)
3 0 12 (2) 14 12 24 17 17

28 2 — — 35691 — — —
45 ? 189 (21) 100000 (9) — 100000 (9) — —
17 1 68 (7) 196 74 220 — —
10 0 40 (4) 70 40 86 — 48
13 6 5079 (7) 9170 5923 10895 — 1009 (7)
31 3 1490 (14) 80592 40318 72914 — —

3 0 12 (1) 14 12 24 14 16
13 0 52 (7) 110 52 216 — 105

8 0 32 (5) 65 32 96 — 35
5 3 20 84 120 120 — 87
7 5 49 297 481 393 — 287
9 1 38 (7) 160 67 168 — 55

21 1 30357 (13) 46594 250 38881 — —
3 0 12 (2) 22 12 24 18 (1) 18

15 0 56087 (10) 91411 60 77427 — 232

Table 3: Comparison of number of valuations required by different searching strategies, using a first-fail
method for choosing the labelling variable.

structuring algorithm with a superior constraint han-
dling system. Limited-discrepancy search using
tree-traversal labelling is generally the fastest of the
search strategies we have tested, but may return
sub-optimal solutions at times. Other techniques
represent various trade-offs between completeness,
likelihood of finding a solution, and the score of
the solution. Any of these represent a significant
improvement in the performance of document struc-
turing for large inputs.

There are several avenues for further work in this
area: constraining output to fit within a specified
rectangle (e.g. for displaying text on a PDA); sum-
marisation in which subparts of the rhetorical struc-
ture are omitted, and defects are scored depending
on the nature of the omission; rendering of text
together with diagrams; and larger-scale empirical
testing. Ideally, we would like to obtain a larger cor-
pus containing rhetorical structures, relations and
discourse connectives.

It would also be interesting to use a more expres-
sive formalism than rhetorical structure. Rhetori-
cal structure has problems expressing many con-
structs used in everyday language, such as questions
and tense, and accordingly more complicated for-
malisms have been developed.

Acknowledgements

We are grateful to Donia Scott for early discussions
which inspired us to undertake this project, and for
providing software and data. We are also grateful
for the support of an Australian Postgraduate Award
for Robert Marshall.

References
James H. Coombs, Allen H. Renear, and Steven J.

DeRose. 1987. Markup systems and the future of
scholarly text processing. Communications of the
ACM, 30(11):933–947.

R. M. Haralick and G. L. Elliott. 1980. Increasing tree
search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14:263–313.

William D. Harvey and Matthew L. Ginsberg. 1995.
Limited discrepancy search. In Chris S. Mellish, edi-
tor, Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95); Vol.
1, pages 607–615, Montréal, Québec, Canada, August
20-25. Morgan Kaufmann, 1995.

Bill Mann. 1999. An introduction to rhetorical structure
theory (rst). http://www.sil.org/˜mannb/
rst/rintro99.htm.

Daniel Marcu. 2000. The Theory and Practise of Dis-
course Parsing. MIT Press.

K. Marriott and P.J. Stuckey. 1998. Programming with
Constraints: an Introduction. MIT Press.

R. Power, C. Doran, and D. Scott. 1999. Generating
embedded discourse markers from rhetorical struc-
ture. In Proceedings of the European Workshop on
Natural Language Generation, Toulouse, France.

Richard Power, Donia Scott, and Nadjet Bouayad-Agha.
2003. Document structure. Computational Linguis-
tics, 29(2):211–260, June.

Richard Power. 2000. Planning texts by constraint sat-
isfaction. In Proceedings of the 18th International
Conference on Computational Linguistics (COLING-
2000), Saarbruecken, Germany, pages 642–648.

Steven Prestwich and Shyam Mudambi, 1995. Improved
branch and bound in constraint logic programming,
pages 533–548.

Pascal Van Hentenryck. 1989. Constraint Satisfaction in
Logic Programming. MIT Press.

126

Proceedings of the Australasian Language Technology Workshop 2005, pages 127–133,
Sydney, Australia, December 2005.

Round-Trip Translation: What Is It Good For?

Harold Somers
School of Informatics
Manchester University

Manchester, UK
Harold.Somers@manchester.ac.uk

Abstract

This paper considers the popular but ques-
tionable technique of ‘round-trip transla-
tion’ (RTT) as a means of evaluating free
on-line Machine Translation systems.
Two experiments are reported, both relat-
ing to common requirements of lay-users
of MT on the web. In the first we see
whether RTT can accurately predict the
overall quality of the MT system. In the
second, we ask whether RTT can predict
the translatability of a given text. In both
cases, we find RTT to be a poor predictor
of quality, with high BLEU and F-scores
for RTTs when the forward translation
was poor. We discuss why this is the case,
and conclude that, even if it seemed obvi-
ous that RTT was good for nothing, at
least we now have some tangible evi-
dence.

1 Introduction

Macklovitch (2001:27) talks of “the spectacular
growth and pervasiveness of the World Wide
Web” leading to a “democratization” of Machine
Translation (MT) which has “profoundly trans-
formed the MT business”. The availability of free
on-line MT systems, since CompuServe’s initial
experiments in 1994 (Flanagan, 1996) and then
more significantly AltaVista’s collaboration with
Systran from 1997 onwards (Yang and Lange,
1998), has indeed revolutionized the MT world,
creating a whole new and significantly large com-
munity of users, mostly with little or no knowledge
or understanding of how MT works or even, in
some cases, how language works. Such users are,
nevertheless, keen to know how good MT output

is, and frequently resort to the intuitive technique
of ‘round-trip translation’ (RTT), or ‘back-and-
forth translation’, in which they take a given text or
sentence, have it translated into some foreign lan-
guage by the MT system (the ‘forward translation’,
henceforth FT), then have it translated back into
the original language by the same system (the
‘back translation’, BT).

 Popular articles on MT by journalists and other
lay-users all too frequently use this technique to
‘evaluate’ MT, with results which are, depending
on your predisposition, hilarious or infuriating. A
recent example is from the Biomedical Transla-
tions website (Anon, 2003), where the author ex-
plains the technique, and suggests that “In theory,
the back translated English should match the origi-
nal English.” Several garbled examples are then
given, and the article concludes “Would you trust
your surgeon using these instructions?” Another
website recognizes the problem “Machine transla-
tions can produce text that is garbled or hilariously
inaccurate”, and suggests as a resolution “Test the
precision of your translated text by sending a
phrase on a round trip through the translation en-
gine.” (Anon, 2005).

The dangers of this approach have long been
appreciated: for example Huang (1990), addressing
the problem of evaluating output when you do not
know the target language, describes it as the
“seemingly most natural way” to evaluate a trans-
lation, but quickly warns that the results are not
reliable. More recently, O’Connell (2001) gives the
following sound advice on an IBM website:

“A common misunderstanding about MT evaluation
is the belief that back translation can disclose a sys-
tem’s usability. […] The theory is that if back trans-
lation returns [the source language] input exactly,
the system performs well for this language pair. In
reality, evaluators cannot tell if errors occurred dur-
ing the passage to [the target language] or during the
return passage to [the source language]. In addition,

127

any errors that occur in the first translation […]
cause more problems in the back translation.”

So, although it is widely agreed in the MT
community that RTT is a bad technique, and
equally widely suggested in the lay community
that it is an effective way to evaluate systems, there
has been little or no work to demonstrate empiri-
cally whether RTT is in fact as misleading as it is
claimed.

In the next section we will briefly review the
reasons why one might be wary of RTT as an indi-
cator of MT quality: while one can cite anecdotal
evidence of bad round trips, we can ask whether on
a larger scale RTT might after all be indicative at
least of general trends. In this regard, given the
situation that lay users finds themselves in, we will
consider two issues of concern to them: Which is
the best MT system to use? And how machine-
translatable is my text? In Sections 3 and 4 we will
present two experiments that take this user’s need,
and explore whether RTT can meet it, or not.

2 Two perspectives on RTT

2.1 Why RTT might not work

As O’Connell (2001) states in the earlier quote,
and as other commentators have pointed out, RTT
could be misleading for three reasons:

First, if the round trip is bad, you cannot tell
whether it was the outward journey or the return
trip where things went wrong. For example, (1)
shows an RTT from English to Italian and back
again using Babelfish. The resulting BT (1c) is
garbled, but in fact apart from a possible gender
error (loan words usually take the gender of their
literal translation, so Home Page should probably
be feminine) the forward translation into Italian is
really quite acceptable.

(1) a. Select this link to look at our home page.
 b. Selezioni questo collegamento per guardare

il nostro Home Page.
 c. Selections this connection in order to watch

our Home Page.
Of course, if it is the outward journey that is

bad, then the return trip could be bad, but it might
be disproportionately so, because of the old maxim
‘garbage in garbage out’.

However, and this is the second point, a bad FT
can nevertheless lead to a quite reasonable BT. So
the fact that the round trip gives a good result does

not necessarily tell you anything about the outward
journey. This can be illustrated in (2), again using
Babelfish, where the idiomatic phrase is translated
literally into meaningless Portuguese (2a) and then
‘perfectly’ back into Enlgish (2c).

(2) a. tit for tat
 b. melharuco para o tat

c. tit for tat
The third point is that of course the basic prem-

ise of RTT is flawed: even a pair of human transla-
tors would not be expected to complete a perfect
RTT, in the sense that the return translation would
be word-for-word identical to the original source
text.

2.2 Why RTT might appear to work

So, it is easy to show RTT not working. But
equally we should acknowledge that sometimes,
RTT does appear to work, producing a quite un-
derstandable paraphrase and, if only we knew it, a
reasonable translation on the way. Examples (3)
and (4), translated by Freetranslation, illustrate
this.

(3) a. The spirit is willing but the flesh is weak.
 b.

Д у х
 ж е л а е т , н о п л о т ь с л а б а .

c. The spirit wishes, but the flesh is weak.
(4) a. Once, a jolly swagman camped beside a

billabong.
 b. О д н а ж д ы , в е с е л а я б р о д я г а р а з б и л а л а г е р ь о к о л о

у с т ь я р е к и .
 c. Once, the cheerful tramp has broken camp

about a mouth of the river.
The conclusion is that for a single given sen-

tence, we cannot know for sure if a good (or bad)
RTT indicates that the FT was good (or bad) or
vice versa. But it is a not unreasonable hypothesis
that over the length of a longer text, average RTT
quality might reflect the general quality of the sys-
tem used. This will be the subject of our first ex-
periment, reported in Section 3.

2.3 Lay-users and MT

For some time now, observers of MT have identi-
fied two distinct uses of MT, labelled ‘for assimila-
tion’ and ‘for dissemination’. The differences
between the two are neatly summarized in Table 1.
Until now, use of free on-line web-based MT ser-
vices has been assumed to lie more or less firmly
on the ‘assimilation’ side. However, as the avail-
ability of the service has become well known, we
now see a lot of web pages with explicit links to

128

MT services, which means that web-page design-
ers now see on-line MT as a way of getting their
message translated. They have become users of
MT for dissemination, although typically they do
not fit the profile outlined in Table 1, and it has
been argued (Gaspari, 2004; Somers and Gaspari,
2005) that web-page designers need to be better
educated about what MT can and cannot do.

It is not unreasonable therefore for web-page de-
signers to seek some way of knowing how well
their web pages will be translated well by free on-
line MT services. There has been a fair amount of
research recently on ‘translatability’. (Gdaniec,
1994; Bernth, 1999a,b; Bernth and McCord, 2000;
Underwood and Jongejan, 2001; Bernth and
Gdaniec, 2002; O’Brien, in press). Research has
focussed on identifying ‘translatability indicators’,
stylistic or grammatical linguistic features that are
known to be problematic for MT (so a more trans-
parent name would perhaps be ‘translation diffi-
culty indicators’). For example, mid-sentence
parenthetical statements or the use of the passive
voice could respectively be classified as stylistic
and grammatical indicators. While such measures
are of use to linguists, and to designers of con-
trolled languages, they mean little or nothing to the
average lay-user. Even if RTT is not reliable on an
individual sentence-by-sentence basis, might it be
reliable enough to show whether an entire docu-
ment is by and large machine translatable?

3 Experiment 1: Can RTT tell us which
system is best?

Even if RTT does not always work, we might
hope that the quality of the RTT will reflect the
quality of the FT: if this is true, then at least RTT
could be used to help lay-users to decide which
system to use, when they are faced with a large
number to choose from. In order to explore this
hypothesis, we set up a first experiment in which

we took four texts representing various language
pairs, translated them each using five free on-line
MT systems,1 then translated the resulting FT back
into the original language using the same system.
We used two standard measures to evaluate the
results, the familiar BLEU metric (Papineni et al.,
2002), and Turian et al.’s (2003) F-score metric. A
number of researchers have commented on the fact
that BLEU scores do not always agree with the F-
score, based on precision and recall, nor sometimes
with human judgments, especially for shorter
stretches of text (e.g. Way and Gough, in press). In
addition, alternative packages available on the
Web offering implementations of BLEU give sig-
nificantly different results. Accordingly, we used
our own implementations of BLEU and F-score,2
and show results with both metrics; while they
sometimes rank the translations differently, they
both tell the same overall ‘story’, as we shall see.

The texts were as follows: extracts from the
French web pages of the Tourist Offices of Mar-
seilles and Barèges (a skiing resort) for translation
into English, and two passages from the Europarl
corpus of European Parliament Proceedings 1996–
2003, one in English, for translation into German,
and one in French, for translation into English. All
the texts were around 100 sentences long.

Figures 1 and 2 show the BLEU and F-scores
for the 20 pairs of translations, FT and BT,
grouped by text, and ordered within each group.
The order of the systems is different for each text,
but since, for our purposes, we are only interested
in seeing whether the scores for the FTs and BTs
correlate, the identity of the individual systems is
unimportant. The first thing to notice is that both
BLEU and F-score show little correlation between
the FT and BT scores. Figure 3 shows this more
strikingly, as does a Pearson’s coefficient of r =
–0.04 for these scores. The F-scores (not shown
here) correlate somewhat better, at r = 0.61, but
this is nowhere near useful for our purposes.

However, we should note that, as Figures 1 and
2 show, the difference in scores for some of these
systems is really quite small. Also, for two of the
texts, the system with the top-ranking score for FT
is actually ranked 4th or 5th for the BT.

1 Babelfish, Freetranslation, Systran, ProMT, and Worldlingo.
2 Thanks to Simon Zwaarts for these, and also for Python
scripts used to translate on-line large amounts of material,
overcoming the text-length limits imposed by many of the
systems.

Assimilation Dissemination
many SLs, one TL one SL, many TLs
any style controlled style
any topic restricted topic(s)
poor quality OK good quality required
post-editing if needed no post-editing
user is reader user is author
Table 1. Differences between MT for assimilation
and MT for dissemination

129

Figure 3. Correlation of BLEU scores for FT and BT. If
the scores correlated well, they would cluster around the
diagonal.

Our first conclusion then is that RTT is not a
particularly good way to identify which system is
better: if anything, a high-scoring BT indicates
either the best or the worst system, but even this is
not systematic.

What is also striking is that the BT score is often
better than the FT score, and the difference is
greatest when the FT score is low. Although the

results do not show a consistent pattern, what is
clear is that a good score for the BT generally does
not necessarily ‘predict’ a good score for the FT;
rather more often the opposite.

The reason for this is fairly easy to explain, con-
sidering how these MT systems in general work.
Although systems perform source-text analysis to a
certain extent, when all else fails they resort to
word-for-word translation, and where there is a
choice of target word they will go for the most
general translation. Clearly, when the input to the
process is difficult to analyse, the word-for-word
translation will deliver pretty much the same words
in the BT as featured in the original text. A further
point to make is that the BLEU metric (and to a
lesser extent the F-score) ‘reward’ word matches,
even if the word order is somewhat scrambled.
This can be illustrated with (5) which shows the
source text (5a) and model translation (5b), the FT
(5c) and the BT (5d). About two thirds of the
words in (5a) appear in (5d); this pair of sentences
alone would merit a BLEU score of 0.5882.

Figure 1. BLEU scores for the 20 forward and round-trip translations.

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

BLEU fwd

BLEU RT

 bareges euro-E-G euro-F-E marseilles

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

BLEU fwd

BLEU RT

Figure 2. F-scores for the 20 forward and round-trip translations.

 bareges euro-E-G euro-F-E marseilles

130

(5) a. All of us here are pleased that the courts have
acquitted him and made it clear that in Rus-
sia, too, access to environmental information
is a constitutional right.

 b. Wir freuen uns hier alle, daß das Gericht ihn
freigesprochen und deutlich gemacht hat, daß
auch in Rußland der Zugang zu Umweltin-
formationen konstitutionelles Recht ist.

 c. Alle, von den uns hier erfreut werden, dass
die Gerichtshöfe ihn freigelassen haben, und
hat es reinigt gemacht, daß in Russland auch
auf zu Umweltinformationen zugreift ist ein
verfassungsmäßiges Recht.

 d. Everyone of which here delighted become us
that the courts it released have has cleans
made, and it that in Russia also on to envi-
ronment information take action, is a consti-
tutional right.

4 Experiment 2: Can RTT tell us how well our
text will be translated?

In our second experiment, we wanted to see if the
scores for the RTT would correlate with scores for
FT when we compare texts that the MT systems
translate well with texts that prove difficult. Based
on the BLEU and F-scores, we took three of the
texts from the first experiment, and the scores for
their RTTs using Freetranslation, neither the best
nor the worst of the MT systems. These ‘hard’
texts were the Marseilles web-page and the two
Europarl examples. Against these we constructed
three ‘easy’ texts: a children’s story (Goldilocks
and the Three Bears), some text from Canadian
weather forecasts, and some typical entries from a
tourist’s phrase-book. We constructed the parallel
Three Bears text and the tourist phrases from vari-
ous websites. The weather bulletins come from
RALI’s Météo website;3 we ‘helped’ the MT sys-
tem by pre-editing the texts, converting the all-
uppercase text to mixed case, inserting accents,
and also changing moins and minus in temperature
read-outs to a minus-sign. Like the ‘hard’ texts, the
‘easy’texts were all roughly 100 lines long.

In (6) we see some examples of BTs that show
that the easy texts were indeed generally well
translated back and forth.

(6) a. Therefore she went in top in the bedroom
where the three Bears slept, and there was the
three beds.

3 http://rali.iro.umontreal.ca/meteo, as described in Langlais et
al. (in press).

 b. Today. Cloudy with the clear periods and
some snow. High close to –9. The winds of
the west 15 to 30 km/h. Tonight. Cloudy
with the clear periods and 30% probability of
flurries.

 c. Do you speak the English ? I do not speak
the French. I do not understand. Please to
speak slowly. I hope that you understand my
English

The comparison of the BLEU scores for the FT
and BT of these six texts is shown in Figure 4. The
figure shows quite dramatically that, at least as far
as the BLEU scores go, the easy texts are some-
what easier to translate than the hard texts; and it
shows equally clearly that the score for the RTT
does not reflect this at all: in fact according to the
RTT score, all the texts are of about the same diffi-
culty. The correlation between BLEU scores for
the FT and BT is r = –0.31, while for the F-scores
it is r = 0.59.

5 Conclusions

In this paper we have tried to demonstrate explic-
itly what most MT researchers already assumed: to
paraphrase the words of Edwin Starr’s 1970s anti-
war song suggested by the title of this paper, “RTT
(grunt), what is it good for? Absolutely nothing
(say it again)...”. This may have seemed like an
obvious result, but we would like to restate that
until now no one as far as we know has published
results demonstrating this.

Before we leave the topic however, it may be
appropriate to cast one small shadow of doubt over
the result: throughout this work we have relied on
the BLEU and F-score metrics to judge the transla-
tions. So our conclusion is really that RTT cannot
tell good MT systems from bad ones, or easy-to-
translate texts from hard ones, based on automatic
evaluation methods. To be really sure of our re-
sults, we should like to replicate the experiments
evaluating the translations using a more old-
fashioned method involving human ratings of intel-
ligibility. The reason for this is that both these met-
rics reward translations that are lexically close to
the oracle translation, without taking into account
whether they are grammatical or make sense. If we
look at our high-scoring BTs, we can see that often
they do indeed match the vocabulary of the model
translations, without making much sense: contrast
examples (5) and (6), both high scoring, but differ-
ing in qualities of grammaticality and intelligibil-

131

ity. So perhaps this is not quite the end of the story
after all.

Acknowledgments

This work was completed while the author was on study
leave at the Centre for Language Technology, Mac-
quarie University. He is most grateful to all his col-
leagues there for their warm welcome, and especially
Simon Zwaarts and Menno van Zaanen, whose pro-
grams and scripts were used to translate on-line large
amounts of material, overcoming the text-length limits
imposed by many of the systems, and to implement the
BLEU and F-score measures. Thanks also to Elena
Akhmanova for advice on the Russian examples in this
paper, and to Steve Cassidy for suggesting the experi-
ments reported here.

References

Anon. 2003. More Machine Translation: Fun with com-
puter generated translation!, Biomedical Transla-
tions, News, October 2003. www.biomedical.com/
news.html.

Anon. 2005, Gotcha!: Translation software. Software
that translates text from one language to another may
be a big help—or hindrance—to businesses and relief
agencies alike. Baseline, May 2, 2005. www.base-
linemag.com/article2/0,1397,1791588,00.asp.

Bernth, A. 1999a. EasyEnglish: A confidence index for
MT. Proceedings of the 8th International Conference
on Theoretical and Methodological Issues in Ma-

chine Translation, TMI ’99, Chester, England, pp.
120–127.

Bernth, A. 1999b. Controlling input and output of MT
for greater user acceptance. Translating and the
Computer 21, London, [pages not numbered].

Bernth, A. and C. Gdaniec. 2002. MTranslatability. Ma-
chine Translation 16:175–218.

Bernth, A. and M. McCord. 2000. The effect of source
analysis on translation confidence. In J.S. White (ed.)
Envisioning Machine Translation in the Information
Future: 4th Conference of the Association for Ma-
chine Translation in the Americas, AMTA 2000,
Cuernavaca, Mexico, ..., Berlin: Springer, pp. 89–99.

Flanagan, M. 1996. Two years online: experiences,
challenges and trends. Expanding MT Horizons: Pro-
ceedings of the Second Conference of the Association
for Machine Translation in the Americas, Montreal,
Canada, 192–197.

Gaspari, F. 2004. Integrating on-line MT services into
monolingual web-sites for dissemination purposes:
An evaluation perspective. 9th EAMT Workshop
Broadening Horizons of Machine Translation and its
Applications, Valletta, Malta, pp. 62–72.

Gdaniec, C. 1994. The Logos translatability index. Pro-
ceedings of the First Conference of the Association
for Machine Translation in the Americas, Columbia,
Maryland, pp. 97–105.

Huang, X. 1990. A Machine Translation system for the
target language inexpert. Papers presented to the
13th International Conference on Computational

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

3bears meteo tourist bareges marseille euro-F-E

FT

BT

Figure 4. BLEU scores for the forward and back translations of three ‘easy’ and three ‘hard’ texts.

132

Linguistics, COLING-90, Vol. 3, Helsinki, pp. 364–367.

Langlais, P., S. Gandrabur, T. Leplus and G. Lapalme.
In press. The long-term forecast for weather bulletin
translation. To appear in Machine Translation.

Macklovitch, E. 2001. Recent trends in translation tech-
nology. Proceedings of the 2nd International Confer-
ence, The Translation Industry Today: Multilingual
Documentation, Technology, Market, Bologna, Italy,
pp. 23–47.

O’Brien, S. In press. Methodologies for measuring the
correlations between post-editing effort and machine
translatability. To appear in Machine Translation.

O’Connell, T.A. 2001. Preparing your web site for ma-
chine translation: how to avoid losing (or gaining)
something in the translation. IBM website, www-
128.ibm.com/developerworks/web/library/us-mt/.

Papineni, K., S. Roukos, T. Ward and W. Zhu. 2002.
BLEU: A method for automatic evaluation of ma-
chine translation. ACL-02: 40th Annual Meeting of
the Association for Computational Linguistics, Phila-
delphia, PA, pp. 311–318.

Somers, H. and F. Gaspari. 2005. The impact of free
web-based Machine Translation services on interna-

tionalisation. Paper presented at APWSI 2005: The
Asia Pacific Workshop on Software Internationalisa-
tion, at ASWEC 2005, The Australasian Software
Engineering Conference, Brisbane, Qld.

Turian, J.P., L. Shen, and I.D. Melamed. 2003. Evalua-
tion of machine translation and its evaluation. MT
Summit IX: Proceedings of the Ninth Machine Trans-
lation Summit, New Orleans, LA, pp. 23–28.

Underwood, N. and B. Jongejan. 2001. Translatability
checker: A tool to help decide whether to use MT. In
Proceedings of MT Summit VIII: Machine Transla-
tion in the Information Age, Santiago de Compostela,
Spain, pp. 363–368.

Way, A. and N. Gough. In press. Controlled translation
in an example-based environment: What do auto-
matic evaluation metrics tell us? To appear in Ma-
chine Translation.

Yang, J. and Lange, E.D. 1998. Systran on AltaVista: a
user study on real-time machine translation on the
Internet. In: D. Farwell, L. Gerber and E. Hovy (eds)
Machine Translation and the Information Soup:
Third Conference of the Association for Machine
Translation in the Americas, AMTA’98, Langhorne,
PA,Berlin: Springer, 275–285.

133

Proceedings of the Australasian Language Technology Workshop 2005, pages 134–142,
Sydney, Australia, December 2005.

Evaluating the Utility of Appraisal Hierarchies as a Method for Sentiment

Classification

Jeremy FLETCHER and Jon PATRICK

Sydney Language Technology Research Group
The University of Sydney

Sydney, Australia, 2006
{jeremy, jonpat}@it.usyd.edu.au

Abstract

Recent studies of sentiment classification

(determining whether a text is “positive” or

“negative”) using Appraisal theory have

provided mixed results. While some good

results have been obtained, it is difficult to

tell what aspects of Appraisal are particularly

useful for this task. In this paper, we present a

series of experiments to isolate features of

Appraisal, in order to compare which parts

aid the task of sentiment classification on

movie reviews. We report results which on

the surface challenge the utility of Appraisal

Hierarchies for this task, when modelled

using systemic features. However in the

context of making a trade-off between

coverage and scale of feature space, our

results appear promising. We hence discuss

the need for a balance between the size of a

classifier’s structure and the overall accuracy.

1. Introduction

Sentiment classification is a field of growing

interest in the computational linguistics world, as

researchers see the need for what has been termed

non-topical text analysis. Sentiment classification

deals with the problem of determining whether a

document is positive or negative. This task has

wide-ranging applications, notably market

research, and customer feedback. This paper sets

about to determine the usefulness of the linguistic

theory of Appraisal for Sentiment Classification.

 Appraisal theory describes how opinion is

expressed in text. Its description is in the form of

system networks denoted by a taxonomy of

expressions. In this work we rely on the

description of these taxonomies in Martin and

White’s The Language of Evaluation: Appraisal

in English (2005), for both our linguistically

guided hierarchies and realisations of features1.

1 In this study, we use only the ATTITUDE system from

Martin and White’s Appraisal structure, and append a

Figure 1 shows a visualisation of the system

network we use from appraisal theory.

Intuitively, it would seem that appraisal, if it

could be modelled effectively using

computational methods, would be a useful tool for

sentiment analysis. A linguistic theory which

gives us insight into the underlying construction

of the opinion of the author of a piece of text

should, in theory, allow us to compute such

opinion more effectively. Previous work on using

Appraisal for Sentiment Analysis, however, has

been unconvincing and somewhat inconclusive.

In this paper, we set about trying to isolate the

areas of appraisal theory which are useful and

applicable to sentiment analysis. Subsequently,

we wish to determine where efforts in the

automatic extraction of a document’s appraisal

profile should be focussed.

2. Previous Work

There has been some work done on the use of

Appraisal for sentiment analysis, including the

work of Taboada and Grieve (2004) in which

different categories of product reviews were

analysed for different types of Attitude (the three

sub-systems being Affect, Judgment and

Appreciation), using adjectives which had been

assigned particular proportions of each of these

systems.

Perhaps the most relevant work though is that

of Whitelaw, Argamon and Garg (2005), in which

movie reviews (data set from (Pang and Lee,

2004)) are classified over a positive/negative

dichotomy, using what they term appraisal

groups. The frequencies of expressions within a

text which bear opinion in the appraisal groups are

counted. These counts are normalised against the

total counts of appraisal groups within the

simultaneous ORIENTATION system (cf. Whitelaw,

Argamon and Garg, 2005). We omit the ENGAGEMENT

and GRADUATION systems as they are not suited to the

computational methods used in this study.

134

appraisal

ATTITUDE

affect
AFFECT-

TYPE

inclination

happiness

security

satisfaction

judgment
JUDGMENT-

TYPE

esteem
ESTEEM-

TYPE

normality

capacity

tenacity

sanction
SANCTION-

TYPE

veracity

propriety

appreciation
APPRECIATION-

TYPE

reaction
REACTION-

TYPE

impact

quality

composition
COMPOSITION-

TYPE

balance

complexity

value

ORIENTATION positive

negative
Figure 1: The Appraisal system network, comprising ATTITUDE and ORIENTATION sub-systems.

document.

They note, however, that work on similar

taxonomies for other tasks such as the analysis of

interpersonal distance (Whitelaw, Herke-

Couchman and Patrick, 2004; Whitelaw and

Patrick, 2004) and genre classification (Argamon

and Dodick, 2004) use relative features within the

hierarchies to model the “choice” made by the

author about the way a particular structure is

expressed.

Whitelaw and Patrick argue convincingly that

this modelling of choice as it relates to meaning is

an effective realisation of the tenets of the

Systemic Functional Linguistic theory (see

Halliday, 1994) which is the basis for the

Appraisal model. Despite this, Whitelaw et al

acknowledge that the use of this type of modelling

of Appraisal for sentiment analysis gives inferior

results to the simpler, non-theory conformant

procedure they adopt.

3. Motivation

The results of Whitelaw et al using Appraisal for

Sentiment Analysis were promising but

unconvincing. Using their model of Appraisal

theory, they were able to beat a baseline of simple

bag-of-words analysis, and also improved on the

then state of the art (Pang and Lee, 2004).

However, as we have already noted, to do this

they removed the notion of modelling choice in

the document, and used a simpler model of

relative frequencies. This, then, raises questions

about whether their Appraisal model does in fact

match the true notion of Appraisal in Systemic

Functional Linguistics.

Here, we adopt their methodology for

populating the lexical realisations in the system

network, in order to ascertain the areas of their use

of Appraisal which are useful. However, in order

to more closely model the linguistic phenomena

of Appraisal, we revert to the use of relative

systemic features (Whitelaw and Patrick, 2004).

We are hence attempting to approximate a

computational method for linguistic analysis of

Appraisal, in order to determine how useful such a

method is for this task.

We distinguish between three key operations in

the computational processing of system networks.

Firstly, there is the system network design, in

which the structure of the hierarchy is created (at

this time, this process is a manual process, and the

hierarchies used are those created by linguists).

Secondly, there is the realisation of the system

network, in which the concepts represented by

nodes in the network are mapped to identifiable

text features. And finally, there is the instantiation

of a particular document as a representation of a

system network. This final process involves some

kind of abstraction of the text of a document using

the realisations from the second process.

135

attitude
ATTITUDE-

TYPE

affect
AFFECT-

TYPE

reaction
REACTION-

TYPE

capacity

complexity

inclination

esteem
ESTEEM-

TYPE

impact

veracity

balance

sanction
SANCTION-

TYPE

normality

propriety

judgment
JUDGMENT-

TYPE

value

security

appreciation
APPRECIATION-

TYPE

happiness

composition
COMPOSITION-

TYPE

quality

tenacity

satisfaction

Figure 2: The ATTITUDE system from the RelationshipsShuffled system network. Nodes appear at the same

depth as they did in the original tree (Figure 1), but their relationships to the next level are modified. (see

note)

attitude
ATTITUDE-

TYPE

esteem
ESTEEM-

TYPE

capacity

quality

reaction
REACTION-

TYPE

happiness

normality

composition
COMPOSITION-

TYPE

satisfaction

propriety

judgment
JUDGMENT-

TYPE

sanction
SANCTION-

TYPE tenacity

impact

appreciation
APPRECIATION-

TYPE

security

affect
AFFECT-

TYPE

value

inclination

veracity

complexity

balance

Figure 3: The ATTITUDE system from the Hierarchy Shuffled system network. Leaf nodes stay as leaf nodes,

but other nodes are randomly assigned to places in the hierarchy. (see note)

NOTE: These systems each occur simultaneously with the ORIENTATION system within APPRAISAL.

However, because of the nature of the shuffling, the ORIENTATION system remains the same in both cases.

136

Experiment Raw Counts Systemic

Features

Original

System

Network

Relationship

Shuffled (see

Figure 2)

Hierarchy

Shuffled (see

Figure 3)

Attitude

Realisations

Shuffled

Orientation

Realisations

Shuffled

Baseline –

ABOW
X

Baseline –

System

Counts
X X

1 X X

2 X X

3 X X

4 X X X X

5 X X X X

6 X X X

7 X X X

Table 1: Feature types and networks used in the experiments

Our hypothesis is that there are particular

elements of value in having the Appraisal in a

document according to its conformance to the

systemic network structure.

4. Realising the Appraisal System Network

In order to compute the appraisal profile of a

document, we must be able to relate the content

words in the document to the Appraisal system

network of the theory.

The most common way of doing this is to

attach to appropriate concept nodes in the tree a

set of unigram features which are leaf-level

“realisations”. The system network is then

instantiated for each document by counting all the

realisation features within a document, and

aggregating these counts up the tree.

However, one of the problems of this method

is how to create a set of these realisations. For

Appraisal, there are some small example texts

from the Systemic Functional Linguistics

literature, but not enough to allow for reasonable

coverage within a computational framework.

To circumvent this lack of coverage of

realisation, we took the example text from Martin

and White (2005) as seed terms, and using the

method of Whitelaw, Argamon and Garg (2005),

expand the lexicon by generating synonyms from

WordNet and two online thesauri2. From this, we

also get a measure of the “confidence” of each

expanded term, by counting the number of times a

particular term is encountered from thesaural

expansion in a particular node in the system

2 http://m-w.com and

http://thesaurus.reference.com

network. For example, we may encounter

“joyous” as a synonym of two different

realisations of HAPPINESS (“happy” and

“jubilant”), indicating that it is perhaps a stronger

indication of that node than something which only

occurs as a synonym once.

Note also that a particular unigram realisation

may occur at numerous places within the system

network. A particular unigram does not

necessarily have a unique location within the

system network. For example, the adjective

“good” may be used in different contexts to

realise SATISFACTION, PROPRIETY, QUALITY or

VALUE, to name a few. Thus, each instance of

“good” in a document increases the counts at each

of these positions in the network.

While this method in no way guarantees

complete coverage for the corpus, it does increase

the coverage significantly, while still assuring

Appraisal items can be identified computationally.

5. Experiments

We ran a set of experiments to classify Pang

and Lee’s (2004) movie review corpus as

containing positive or negative sentiment3.

In order to test our hypothesis, we developed a

set of experiments to isolate particular attributes

of the structure of the system network. In order to

make the results comparable, we performed a

process of randomising or shuffling the nodes in

the network, thereby eliminating some of the

linguistic information contained within the

3 This dataset is freely available at
http://www.cs.cornell.edu/people/pabo

/movie-review-data/

137

particular representation of the tree.

There are two ways in which we randomise the

network, and two levels of intensity with which

we do it.

The first method of randomising the network

involves keeping each node at the same depth as it

was in the original, and simply randomly

assigning a parent node to each, then continuing

this process up the tree. The (shuffled) system

network which results from this process is given

in Figure 2 (RelationshipsShuffled Network).

The second method involves complete random

assignment of nodes within the hierarchy. This

means that any node can appear at any point

within the hierarchy, with only the leaf nodes

(which contain the realisations) staying as leaf

nodes within the system. This system is shown in

Figure 3 (HierarchyShuffled Network).

Of course, once this process has been

executed, there is no longer a relationship between

the labelling of particular nodes in the original and

shuffled networks. For example, in Figure 2

AFFECT no longer encompasses HAPPINESS,

SECURITY or SATISFACTION, and thus bears little

resemblance to its function in the original

network.

Running experiments using these shuffled

networks and comparing the results to those we

get on the original tree gives us some measure of

the utility of the arrangement of systems within

the original tree. If there is something of particular

use to sentiment analysis that can be gleaned from

the structure of the original tree, it should be

reflected in the results on the different networks.

The second level of intensity involves

shuffling the realisations between leaf nodes.

Hence, word-level realisations are no longer

grouped together as they were discovered in the

process of thesaural expansion.

5.1 Methodology

We use the confidence measure we attain from

the thesaural expansion to weight each realisation

placed in the tree. That is, if a particular unigram

has a high confidence measure for a particular

node, the count value for a document will be

increased more than if the confidence was low.

This has two implications: firstly, words which

are included as realisations from thesaural

expansions of peripheral unigrams (and thus are

less likely to be accurate realisations of appraisal)

have little impact when found in a document,

while increasing the impact of those unigrams

which we are confident have some semantic

similarity to our hand-crafted seed terms.

Secondly, it means that individual unigrams are

weighted for each node they realise. That is, a

unigram may be a strong indicator of a particular

node, but a weak indicator for another (due

perhaps to having another, less common sense).

This weighting then accounts for this case, rather

than assigning the same weight for each

realisation of each node.

We acknowledge that this confidence measure

is a heuristic, and lacks manual crafting, but it

increases the confidence about the decisions

which have to be made in a computational

process.

Once system network instance counts have

been accumulated for a particular document, we

calculate proportions of systems to their parents

and siblings, using System Percentage (SYSPERC)

and System Contribution (SYSCON) (Whitelaw,

Herke-Couchman and Patrick, 2004; Whitelaw

and Patrick, 2004).

SYSPERC: The proportion of the total system

usage made up by this particular sub-system.

SYSCON: The proportion of a super-system’s

usage made up by a particular sub-system.

These features, once calculated were used as

data for WEKA’s (Witten and Frank, 1999)

implementation of the SMO (Platt, 1998) support

vector machine learning algorithm. We used a

linear kernel and default parameters. Evaluation

was done using 10-fold cross validation.

5.2 Experimental Results

We ran a series of experiments to evaluate the

accuracy of classification of movie reviews

created using the features of the linguistically

modelled system network, and the same features

throughoutt the shuffled system networks.

The results from the shuffled system networks

were compared to the results on the hand-crafted

hierarchies, as well as two baselines. Our

experiments (summarised in Table 1) are as

follows:

Baseline 1: Appraisal-Bag-of-Words (ABOW)

– relative frequencies of all words which appear

as realisations of systems in the Appraisal system

network, normalised by document length. Omitted

from the experiment are the realisations which do

not appear in any document in the corpus, leaving

4,381 features.

Baseline 2: Bag of Nodes – the relative

frequencies of the raw counts of each node in the

system hierarchy, normalised by the total number

of appraisal counts in the document (i.e. the

aggregated count at the root of the hierarchy)

Experiment 1: SYSPERC and SYSCON

measures at all levels in the hierarchy, using the

original linguistically created system network.

138

Experiment 2: SYSPERC and SYSCON

measures at all levels in the hierarchy, using the

RelationshipsShuffled system network.

Experiment 3: SYSPERC and SYSCON

measures at all levels in the hierarchy, using the

HierarchyShuffled system network.

Experiment 4: SYSPERC and SYSCON

measures at all levels in the hierarchy, using the

RelationshipsShuffled system network, and

realisations randomly assigned in both the

ATTITUDE and ORIENTATION networks.

Experiment 5: SYSPERC and SYSCON

measures at all levels in the hierarchy, using the

HierarchyShuffled system network, and

realisations randomly assigned in both the

ATTITUDE and ORIENTATION networks.

Experiment 6: SYSPERC and SYSCON

measures at all levels in the hierarchy, using the

RelationshipsShuffled system network, and

realisations randomly assigned in just the

ATTITUDE network.

Experiment 7: SYSPERC and SYSCON

measures at all levels in the hierarchy, using the

HierarchyShuffled system network, and

realisations randomly assigned in just the

ATTITUDE network.

The results of these experiments are shown in

Table 2.

Experiment Acc. (%)

Baseline (ABOW) 83.7

Baseline (System

counts)

71.8

1 72.4

2 72.6

3 72.8

4 67.8

5 69.5

6 68.5

7 70.4

Table 2: 10-fold cross validation results for

different system networks and feature set

configurations. (See Table 1 for details of

experiments)

6. Analysis of Results

Immediately apparent from these results is the

degradation of accuracy when you move from the

Appraisal-bag-of-words features to systemic

features. This mimics the results of Whitelaw et al

who report that the use of these systemic features

produces inferior results to their simpler

measures. The most likely cause for this

discrepancy is the fact that the Appraisal tree is

reasonably shallow, so the aggregative properties

of these features do not have the scope of previous

experiments on these networks.

Occam’s Razor tells us to “not multiply

entities without necessity” and BOW classifiers

rampantly ignore this economy argument. Our

real objective should be to produce the classifier

that attains the highest accuracy with the least

model complexity, and to this end we need to

devise new metrics of performance that balance

performance against classifier size. In this light,

the “efficiency” of the Appraisal model can be

seen as superior to BOW. Of course, the

complexity of a classification system relies on

more than feature set size.

Our objective with this set of experiments,

however, is to draw comparisons between the

results of the linguistically created network and

our shuffled hierarchies.

What we note about these results, is that there

is very little difference between whether the

hierarchy used is the linguistically created

network, or one of those which was randomised to

some degree. We can see that the accuracy on our

original tree is 72.4%, whereas the results of the

same feature set using our RelationshipsShuffled

and HierarchyShuffled trees were 72.6% and

72.8% respectively. This leads us to believe that

there is no advantage for sentiment analysis in the

use of the structure of the original Appraisal

network when modelled computationally in the

manner we have described4.

However, what we do notice is the distinct

drop in accuracy once the realisations are

randomly assigned to the leaf nodes in our

hierarchy. Our accuracies drop by approximately

5% once this shuffling of realisations has taken

place.

Given that the results above show no benefit in

the structure of the hierarchy, we can deduce that

the benefit comes from having our unigram

realisations grouped together in some semantic

categories.

Experiments 6 and 7 attempted to isolate the

shuffling of realisations within the ORIENTATION

network, as we felt that this decrease in accuracy

may be due simply to the fact that each realisation

(in experiments 1-5) had been assigned either a

“positive” or “negative” Orientation value. This

type of processing of Semantic Orientation (SO)

has been exploited for sentiment classification

previously (Hatzivassiloglou and McKeown,

1997; Turney, 2002).

4 The small increases in accuracy over experiments 2

and 3 are most probably not statistically significant.

139

However, leaving the ORIENTATION

realisations unshuffled produces only a minor

increase in accuracy (Exp 4/5 v Exp 6/7), and the

results of these experiments are still well below

the results on those where the ATTITUDE

realisations are also unshuffled (Exp 2/3 v Exp

6/7). This indicates that it is not only the Semantic

Orientation of our realisations which aid

classification, but also the categories of

ATTITUDE.

Despite this, when we compare the results

achieved on this type of analysis to the simple

Appraisal-bag-of-words classification, there is a

very marked decrease in accuracy.

Most probably this is due to the additional

granularity which can be achieved by looking at

words on an individual level. What is important to

note is that although in the ABOW experiment

there is no preordained measure of sentiment

attached to the words, the machine learner

distinguishes words which have an intrinsic

positive or negative connotation some of which

are “bad”, “mess”, “waste”, “worst”, “stupid”,

along with “fun”, “great”, “terrific”, “memorable”

and “hilarious”. Perhaps more interesting is that

some word features which do not intrinsically

contain a semantic orientation become strong

word features in the ABOW experiments. Words

such as “very”, “also”, “nowadays”, “many” and

“leave” are indicators of positive sentiment, and

words such as “only”, “have”, “work”, “plot” and

“intended” seem to indicate negative sentiment.

This indicates that there is perhaps some value

to analysing the structure of the text, and how

rhetorical structure is realised differently in

positive and negative reviews. Another reason for

these strong word features is perhaps their

collocation with other sentiment-bearing

expressions. In this case, a process for identifying

frequent collocations in the text may also be a

useful tool for identifying better sentiment-

bearing expressions, as well as increasing the

number of realisations. This acknowledges the

need for more complex realisations of the system

network.

The peculiarities of particular words being

indicators of a particular orientation of sentiment

are worth exploring. For example, the fact that

“plot” tends to be indicative of negative sentiment

suggests that those movie reviews which make

specific reference to the plot are more likely to be

negative. This raises questions about different

styles of reviewing; are there ways to extract

information about how hard or leniently a

reviewer gives his or her opinion? When dealing

with a style of text which is opinion heavy,

especially when resolving the opinion into a

positive/negative dichotomy, issues of review

style come into effect.

In fact, one of the largest problems with the

use of these hierarchies, and perhaps the reason

why accuracy using them is less than with ABOW

features, is simply the lack of coverage. While we

have isolated potential sites for sentiment within a

text by collecting and expanding lists of Appraisal

realisations, it is reasonable to expect that there

are many more which are not captured. Moreover,

those Appraisal expressions which we do have

form only small proportion of the text as a whole5.

Experiment # features Acc. (%)

W:A6 1047 77.6%

ABOW 4318 83.7%

BOW
6
 48,314 87.0%

Table 3: Comparison of percentage accuracy

and size of feature set.

Although the Appraisal results generally and

hierarchical use in particular do not appear to be

competitive this is not the whole story. An

investigation of the size of the classifying

indicates a strong efficiency in the Appraisal

classifier. Using full bag-of-words features on the

same set of documents, Whitelaw et al attain

accuracy of 87.0%. However, to attain this

accuracy, they used 48314 features, whereas our

results on the Appraisal-bag-of-words (83.7%) are

attained through the use of only 4381 features,

less than ten percent of the size (see Table 3). To

draw direct comparisons between the accuracies

of these feature sets, however, it would be

necessary to compare the different types of

selected features over similar set sizes. How

effective is the use of the 50 best appraisal

features compared to the 50 best unigram BOW

features? These questions are open for discussion.

Whitelaw et al’s result on a similar feature set

to our Appraisal-bag-of-words, using 1047

features is 77.6% accuracy. This continuum

relationship between size of feature set and

accuracy once again emphasises the need for

some balance in a real working system. One of the

problems which must be addressed within any

type of text classification system is our ability to

reach the accuracy of feature indiscriminate

classifiers using classifiers with a much smaller

internal structure.

5 Even with the thesaural expansion, the Appraisal

realisations only make up ~22% of the unique words

within the text.
6 These experiments are documented in Whitelaw,

Argamon and Garg (2005)

140

7. Discussion and Future Work

We have presented here a set of experiments

designed to test the utility of particular parts of

Appraisal theory for sentiment analysis. While we

are still far from a definitive answer as to whether

this type of processing is useful in this domain,

the results here show that there is little benefit to

be gained from structure of the Appraisal network.

Perhaps one reason for this is that the network

itself is quite shallow. The deepest node in the

hierarchy is only four links from the root,

indicating that the type of aggregative statistics

gained from System Contribution and System

Percentage are ill-suited to this particular network.

Furthermore, it is also possible that we are not

yet able to effectively approximate a model of

Appraisal theory using computational methods.

Linguists in particular would argue that our

Appraisal-as-realisations methodology does not

do justice to the complexities of the theory.

As we discussed, there is some merit in the

level of distinction gained by the machine learner

on the Appraisal-bag-of-words features. In

actuality, in the process, the learner discovers

patterns between the word-level realisations and

the sentiment of the document as a whole.

A potentially useful extrapolation of this

principle is having a machine learner craft an

“optimal” hierarchy for Appraisal, for a particular

task. While the Appraisal hierarchy we see in the

linguistics literature is useful for general

descriptions of linguistic phenomena, it is

probably true that modifications to suit a

particular task could amplify the delineation of

some aspect of the text (for example sentiment

analysis), thereby increasing the accuracy of

computational processing.

Another method of testing the applicability of

this theory to the computational process of

sentiment analysis is to use the Appraisal network

for a different type of text classification (for

example, topic classification). If, in fact, there is a

notable decrease in the accuracy of the Appraisal

model on non-emotive texts, then we can see that

there is a particular relationship between

Appraisal theory and the computational process of

sentiment analysis. However, if the only real

utility provided by the network is some kind of

smoothing process, or a benefit from the

aggregative properties of the hierarchy, which

would perhaps be attested by similar results on

emotive and non-emotive texts, then we can no

doubt create (or construct using automatic

methods) better hierarchies for doing this.

Overall, there is still some question over

whether Appraisal theory is useful for the

computational process of sentiment classification.

The results here suggest that there is some value

to be gained from the grouping of words into

Appraisal clusters, but it is also true that only

doing this decreases the accuracy over using the

words themselves.

However, before a definitive answer is given to

this question, we would need to assess our

computational model of Appraisal in mode detail.

There is obviously some level of uncertainty in

the model, due to the method of realising nodes in

the system network. It is also likely that the

instantiations of the networks need to be modelled

in richer ways.

There is ongoing research into the way

realisations of linguistic phenomena are modelled

computationally, and is important that other

methods of such realisation are explored before

the use of Appraisal for sentiment classification is

discarded.

On the criteria of efficiency, however, the

Appraisal model appears to work very well,

although a true comparison has not been achieved

in this paper. That would require comparison to a

result from the top 4318 features in a BOW

experiment excluding the Appraisal terms.

References

S. Argamon and J. T. Dodick. 2004. “Conjunction

and modal assessment in genre classification”.

In Proceedings of the AAAI Spring Symposium

on Exploring Attitude and Affect in Text. AAAI.

Michael A. K. Halliday. 1994. Introduction to

Functional Grammar. Edward Arnold.

V. Hatzivassiloglou and K. R. McKeown. 1997.

Predicting the semantic orientation of

adjectives. In “Proceedings of the 35
th
 ACL and

8
th
 EACL”, pages 174-181, Somerset, New

Jersey. ACL.

J. R. Martin and P. R. R. White. 2005. The

Language of Evaluation: Appraisal in English.

Palgrave, London.

Bo Pang and Lillian Lee. 2004. “A Sentimental

education: Sentiment analysis using subjectivity

summarization base on minimum cuts”. In Proc.

42
nd
 ACL,. Pages 271-278. Barcelona, Spain.

M. Taboada and J. Grieve. 2004. “Analysing

appraisal automatically”. In AAAI Sprint

Symposium on Exploring Attitude and Affect in

Text. AAAI.

Peter D. Turney. 2002. “Thumbs up or thumbs

down? Semantic orientation applied to

unsupervised classification of reviews”. In Proc.

40
th
 ACL, pages 417-424, Philadelphia,

Pennsylvania.

141

Casey Whitelaw, Shlomo Argamon and Navendu

Garg. 2005. Using Appraisal Taxonomies for

Sentiment Analysis. In Proceedings of the First

Computational Systemic Functional Grammar

Conference, University of Sydney, Sydney,

Australia.

Casey Whitelaw, Maria Herke-Couchman and Jon

Patrick. 2004. “Identifying Interpersonal

distance using systemic features”. In

Proceedings of the AAAI Spring Symposium on

Exploring Attitude and Affect in Text.

Casey Whitelaw and Jon Patrick. 2004. “Selecting

Systemic Features for Text Classification”. In

Proc. Australasian Language Technology

Workshop, 2004. Macquarie University, Sydney

Australia.

Janyce M. Wiebe, Theresa Wilson, Rebecca F.

Bruce, Matthew Bell and Melanie Martin. 2004.

“Learning Subjective Language”. In

Computational Linguistics 30(3), pages 277-

308. MIT Press.

Ian H. Witten and Eibe Frank. 1999. Data

Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan

Kaufmann.

142

Proceedings of the Australasian Language Technology Workshop 2005, pages 143–151,
Sydney, Australia, December 2005.

���������
	�������������
������������	��
� �"!�#$�&%'	�� ��	��)(*�'�,+-������	���./�

0�1�2436587:9�;=<>7?9A@CB�D E8FHGJILK=MON)PQ1SRUTWVXFU9
Y�Z\[/]_^L`Cacb�`�de[�f/]gZ\hji:k\lmZ\B�k\Zn@CB�Doi:`�ap]&q�@�h$ZnrsB�t�luB�Z\Z\h$luB�t

vwB�lmxyZ_h$z{lm]�|}`Ca�~�Z\�m��`�fLh$B�Z
��luk�]{`�h$l�@e���/�_����f�z$]gh{@��ml�@

�j��b�������lmk�]g`�h{lu@X��Z\z{Z_@Ch{k����W@��
vwB�lmxyZ_h$z{lm]�|}`Ca�~�Z\�m��`�fLh$B�Z
��luk�]{`�h$l�@e���/�_����f�z$]gh{@��ml�@

�?�y���S�����> _¡S¢¤£�¥?�y�¤¦s§©¨yªO \¡>¦?�4«�§&¦�¬�¨�§&�C¨

¯® 3�K_2°1S;CK
±c²�³&³&´*µ�¶j·=¸y¸¤³&¹°·°ºg»¤´*¼j¶�¹X¶�»�´Q½°³&·=¸?»�´�¾�´g¿U¸?»¤¹°µ¤´*¾�´
·°ÀÂÁÃ½4µ¤¾�´�µC¶Q¸y³�¹°ÄyÀÂ´*¾ÆÅu¹°³ÈÇ°·=¸?·=µ¤´*¼�´}·°ºg»yÁÃ´�É=´}½=¹�¹�Ê
·°º�º*²�³�·=º�Ë°Ì6Ä?²�¶o·=³&´Í´gÎ�¶�³&´�¾�´*ÀÃË�ºg¹4¾�¸y²¤¶&·=¶&ÁÂ¹°µy·=ÀÏÀÃË
´gÎ�¸/´�µ¤¼&ÁÂÉ°´=Ð�ÑÒµÍ¶&»yÁÂ¼�¸?·_¸:´*³6Ó�´¯´*É_·°ÀÂ²y·_¶&´}É=·_³�ÁÃ¹4²¤¼
¾�¹�ÊyÁÃÔ?º�·=¶&ÁÃ¹4µ¤¼6¶&¹o¸y³�´*É�ÁÂ¹°²y¼�·=ÀÂ½=¹°³&ÁÂ¶&»y¾Õ¼QÅ�¹=³ÈÄ:¹°¶&»
¶&»¤´,·°ÀÂÁÃ½4µ¤¾�´�µC¶Ö·=µyÊ"¹°×�²¤³&ÁÂ½°·°µ¤·ØÊ�´*¶�´�ºg¶&ÁÂ¹°µÙ¼&²�Ä¤¿
¶&·°¼�×�¼�ÐWÚs»�´�Ä:´*¼�¶�·=ÀÂ½=¹°³&ÁÂ¶&»y¾Û·=º{»yÁÃ´*É°´*ÊQ·°º*º�²¤³&·°ºgËQ¹=Å
Ü°Ý ÐßÞ4àÛÅ�¹=³�¶&»¤´�ºg¹4¾jÄ?ÁÂµ¤´*Êe¶�·=¼�×X¹°µ}·QÀÂÁÂ¾ÕÁÂ¶�´*Ê}Ê¤·=¶&·
¼�´*¶�Ìw·°µyÊáÓc·°¼e¼&ÁÃ½4µ¤ÁÂÔyº*·=µ�¶&ÀÃËâ¾�¹°³�´�´*ãnº�ÁÂ´*µ�¶e¶&»y·°µ
¸y³�´*É�ÁÂ¹°²y¼s·_¸y¸y³�¹4·=º�»�´�¼�Ð
ä å 9OK_2°I�T
æ�;�K=FUI>9
ç ÀÂÁÃ½4µy¾�´�µC¶¯ÁÂ¼X¶&»¤´�¶&·°¼�×è¹=ÅÒÌ�Å�¹=³X¶éÓ�¹Ö¼�¶�³&´*·°¾Õ¼e¹°Å
Êy·_¶�·�Ó�»yÁÂºg»�³&´*¸¤³&´�¼�´*µ�¶W·=ÀÂ¶�´�³�µy·_¶&´�º�¹°µy¼�¶�³�²y·=ÀÏ¼ê¹=Å�¶&»¤´
¼&·°¾�´sÄ?·=¼&ÁÂºsÁÂµ¤Åu¹°³&¾Õ·=¶&ÁÂ¹°µÕºg¹4µC¶�´�µC¶*Ì°ÁÂÊ¤´*µC¶�ÁÃÅuË�ÁÂµ¤½-º�¹=³�¿
³&´*¼�¸/¹4µyÊ¤ÁÂµ¤½w¼�´�½4¾�´*µ�¶&¼�Ó�ÁÃ¶&»yÁÂµÕ¶&»¤´�¶ÒÓ�¹-¼�¶&³&´*·°¾Õ¼�Ð ç
ºg¹4¾Õ¾�¹°µJ·°ÀÂÁÂ½°µy¾�´*µC¶n¶&·°¼�×ëÁÂµJºg¹4¾�¸?²�¶�·_¶�ÁÃ¹°µy·°ÀsÀÂÁÏµ�¿
½4²¤ÁÂ¼�¶�ÁÂº*¼eÁÂ¼�Ó�¹=³�Êâ·=ÀÂÁÂ½°µy¾�´*µ�¶�Ì�Ó�»�´*³&´�Ä�ËÖ½°ÁÂÉ°´*µè·=µ
ì µ¤½°ÀÏÁÂ¼&»�¼�´�µ�¶&´*µyºg´�·°µ¤Ê�ÁÂ¶&¼�í?³�´�µ¤º$»j¶&³�·=µy¼&ÀÂ·=¶&ÁÃ¹4µ�Ì°¼&·�Ë°Ì
´*·°º{» ì µ�½4ÀÂÁÂ¼&»ÍÓc¹°³�ÊJî/¿H½=³�·=¾ÆÁÂ¼�·°ÀÂÁÃ½4µ�´�ÊÖÓ�ÁÃ¶�»ÍÁÂ¶&¼
í?³&´*µyº{»ï¶�³�·=µy¼&ÀÂ·=¶&ÁÂ¹°µñðpò�³&¹\Ó�µJ´*¶6·=ÀpÐÏÌjó Ü°Ü=ô�õwö ·°µ�¿
µyÁÂµ¤½È·°µ¤Êø÷Cº�»�ù²�¶&ú�´°Ì>Þ_û°û°ûCü$ÐÕÚs»�´nºg¹4¾jÄ?ÁÂµ¤´*Êý¼�´�¶�¹=Å
¼&²yº{»-·°ÀÂÁÃ½4µy¾�´*µC¶�¼SÊ�´*³&ÁÂÉ°´*Ê�Åu³&¹°¾á·c¸?·_³�·°ÀÂÀÃ´�À=ºg¹°³&¸y²y¼>ÁÂ¼
½°´*µ¤´�³�·=ÀÏÀÃËn²y¼�´*Ê8¶&¹�¶�³�·°ÁÂµ8¶�»�´�¶&³�·=µy¼&ÀÂ·=¶&ÁÃ¹4µQ¾�¹�Ê¤´*À/ÁÂµ
¼�¶&·=¶&ÁÏ¼�¶&ÁÂº*·°À�¾Õ·°º{»¤ÁÏµ�´n¶�³�·°µ¤¼&ÀÏ·_¶�ÁÃ¹°µ�¼�Ë�¼�¶�´�¾Õ¼�ÐXþ�¶&»¤´�³
·°ÀÂÁÃ½4µ¤¾�´�µC¶
¶&·°¼�×�¼�ÁÂµ8º�¹°¾�¸?²�¶�·_¶�ÁÃ¹°µy·°À?ÀÏÁÂµ�½4²yÁÂ¼�¶&ÁÏº�¼�ÁÂµ�¿
º�ÀÏ²¤Ê¤´�¼�´�µ�¶&´*µyºg´�·°ÀÂÁÃ½4µy¾�´�µ�¶*ÌL¼�¶�³�²yºg¶�²�³�·=ÀW·=ÀÏÁÃ½°µy¾�´*µ�¶
ð�´°Ðÿ½yÐ�·=¼¯·Ö¾�´*·°µ¤¼¯¹=Å�½°³&·°¾Õ¾Õ·_³ýÁÂµ¤Åu´�³&´�µ¤º�´\ü$Ìj·°µ¤Ê
½°³&·=¸y»¤´�¾�´�¿U¸?»�¹4µ¤´*¾�´�·°ÀÂÁÂ½°µy¾�´*µ�¶�Ð
Ús»¤´)½=³�·_¸?»¤´*¾�´�¿U¸?»�¹4µ�´�¾�´Øð���������ü ·=ÀÏÁÃ½4µ¤¾�´�µ�¶
¶&·°¼�×"·°ÁÂ¾Õ¼Í¶�¹	��
������
������)¼�´�½4¾�´*µ�¶J¶�»�´)¹°³&¶&»¤¹_¿
½°³&·=¸y»yÁÂºñÅu¹°³�¾ ¹=Åë·=µ ²¤¶�¶&´�³�·=µyºg´�ÁÂµ�¶�¹"¾�¹=³&¸?»�¹=¿
¸?»�¹4µ�´�¾ÕÁÂº�²yµyÁÃ¶&¼�Ì¤·°µyÊ6·°ÀÂÁÃ½4µQ¶&»¤´�¼�´-²¤µyÁÃ¶�¼c¶�¹�·�¸y»¤¹=¿
µ¤´�¶�ÁÂºâ¶&³�·=µy¼&ºg³�ÁÃ¸y¶&ÁÂ¹°µÛ¹°Å¯¶�»�´á²�¶&¶�´*³&·°µyºg´°Ð ö ·_Î�ÁÃ¿
¾Õ·=ÀsÁÂµyÊ¤ÁÏº�·=¶�´�¼�¶&»¤´ÈÊ¤´*¼&ÁÃ³&´6¶&¹ ¼�´*½°¾�´�µ�¶�½=³�·_¸?»¤´*¾�´
¼�¶�³�ÁÂµ¤½4¼�ÁÂµ�¶&¹6¶�»�´8¼&¾Õ·=ÀÏÀÃ´*¼�¶w¾�´*·°µ¤ÁÏµ�½°Å�²yÀW²yµyÁÃ¶&¼-¸/¹4¼é¿
¼&ÁÃÄ?ÀÃ´°Ð�ÚO·=×�ÁÂµ�½6¶&»¤´ ì µ¤½°ÀÂÁÏ¼&»X´gÎ¤·°¾�¸?ÀÃ´�Ó�¹°³&Ê���
����������
 �! �#",·=µyÊÍÁÃ¶�¼6¸y»¤¹°µ¤´*¶&ÁÂº}¶�³�·=µy¼&ºg³�ÁÃ¸y¶&ÁÂ¹°µ%$'&)(+*-,/.-021)$�Ì
¹4µ�´�¸/¹°¼&¼&ÁÂÄyÀÂ´�·°ÀÂÁÃ½4µ¤¾�´�µ�¶�ÁÏ¼43

Ä · ¶&¶ ÀÂ´ ¼&» Á ¸
& (* , . 0 1

5 ¹°¶�´¯¶&»y·=¶6·=ÀÏÁÃ½°µy¾�´*µ�¶8ÁÏµJ½=´�µ¤´�³�·=À�ÁÂ¼6¾Õ·°µ�ËC¿U¶�¹=¿
¾Õ·=µ�Ë°Ð�Ñéµ�¶&»¤´n´�Î�·°¾�¸?ÀÃ´Q·_Ä/¹_É°´=Ì+���w·=ÀÏÁÃ½4µ¤¼j¶�¹6$7*�$CÌ
���j·=ÀÏÁÃ½°µy¼s¶&¹8$�,�$�·=µyÊ �! ·=ÀÏÁÃ½4µ¤¼s¶&¹9$�.�$�Ð ì�: ²¤·°ÀÂÀÃË�ÁÃ¶
¾ÕÁÃ½4»C¶�Ä:´s¸/¹4¼&¼&ÁÃÄ?ÀÃ´�Åu¹°³
¼�¹°¾�´�ÀÃ´*¶�¶&´�³�¼W¶&¹w·°ÀÂÁÂ½°µÕ¶�¹�·°µ
´*¾�¸y¶ÒËý¼�¶�³�ÁÂµ¤½¤ÐÈÚ�»yÁÂ¼j¶&·°¼�× ÁÂ¼wºg»y·°ÀÂÀÃ´�µ�½4ÁÂµ¤½�Å�¹=³�·°µCË
ÀÂ·°µ�½4²y·_½°´6Ó�ÁÃ¶&»¤¹4²�¶�·}¹°µ¤´g¿H¶�¹=¿U¹°µ¤´6º�¹=³&³&´*¼�¸/¹4µyÊ�´�µ¤º�´
Ä:´�¶�Ó
´�´�µÍÁÏµ¤ÊyÁÃÉ�ÁÂÊy²¤·°À�½=³�·=¸y»¤´*¾�´�¼�·=µyÊÖ¸?»�¹4µ�´�¾�´*¼�Ì
·°¼�ÁÂ¼�¶�»�´�º*·=¼�´�Ó�ÁÃ¶�» ì µ¤½°ÀÏÁÂ¼&»}ð<;:»y·=µ¤½j´�¶c·°ÀpÐÏÌ/ó Ü°Ü=Ü ü�Ì
Ç°·=¸y·°µ�´�¼�´Õð ºg¹4µ¤¼&ÁÏÊ�´*³&ÁÏµ�½�½=³�·_¸?»¤´*¾�´�¼s·=¼c×=·=µ7=�Á/ºg»y·=³é¿
·°ºg¶�´*³�¼{ü�Ì/·=µyÊeÁÂµyÊ�´*´*ÊX¾�¹4¼�¶�ÀÂ·=µ¤½4²¤·=½=´�¼sÓ�ÁÃ¶&»X·Õ¸y³&´g¿
´gÎ¤ÁÂ¼�¶�ÁÂµ¤½�Ós³�ÁÃ¶�ÁÂµ�½8¼�Ë�¼�¶�´�¾�Ð
�>�è·=ÀÏÁÃ½4µ¤¾�´�µC¶�ÁÂ¼-·Q¸y³&´�³&´ : ²¤ÁÏ¼&ÁÃ¶�´�Åu¹°³-¾Õ·°µCËe·=¸�¿
¸?ÀÂÁÂº*·_¶�ÁÃ¹4µ¤¼�Ð íy¹°³ý´gÎ¤·=¾�¸?ÀÃ´=Ìn¶&»¤´ ·°ÀÂÁÂ½°µy¾�´*µ�¶}¸¤³&¹=¿
ºg´�¼&¼�Ì�·=µyÊø¶�»�´�³�´�¼&²¤ÀÂ¶&ÁÂµ¤½ý·°ÀÂÁÂ½°µ¤´*Ê?��� ¶�²�¸?ÀÃ´�¼�Ì�·_³&´
·Q¸y³&´*º*²�³�¼�¹°³-¶&¹�·°º{»¤ÁÂ´�É�ÁÂµ¤½�·=²¤¶�¹4¾Õ·_¶&´*Ê}½=³�·=¸y»¤´*¾�´�¿
¶�¹=¿U¸?»¤¹°µ¤´*¾�´�¾Õ·=¸¤¸?ÁÂµ¤½°¼�Å�¹=³ê¼�´�É4´*³�·=ÀC¶�´�Î�¶é¿U¶&¹_¿©¼�¸:´�´�ºg»
¼�Ë�¼�¶�´�¾�¼�ð ç ÀÂÀÃ´�µ�´�¶ ·=ÀpÐÏÌÍó Ü�@BACõ ÷C´C=&µ�¹=Ós¼�×�Á}·°µ¤Ê
D ¹4¼�´*µ�Ä:´�³&½¤Ìoó ÜE@FA4õ ÷CÀÂ¹°·=¶�Ìoó Ü=Ü°Ý�õ òcÀÂ·°º$×�´*¶Ö·=À ÐÂÌ
ó Ü=Ü�@ ü$Ð í/²¤³&¶&»¤´�³e²¤¼&´*¼eÁÏµ¤º*ÀÂ²yÊ�´�·=º*ºg´�µC¶�´�ÊèÀÃ´gÎ¤ÁÂº�¹°µ
ºg¹4¾�¸y³�´�¼&¼&ÁÃ¹4µïð��W·_½°´*Àê´�¶�·°ÀpÐÂÌcó Ü=Ü�@ ü$Ì�ÁÂÊ¤´*µ�¶�ÁÃÔ?º�·=¶&ÁÂ¹°µ
¹°ÅWº�¹°½°µy·_¶&´*¼�ð�G-¹4µ¤Ê¤³&·=×/ÌSÞ_û°û ô ü�ÌLÇ°·=¸y·°µ¤´*¼�´�¿ ì µ¤½°ÀÏÁÂ¼&»
Ä?·=º$×C¿U¶&³&·°µ¤¼&ÀÏÁÃ¶&´�³�·_¶�ÁÃ¹4µëð�G�µyÁÃ½4»C¶-·°µ¤ÊH��³�·=´*»yÀpÌWó Ü=Ü�@�õ
òcÁÏÀÂ·=ºs·=µyÊÕÚO·°µ¤·=×\·¤Ì4Þ=û=ûBI_·¤ÌCÞ=û=ûBI_Ä/üO·=µyÊ�Ô?µy·=ÀÂÀÂËj¶�»�´
í�þ�G�÷XÊyÁÂºg¶�ÁÃ¹4µ¤·=³&Ë}¼�Ë�¼�¶�´�¾�Åu¹°³�Ç°·_¸?·°µ�´�¼�´nÀÂ´*·=³&µ¤´*³&¼
ðpò�ÁÂÀÂ·°º_Ì:Þ_û°û°Þ õ òcÁÂÀÏ·=º-´�¶�·=À ÐÂÌyÞ=û=û4Þ4ü$Ì¤Ó�»¤ÁÏº{»Q¸y³�¹_É�ÁÂÊ¤´*¼
¶&»¤´wºg¹4µ�¶�´�Î�¶�Åu¹°³�¹4²�³�Óc¹=³&×/Ð
Ús»¤´�³&´Ö·_³&´Ö¼�´�É4´�³�·=À8¼&²yº�º�´*¼&¼�Å�²yÀ8·_¸y¸y³�¹4·=º{»¤´�¼ ¶�¹
Ç°·=¸y·°µ�´�¼�´J�>� ·°ÀÂÁÃ½4µ¤¾�´�µC¶�ÌÖµ¤¹=¶�·_Ä?ÀÃË�¶&»¤´ ÁÃ¶&´�³�·\¿
¶&ÁÂÉ°´6³�²yÀÃ´g¿HÄy·°¼�´*Ê ·_¸y¸y³�¹4·=ºg»ø¶&·=×°´�µøÄ�ËøòcÁÂÀÂ·°ºQ´*¶Õ·°ÀpÐ
ðéó Ü°Ü=Ü ü�Ì°ÀÏ·_¶&´�³OÅ�¹°ÀÏÀÃ¹_Ó
´�ÊjÄ�Ëw·°µ�²yµ¤¼&²¤¸/´*³�É�ÁÂ¼�´�Ê�¼�¶�·_¶�ÁÂ¼é¿
¶&ÁÏº�·°À�¾�¹�Ê¤´*À�Ä?·=¼�´�Ê�¹°µ�Úsí�¿HÑCK�íèÄ�Ëýòc·°ÀÂÊ¤ÓsÁÏµ�·=µyÊ
ÚO·°µy·_×_·6ðéó Ü=Ü°Ü ·¤ÌSó Ü=Ü°Ü Ä�ü�Ð ç ÀÃ¶&»¤¹°²¤½4»Q¶&»¤´�¼�´-¾�¹�Ê�´�ÀÂ¼
Ó�´*³&´QÅu¹4²¤µyÊo¶&¹ý»y·�É°´6»yÁÃ½4»o·°º�º*²�³�·=º�Ë°Ìê¶�»�´�ÁÃ³ÕÁÃ¶�´*³�·\¿
¶&ÁÂÉ°´X·_¸y¸¤³&¹4·=ºg» »y·=ÊJ·�»yÁÃ½4»Jºg¹4¾�¸y²¤¶&·=¶&ÁÃ¹4µy·=À�ºg¹4¼�¶�Ì
¾Õ·_×�ÁÂµ¤½ø¶�»�´�¾ ÁÂ¾�¸y³�·=º�¶&ÁÂº*·=À'Å�¹=³�¾�·°µCËë³&´*·°À ¿HÓc¹°³&ÀÏÊ
·=¸¤¸?ÀÂÁÂº*·_¶�ÁÃ¹4µ¤¼�Ð í:¹=³e¶&»¤´ø¼�¶&·=¶&ÁÏ¼�¶&ÁÂº*·=Àj¾�¹�Ê¤´*ÀÂ¼�Ìw¶&»yÁÂ¼
ÁÂ¼�¸?·_³&¶&ÁÏ·=ÀÏÀÃËe·6º�¹°µy¼�´ : ²¤´*µyºg´�¹=Å�¶�»�´�ÁÃ³�¼�¶�³&¹°µ¤½°ÀÂËe²yµ�¿
¼&²¤¸:´�³&É�ÁÏ¼�´*Êñµ¤·=¶&²¤³&´=ÐML�´ø¶&»�²y¼¯´gÎ�¸yÀÂ¹=³&´o¶�»�´ë²y¼�´
¹°Å�¶�»�´ ì ÊyÁÂºg¶j·°µ¤ÊHG�·=µ7=�ÁÏÊ¤ÁÏºÕ´�ÀÃ´�ºg¶&³�¹4µ¤ÁÏºÕÊyÁÂº�¶&ÁÂ¹°µy·_³�¿
ÁÃ´�¼nðpòc³�´*´*µLÌ�ó Ü°Ü ICü�·°¼�¾�´*·°µ¤¼w¹=Åcºg¹4µ¤¼�¶&³&·°ÁÂµyÁÂµ¤½È¶�»�´
·°ÀÂÁÃ½4µ¤¾�´�µC¶�¼�´*·=³�º{»X¼�¸y·°ºg´Õ·=µyÊX³&´*Êy²yº�ÁÂµ¤½6º�¹°¾�¸?²�¶�·\¿
¶&ÁÂ¹°µy·=ÀSºg¹4¾�¸yÀÂ´gÎ¤ÁÃ¶éË=Ð
Ús»¤´o½=¹4·°À�¹=ÅÕ¶�»¤ÁÂ¼}¸?·_¸�´�³ ÁÂ¼¯¶�¹âº�¹°¾�¸?·_³&´ë¼�´*É4¿

143

´�³�·°À�Ê¤Á��/´*³�´�µC¶ �>��·°ÀÂÁÃ½4µ¤¾�´�µ�¶8¾�´�¶�»�¹�Êy¼8ÁÏµJ¹°³&Ê¤´�³
¶�¹8·°ºg»yÁÃ´�É=´�´ : ²yÁÃÉ=·=ÀÃ´�µC¶s¹=³�Ä/´*¶�¶&´�³'·°ÀÂÁÃ½4µ¤¾�´�µ�¶s·°º*º�²�¿
³�·=º�Ë ¶�¹�¶�»¤·=¶QÅu¹°³8´gÎ¤ÁÂ¼�¶�ÁÂµ¤½o¾�´�¶�»�¹�Êy¼�Ì�·=¶Q·ø¾�²yº{»
ÀÃ¹\Óc´�³sºg¹4¾�¸y²¤¶&·=¶&ÁÂ¹°µy·=À>ºg¹4¼�¶�Ð�Ú�¹n·=º{»yÁÃ´*É°´�¶&»yÁÂ¼�½°¹4·=ÀpÌ
Ó�´Q¼�¸?ÀÂÁÂ¶w¶�»�´8¶�·=¼�×ý¹°Å �>�,·=ÀÏÁÃ½°µy¾�´*µ�¶wÁÏµC¶�¹X·e¸?²�³&´
·°ÀÂÁÃ½4µ¤¾�´�µC¶j¼&²�Äy¶&·°¼�× ·=µyÊ�·=µ�¹°×�²�³�ÁÃ½4·=µy·XÊ�´*¶�´�ºg¶�ÁÃ¹4µ
¼&²¤Ä¤¶�·=¼�×/Ì°·°µ¤Ê�º�¹°¾�¸?·=³�´c·°ÀÃ½°¹=³�ÁÃ¶�»¤¾)É=·_³�ÁÂ·°µ4¶&¼�¹=Å?¸y³&´g¿
´gÎ¤ÁÂ¼�¶�ÁÂµ¤½�·_¸y¸¤³&¹4·=º{»¤´*¼ïÅu¹°³JÄ/¹=¶�»�Ð ç ¼ï¹4²�³JÄ?·=¼�´
¾�¹�Ê¤´*ÀpÌ�Ó�´ë²y¼�´ë¶�»�´ë¶�¹°¸ ¸:´*³�Å�¹=³�¾ÕÁÂµ¤½è¼�¶�·_¶�ÁÂ¼�¶�ÁÂº�·°À
¾�¹�Ê¤´*À�Å�³�¹4¾Ûòc·°ÀÂÊ¤ÓsÁÏµ�·°µyÊÈÚ�·=µy·_×_·�ðUÞ_û°û=û�ü�Ð
Ús»¤´�³�´�¾Õ·=ÁÏµ¤Ê¤´�³�¹=ÅW¶�»¤ÁÂ¼�¸?·_¸:´*³�ÁÂ¼�¼�¶�³�²yºg¶�²�³&´*Ê}·=¼
Åu¹4ÀÂÀÃ¹_Ós¼�Ð�í�ÁÃ³�¼�¶�ÌyÓ�´-ÊyÁÂ¼&º*²¤¼&¼�¶�»¤´�í�þ�G�÷n¼�Ë�¼�¶�´*¾�Ì?·=µ
ÁÂ¾�¸/¹°³&¶&·°µC¶-¾�¹°¶&ÁÃÉ=·=¶�¹°³-Å�¹=³�¶&»yÁÂ¼-Ó�¹=³&×øð©÷4´�ºg¶�ÁÃ¹4µ ÞCü�Ð
L�´-¶�»�´�µeÊ¤ÁÂ¼&º*²y¼&¼s¶&»¤´ �>�ê¿©·=ÀÂÁÂ½°µy¾�´*µ�¶c¸¤³&¹°ÄyÀÂ´*¾ÛÅ�¹=³
Ç°·=¸y·°µ�´�¼�´ýÁÂµÍ½=³&´�·_¶&´�³ÈÊ�´*¸¤¶�»,ðH÷C´*º�¶&ÁÂ¹°µ ô ü$Ì�Ä/´*Åu¹°³&´
½4ÁÃÉ�ÁÏµ�½�Ê�´*¶&·°ÁÂÀÏ¼�¹=Å'¶�»�´�Äy·°¼�´*ÀÏÁÂµ¤´È¼�¶�·_¶�ÁÂ¼�¶&ÁÏº�·°À�¾�¹�Ê¤´*À
·°µ¤Ên¹4²�³�¾�¹�ÊyÁÃÔ?º�·=¶&ÁÂ¹°µy¼�¶&¹wÁÂ¶�ðH÷C´*º�¶&ÁÃ¹4µ���ü$ÐWí�ÁÏµ¤·°ÀÂÀÃË4Ì
Ó�´
ÊyÁÂ¼&º�²y¼&¼S¹4²¤³�³�´�¼&²¤ÀÂ¶&¼S¹4µj·�¾Õ·=µ¤²¤·°ÀÂÀÃË�·=ÀÏÁÃ½4µ�´�Êw¶�´�¼�¶
Êy·_¶�·�¼�´*¶jð©÷4´�ºg¶�ÁÃ¹4µ ICü�Ð

� ���	��
 T
FU;�K=FUI>9W1L2=N)3�NW3�K=7?G
�>� ·°ÀÂÁÃ½4µ¤¾�´�µ�¶ ÁÂ¼á·°µ ÁÂ¾�¸/¹°³�¶�·=µ�¶ ¼�¶&´�¸ ÁÂµ�¶&»¤´
¸?ÁÃ¸/´�ÀÂÁÂµ¤´-¶�»¤·=¶�Ê¤³�ÁÃÉ4´�¼c¶&»¤´jíêþ G�÷¯ð��&í:¹=³&½°ÁÂÉ�ÁÏµ�½8þ�µ�¿
ÀÂÁÏµ�´ G�·°µ'=&Á�÷C´*·=³&º�» ��üsÊ¤ÁÏºg¶�ÁÃ¹°µy·=³�Ë¯ÁÂµ�¶&´�³&Å�·°ºg´�ð òcÁÂÀÏ·=º=Ì
Þ=û=û4Þ4ü$Ì_¹°²¤³>¸y·=³&¶&ÁÂº*²¤ÀÏ·_³�³&´�¼�´*·=³&º�»wÁÂµC¶�´*³&´*¼�¶*Ð LÍ»¤´*³�´�·=¼
µ¤¹=³�¾Õ·=À�´�ÀÃ´�ºg¶&³�¹4µ¤ÁÏº�ÊyÁÂº�¶&ÁÃ¹4µy·_³�ÁÃ´�¼�Ó�ÁÏÀÂÀcµ¤¹=¶�¸y³&¹\É�ÁÂÊ�´
¶&»¤´�¶&·=³�½°´�¶�Ó�¹=³�ÊÕÁÃÅ�·°µnÁÂµyºg¹°³�³&´�ºg¶�³�´�·=ÊyÁÂµ¤½jÁÂ¼
ÀÂ¹C¹=×C´*Ê
²¤¸LÌ�íêþ�G�÷èÁÏ¼ ·_Ä?ÀÃ´ë¶&¹âº�¹°¾�¸/´�µ¤¼�·_¶�´ëÅu¹°³ ÀÂ´*·=³&µ¤´*³
¾ÕÁÂ¼�¶�·_×°´�¼�Ä�ËjÊ¤Ë�µy·°¾ÕÁÂº�·°ÀÂÀÃË�¸y³�´�Ê¤ÁÏºg¶�ÁÂµ¤½�³&´*·°Ê¤ÁÏµ�½4¼êÅu¹°³
ºg¹4¾�¸/¹4²¤µyÊ¤¼*ÌL·=µyÊ¯·°ÁÂ¾Õ¼�¶�¹�ÊyÁÃ³&´*º�¶�¶&»¤´�²y¼�´�³�¶�¹6¶�»¤´
ºg¹°³&³�´�ºg¶�Ó�¹=³�ÊwÊ¤´*¼�¸?ÁÃ¶�´
¸:¹4¼&¼&ÁÃÄ?ÀÃ´�¾ÕÁÂ¼�¶�·_×C´*¼>ÁÏµw¶&»¤´�´�µ�¿
¶�´*³&´*Ê�³�´�·=ÊyÁÂµ¤½yÐ
í?¹°³�´gÎ¤·=¾�¸?ÀÃ´°Ì�¼&²�¸y¸/¹4¼�´�¶&»¤´-²y¼�´�³cÓsÁÏ¼&»�´�¼
¶&¹�ÀÃ¹C¹°×
²¤¸��� ����
E��� ��� �&º�¹°¾Õ¾�¹°µ�º�¹°ÀÏÊ �¤Ð���´ï¹°³�¼&»�´
¾Õ·�Ë�×�µ¤¹\Ó ¶&»¤´�×=·°µ'=&Á�������
E���'����� � ���!� ��ÓsÁÏµ¤Ê ��ÌC·=µyÊ
·°ÀÂ¼�¹"� ���$#E�%�&#E� �! ���<�
'��(���
$�8�é´*É�ÁÏÀpÌcÓ�ÁÂº{×=´�Ê �¤Ìc·=µyÊ
¶&»�²¤¼Q½°²¤´*¼�¼8¶�»¤·=¶6¶&»¤´¯³&´*·°Ê¤ÁÏµ�½ëÅu¹°³����AÁÂ¼)��
E��� ���
�$#E�%�&#E� �! ���<�
=Ì4¹4µ�´�¸:¹4¼&¼&ÁÃÄ?ÀÃ´'ºg¹4¾jÄ?ÁÂµy·_¶�ÁÃ¹°µ�¹°Å/³&´*·°Ê�¿
ÁÂµ¤½°¼�Ð �'¹_Ó
´*É°´�³*ÌÕ¶�»¤´Jº�¹=³&³&´*º�¶�³�´�·=ÊyÁÂµ¤½*��
E��� �ÖÁÏ¼
µ¤¹°µ�¿Hº�¹°¾�¸/¹4¼&ÁÃ¶�ÁÃ¹°µy·°ÀpÐ K�´�¼�¸yÁÂ¶�´�¶&»¤´�ÁÂµyºg¹°³�³&´�ºg¶�½°²¤´*¼&¼�Ì
í�þ�G�÷�¼�¶&ÁÂÀÏÀ�ÀÂÁÂ¼�¶�¼�¶&»¤´�¶&·=³�½°´�¶OÓ�¹°³&ÊwÓ�ÁÃ¶�»j¶&»¤´�º�¹=³&³&´*º�¶
³&´*·°Ê¤ÁÏµ�½6ÁÏµXÁÃ¶&¼�ÀÂÁÏ¼�¶'¹=Å�º�·°µyÊ¤ÁÏÊ¤·=¶�´�¼'Å�¹=³'¶�»�´�½4²�´�¼&¼�´�Ê
³&´*·°Ê¤ÁÏµ�½yÐ
Ús»¤´�Ä?·=ºg×4¿H´*µyÊeÊ¤·=¶&·Õ¶&»y·_¶�Ê¤³�ÁÃÉ°´�¼�í�þ G�÷6ÁÂ¼'ºg¹4µ�¿
¼�¶�³�²yºg¶&´*ÊÖ·°¼nÅ�¹°ÀÏÀÃ¹\Ó�¼�Ð íêÁÃ³�¼�¶&ÀÃËCÌ�·=ÀÏÀ'´*µC¶&³&ÁÂ´*¼QÁÂµï¶&»¤´
ì ÊyÁÂº�¶6Ê¤ÁÏºg¶&ÁÂ¹°µy·_³&ËÖ·_³&´ �>�Û·=ÀÂÁÂ½°µ¤´*ÊLÐñÚs»¤´}¼&²�Ä?¼�´g¿
: ²�´�µC¶ �>� ¶&²¤¸yÀÂ´*¼�·=³�´ ºg¹4²¤µC¶&´*ÊJ¶&¹ë´�¼�¶&ÁÏ¾Õ·_¶&´}¶&»¤´
¸y³�¹°Äy·=Ä?ÁÂÀÂÁÂ¶ÒË,+nð.-0/ 1:ün¹=Å�·ë½°ÁÃÉ4´*µâ³�´�·=ÊyÁÂµ¤½�-oÅ�¹=³e·
½4ÁÃÉ°´�µ)½=³�·=¸y»¤´*¾�´ ¼�´�½4¾�´*µC¶"1�ÐÆ±�¹4¾�¸:¹°¼&ÁÂµ¤½â¼�´*½=¿
¾�´*µ�¶-¸y³�¹°Äy·=Ä?ÁÂÀÂÁÂ¶&ÁÃ´�¼�¶�¹°½°´�¶&»¤´*³�½4ÁÃÉ°´�¼-¶&»¤´n¸¤³&¹°Äy·=ÄyÁÏÀ ¿
ÁÃ¶ÒË2+8ð.-3/ 4_üê¹°ÅS·=µ8´�µC¶�ÁÃ³&´'ÊyÁÂº�¶&ÁÂ¹°µy·_³&Ë�´*µ�¶�³&Ë24�¶&·=×�ÁÂµ¤½
³&´*·°Ê¤ÁÏµ�½5-�Ð76�¼&ÁÂµ¤½-ò�·\Ë=´*¼O³�²¤ÀÂ´=Ì4Ó�´�Ô?µ¤·°ÀÂÀÂË�º*·=ÀÂº*²yÀÂ·_¶&´
+8ð849/ -4ü$Ìê¶&»¤´8¸¤³&¹°Äy·=ÄyÁÏÀÂÁÃ¶�Ë¯¹°Å�·¯ÊyÁÂºg¶�ÁÃ¹4µ¤·=³�Ëý´�µ�¶&³�Ë:4
Ä/´�ÁÂµ¤½�¶�»�´n¶&·=³&½=´*¶�´�µC¶�³&Ë¯½°ÁÃÉ4´*µý¶&»¤´n²y¼�´*³-¸y³&¹_É�ÁÂÊ�´�Ê

í�ÁÂ½°²¤³�´}óE3 ç ¶ÒË�¸yÁÂº*·=À�ÊyÁÂº�¶&ÁÃ¹4µy·_³&Ë ´�µC¶�³&Ëý³&´ : ²¤ÁÂ³&ÁÏµ�½
�>�Û·=ÀÂÁÂ½°µy¾�´*µ�¶�Ì'Ó�ÁÃ¶&»â¶ÒÓ
¹ë¸/¹=¶&´*µC¶�ÁÂ·°À�·=ÀÏÁÃ½°µy¾�´*µ�¶&¼
¼&»¤¹\Ó�µ

³&´*·°Ê¤ÁÏµ�½)-�ÐÈÚs»¤´Õ´�µ�¶&³&ÁÂ´*¼;48ÓsÁÂ¶&»�µ¤¹°µ�¿Uú*´�³&¹X¸¤³&¹°Äy·_¿
Ä?ÁÂÀÂÁÂ¶&ÁÃ´�¼
Å�¹=³�¾�¹4²¤³�ÀÂÁÂ¼�¶�¹°Å>º�·°µyÊ¤ÁÂÊy·=¶�´*¼�Åu¹°³�¶�»�´�²y¼�´�³=< ¼
: ²�´*³�Ë4Ì/·°µyÊX¶&»¤´�¸y³�¹°Äy·=Ä?ÁÂÀÂÁÃ¶�ÁÃ´�¼>+8ð849/ -°ü�¸y³&¹_É�ÁÂÊ¤´w¶�»¤´
Ä?·=¼&ÁÂ¼8¹=Å-¶�»�´X³�·=µ¤×�ÁÂµ�½Íð òcÁÂÀÏ·=ºe´*¶8·°ÀpÐÏÌ�Þ_û°û4Þ4ü�Ð �>�
·°ÀÂÁÃ½4µ¤¾�´�µC¶S·°ÀÂÀÃ¹=Ó�¼S²¤¼S¶&¹sº*·=ÀÏº�²yÀÂ·=¶�´�´*·°ºg»�+Õð?-3/ 1?ü�·=µyÊ
ÁÂ¼n¶&»�²y¼Õ· ¸yÁÃÉ4¹=¶�·=À�¼&²¤¸y¸:¹=³&¶&ÁÏµ�½�¶�´�ºg»yµ�¹4ÀÃ¹°½=Ë�Ó�»¤ÁÂº�»
²yµ¤Ê¤´�³�ÀÂÁÂ´*¼�¶�»�´jí�þ�Gj÷8¼�Ë�¼�¶&´*¾�Ð

@ A 2°1CB
M�7?GÖ79D'B
M�I>9�7:GJ7�1SRUF8E�9�GJ7:9OKXFU9
F�1GB
1S9W7:3\7

ÑÒµo¶&»¤´�º�¹°µ�¶�´gÎ�¶�¹°Å�Ç°·_¸?·=µ¤´�¼�´=Ì
¶&»¤´ �>�ê¿H·°ÀÂÁÃ½4µy¾�´*µC¶
¶&·°¼�×n»y·=¼c·wÅu´*ÓÖ¸/´�º�²yÀÂÁÂ·=³�ÁÃ¶&ÁÂ´*¼�ÐWÇ°·=¸?·=µ¤´*¼�´�»y·=¼�¶�»�³&´�´
¼&º�³&ÁÂ¸¤¶�¼43H��
JI=(��uÌ ! �.K�
MLB
JI)
=Ì�·=µyÊN��
��
&��
JI)
=Ðñ÷CÁÏµ¤º�´
»yÁÃ³�·_½4·=µy· ·=µyÊ�×=·_¶�·_×_·=µy·ñðp¹=³O��
JI)
Öºg¹4ÀÂÀÃ´�ºg¶�ÁÃÉ°´�ÀÃË?ü
·=³�´X´�¼&¼�´*µ�¶&ÁÂ·°ÀÂÀÃËo¸?»�¹4µ¤´�¶&ÁÏº_ÌsÓc´Xº�·°µï³&´�¸y³�´�¼�´*µ�¶Õ¶�»�´
¸?»�¹4µ�´�¾�´w¼�¶&³�ÁÂµ¤½n²y¼&ÁÂµ¤½n´*ÁÃ¶�»�´*³�¹=Å�¶&»¤´*¼�´�¼&º�³�ÁÃ¸¤¶�¼�ÊyÁ ¿
³&´*º�¶&ÀÃË4Ð G�·=µ7=�Á:¹°µ6¶&»¤´�¹°¶&»¤´�³s»¤·°µ¤Ê6·_³&´�ÁÂÊ¤´�¹°½=³�·=¸y»yÁÂº
³�·_¶�»�´*³ ¶&»y·=µñ¸y»¤¹4µ�´*¶&ÁÂº=Ð ì ·=º{» ×=·=µ7=�Á�¾Õ·�Ë,»y·�É°´
¾Õ·=µ�Ë�³&´*·°ÊyÁÂµ�½4¼n·°¼Õ·�¼&ÁÂµ¤½°ÀÃ´e²¤µyÁÃ¶*Ì�·=µyÊ ¾Õ·\Ë�·°ÀÂ¼�¹
Åu¹°³�¾�¸?·_³&¶c¹°Å�ÀÂ·=³&½=´*³�²yµ¤ÁÂ¶&¼cÓ�»¤ÁÏºg»8¶�»�´�¾Õ¼�´*ÀÃÉ4´*¼�¶&·=×4´
¹4µQ¹°µ¤´�¹°³�¾�¹°³&´�³�´�·=ÊyÁÂµ¤½4¼�ÐWÚO¹�´*¾�¸?»¤·°¼&ÁÃú*´�¶&»¤´-ÊyÁÃÅm¿
Åu´*³&´*µyºg´wÄ/´�¶éÓ�´�´�µ�¼&º�³�ÁÃ¸y¶&¼�Ì?Óc´w¼&»¤·°ÀÂÀ�²¤¼�´w³&¹°¾Õ·°µ¤ÁÂú*·_¿
¶&ÁÂ¹°µy¼�Åu¹=³c¶&»¤´�¸y»¤¹4µ�´*¶&ÁÂº'¼&º�³�ÁÃ¸¤¶�¼�ÐWí�ÁÂ½°²¤³&´�ó'½°ÁÂÉ°´*¼�·=µ
´gÎ¤·°¾�¸yÀÃ´ÕÅu¹°³5PRQTSRU����E
���I � ��
E� � ��KV�!� �é¶&¹È½4ÁÃÉ°´
¶&»y·°µ�×�¼�Ì¤Ä/´�¶&»y·=µ¤×�Å�²¤À ��Ð
�-ÁÃÉ°´�µe¶&»y·_¶'×=·=µy·n·_³&´�¸?»�¹4µ¤´�¶&ÁÏº_Ì/¶�»�´�¾Õ·°ÁÂµe¶&·°¼�×
ÁÂ¼8¶&»¤´*µï³&´*Êy²yºg´�ÊJ¶�¹øÊ¤´�¶&´�³�¾ÕÁÂµyÁÂµ¤½ø»�¹=Ó"¶&»¤´e×=·°µ'=&Á
´*ÀÂ´*¾�´�µC¶&¼6¼&»¤¹°²yÀÂÊÖÄ:´ ¼�´�½4¾�´*µC¶&´*ÊLÌ�·°µyÊÖÓ�»¤·=¶Q´*ÀÂ´g¿
¾�´*µ�¶&¼Õ¹°Å-¶&»¤´e¸?»¤¹°µ¤´*¾�´¯¼�¶&³&ÁÏµ�½�¶�»�´*Ë ºg¹°³�³&´�¼�¸:¹°µyÊ
¶�¹yÐcò�´�ÀÃ¹\Ó�Ì¤Ó�´-¹4²�¶�ÀÂÁÂµ¤´wÅu¹4²�³�Åu´�·_¶�²�³&´�¼s¹=ÅWÇ°·=¸y·°µ�´�¼�´
¶&»y·=¶sÁÂ¾�¸/´�Ê�´�¶&»yÁÂ¼�¶�·=¼�×/Ð
WYX8Z []_^_`&a.b3c3dec:c3fhgMi�`&dec!gMa.jkd
ÑÒµyÊyÁÃÉ�ÁÏÊ¤²y·°ÀO×_·°µ7=�Á�¼�´*½°¾�´*µ�¶&¼-Ê¤¹�µ�¹°¶-·°ÀÃÓs·�Ë�¼-ºg¹°³&³�´�¿
¼�¸:¹4µ¤Ê�¶�¹w¾ÕÁÂµyÁÂ¾Õ·=Ày²¤µyÁÃ¶�¼WÁÂµ�ÀÏ·=µ¤½°²y·=½=´°ÐWþ'Å�¶�´�µ�·�»¤ÁÃ¿
³�·_½4·=µy·È¼&²�ã�ÎX¹°Å�¼�¹4¾�´ÕÊ¤´*¼&º�³�ÁÃ¸¤¶�ÁÃ¹4µ ð ²¤¼&²y·°ÀÂÀÃË¯ºg¹4µ�¿
=�²¤½°·=¶&ÁÂ¹°µy·=À�ü�ÁÂ¼�³&´ : ²¤ÁÂ³�´�Ê�ÌWÓs»yÁÂº�»�Óc´8¶&´�³�¾l#&���9K���LE�

JI)
=Ðnm
´�³&ÄX·°µ¤ÊX·°Ê'=�´*º�¶&ÁÃÉC´wº�¹°µ7=�²¤½°·=¶&ÁÂ¹°µeÅp·=ÀÂÀO²yµyÊ�´*³
¶&»yÁÂ¼-º*·_¶&´�½°¹=³&Ë)3�Åu¹°³�´�Î�·°¾�¸?ÀÃ´;o �%���O�����%���!� �é½°¹��6ÁÂµ
¸?ÀÂ·=ÁÏµÍÅ�¹=³�¾ ºg»y·=µ¤½=´�¼6¶�¹Ho �%���p�2���%�����wÁÏµÍ¶�»�´�ÁÂ¾�¿
¸:´�³�·=¶&ÁÃÉC´=Ð ç µCËX²¤¼�´*Å�²yÀO¼�´�½4¾�´*µC¶�·_¶�ÁÃ¹°µ}¼&»�¹4²¤ÀÏÊX¶&»¤²¤¼

144

ÁÂµyº�ÀÏ²¤Ê¤´s¼&²yºg»�¼&²�ã�Î�´*¼W·°ÀÃ¹4µ�½�Ó�ÁÃ¶&»�¶&»¤´�ÁÃ³W×_·°µ'=&Á�¼�¶�´�¾
ÁÂµ�¹=³�Ê¤´�³W¶�¹�¸y³�´�¼�´�³&É4´�¶&»¤´�Ä?·=¼&ÁÏº�¾�¹°³�¸?»¤¹_¿U¸?»¤¹°µ¤´*¾ÕÁÂº
¼�¶�³�²yºg¶�²�³&´�¹=Å�¶&»¤´�º�¹°¾�¸:¹4²¤µyÊ�Ð
ç ÀÃ¶�»�¹4²�½4»o¾�¹4¼�¶�º*·=¼�´�¼�¹=Å�¹°×�²¤³�ÁÃ½°·°µy·¯³&´�¸y³&´*¼�´�µ�¶
É°´*³�ÄÈ·=µyÊÈ·=Ê7=é´�ºg¶&ÁÂÉ°´-º�¹°µ7=�²¤½°·=¶&ÁÂ¹°µLÌ�¶&»¤´�³&´w·_³&´-¾Õ·°µ�Ë
½°´*µ¤´�³�·=À?º�·°¼�´*¼�¼&²¤ºg»�·°¼�¶�»¤·=¶W¹°Å/¶�»�´�×=·=µ7=�Á��ÍÌCÓs»yÁÂº{»
¹�º*º�²¤³&¼êÁÏµ�ºg¹4¾�¸/¹4²¤µyÊ¤¼ê·°ÀÂ¾�¹4¼�¶�´gÎ¤º�ÀÏ²¤¼&ÁÂÉ4´*ÀÂËw·°¼�� ��K��
�2�%#���K��%�UÌ_Ä?²�¶�·=ÀÏ¼�¹�»¤·°¼�·°µj·=ÀÂ¶�´*³&µy·_¶&´�Ós»¤´�³&´
¶&»¤´�¼&²¤ã�Î
K���ÁÏ¼�º�¹°µ��?·_¶&´*Ê�Ó�ÁÂ¶&»�¶�»�´s×=·=µ7=�Á�¼�¶&´*¾Ûðp¼&²yºg»�·°¼êÁÂµ��
� �2��#E��K����-�'� ��I0�>�é¹4µ�´$< ¼�¼&»y·_³&´�¹°³�¸:¹=³&¶�ÁÃ¹°µ ��ü�Ð�LÍÁÂ¶&»
¼�¹4¾�´
ÀÃ´�Î�´*¾�´*¼�Ì\Ä�¹=¶�»�·°ÀÃ¶&´�³�µ¤·°µ�¶�¼S·_³&´�¸/¹°¼�¼&ÁÃÄyÀÂ´=Ì_¼&²yºg»
·°¼�ÁÏµ�� ��K���� � �2��#E��K����-�'� ��I0�UÐ�ÑÒ¶êÁÂ¼WÊ¤´*¼&ÁÂ³&·=ÄyÀÂ´cÅu¹°³ê¼�Ë�¼é¿
¶�´�¾Õ¼8¶&¹øÄ/´}·=ÄyÀÂ´¯¶�¹oº*·_¸y¶&²¤³&´ý¼&²yº{»J·=ÀÂ¶�´*³&µy·_¶�ÁÃ¹4µ¤¼�Ì
ÁÂµÈ¹°³&Ê¤´�³�¶&¹8·=ºg»yÁÃ´*É=´�º�¹°µy¼&ÁÂ¼�¶&´*µC¶'¼�´�½4¾�´*µ�¶&·=¶&ÁÃ¹4µ6Ä�´g¿
»y·�É�ÁÂ¹°²¤³�·=µyÊ¯·=¶�¶�·=ÁÂµ}·=µ¯·°º�º*²¤³&·=¶�´�´�¼�¶&ÁÏ¾�·=¶�´�¹=ÅW¶&»¤´
Åu³&´ : ²¤´*µyºgË6Ó�ÁÃ¶�»6Ó�»yÁÂºg»È·�½4ÁÃÉC´*µQ×=·°µ'=&Á�¹�º*º�²¤³&¼�Ó�ÁÂ¶&»
·È¸y·=³&¶&ÁÂº*²¤ÀÏ·_³j³&´�·=ÊyÁÂµ¤½�ð ÁÂµyÊ�´*¸:´*µyÊ¤´*µ�¶�¹=Åc¶&»¤´8´gÎ¤·=º�¶
ÀÃ´�Î�ÁÏº�·°À�Åu¹°³�¾Û¹=ÅO¶&»¤´-Ó�¹=³�Ê/ü�Ð
WYX	�
Ci��_^_i9dGg�a.c3f�Cjka���a.deb
÷C´ : ²�´�µC¶&ÁÏ·=À�É4¹4ÁÂº�ÁÏµ�½ ¹�º*º�²¤³&¼XÓ�»�´�µè·ï¶�·=ÁÏÀÂÁÂµ¤½Ö¼�´�½=¿
¾�´*µ�¶�»¤·°¼�ÁÂ¶&¼�ÁÂµyÁÃ¶&ÁÏ·=À�º�¹°µy¼�¹°µy·=µ�¶jÉ4¹4ÁÂºg´�ÊLÐ¯í?¹°³�´�ÎC¿
·°¾�¸?ÀÃ´�3�� � ! #���I0�8�éÄ:¹�¹°× ����� �2�
���I
$���&¼&»�´�ÀÃÅ-�
� ��� � ! #E��I ����
E��I)
 � ��Ä/¹C¹=×�¼&»¤´*ÀÃÅ��¤Ð ç ÀÃ¶�»�¹4²�½4»n¼�´g¿
: ²�´�µC¶&ÁÏ·=À4É°¹4ÁÂº�ÁÏµ�½'ÁÂ¼�µ¤¹=¶&¹=³�ÁÃ¹4²¤¼&ÀÂË�²¤µ¤¸¤³&´�Ê¤ÁÂº�¶&·=Ä?ÀÃ´=Ì=ÁÂ¶&¼
¸/¹°¶�´�µC¶&ÁÏ·=À/¹�º*º�²¤³�³&´�µ¤º�´�ÁÏ¼sºg¹4µ¤¼�¶&³&·°ÁÂµ¤´*Ê�Ä�Ë��SË�¾Õ·°µG<ß¼
ÀÂ·�Ó�Ì�Ó�»¤ÁÏº{»-¼�¶�·_¶&´*¼S¶�»¤·=¶S¼�´ : ²�´�µ�¶&ÁÏ·=À\ÉC¹°ÁÏº�ÁÂµ¤½cÓ�ÁÂÀÏÀ°µ¤¹=¶
¹�º*º�²¤³�Ó�»�´*³�´c¶&»¤´�³&´c·_³&´�´�Î�ÁÏ¼�¶&ÁÂµ¤½�É°¹4ÁÂº�´*Êw¹°Äy¼�¶&³&²¤´*µ�¶&¼
ÁÂµe¶�»�´j¶�·=ÁÂÀÏÁÂµ¤½6¼�´�½4¾�´*µC¶�ð?m
·°µ¤º�´=Ì�ó Ü�@BA ü�Ð'Ñ©¶'¹�º*º�²¤³�¼
ÁÂµn·=Ä/¹°²¤¶ A I4à,¹=ÅLº�·°¼�´*¼�Ós»¤´*³�´��SË�¾Õ·=µC< ¼�ÀÏ·\ÓïÁÂ¼�µ¤¹=¶
É�ÁÃ¹°ÀÏ·_¶&´*ÊLÌ4Ó�ÁÂ¶&»n¼�¹°¾�´�¼�Ë�¼�¶�´�¾Õ·_¶�ÁÂº�ÁÃ³&³�´*½°²yÀÂ·=³�ÁÃ¶&ÁÂ´*¼WÅ�¹=³
µ¤¹°²yµ�¿©µ�¹4²¤µXº�¹4¾�¸:¹4²yµ¤Êy¼'·°¼sÅu¹4²¤µyÊXÁÂµÈ³&´*º�´*µ�¶�Ó�¹=³&×
Ä�Ë D ¹4¼�´*µ�ð Þ=û=û ô ü$Ð
ç ÀÂÁÂ½°µy¾�´*µC¶n¾�´�¶�»�¹�Êy¼ÕÄ?·=¼�´�Êo¹4µ ¸¤³&´�ºg´�Ê�´�µ¤º�´È¹°³
Åu³&´ : ²¤´*µyºgË�ºg¹4²¤µ�¶&¼�¾�·_Ë�Ä:´�»yÁÂµyÊ�´*³&´*Ê�Ä¤Ëw¼�´ : ²¤´*µC¶�ÁÂ·°À
É°¹4ÁÂº*ÁÂµ�½yÌy¼&ÁÏµ¤º�´�·°ÀÂÁÃ½4µ�´�Ê�½=³�·_¸?»¤´*¾�´'$\¸?»�¹4µ�´�¾�´-¸?·=ÁÂ³&¼
¾Õ·�Ë6µ�¹°¶sÄ:´w³&´*º�¹=½4µ¤ÁÏ¼�´*ÊÈ·=¼�¸y»¤¹°µ¤¹4ÀÃ¹=½4ÁÂº*·=ÀSÉ=·_³�ÁÂ·°µ4¶&¼
¹°Å'¸¤³&´*É�ÁÂ¹°²y¼&ÀÃËë¼�´�´�µo×=·°µ'=&Á��C³�´�·=ÊyÁÂµ¤½ý¸?·=ÁÂ³�¼�Ð í:¹=³&¶�²�¿
µy·_¶&´*ÀÃË4Ì?Ê¤´�É°¹4ÁÂº*ÁÂµ¤½nÁÏ¼s³&´*ÀÂ·=¶&ÁÂÉ°´*ÀÂË6¼&ÁÏ¾�¸yÀÃ´°Ì?¼�¹8·8º�¹°¾�¿
¾�¹°µX·=¸y¸¤³&¹°·°º{»eÁÂ¼s¶&¹Q¼&ÁÂ¾�¸?ÀÃËÈºg¹4µy¼&ÁÂÊ¤´�³�É4¹4ÁÂº�´*ÊÈ·=µyÊ
Ê¤´�É°¹4ÁÂº�´*Ê8½°³�·_¸?»�´�¾�´'$\¸y»¤¹°µ¤´�¾�´-¸y·°ÁÃ³�¼c¶�¹�Ä:´�´ : ²¤ÁÂÉ4¿
·°ÀÃ´*µ�¶�Åu¹°³�ºg¹4²¤µ�¶&ÁÂµ¤½�¹°³�ºg¹4¾�¸?·=³&ÁÏ¼�¹°µLÐ
WYX W
Cjk^ed! �i ^!"$#ejkd&%
÷C¹°²yµ¤Êâ´*²¤¸?»�¹4µ�ËJ¹�º�º*²�³�¼�Ó�»�´�µâ¶&»¤´�ÀÏ·=¼�¶e¼�Ë�ÀÂÀÏ·_Ä?ÀÃ´
¹°Å�·¯ÀÂ´*·°Ê¤ÁÏµ�½¯¼�´*½°¾�´�µC¶�ÁÂ¼j¾�¹�ÊyÁÃÔy´*Ê�¶&¹¯¾Õ·_¶�º{»�¶&»¤´
¼�¹4²¤µyÊo¹°Å�¶�»�´È¶&·°ÁÂÀÏÁÂµ�½�¼�´*½°¾�´*µ�¶�ÐëÚs»yÁÂ¼ÕÁÂ¼8¾Õ·_³&×°´*Ê
²yµ¤Á : ²¤´*ÀÃË6Ä¤Ë8¶�»�´(' ×=·°µ¤·Õºg»y·_³�·=º�¶�´*³�ÁÂµXÇ°·_¸?·=µ¤´�¼�´=Ð
í?¹=³�´gÎ¤·=¾�¸?ÀÃ´�3*) � �&#������!� ��º�¹°²yµ�¶&³�Ë �+�-, ���'�$#E�
#J� ��Ä/¹4²¤µyÊ¤·=³&Ë � �)+, ���&#E�%�'�%�'�$#E� #J� �&µ¤·=¶&ÁÂ¹°µy·=À
Ä/¹°³&Ê¤´*³-�¤ÐH6�µ¤ÀÂÁÂ×4´6¼�´ : ²¤´*µ�¶&ÁÏ·=À�É°¹4ÁÂº*ÁÂµ¤½¤Ì�Ós»yÁÂº�»øÁÂ¾�¿
¸/¹4¼�´*¼�·w³&´*É4´*³&¼&ÁÂÄyÀÃ´�¶&³&·°µ¤¼�Å�¹=³�¾Õ·=¶&ÁÃ¹4µ�Ì�ÁÂ¶�ÁÏ¼
µ¤¹=¶�º�ÀÂ´*·=³
Åu³&¹4¾.)/, ���J#��%�'���'�$#�� #J� ��µy·=¶&ÁÃ¹4µ¤·°ÀWÄ:¹=³�Ê�´*³���Ó�»y·_¶
¶&»¤´c¹°³�ÁÃ½°ÁÏµ¤·°À�×=·=µy·'´�µ¤ÊyÁÂµ¤½�Åu¹°³0)ÛÓ�·=¼�ð�¸�¹°¼&¼&ÁÃÄ?ÁÂÀÏÁÃ¶&ÁÂ´*¼
ÁÂµyº�ÀÏ²¤Ê¤´ �J#��%�7�uÌC�J#��%� ��ÌG�J#�� �e·°µ¤Ê �&#E�C� �/ü$Ð

WYX21 3 `�c4"5#ei76 i)b0c4"$" a?deb
þ�º�º*·=¼&ÁÂ¹°µy·=ÀÏÀÃË�·ý×\·°µy·}ÁÂ¼�¹4¾ÕÁÃ¶�¶&´*ÊoÅu³&¹°¾ ¶�»�´6Ós³�ÁÃ¶�¿
¶�´�µ�Åu¹°³�¾ ¹°Å�·XÓ�¹°³&ÊLÌ�Ä?²�¶�Ê¤¹C´*¼�µ¤¹=¶�º�¹°µy¼�¶&ÁÂ¶&²¤¶�´6·
ºg¹4¾�¸:¹°µ¤´�µ�¶'¹=ÅW¶�»�´�³&´�·=ÊyÁÂµ¤½°¼'¹=ÅW¶�»�´�µ¤´*ÁÂ½°»�Äy¹4²¤³&ÁÏµ�½
×=·=µ7=�Á Ð
ÚcËC¸?ÁÂº*·=ÀÏÀÃËQ¶&»¤´�×=·°µ¤·Õº�·°µe·=ÀÂ¼�¹8Ä:´w´�Î�¸?ÀÂÁÂº*ÁÃ¶�ÀÃË
ÁÂµyº�ÀÏ²¤Ê¤´*Ê�ÁÂµ�¶�»¤´ÕÓs³�ÁÃ¶�¶&´*µ�Å�¹=³�¾ ¹°Å�¶�»�´8Óc¹=³�ÊLÐQí?¹°³
´gÎ¤·°¾�¸yÀÃ´�398�����
E�<�
 � �&¾�¹°²yµ�¶�·=ÁÂµ ��� I0# �;:=<?>9@��
A @7BC< �D�FE � �<�'� �&»¤·°µyÊ ��º*·=µ�Ä:´�Ó�³�ÁÂ¶�¶�´�µ�·°¼O´�ÁÃ¶�»�´*³
8GEA¹=³98 ��Ik#��HEÖÌ¤Ä:¹=¶�»QÓ�ÁÃ¶&»Q³�´�·=ÊyÁÂµ¤½ �2��
��<��
���Ik#��
�<���UÐ
��³�·_¸?»�´�¾�´W½4·_¸y¸?ÁÂµ¤½�ÁÏ¼SÉ°´�³&Ë�³�·_³&´=Ì_µ¤¹=³�¾Õ·°ÀÂÀÃË�¹°µyÀÃË
¹�º�º*²¤³&¼ÕÓ�ÁÂ¶&» ¶&»¤´È¸?·=³�¶�ÁÂº*ÀÃ´*¼ LB
�¹=³	Ik#_Ìs·=µyÊo¶&´*µyÊ¤¼
µ¤¹=¶�¶&¹�Ä:´Õ¸¤³&¹�Êy²¤º�¶&ÁÂÉ4´=ÌL¼�²�½°½=´�¼�¶&ÁÂµ¤½È¶&»y·_¶�´*É4´�µ¯·_¸¤¿
¸y³�¹4·=ºg»�´�¼c·°ÁÂ¾�´�Ê�·=¶�¹°¸/´*µ�¶�´�Î�¶s·=³�´-Ä/´�¶&¶�´*³�¹J�}¼&ÁÏ¾�¿
¸?ÀÃË-¼�¶�¹°³&ÁÏµ�½'´�·=º{»wº*·=¼�´
ÁÂµyÊ¤ÁÂÉ�ÁÏÊ¤²y·=ÀÏÀÃË4Ð�Ús»�´
¹4µ¤ÀÂË�¸y³&¹_¿
Êy²¤º�¶&ÁÃÉ4´�º�·°¼�´�ÁÏµ�É=¹°ÀÂÉ�ÁÏµ�½ ·¯×=·=µ7=�ÁcÁÏ¼JI �2�
$�UÐøí:¹°³
´gÎ¤·°¾�¸yÀÃ´�3*I �2�
$�9�é¶&³&²¤´7$�¸?²�³&´�K�.LKM � ��� ��K�
E�
��
E�<� ��� �&Ê¤·=³&×�µ¤´*¼&¼-� � INLFM ����
��%� � ��K-
E�<��
E�<� �8�
��¸yÁÃ¶�º{»wÊ¤·=³&× �¤Ì_¹=³�IO'�LPM ���
E�%�'�%��� ��K-
E�<��
E�<� ���CÅu¹°³
´*¾�¸?»y·=¼&ÁÂ¼*Ð
Q R æ
RpK°F.D�3�K_73B,1LRUF�E>9
GJ7?9OK
ÑÒµQ¶&»yÁÂ¼c¼�´*º�¶&ÁÃ¹4µ�Ì�Óc´'Ô¤³�¼�¶cÊ¤´*¼&º�³&ÁÂÄ:´�¶&»¤´�Äy·°¼�´*ÀÏÁÂµ¤´�·=ÀÃ¿
½°¹=³�ÁÃ¶�»¤¾,¹=Å/òc·=ÀÏÊ�Ó�ÁÂµ�·=µyÊ�Ú�·=µy·=×\·�ð�ó Ü°Ü=Ü ·�Ì:ó Ü°Ü°Ü Ä�ü�Ì
Ä:´�Å�¹=³&´cÁÂµ�¶�³&¹CÊ¤²yº�ÁÏµ�½�¶&»¤´
¾�¹�ÊyÁÃÔ?º�·=¶&ÁÂ¹°µy¼OÓ�´
¸¤³&¹°¸:¹°¼�´
ÁÂµ�¶&»yÁÂ¼s³&´�¼�´*·=³&ºg»�Ð
1_X8Z [SCi `T_a.iVU
ç »yÁÃ½°»�¿HÀÂ´�É°´�À°Ê¤´�¸?ÁÂº�¶&ÁÂ¹°µ�¹=Å�¶&»¤´
²¤µy¼&²¤¸:´�³&É�ÁÏ¼�´*Êw·°ÀÂÁÃ½4µ�¿
¾�´*µ�¶8¾�´*¶&»¤¹�Êï¹=Å�òc·°ÀÂÊ¤Ó�ÁÂµJ·=µyÊJÚê·=µy·_×_·Jðéó Ü=Ü°Ü ·¤Ì
ó Ü=Ü°Ü Ä�ü'ÁÏ¼-½°ÁÃÉC´*µýÁÂµ í�ÁÃ½4²�³&´nÞ�ÐníêÁÃ³�¼�¶&ÀÃË4ÌS·=ÀÏÀê¸:¹°¶�´�µ�¿
¶&ÁÏ·=À/¼�´*½°¾�´�µ�¶&·=¶&ÁÂ¹°µy¼
·°µ¤Ê6·=ÀÂÁÂ½°µy¾�´*µ�¶&¼�Å�¹=³�ÁÂµ¤¸y²¤¶c´*µ�¿
¶�³�ÁÃ´�¼W·=³�´'ºg³&´�·_¶&´*ÊLÐ ì ·=º�»�´�µC¶�³&ËjÓ�ÁÏÀÂÀ¤»y·�É°´c¸�¹=¶&´*µC¶�ÁÂ·=À
¼�´*½°¾�´*µ�¶&·=¶&ÁÃ¹4µ¤¼O·=µyÊj·°ÀÂÁÃ½4µ¤¾�´�µ�¶�¼S¸/´*³O¼�´�½4¾�´*µ�¶�·_¶�ÁÃ¹4µ
Ó�»¤ÁÏº{»øµ�²y¾wÄ:´*³�´�Î�¸/¹4µ¤´*µC¶�ÁÂ·=ÀÏÀÃË�ÁÏµø¶&»¤´Q´�µ�¶�³&Ëk< ¼�¹=³�¿
¶&»¤¹°½=³�·_¸?»yÁÂº-ÀÂ´*µ¤½=¶�»�Ð
÷C¹°¾�´Í¼&ÁÏ¾�¸yÀÃ´èÀÂÁÂµ¤½4²¤ÁÂ¼�¶�ÁÂºÍº�¹°µy¼�¶&³&·°ÁÂµC¶�¼ø²y¼�´�ÊØ·=¼
Åu¹°³&Óc·=³&Êøº�¹°µy¼�¶&³&·°ÁÂµC¶�¼j¶&¹¯³&´*Êy²¤º�´6¶�»¤ÁÂ¼�µ�²y¾jÄ?´*³�·=³�´
¼�¶�³�ÁÂº�¶&ÀÂË�ÀÂÁÂµ¤´�·_³o·°ÀÂÁÂ½°µy¾�´*µC¶*Ì6·)¾ÕÁÂµyÁÂ¾�²y¾ ¹°ÅÈ¹°µ¤´
¸?»�¹4µ�´�¾�´�·°ÀÂÁÃ½4µ�´�Êø¶&¹}´*·°ºg»ø½=³�·_¸?»¤´*¾�´=Ì
·=µyÊo·}³&´g¿
¼�¶�³�ÁÂº�¶&ÁÂ¹°µe¶�»¤·=¶�´*·°º{»X·=ÀÏÁÃ½4µ¤¾�´�µC¶�¾�²y¼�¶�¼&²¤º*ºg´�¼&¼�Å�²yÀÂÀÃË
¾Õ·_¶�º{» ·=µCËø×=·=µy·¯´�µ�¶�³&ËøÁÂµo¶�»¤´È½°³&·=¸?»�´�¾�´È¼�¶&³&ÁÏµ�½
Ó�ÁÃ¶�»�ÁÃ¶&¼�´ : ²yÁÃÉ=·°ÀÃ´*µ4¶O¸?»¤¹°µ¤´*¾�´�´�µ�¶&³�Ë=ÐOí/²¤³�¶�»�´*³Oºg¹4µ�¿
¼�¶�³�·°ÁÂµC¶�¼È²¤¼�´�Êè¶�¹ ¸¤³�²yµ�´�´*µC¶&³�ÁÃ´*¼ÈÁÏµ¤º*ÀÂ²yÊ�´�¾Õ·_¶�º{»�¿
ÁÂµ¤½'¹=×�²¤³&ÁÂ½°·°µ¤·s¶�¹'¸y³&´g¿©º�ÀÂ²y¼�¶�´*³&´*ÊwÉ=·_³�ÁÂ·°µ4¶&¼�·=µyÊwÅu¹°³&ºg¿
ÁÂµ¤½Q¼&ºg³�ÁÃ¸y¶é¿HÄ/¹4²¤µyÊ¤·=³�ÁÃ´*¼�ð�´�Î�º�´�¸y¶'×_·°µ7=�ÁL¶&¹6»yÁÃ³�·_½4·=µy·
Ä:¹4²¤µyÊ¤·=³�ÁÃ´*¼{ü�¶&¹øºg¹°³&³�´�¼�¸:¹°µyÊJ¶&¹ø¼�´�½4¾�´*µC¶8Ä:¹4²¤µyÊ�¿
·=³&ÁÂ´*¼�Ð
òc·°¼�´�ÊÖ¹°µÍ¶&»¤´ýÀÂÁÏµ�½4²yÁÂ¼�¶&ÁÏº}ºg¹4µy¼�¶�³�·=ÁÏµ�¶&¼�Ì�Óc´ýº�·°µ
³&´*·°¼�¹°µy·_Ä?ÀÃËQ´gÎ�¸/´�ºg¶s¶�¹8»¤·\É=´�²yµ¤Á : ²¤´*ÀÃË6Ê¤´�¶&´�³�¾ÕÁÂµ¤´*Ê
¼�¹4¾�´�µ�²y¾wÄ:´�³-¹=Å�·°ÀÂÁÂ½°µy¾�´*µ�¶�¼�Å�¹=³�·=µCËX¼&²�ãnº*ÁÃ´*µ�¶&ÀÃË
ÊyÁÃÉ°´*³&¼�´JÊy·_¶�·è¼�´*¶�Ð2W Ú�»¤´J²¤µyÁ : ²�´�ÀÃË Ê¤´�¶�´*³�¾ÕÁÂµ�´�Ê
XZY![]_^]`Tacb!bedgf�b�hg\;ic[kjml4\;[=\;nTicl&^po_b�qgirfe\Zir[kjm^po;irb�lC[]s�t]uHvp^kjpwxi

hgo;[]ykbeo;`ml�z�lZ{mf|n}^]l~\;nTb�t��]�G�!������b�arb�fe\xo;[�jTicf9qgirfe\;ic[kjm^poZ��z

145

í�ÁÂ½°²¤³�´¯Þ 3XÚs»¤´¯Ú�íO¿UÑCK-í,Ä?·=¼�´�Êï·=ÀÂÁÂ½°µy¾�´*µC¶8·°ÀÃ½=¹=¿
³�ÁÃ¶&»y¾

·°ÀÂÁÃ½4µ¤¾�´�µC¶&¼�·=µyÊn¶&»¤´'³&´*¾Õ·=ÁÏµ¤ÁÏµ�½�·°¾jÄ?ÁÃ½4²¤¹°²y¼�·=ÀÏÁÃ½4µ�¿
¾�´*µ�¶&¼o·_³&´ÖÄ:¹°¶&»Ø²y¼�´*ÊØ¼�´�¸?·_³�·=¶�´�ÀÃËñ¶�¹ ¼�´�´�Ê�Åu³&´g¿
: ²�´�µ¤º�ËQº�¹°²yµ�¶�¼cÅu¹=³s¶�»�´jÚsí�¿UÑ K�ío¾�¹�Ê¤´*À Ð
Úsí�¿HÑCK�í)ÁÏ¼�·}Å�·=¾ÕÁÏÀÃË�¹°Å'¾�¹�Ê�´�ÀÂ¼�¹°³&ÁÂ½°ÁÂµy·°ÀÂÀÃËøÊ�´�¿
É°´�ÀÃ¹°¸:´*Ê�Åu¹°³jÑ D ¶�·=¼�×�¼�Ì�ºg¹4¾�Ä?ÁÂµyÁÂµ¤½È¶�»¤´nÚsí�ð�¶�´*³�¾
Åu³&´ : ²¤´*µyºgË?ü ·°µ¤Ê ÑCK�í ð ÁÂµ�É_´*³�¼�´ Ê¤¹�º�²y¾�´*µ�¶)Å�³&´g¿
: ²�´�µ¤º�Ëyü¯»�´�²�³�ÁÂ¼�¶�ÁÂº*¼Jðpò�·_´*ú*·_¿��
·=¶�´�¼ý·=µyÊ D ÁÃÄ?ÁÃ´*³�¹=¿
5 ´�¶&¹¤Ì�ó Ü=Ü°Ü ü$Ð Ñéµë¶�»�´ �>��·°ÀÂÁÃ½4µ¤¾�´�µC¶�¶�·=¼�×/Ì�¶&»¤´�Ë
¾�´*ÊyÁÂ·=¶�´ ¶&»¤´ ¶�´�µ¤¼&ÁÂ¹°µ"Ä:´*¶éÓ
´�´�µ ¹_É=´�³�¼�´*½°¾�´*µ�¶&ÁÂµ¤½
·°µ¤Êý²¤µyÊ�´*³�¼�´�½4¾�´*µ�¶�ÁÂµ¤½¤ÐjÚs»�´�ÚsíJÉ=·°ÀÂ²¤´�ÁÂ¼-ÀÂ·=³�½°´*¼�¶
Åu¹°³�¶&»¤´s¾�¹4¼�¶WÅ�³�´ : ²�´�µC¶&ÀÂËj¹�º*º�²¤³&³&ÁÏµ�½ ����¸y·°ÁÃ³W½4ÁÃÉ4´�µ
·°µCËÙ½=³�·_¸?»¤´*¾�´ õ ·=µ ¹_É°´�³�¼�´*½°¾�´*µ4¶&´*Ê�·°ÀÂÁÃ½4µ¤¾�´�µ�¶
¸y³�¹�Êy²yºg´�¼j³�·=³�´*³�¼�´*½°¾�´�µC¶&¼jÓsÁÂ¶&»øÀÂ¹_Ó
´*³jÅu³&´ : ²�´�µyºgË4Ì
¸/´�µ¤·°ÀÂÁÃú�ÁÂµ¤½�¶�»�´wÚsíë¼&º�¹=³&´=Ð
Ús»�´�ÑCK�íëÉ=·=ÀÂ²¤´�¹4µÈ¶&»¤´
¹°¶&»¤´�³�»¤·°µ¤Ê}ÁÂ¼-ÀÂ·=³�½°´*¼�¶-Åu¹=³-¼�´�½4¾�´*µ�¶&¼�Ó�»yÁÂºg»¯¹�º�º*²�³
ÁÂµe·�ÓsÁÏÊ�´wÉ=·_³�ÁÃ´*¶©Ë8¹°ÅOº�¹°µ�¶�´gÎ�¶&¼*Ì¤·=µyÊÈ¸:´*µy·=ÀÂÁÏ¼�´*¼'²¤µ�¿
Ê¤´�³�¼�´�½4¾�´*µC¶�ÁÂµ¤½¤Ð
1_X	� �������
	��� f?ahbkd$6:i9dGg
L�´s²y¼�´s·�¾�¹�Ê¤ÁÂÔ¤´�Ê�ÉC´�³�¼&ÁÃ¹4µ�¹°Å:¶&»¤´�Ú�íO¿UÑCK-í}¾�¹�Ê¤´*À
Ó�»¤ÁÏº{»o¶�·_×4´*¼�ÁÂµ�¶�¹ý·°º�º�¹°²yµC¶�¶�»�´eÊyÁ �/´*³�ÁÂµ¤½�ÀÂ´�É°´�À�¹=Å
ºg¹4µ¤ÔyÊ¤´*µyºg´ Ó�´è»y·\É=´áÁÂµÛ¹°²¤³JÅu³&´ : ²¤´*µyºgË º�¹°²yµ�¶�¼
Ä/´*¶ÒÓ
´�´�µ ¼�¹°ÀÂÉ4´*Ê�ð �VK������$ü6·°µ¤Êá·°¾�Ä?ÁÃ½4²�¹4²y¼�ð �VK������Cü
·°ÀÂÁÃ½4µ¤¾�´�µC¶&¼}ðpòc·°ÀÂÊ¤Ó�ÁÂµÖ·°µ¤ÊJÚê·=µy·=×\·¤ÌsÞ_û°û=û�ü�Ð)í:¹°³

� nT[klZb b�j�\Zo;icb�l����]o_^]hmnTb�� b s []o�� l5ar^]fev vp^kjm^0\Z[nTb�achJb�ari�� icujm^p\;b�h [klZl;ic`Tarb�^]ari��kj�� b�j \;l��

´*·°º{»Û·=ÀÏÁÃ½°µy¾�´*µ�¶�ÌeÓc´âº�¹°²yµ�¶ë¶&»¤´è¹�º*º�²¤³&³�´�µ¤º�´ ¹=Å
´*·°º{»�½°³&·=¸?»�´�¾�´Í¼�´�½4¾�´*µ�¶��! #"$ÌQ¹=ÅÈ´�·=º{»�·°ÀÂÁÃ½4µ¤´*Ê
½°³&·=¸y»¤´�¾�´7$�¸?»¤¹°µ¤´*¾�´�¼�´*½°¾�´�µC¶'¸y·°ÁÃ³$�% '&)(*"�Ì�·°µ¤Ê¯¹=Å
¶&»¤´8¼&·=¾�´Õ¸y·°ÁÃ³wÓ�ÁÃ¶�»ý¹4µ¤´Õ·°Ê¤ÊyÁÃ¶&ÁÂ¹°µy·=ÀW¸?·=ÁÃ³w¹°Åcº�¹°µ�¿
¶�´�Î�¶�¹4µ ´�ÁÃ¶�»�´*³�¼&ÁÂÊ¤´+�! ,&)(-&/.� �B�0"$Ð í?¹°³�·=µ�Ë)Åu³&´�¿
: ²�´�µ¤º�Ë�ÀÃ¹C¹°×�²¤¸LÌ_¶�»�´2143O·=µyÊ5176�ºg¹4µ¤¼�¶�·=µC¶�¼S¸y³�¹_É�ÁÂÊ¤´
·JÓc´*ÁÃ½4»C¶&ÁÏµ�½JÄ:´*¶éÓ
´*´*µáÁÏµ�Åu¹°³�¾Õ·_¶�ÁÃ¹°µ)Åu³&¹°¾ ¼�¹4ÀÃÉ°´*Ê
·°µ¤ÊÈ·=¾�Ä?ÁÃ½°²¤¹4²¤¼�·°ÀÂÁÃ½4µ¤¾�´�µ�¶�¼43

8 � �Oð)9Lü;: 8 �=< �VK�������ð!9Lü � 8 �><]� K����?�yð!9Sü ð�ó�ü
Ú�¹w¼&ºg¹°³&´s·�¸/¹°¶�´�µC¶&ÁÏ·=À¤·°ÀÂÁÂ½°µy¾�´*µC¶*Ì°Óc´sº*·=ÀÂº*²¤ÀÏ·_¶&´�¶�»�´
� �ï·°µ¤Ê �x� � ¼&ºg¹°³�´�¼�Åu¹°³�´*·°ºg»�½°³�·_¸?»�´�¾�´'$\¸y»¤¹4µ�´�¾�´
¼�´*½°¾�´*µ�¶�¸?·°ÁÃ³�·°µ¤Ê}¾�²yÀÃ¶&ÁÂ¸yÀÂË�¶&»¤´*¾ ¶�¹°½=´*¶&»¤´�³�·°¼'ÁÏµ
ì�: ²¤·=¶&ÁÂ¹°µy¼�Þ\¿��yÐ}Ús»�´6¼&º�¹=³&´QÅu¹°³�¶�»�´QÓ�»¤¹°ÀÂ´6·=ÀÏÁÃ½°µ�¿
¾�´*µ�¶�ÁÏ¼s¶&»¤´�·\É=´�³�·=½=´w¹°ÅO¶&»¤´�¼&ºg¹°³&´*¼sÅ�¹=³'´*É°´*³�Ë6¸?·=ÁÂ³
Ó�»¤ÁÏº{»)ºg¹4µC¶�·=ÁÂµy¼}·J×=·=µ7=�Ájºg»y·_³�·°ºg¶�´*³*Ìj¼&ÁÏµ¤º�´ø¶&»¤´*¼�´
·=³�´j¶�»�´�µ¤¹°µ�¿U¶&³�ÁÃÉ�ÁÏ·=À>¸?·=ÁÃ³�¼�Ð�Ús»�´�º�¹°µy¼�¶&·°µ�¶A@ëÁÂ¼�ÁÂµ�¿
¶�´�µyÊ�´�Ê ·°¼8·�¼&¾�¹�¹°¶&»yÁÂµ¤½ Åp·=º�¶�¹°³8Åu¹°³n¶&»¤´¯Ú�íñ·=µyÊ
ÑCK-í ¼&ºg¹°³�´�¼�Ð Ñ©¶o¾�²¤¼�¶�Ä�´Í·=¼&¼&ÁÂ½°µ¤´*Ê�¼&²yºg»�¶�»¤·=¶
û$BC@DBE1 6GF 1 3 Ð

� �Oð! ,&�(LüH: 8 � �Oð��! I&�(*"�üKJ 8 � �C@
8 � ��ð��% #"�ü

ð ÞCü

�x� �Oð! ,&�(-&/.�����&üL:ÖÀÃ¹=½ 8 � �êð��! I&�(M"&ü
8 � �Oð��% '&)(-&N.� �B�0"�üOJ 8 � �E@ ð ô ü

 . #JK��4ð% ,&�(-&/.�����&üL: � �Oð! I&�(Lü2<6�x� �Oð! '&)(-&�P�QR9IQ&ü ð.��ü
þ�µyºg´Ù·°ÀÂÀÖ¸:¹°¶�´�µ�¶&ÁÏ·=ÀJ·°ÀÂÁÃ½4µ¤¾�´�µC¶&¼Ø»y·�É°´ Ä:´�´�µ
¼&º�¹=³&´*ÊLÌL¶�»�´�»yÁÃ½4»�´�¼�¶é¿©¼&ºg¹°³&ÁÏµ�½È·=ÀÏÁÃ½°µy¾�´*µ�¶�ÁÂ¼�ºg»¤¹°¼�´�µ
¶�¹JÊyÁÂ¼&·°¾jÄ?ÁÃ½4²¤·=¶�´�ÁÃ¶&¼e´*µC¶&³�Ë4ÐÛÑÒ¶&¼eº�¹°²yµC¶&¼È·=³&´ ³&´�¿
¾�¹\É°´�Ê�Åu³&¹4¾ñ¶&»¤´s²yµy¼�¹°ÀÃÉ4´*Ê�¸:¹�¹°Ày·=µyÊ�·°ÊyÊ�´�Ê�¶&¹-¶�»�´
¼�¹4ÀÃÉ°´�Ê�¸:¹�¹°À Ìê·=µyÊø·°ÀÃ½=¹°³�ÁÃ¶&»y¾ ³&´�ÁÃ¶�´*³&·=¶�´�¼�ÓsÁÂ¶&»�²¤¸�¿
Êy·_¶&´*Ê8º�¹°²yµ�¶�¼�Ð�Ñéµ8¶&»yÁÂ¼
Óc·�Ë�´�µ�¶�³�ÁÃ´�¼�·=³�´�ÁÂ¶�´*³&·=¶&ÁÂÉ4´*ÀÂË
ÊyÁÂ¼&·=¾�Ä?ÁÃ½°²y·=¶�´*Êï²yµ�¶�ÁÂÀ�µ¤¹ø¾�¹=³&´X³&´*¾Õ·°ÁÂµLÌ�·=µyÊï¶&»¤´
·°ÀÃ½=¹°³�ÁÃ¶&»y¾ÛÁÂ¼�º�¹°¾�¸?ÀÃ´*¶�´°Ð
ç ÀÃ¶�»�¹4²�½4» ´'��´*º�¶&ÁÃÉC´=ÌÈ¶&»¤´ ÁÂ¶�´*³&·=¶&ÁÂÉ°´è·°ÀÃ½°¹=³�ÁÃ¶�»¤¾
ÁÂ¼X´gÎ�¶�³&´*¾�´�ÀÃËâ´�Î�¸/´�µ¤¼&ÁÂÉ°´=Ì�Ó�ÁÃ¶&»á¶ÒÓc¹J¾Õ·=ÁÂµáº�¹°¼�¶�¼�Ð
í�ÁÂ³&¼�¶�ÀÃË°Ì�·°¼jÓ�ÁÃ¶�»�·=µ�Ë}·°ÀÂÁÂ½°µy¾�´*µC¶j¶�·=¼�×ýÓ�»¤´�³&´8¶éÓ
¹
¼�¶�³�ÁÂµ¤½4¼O¹°Å?ÀÃ´�µ�½°¶&»>S:·°µyÊ�T�³&´�¼�¸/´*º�¶&ÁÂÉ°´*ÀÃËjµ�´*´*Ê�¶�¹�Ä/´
·°ÀÂÁÃ½4µ�´�Ê�Ì�¶�»�´*³&´e·=³�´¯ÞVUXW"¸:¹4¼&¼&ÁÃÄ?ÀÃ´X·=ÀÏÁÃ½°µy¾�´*µ�¶&¼�Ä/´�¿
Åu¹°³&´n·=¸¤¸?ÀÃË�ÁÂµ¤½Xºg¹4µ¤¼�¶&³&·°ÁÂµ�¶&¼nð ò�³&¹\Ósµý´*¶w·°ÀpÐÂÌcó Ü=Ü°ô ü$Ð
ÑÒµQ¹°²¤³�¶&·°¼�×/Ì�×=·=µ7=�Á?´*¼&¼�´�µ�¶�ÁÂ·=ÀÏÀÃË�Åu¹°³�¾�Åu³&´*´�É_·=³�ÁÂ·=ÄyÀÂ´*¼
ÁÂµ ¶�»�´8·=ÀÏÁÃ½4µ¤¾�´�µC¶�Ì�Ó�»�´*³�´�·=¼w×_·°µy·�·°ÀÂÁÃ½4µ}¶&¹e¶&»¤´*¾�¿
¼�´�ÀÃÉ°´*¼*Ìsºg¹4µ¤¼�¶&³�·=ÁÂµyÁÂµ¤½�¶&»¤´¯¼�´*·=³�ºg»ï¼�¸y·°ºg´°Ð ì µC¶�³�ÁÃ´�¼
Ó�ÁÃ¶�»8¾�·°µCË�×=·=µ7=�Á?·=µyÊ8µ�¹j×=·°µ¤·�¶&¹jº�¹°µy¼�¶&³&·°ÁÂµÕ¶&»¤´*¾
¶&»�²¤¼�»¤·�É4´w¸y³&¹°»yÁÃÄ?ÁÃ¶�ÁÃÉ°´�ÀÃËÈÀÂ·=³�½°´�µ�²y¾wÄ:´*³&¼'¹=ÅW¸:¹4¼&¼&Á ¿
Ä?ÀÃ´c·°ÀÂÁÃ½4µ¤¾�´�µC¶&¼�ÐOÚs»�´�¼�´�º�·°¼�´*¼OÄ?ÀÃ¹°·=¶O¶&»¤´�µ�²y¾wÄ:´*³�¹=Å
¸:¹°¶�´*µ�¶&ÁÏ·=À�·=ÀÏÁÃ½4µ¤¾�´�µ�¶&¼'¶�¹�Ä:´�³&´*¼&º�¹=³&´*Ê}¹°µX´�·=º�»XÁÃ¶�¿
´�³�·=¶&ÁÃ¹4µQ¼�¹�¾�²yº$»n¶&»y·_¶cÁÏµ¤º*ÀÂ²¤ÊyÁÂµ¤½�¶�»�´�¾Ø¾Õ·=×°´*¼
¹°²¤³
¾Õ·=ÁÏµ�·°ÀÃ½°¹=³�ÁÃ¶�»¤¾"ÁÏµ�Å�´*·°¼&ÁÃÄ?ÀÃËQ´gÎ�¸:´*µy¼&ÁÃÉ4´°Ð

146

Ús»¤´-¼�´*º�¹°µyÊ�Ä:¹=¶&¶&ÀÃ´�µ�´�º{×nÁÏ¼sÁÂµQ¶�»�´w·�É°´*³&·=½°´�º�·°¼�´=Ð
÷�²�¸y¸/¹4¼�´c¶&»¤´�³&´�·_³&´�î�·=ÀÂÁÂ½°µy¾�´*µ�¶&¼�¸?·=ÁÃ³�¼�Ì=´�·°ºg»�Ó�ÁÃ¶�»
(}¸�¹°¼&¼&ÁÂÄyÀÂ´�·=ÀÂÁÂ½°µy¾�´*µ�¶&¼�Ð-Ús»¤´*µX¶�»�´Õºg¹4¼�¶�¹=Å�¶�»�´�ÁÂ¶é¿
´�³�·=¶&ÁÃÉ4´�³&´*¼&º�¹=³�ÁÂµ¤½�ÀÃ¹C¹°¸ïÁÏ¼��nð�ð�î (Lü���ü�Ð ì É°´*µ »y·�É4¿
ÁÂµ¤½ë³&´�¾�¹\É°´*ÊÍ¶&»¤´ý¸y³&¹=Ä?ÀÃ´�¾Æº*·=¼�´�¼È·_Ä�¹\É°´=Ì�ÁÃÅ (áÁÂ¼
¼�¶&ÁÏÀÂÀ/»yÁÃ½°»6¹°µ6·\É=´�³�·=½=´°Ì�¶&»¤´�¸¤³&¹°ÄyÀÃ´�¾�Ó�ÁÏÀÂÀ/¸y³�¹\É4´'ÁÏµ�¿
¶�³�·°ºg¶�·_Ä?ÀÃ´'Åu¹°³
¼&²¤ÁÂ¶&·=ÄyÀÂËÕÀÂ·_³&½°´'î�Ð ç ¼
·wº�¹°¾�¸?·_³�ÁÂ¼�¹4µ�Ì
¶&»¤´s´�É=·=ÀÏ²¤·=¶&ÁÃ¹4µ�¼�´*¶êÓ�´c²¤¼�´�»y·=¼�I=û=û°û�´�ÀÃ´*¾�´�µ�¶�¼�Ì=Ë°´*¶
¶&»¤´ ì ÊyÁÂº�¶8ÊyÁÂº�¶&ÁÃ¹4µy·_³&Ëï»y·=¼8¹\É°´�³Xó°ó�û¤Ì û°û=û�´�µ�¶&³&ÁÂ´*¼�Ì
³&´�¸y³&´*¼�´�µC¶&ÁÂµ¤½¯·¯µ¤´*·=³ I=û=ûeÅu¹4ÀÂÊø´gÎ�¸/´*º�¶�´�ÊøÁÂµyºg³&´*·°¼�´
ÁÂµ ºg¹4¾�¸y²¤¶&·=¶&ÁÂ¹°µ ¶�ÁÂ¾�´=Ð ç ÀÃ¶&»¤¹°²¤½4»o¶�»¤ÁÂ¼8ºg¹4²¤ÀÏÊoÄ/´
¾ÕÁÃ¶�ÁÃ½°·=¶�´�ÊïÄ�Ëë¼&ÁÂ¾�¸?ÀÃËëÄy³�´�·_×�ÁÂµ¤½�¶&»¤´¯ÁÂµ�¸?²¤¶8Ê¤¹\Ó�µ
ÁÂµ�¶�¹}¼&¾Õ·°ÀÂÀÃ´*³�¼&²¤Äy¼�´*¶&¼�Åu¹°³�¸y³&¹�ºg´�¼&¼&ÁÂµ¤½¤ÌWÁÂ¶�ÁÂ¼�Ê�´�¼&ÁÃ³�¿
·=ÄyÀÃ´8¶&¹X¸¤³&¹�º�´*¼&¼�·=ÀÂÀ�¶�»�´6Êy·_¶�·XÁÂµ�¶�»�´Q¼&·°¾�´�ÁÃ¶�´*³�·\¿
¶&ÁÂÉ°´�ÀÃ¹�¹=¸SÌ
¼�ÁÂµ¤º�´6¶�»¤ÁÏ¼�½°ÁÃÉC´*¼�½=³&´�·_¶&´*¼�¶nºg¹4µ¤¼&ÁÏ¼�¶�´*µyº�Ë
¹°ÅO·=ÀÏÁÃ½4µ¤¾�´�µ�¶�Ð
÷C¶�³�·_¶&´�½4ÁÃ´�¼S¶�¹'³&´�Ê¤²yºg´�¶&»¤´
·\É=´�³�·=½=´
º�·°¼�´�Åu¹°³ (�·=µyÊ
¶�¹8´�ÀÂÁÂ¾ÕÁÏµ¤·=¶�´�¶�»�´jÓ�¹=³�¼�¶'º�·°¼�´jÅu¹°³2(¯¶�»�²y¼sÅu¹°³&¾ ¶&»¤´
Ä?·=¼&ÁÂ¼8Åu¹°³n¹°²¤³Q·=¶�¶�´�¾�¸¤¶�¼8·=¶Q¾�¹CÊyÁÃÅ�Ë�ÁÏµ�½�¶�»�´¯·°ÀÃ½=¹=¿
³�ÁÃ¶&»y¾�Ð
1_X W � j a��7i� ,c3f.b3j0`&ahgT#!6
Ús»�´È¾�¹�Ê¤ÁÃÔy´�Êo·=ÀÂ½=¹°³�ÁÃ¶&»y¾ Ê¤ÁÂÉ°´�³&½=´�¼�Åu³&¹°¾ ¶&»¤´6²yµ�¿
¼&²¤¸/´�³&É�ÁÂ¼�´*Ê�·°ÀÃ½°¹=³�ÁÃ¶�»¤¾ ÁÂµ�¶&»¤³&´�´J¾Õ·=ÁÏµ�³�´�¼�¸:´*º�¶&¼�Ð
í�ÁÂ³&¼�¶�ÀÃË°Ì_Óc´�¼�´�¸?·_³�·_¶&´�¹4²�¶O¹°×�²¤³�ÁÃ½°·°µy·�»y·=µyÊ¤ÀÏÁÂµ¤½�ÁÂµC¶&¹
·j¼�´�¸?·=³&·=¶�´�¼�¶&´�¸8·_Å�¶�´*³�·=ÀÏÁÃ½4µ¤¾�´�µ�¶�Ì4Ä/´�µ�´*Ô¤¶�ÁÂµ¤½�Ä�¹=¶&»
´�ãnº*ÁÃ´�µ¤º�Ë ·=µyÊ�´�³&³&¹=³�¾�´*·°¼&²�³&´*¾�´�µC¶�Ð}÷4´�ºg¹4µyÊ¤ÀÃËCÌ�·
³&´*·°Ê¤ÁÏµ�½8¾�¹�Ê�´�ÀSÁÏ¼sÁÂµ�¶&³&¹4Êy²yºg´�Ê�Ä?·°¼�´*ÊÈ¹°µ�¶&»¤´ G�·=µ�¿
=�ÁÏÊ¤ÁÏº6´�ÀÃ´*º�¶�³&¹°µyÁÂº�Ê¤ÁÏºg¶&ÁÂ¹°µy·_³&Ë � ·=µyÊoÁÏ¼Õ²¤¼�´�Êo¶&¹ýÊyÁÂ¼é¿
·°¾jÄ?ÁÃ½4²¤·=¶�´�¶�»�´Õ¾Õ·'=é¹°³�ÁÃ¶éËÈ¹°Å
³&´�¾�·°ÁÂµyÁÂµ¤½�º*·=¼�´�¼-Ä:´g¿
Åu¹°³&´ø¶&»¤´ëÚsí�¿UÑ K�í ¾�¹�Ê¤´*À�ÁÂ¼}³&´*·°º{»¤´*ÊLÐ Ú�»yÁÃ³�ÊyÀÃË4Ì
Ó�´�¸y³�¹=É�ÁÏÊ�´�·ï¾Õ·\Î¤ÁÂ¾�²¤¾ ·°ÀÂÁÂ½°µy¾�´*µC¶X¼&ÁÃú*´øº�²¤¶�¹J�
·=Ä/¹\É=´XÓ�»¤ÁÂº�»ïÓ�´¯²y¼�´}·ø¼&ÁÂ¾�¸?ÀÂÁÃÔy´*ÊÍµ�¹4µ�¿©ÁÃ¶�´*³�·_¶�ÁÃÉ°´
·°ÀÂÁÃ½4µ¤¾�´�µC¶s·°ÀÃ½°¹=³�ÁÃ¶�»¤¾ Ó�»yÁÂº{»È¾�´�´�¶�¼�³&´*¼�¹4²�³�º�´�ºg¹4µ�¿
¼�¶�³�·°ÁÂµC¶�¼ÈÅu¹°³e¸¤³&¹°ÄyÀÃ´�¾ º*·=¼�´�¼�Ð L ´�ÊyÁÂ¼&º�²y¼&¼e¶�»�´�¼�´
º{»y·=µ¤½=´�¼�Ä:´*ÀÂ¹_Ó�Ð
1_X WCX8Z
Ci�" c `�c!g�a?deb:j0\Y^e`&ahb0c3dec�#_c3d! 7f?a?d_b
Ús»�´ë¹=×�²�³�ÁÃ½4·°µ¤·Ö»y·=µyÊyÀÂÁÂµ¤½âÁÂµ)¶&»¤´o¹°³&ÁÂ½°ÁÂµy·°Àj·°ÀÃ½°¹_¿
³�ÁÃ¶&»y¾ ÁÂµCÉ°¹4ÀÃÉ=´�¼X¸y³&´g¿©º�ÀÂ²y¼�¶�´*³�ÁÂµ¤½Í¹=×�²¤³&ÁÂ½°·°µ¤·â·=ÀÃ¶&´�³�¿
µy·_¶&´*¼�ÌQ·=µyÊ�·_¶&¶�´�¾�¸¤¶�ÁÂµ¤½á¶�¹á³&´*¼�¶&³&ÁÏºg¶�·=ÀÏÁÃ½°µy¾�´*µ�¶&¼
¶�¹ ¾�·=¶&º�»�¶&»¤´*¼�´Í·°ÀÃ¶&´�³�µ¤·=¶�´�¼øÓs»¤´�³&´*É4´�³ø¸/¹°¼&¼&ÁÂÄyÀÂ´=Ð
LÍ»yÁÂÀÂ¼�¶�¶&»yÁÂ¼�º�¹°µy¼�¶�³�·=ÁÏµ�¶-Ê¤¹C´*¼j»�´�ÀÃ¸ ³�´�Ê¤²yº�´�¸:¹°¶�´�µ�¿
¶&ÁÏ·=À�·°ÀÂÁÃ½4µ¤¾�´�µC¶&¼*ÌwÁÃ¶}·°ÀÂ¼�¹ÖÀÂÁÏ¾ÕÁÃ¶&¼¯¶&»¤´o·=¸¤¸?ÀÂÁÏº�·=¶&ÁÃ¹4µ
¹°Å�¶�»�´o¼�¶&³&¹°µ¤½=´*³¯ºg¹4µy¼�¶�³�·=ÁÏµ�¶e¶&»y·_¶¯¼&ºg³�ÁÃ¸y¶¯Ä:¹4²¤µyÊ�¿
·=³&ÁÂ´*¼8ÁÏµ ¶&»¤´X½=³�·_¸?»¤´*¾�´¯¼�¶�³�ÁÂµ¤½ø¾�²y¼�¶8ºg¹°³�³&´�¼�¸:¹°µyÊ
¶�¹á¼�´*½°¾�´�µ�¶ýÄ�¹°²yµ¤Êy·=³&ÁÂ´*¼Jð ÁpÐÿ´°Ð�´*É4´*³�Ë)¹�º*º�²¤³�³&´�µ¤º�´
¹°Å�·J×=·°µ'=&Á���»¤ÁÃ³�·=½°·°µ¤·ï¼&º�³&ÁÂ¸¤¶¯Ä:¹4²¤µyÊy·_³&Ë ¾�²¤¼�¶XÄ:´
ºg¹4µy¼&ÁÂÊ¤´�³&´*Ê)·°¼X·Ö¸:¹=¶&´*µ�¶�ÁÂ·°À-¹°×�²¤³�ÁÃ½4·=µy·Ö¼&ÁÃ¶&´\ü�Ð ÑÒÅ
¹°×�²¤³&ÁÂ½°·°µ¤·6Ê�´*¶�´�ºg¶&ÁÂ¹°µXÁÏ¼�ÀÂ´�Åu¶�·°¼�·n¸�¹°¼�¶�¿U¸y³�¹�º�´*¼&¼&ÁÏµ�½
¶&·°¼�×/ÌcÓc´Xº�·°µï¼�¶�³&´*µ¤½°¶&»¤´*µï¶�»¤ÁÂ¼8ºg¹4µ¤¼�¶&³&·°ÁÂµ�¶Õ¶&¹�ÁÂµ�¿
º�ÀÏ²¤Ê¤´�·°ÀÂÀ�¼&ºg³�ÁÃ¸y¶�Ä:¹°²yµyÊ¤·=³&ÁÂ´*¼�ÌLÁÏµ¤¼�¶&´*·°Êe¹=ÅW¹4¾ÕÁÃ¶�¶�ÁÂµ¤½

�	��
�
�������������������������������! "�#���$��%�&��' �&!�!(�)���*!�,+- ��!)".,%/.��0�
��
,��1

×=·=µ7=�ÁÃ¿U¶�¹=¿H»yÁÃ³�·_½4·°µ¤·wÄ/¹4²¤µyÊy·_³�ÁÃ´�¼�ÐWÚs»¤ÁÏ¼�ÁÏµ8¶&²¤³�µQ¸y³�¹=¿
É�ÁÂÊ�´�¼-·6ÀÂ·=³&½=´*³�½4·=ÁÏµX¶&»y·=µ}¶&»¤´�¹°³&ÁÂ½°ÁÏµ¤·°ÀO¹=×�²¤³&ÁÂ½°·°µ¤·
ºg¹4µy¼�¶�³�·=ÁÏµC¶�Ì
¼&ÁÂµyºg´e¾�¹=³&´�´�µC¶�³�ÁÃ´�¼�·_³&´ÈÅ�²¤ÀÏÀÃËoÊ¤ÁÏ¼&·=¾�¿
Ä?ÁÃ½°²y·=¶�´�Ê�Ð
Ús»¤´ ���W¿H·°ÀÂÁÃ½4µ¤¾�´�µC¶�¶&·°¼�×8ÁÏ¼c¶&»¤´*µ6¼�¸?ÀÂÁÂ¶�ÁÂµC¶&¹�¶éÓ
¹
¸?·_³&¶&¼43ê·w¸?²¤³�´�·°ÀÂÁÂ½°µy¾�´*µC¶
¶�·=¼�×/Ì�Ós»yÁÂº{»8º*·=µnÄ�´'º*·=³é¿
³�ÁÃ´�Êw¹°²¤¶�·°¼>¸:´*³�¶�»�´
¹°³&ÁÂ½°ÁÂµy·°À4·°ÀÃ½°¹=³�ÁÃ¶�»¤¾�Ì_·°µ¤Êj·'¼�´*¸�¿
·=³&·=¶�´�¹=×�²�³�ÁÃ½4·=µy· Ê�´*¶�´�ºg¶&ÁÂ¹°µë¶&·°¼�×:ÐoÚs»yÁÂ¼�³&´*Ê¤´*¼&ÁÃ½4µ
·°ÀÂ¼�¹s·°ÀÂÀÂ¹_Ó�¼L²¤¼L¶&¹�¼�´*¸y·=³�·_¶&´*ÀÃË�´*É_·°ÀÂ²y·_¶&´�¶&»¤´W´�³&³�¹°³�ÁÂµ�¿
¶�³&¹�Êy²¤º�´*ÊjÊy²�³�ÁÏµ�½�·°ÀÂÁÃ½4µ¤¾�´�µ�¶*Ì\·°µyÊw¶&»y·_¶OÁÂµ�¶�³&¹�Ê¤²yºg´�Ê
Êy²�³�ÁÂµ¤½8¹=×�²¤³&ÁÂ½°·°µ¤·8Ê¤´�¶&´*º�¶&ÁÃ¹4µLÌ/·°µyÊe¶&»�²y¼�·°ÀÂÀÃ¹_Ós¼�²¤¼
¶�¹�´gÎ�¸:´*³&ÁÏ¾�´�µ�¶�¾�¹°³&´�Åu³&´*´*ÀÃË�Ó�ÁÃ¶&»�¸/¹4¼&¼&ÁÃÄ?ÀÃ´�¾�¹�Ê¤´*ÀÏ¼�Ð
1_X WCX	�
 #ej0`Mg�c3d! fhjkdeb i dGgM`&a.i02
6�ÀÃ¶�ÁÂ¾Õ·_¶&´*ÀÂË°Ì=·=µ�Ë�¾�´�¶�»�¹�Ê�Ó�»yÁÂº{»jº�¹°µy¼&ÁÂÊ¤´�³�¼ê·=ÀÏÀC¸:¹°¼é¿
¼&ÁÃÄ?ÀÃ´n·=ÀÏÁÃ½°µy¾�´*µ�¶&¼�Åu¹°³w·�ÀÂ¹°µ¤½È´�µC¶&³�ËXÓsÁÏÀÂÀ�µ�¹°¶�¼&º*·=ÀÃ´
Ó�´�ÀÂÀpÌW¼&ÁÂµyºg´Q¸/¹°¶�´�µC¶&ÁÏ·=À
·=ÀÏÁÃ½4µ¤¾�´�µ�¶&¼jÁÂµyºg³&´*·°¼�´Q´gÎ�¸/¹=¿
µ¤´*µC¶�ÁÂ·°ÀÂÀÃËëÓ�ÁÃ¶�»JÁÂµ¤¸y²¤¶6ÀÃ´�µ�½°¶&»LÐ L�´Xº�·°µÖ»¤¹\Ó�´*É=´�³
´gÎ�¶�´�µyÊ}¶�»�´�·=¸y¸yÀÏÁÂº�·=ÄyÁÏÀÂÁÃ¶�ËÈ¹=Å�¶&»¤´�·°ÀÃ½=¹°³�ÁÃ¶&»y¾Õ¼�ºg¹4µ�¿
¼&ÁÂÊ¤´�³&´�ÊïÄ�Ëë¼&ÁÂ¾�¸yÀÂËëÊ¤ÁÂ¼&·°¾�ÄyÁÂ½°²y·_¶�ÁÂµ¤½�ÀÂ¹°µ¤½�´*µ�¶&³�ÁÃ´*¼
ÁÂµÈ·nµ�¹4µ�¿©ÁÃ¶�´*³�·_¶�ÁÃÉ°´-¾Õ·°µ¤µ¤´*³�Ð
Ús»¤´�µ�²y¾�Äy´*³>¹=Å�¸/¹°¶�´�µC¶&ÁÂ·°À=·°ÀÂÁÃ½4µy¾�´*µ�¶�¼LÅu¹°³�·=µ�´*µ�¿
¶�³&Ëeº*·=µ¯Ä:´�´*¼�¶�ÁÂ¾Õ·_¶&´*Ê¯ÊyÁÃ³&´�ºg¶&ÀÂË�Åu³&¹°¾ ¶&»¤´�µ�²y¾jÄ?´*³
¹°Å�ºg¹4µy¼�´*º*²�¶�ÁÃÉ°´6×=·°µ'=&ÁpÐ þ�²�³Õ·_¸y¸¤³&¹4·=º�»oÁÂ¼�¶&¹ ¼&ÁÂ¾�¿
¸?ÀÃËn¶&¹�º�¹°²yµ�¶�¶�»�´-µ�²¤¾�Ä?´�³�¹=ÅOº�¹°µy¼�´�º�²¤¶&ÁÃÉ4´�×_·°µ7=�Á/ÁÂµ
¶&»¤´e½=³�·=¸y»¤´*¾�´e¼�¶�³�ÁÂµ¤½¤ÐïÑ©Å�¶&»yÁÂ¼Õµ�²y¾wÄ:´*³nÁÂ¼n·=Ä/¹\É°´
·�½°ÁÃÉ4´*µ¯¶�»�³&´�¼&»�¹4ÀÂÊLÌSÓ�´�Ê¤´*ÀÏ·�ËX·°ÀÂÁÃ½4µ¤¾�´�µC¶-²yµ�¶�ÁÂÀ�·°ÀÂÀ
¶&»¤´e¼&»�¹°³�¶Õ´*µ�¶�³�ÁÃ´�¼�»y·�É°´�Ä:´�´�µë·°ÀÂÁÃ½4µ¤´*ÊLÐ L�´6¶�»�´�µ
²y¼�´�¶�»�´�³�ÁÂº�»�´*³�¼�¶�·_¶�ÁÂ¼�¶&ÁÏº�·°Àê¾�¹�Ê�´�À�¶&¹È·°ÀÂÁÃ½4µ}·°ÀÂÀ�¶�»�´
ÀÃ¹4µ�½ë´*µC¶&³�ÁÃ´*¼6ÁÂµâ·ø¼&ÁÂµ¤½°ÀÂ´}¸?·=¼&¼�Ì'Ó�ÁÃ¶&»¤¹4²�¶�»¤¹4ÀÂÊ¤ÁÏµ�½
¶&»¤´�ÁÃ³s¸/¹=¶&´*µC¶�ÁÂ·°ÀL·°ÀÂÁÃ½4µ¤¾�´�µC¶&¼�ÁÂµe¾�´�¾�¹=³&Ë°Ð
ç ÀÃ¶�»�¹4²�½4»èÀÃ¹°µ¤½ ´*µC¶&³&ÁÂ´*¼6Ó�´�³&´ýµ¤¹=¶e·=µèÁÂ¼&¼&²¤´ ÁÏµ
¹4²�³�´�É=·=ÀÏ²¤·=¶&ÁÂ¹°µ�¼�´*¶�Ì
·X¶&»¤³&´*¼&»¤¹°ÀÏÊo¼�´�¶�´gÎ�¸:´�³�ÁÂ¾�´�µ�¿
¶&·°ÀÂÀÂËø¶&¹HI º�¹°µy¼�´*º*²�¶�ÁÃÉ4´�×_·°µ7=�ÁcÓ�¹=³&×=´�ÊoÓc´*ÀÂÀs²¤¼&ÁÏµ�½
¶&»¤´ ì Ê¤ÁÏºg¶8Ê¤ÁÏºg¶�ÁÃ¹°µy·=³�Ëë·°¼ÕÁÂµ¤¸y²¤¶�Ì�Ó�»�´*³&´e¼&²yº{»ë´*µ�¿
¶�³�ÁÃ´�¼sº�·°µÈ¸¤³&¹\É°´�Ê¤ÁÂãnº�²yÀÃ¶�Ð
1_X WCX W 3 i�c4 7a?d_b 6 j i f
í?¹=³
¶�»¤´�¸?²¤³�´�·°ÀÂÁÃ½4µy¾�´�µ�¶�¶&·°¼�×/ÌCÓc´�·°ÊyÊ�´�ÊQ·=µ8·°ÊyÊ¤ÁÃ¿
¶&ÁÂ¹°µy·=Às³&´*·°Ê¤ÁÏµ�½�¾�¹�Ê�´�À�Ó�»yÁÂºg» ÊyÁÂ¼&·=¾�Ä?ÁÃ½°²y·=¶�´*¼�´�µ�¿
¶�³�ÁÃ´�¼ëÄ�Ë�´*ÀÂÁÏ¾ÕÁÂµ¤·=¶&ÁÏµ�½�·=ÀÏÁÃ½4µ¤¾�´�µC¶&¼oÓ�»�¹4¼�´è¼&ÁÏµ�½4ÀÃ´
×=·=µ7=�Á�³�´�·°Ê¤ÁÂµ¤½4¼XÊ¤¹Öµ�¹°¶¯ºg¹°³�³&´*¼&¸/¹°µyÊ ¶�¹J¶�»�¹4¼�´øÁÂµ
¶&»¤´�G-·°µ7=�ÁÂÊyÁÂºÕ·=µyÊ6G ç 5 Ç�K-Þ¤ó*Þ6´*ÀÂ´*º�¶�³&¹°µyÁÂºÕÊ¤ÁÏºg¶&ÁÂ¹_¿
µy·_³�ÁÃ´�¼�Ð Ús»¤´*¼�´�ÊyÁÂºg¶�ÁÃ¹4µ¤·=³�ÁÃ´*¼XÀÂÁÂ¼�¶Xºg¹4¾Õ¾�¹°µè³&´*·°Ê�¿
ÁÂµ¤½°¼8Åu¹°³6·°ÀÂÀ�×_·°µ7=�ÁsÁÏµï¶&»¤´ýÇ=Ñ&÷54�û4Þ=û @ ¿�ó Ü=Ü û�·=µyÊ
Ç=Ñ&÷64Øû4Þ�ó�Þ�¿$ó Ü°Ü ûe¼�¶&·°µyÊ¤·=³&Êy¼�³&´�¼�¸:´*º�¶&ÁÃÉC´*ÀÃË=Ì�ºg¹_É°´�³�¿
ÁÂµ¤½Xó*Þ¤óI&�n×_·°µ'=&ÁSÁÏµ�¶&¹=¶�·=À Ð ì �/´�ºg¶�ÁÃÉC´*ÀÃË=Ì?Ó�´w·_³&´�·_¸¤¿
¸?ÀÃË�ÁÏµ�½e¶�»�´nº�ÀÃ¹4¼�´*Ê Óc¹=³�ÀÂÊ ·=¼&¼&²y¾�¸y¶&ÁÃ¹4µ�·=µyÊ�·=ÀÂÀÂ¹\Ó�¿
ÁÂµ¤½¯¹4µ¤ÀÂË ¶&»¤¹°¼�´6·°ÀÂÁÂ½°µy¾�´*µC¶�º*·=µyÊ¤ÁÏÊ¤·=¶�´�¼jÅ�¹=³�Ós»yÁÂº{»
´*·°º{»�½=³�·=¸y»¤´*¾�´w²¤µyÁÃ¶�ÁÂ¼s·=¼&¼�¹¤º�ÁÂ·=¶�´�Ê6Ó�ÁÂ¶&»È·�×�µ¤¹\Ósµ
³&´*·°Ê¤ÁÏµ�½yÐêþ�µyÀÃË�ÁÏµw¶&»¤´
ÁÏµ¤¼�¶�·=µyºg´�¹°Å�¹_É°´�³�¿Hº�¹°µy¼�¶�³�·°ÁÂµ4¶�Ì
ÁpÐ ´=Ð¤´*É4´*³�Ë ���Ö·=ÀÏÁÃ½4µ¤¾�´�µC¶sº�¹°µC¶�·=ÁÏµ¤ÁÏµ�½n·_¶�ÀÃ´�·=¼�¶�¹°µ¤´
²yµ¤·=¶�¶&´*¼�¶&´*Ê¯³&´�·=ÊyÁÂµ¤½6Åu¹°³�·6½=³�·_¸?»¤´*¾�´�²yµ¤ÁÂ¶�Ì>Ê�¹QÓ�´
³&´*ÀÏ·\ÎÈ¶&»yÁÂ¼�ºg¹4µy¼�¶�³�·=ÁÏµC¶s¹=É=´�³�¶�»�´�¹\É4´�³�·=ÀÏÀS·°ÀÂÁÃ½4µ¤¾�´�µC¶
º�·°µyÊ¤ÁÏÊ¤·=¶�´w¼�¸y·°ºg´wÅu¹°³s¶&»¤´-½4ÁÃÉ4´�µQ½°³&·=¸?»�´�¾�´�¼�¶&³&ÁÏµ�½yÐ

147

Potential alignments

Kanjidic readings

一：i-chi, i-tsu, hi-to 両：ryo-u, te-ru, fu-ta-tsu

一｜両

i｜chi-ryo-u

一｜両

i-chi｜ryo-u

一｜両

i-chi-ryo｜u

一両

i-chi-ryo-u

í�ÁÂ½°²¤³�´ ô 3 K�ÁÂ¼&·°¾jÄ?ÁÃ½4²¤·=¶&ÁÂ¹°µ�²y¼&ÁÂµ¤½)¶&»¤´Ö³&´*·°Ê¤ÁÏµ�½
¾�¹�Ê¤´*À

ç ¼&ÁÏ¾�¸?ÀÃ´�´�Î�·°¾�¸yÀÃ´�¹°Å�ÊyÁÂ¼&·°¾jÄ?ÁÃ½4²¤·=¶&ÁÂ¹°µ�²¤¼&ÁÏµ�½�¶&»¤´
³&´*·°Ê¤ÁÏµ�½n¾�¹�Ê�´�ÀLÁÂ¼c¶�»¤·=¶�¹°Å�� � ������. ! ����K��$#E���!� ��¹°µ¤´
É°´�»¤ÁÏº�ÀÃ´ �e·=¼�¼&»�¹=Ósµ�ÁÂµ�íêÁÃ½°²¤³&´ ô Ð}÷CÁÂµyº�´n¹4µyÀÃËý¹°µ¤´
¹°Åc¶�»�´8¸/¹°¶�´�µC¶&ÁÏ·=À�·=ÀÏÁÃ½4µ¤¾�´�µ�¶&¼jÁÂ¼jº�¹°¾�¸?·_¶�ÁÃÄ?ÀÃ´8Ó�ÁÃ¶&»
¶&»¤´c×�µ�¹=Ó�µj³&´*·°Ê¤ÁÂµ¤½4¼�Ì=Ó�´�¶&»¤´*µ�¼�´*ÀÃ´�ºg¶WÁÃ¶W·°¼�¶&»¤´�ºg¹°³�¿
³&´*º�¶>·°ÀÂÁÃ½4µy¾�´*µC¶*Ð ç ¼S·°µwÁÂµ¤ÊyÁÂº*·_¶�ÁÃ¹4µ-¹°Å�¶&»¤´W´��/´�ºg¶�ÁÃÉ°´�¿
µ¤´*¼&¼�¹=Åy¶&»¤´
³&´*·°Ê¤ÁÏµ�½�¾�¹�Ê¤´*À Ì_¹°²¤³OÁÂµyÁÃ¶�ÁÂ·=ÀCº�¹°µy¼�¶�³�·°ÁÂµ�¶�¼
²yµ¤Á : ²¤´*ÀÃË}Ê¤´�¶&´�³�¾ÕÁÂµ¤´ ô ó=ÐÏó�à ¹=Å�¶&»¤´�´*µ�¶�³�ÁÃ´�¼�ÁÏµ}¶�»�´
ì ÊyÁÂº�¶6Ê¤ÁÏºg¶&ÁÂ¹°µy·_³&Ë°Ð��AÚ�»¤´¯³&´*·°Ê¤ÁÏµ�½o¾�¹¤Ê�´�À�Ê¤ÁÂ¼&·°¾�¿
Ä?ÁÃ½°²y·=¶�´�¼�·XÅp²�³&¶�»�´*³ Ý û�Ð Ý à ¹=Å'´*µC¶&³&ÁÂ´*¼�Ìê´���´*º�¶&ÁÃÉ°´�ÀÃË
Ê¤´*º�³�´�·=¼&ÁÏµ�½Q¶�»�´ÕÁÂµ¤¸y²¤¶�¶�¹Q¶�»�´�ÁÃ¶�´*³&·=¶&ÁÂÉ4´�·°ÀÂÁÃ½4µ¤¾�´�µ�¶
·°ÀÃ½=¹°³�ÁÃ¶&»y¾"Ä¤Ë6·°µX¹°³&Ê¤´*³'¹=Å�¾Õ·=½°µyÁÃ¶�²¤Ê¤´=Ì/¶&¹n¶�»¤´�³�´�¿
¾Õ·=ÁÏµ¤ÁÏµ�½ @ Ð ô àQÐ

1_X WCX21 �	i9^_`&a$2�g�a���0c ` a.c3dkg!2
L�´nº�¹°²yÀÂÊ�º�¹°µ�¶&ÁÂµC²¤´�¶&¹¯²¤¼�´n¶�»�´n¹=³�ÁÃ½4ÁÂµy·=À
Úsí�¿UÑ K�í
¾�¹�Ê¤´*ÀQ¹\É4´�³ø¶�»�´è³&´*¼&ÁÂÊy²¤´ÍÓ�»¤ÁÏº{»ØÁÂ¼ëµ¤¹=¶ Ê¤ÁÏ¼&·=¾�¿
Ä?ÁÃ½°²y·=¶�´�ÊÍÄ¤Ëï¶&»¤´�³�´�·=ÊyÁÂµ¤½ ¾�¹�Ê¤´�ÀpÌ-·°ÀÃ¶&»¤¹°²¤½4»Í¶�»�´
¶ÒË�¸:´ø¹=ÅÕÁÂµ¤¸y²¤¶}»y·=¼¯ºg»y·=µ¤½=´�Ê ºg¹4µ¤¼&ÁÏÊ�´*³&·=ÄyÀÂË ·=Åu¶�´*³
¸?·=¼&¼&ÁÏµ�½¯¶�»�³&¹4²�½4»�¶&»¤´Q³&´*·°Ê¤ÁÏµ�½ ¾�¹CÊ¤´�ÀpÐ�÷�ÁÂµ¤º�´Q¶&»¤´
³&´*·°Ê¤ÁÏµ�½'¾�¹�Ê¤´*À4ÁÂ¼>ÀÂÁÂ×4´�ÀÃË�¶�¹�Å�²yÀÂÀÃË�ÊyÁÂ¼&·°¾jÄ?ÁÃ½4²¤·=¶�´�·=µ�Ë
´*µ�¶�³&ËÕºg¹4µC¶&·°ÁÂµyÁÂµ¤½w¹°µyÀÃËÕ¼&ÁÂµ¤½°ÀÂ´�×=·=µ7=�Á?¼�´�½4¾�´*µC¶�¼�Ì4¶�»�´
¹4µ¤ÀÃËX³&´*¾Õ·=ÁÏµ¤ÁÏµ�½6·°¾�ÄyÁÂ½°²¤¹°²y¼'¾�¹�Ê¤´*ÀÏ¼-·_³&´�ÀÂÁÂ×4´*ÀÂË�¶�¹
Ä/´È¶&»¤¹°¼�´eÓ�ÁÃ¶&»ï¼�¹4ÀÂ²¤¶&ÁÃ¹4µy¼nºg¹4µC¶�·=ÁÂµyÁÂµ¤½ ¾�²yÀÃ¶&ÁÃ¿U×_·=µ7=�Á
¼�´*½°¾�´*µ�¶&¼ ð�Ó�»yÁÂº{»âÊ�¹ëµ¤¹°¶6¹�º�º*²¤³�ÁÂµÍ´*ÁÂ¶&»¤´�³ G�·=µ�¿
=�ÁÏÊ¤ÁÏºý¹°³ G ç 5 Ç�K-Þ¤ó*ÞCü õ ·°µ ÁÂµy¼�¶&·°µ¤º�´ý¹°Å�· ¾�²yÀÃ¶�Á ¿
×=·=µ7=�Á�¼�´*½°¾�´�µC¶�ÁÂ¼�¹4²�³O´�·_³�ÀÂÁÂ´�³ê´gÎ¤·=¾�¸?ÀÃ´ �"�l����
E���'�'�
�&ºg¹4¾�¾�¹4µjºg¹4ÀÂÊ ��Ð LÍÁÂ¶&»w¶�»¤ÁÂ¼OÁÂµj¾ÕÁÂµyÊLÌ_Óc´
º�¹°¾�¸?·_³&´
¶&»¤´�¹°³�ÁÃ½°ÁÏµ¤·°ÀOÚsí�¿UÑ K�íJ¾�¹�Ê�´�À�ð�¹4²�³�Äy·°¼�´*ÀÏÁÂµ¤´\üsÓ�ÁÃ¶�»
¼&ÁÂ¾ÕÁÏÀÂ·_³c¾�¹¤Ê�´�ÀÂ¼
²y¼&ÁÂµ¤½�Úsíý¹4µyÀÃË°ÌCÑCK-í ¹4µ¤ÀÂË°ÌC¹=³
³�·°µ�¿
Ê¤¹°¾Û¼�´�ÀÃ´*º�¶&ÁÂ¹°µÈ¶�¹nº{»¤¹C¹°¼�´�Ós»yÁÂº�»Q´*µ�¶�³&Ë $_·=ÀÏÁÃ½4µ¤¾�´�µC¶
¶�¹nÊyÁÂ¼&·=¾�Ä?ÁÃ½4²¤·=¶�´-µ¤´�Î�¶*Ð

����
�
�������������������������������! "�#���$��%�&��' �&!�!(�)���*!����%-.��,
 �
��
,��1

1_X WCX�� []\Y^e` a.b0c3dec ei�gMi��$g�a.j0d
L�´¯¼&ÁÂ¾ÕÁÂÀÂ·=³�ÀÃË Ó�ÁÂ¼&»Ö¶�¹oÊ¤´�¶&´�³�¾ÕÁÂµ¤´¯Ós»y·=¶QÅu¹°³&¾A¹=Å
¹°×�²¤³&ÁÂ½°·°µ¤·�Ê¤´�¶&´*º�¶&ÁÃ¹4µï·=µyÊ ³�´�·=ÀÏÁÃ½4µ¤¾�´�µC¶Õ¾�¹�Ê¤´*À�ÁÂ¼
¾�¹°¼�¶�·_¸y¸y³�¹°¸y³&ÁÏ·_¶&´=Ð�÷�ÁÂµyºg´�¶&»¤´-¾Õ·7=é¹=³�ÁÃ¶�ËÕ¹=ÅO´*µ�¶�³�ÁÃ´�¼
ÁÂµï¶�»�´ ì Ê¤ÁÏºg¶QÊ¤ÁÏºg¶�ÁÃ¹4µ¤·=³�Ë ðp¹°²¤³6¾Õ·°ÁÂµï´�Î�¸/´*³�ÁÂ¾�´*µ�¿
¶&·°ÀLÊy·_¶�·�¼�´*¶{ü
Ó�»¤ÁÂºg»6ºg¹4µ�¶�·=ÁÏµQ¸:¹°¶�´*µ�¶&ÁÏ·=À/¹°×�²¤³�ÁÃ½4·=µy·
¼&ÁÃ¶&´*¼�ð ÁpÐÿ´°Ð=×=·=µ7=�Á¤Åu¹4ÀÂÀÃ¹\Óc´*Ê�Ä�Ë�»yÁÃ³�·_½4·°µ¤·�ü�Ê¤¹�º�¹°µ�¶&·°ÁÂµ
¹°×�²¤³&ÁÂ½°·°µ¤·ÕÁÂµe¼�¹4¾�´-Åu¹°³�¾�ÌyÓ�´w²y¼�´�·°¼�¹°²¤³�Äy·°¼�´*ÀÏÁÂµ¤´
¶&»¤´�¼&ÁÂ¾�¸yÀÂ´s·°¼&¼&²¤¾�¸y¶&ÁÂ¹°µ�¶&»y·_¶W´�É°´*³&Ëj¼&²yºg»�¼&ÁÂ¶�´�ÁÂ¼W·=µ
ÁÂµy¼�¶&·°µyºg´�¹°Åy¹=×�²�³�ÁÃ½4·=µy·¤Ð�Ñéµ�¶�»¤ÁÏ¼O¾Õ·°µ¤µ¤´�³*Ì_¶�»�´�Ä?·=¼�´�¿
ÀÂÁÏµ�´�¼&ÁÂ¾�¸?ÀÃË�³&´*¾�¹_É=´�¼S´*É°´�³&Ë�×=·=µ7=�Á ¿H¶�¹=¿U×_·=µy·�¼�´*½°¾�´�µ�¶
Ä:¹4²¤µyÊ¤·=³&Ë4Ð ç ¼�·j¼&¾Õ·=ÀÏÀ¤´�µ¤»y·=µyº�´*¾�´*µ�¶�Ì4¶&»¤´sÄ�¹°²yµ¤Ê�¿
·=³�Ë�ÁÂ¼Wµ¤¹=¶W³�´�¾�¹\É°´�Ê�ÁÃÅ/¶&»¤´�¶&·°ÁÂÀÏÁÂµ�½�×=·=µy·�¼�´*½°¾�´�µC¶êÁÂ¼
¹4µ�´s¹=Å/¶&»¤´s»yÁÃ³�·_½4·=µy·�¸?·=³�¶�ÁÂº*ÀÃ´*¼ I0#=Ì�LB
w¹°³nI ��Ì°Ó�»¤ÁÏºg»
Åu³&´ : ²¤´*µC¶�ÀÃËQ¹�º�º*²�³'·°ÀÃ¹4µ�´°Ð
L�´
ºg¹4µ¤¼&ÁÏÊ�´*³O¶&»¤³&´�´�·°ÀÃ¶�´*³�µ¤·=¶&ÁÃÉ4´W¹°×�²¤³�ÁÃ½4·=µy·�¾�¹�Ê�¿
´*ÀÏ¼X¶&¹Íºg¹4¾�¸?·_³&´ø¶�¹Ö¹4²¤³¯Ä?·=¼�´�ÀÂÁÂµ¤´=Ìj¹°ÅÕÁÏµ¤º�³&´*·°¼&ÁÂµ¤½
ºg¹4¾�¸?ÀÃ´gÎ¤ÁÃ¶ÒËÈ·°µ¤Ê¯´gÎ�¸:´*º�¶�´*Ê}ºg¹\É°´*³�·_½°´=Ð'í�ÁÃ³�¼�¶&ÀÂË°Ì/¶&»¤´
G�·=µ7=�ÁÏÊ¤ÁÏºWÊyÁÂº�¶&ÁÃ¹4µ¤·=³&Ë�ºg¹4µC¶&·°ÁÂµy¼>º�¹°¾Õ¾�¹°µw¹°×�²�³�ÁÃ½4·=µy·
¼&²¤ã�Î�´�¼
Å�¹=³�¼�¹4¾�´�×=·=µ7=�ÁyÓsÁÂ¶&»Qº�¹°µ7=�²¤½°·=¶&ÁÏµ�½j´�µ�¶&³&ÁÂ´*¼�Ð
Ús»�²y¼X¹4²�³ýÔy³&¼�¶ý¾�¹¤Ê�´�À�²¤¼�´�¼}¶&»¤´*¼�´ë¼�²�ã�Î�´*¼}É°´*³é¿
Ä?·_¶�ÁÂ¾ÆÅu¹=³È¹°×�²¤³�ÁÃ½°·°µy·oÊ¤´�¶�´�ºg¶�ÁÃ¹4µ�ÐØÚs»¤´ º�¹\É=´�³�·_½°´
¹°Å-¹°×�²�³�ÁÃ½4·=µy·�¼&²¤ã�Î�´*¼6ÁÂµ G-·°µ7=�ÁÂÊyÁÂº¯ÁÏ¼Q¼�¹4¾�´�Ó�»y·_¶
¸?·_¶�º{»CË=ÌO¼�¹eÁÏµý¹4²¤³w¼&´*ºg¹4µyÊý¾�¹�Ê¤´*À Ì�ÁÏµ ·°ÊyÊ¤ÁÂ¶&ÁÃ¹4µ ¶�¹
G�·=µ7=�ÁÏÊ¤ÁÏºQ¼&²�ã�Î�´*¼�ÌWÓc´Q·°ÀÂ¼�¹¯¸/´*³�Å�¹=³�¾ ·XÅu³&´ : ²�´�µyºgË
ºg¹4²yµC¶�¹\É°´*³�·°ÀÂÀ�¸/¹°¶�´�µC¶&ÁÏ·=À�¹°×�²¤³�ÁÃ½4·=µy·}¼&ÁÃ¶&´*¼�ÁÏµø¶&»¤´
ì ÊyÁÂº�¶8ÊyÁÂº�¶&ÁÂ¹°µy·_³&Ë°Ì�·°µ¤ÊÍÁÂµyº�ÀÂ²yÊ¤´X·°µCËo¹�º*º�²¤³�³&´�µ¤º�´*¼
·=Ä:¹_É=´�·Õ¼�´�¶s¶&»¤³&´*¼&»¤¹°ÀÏÊÈ·°¼�¹=×�²¤³&ÁÂ½°·°µ¤·¤Ð
í�ÁÏµ¤·°ÀÂÀÃË4ÌS¾�¹°¼�¶�ÁÂµy¼�¶&·°µ¤º�´*¼-¹°Å�¹=×�²¤³&ÁÂ½°·°µ¤·�·_³&´ÕÊy²¤´
¶�¹8ÉC´�³&ÄXºg¹4µ'=&²�½4·_¶�ÁÃ¹4µ�Ð ç ¼�Ó�´�ÀÂÀ�·=¼'¶&·=×�ÁÏµ�½Q¼�¶&³&·°ÁÃ½4»�¶
¼&²¤ã�Î�´�¼�Å�³�¹4¾ ¶&»¤´Ö¸¤³&´�É�ÁÃ¹4²¤¼ë¾�¹�Ê¤´*ÀÏ¼�Ì�¶&»yÁÂ¼øÔyµy·°À
¾�¹�Ê�´�À¤»y·_³&É4´�¼�¶&¼OÉ4´*³&Äy¼OÅu³&¹°¾ ì Ê¤ÁÏºg¶�Ð ö ¹°¼�¶�ÉC´�³&Ä�´�µ�¿
¶�³�ÁÃ´�¼�ÁÂµ ì ÊyÁÂº�¶�»y·\É=´w·�¶�·_½8¾Õ·_³&×�ÁÂµ¤½Õ¶�»�´�¾"·°¼>�). ! ���
�B
JIyÌeL�#m��
JI�¹°³ �9KV�QÉC´�³&Äy¼*Ð 	âÚs»�´ÕÉ4´*³�Äý¶ÒËC¸:´n·=µyÊ
¼�¶�´�¾�·°ÀÂÀÂ¹_Ó�²y¼�¶�¹}º�¹°µ7=�²¤½°·=¶�´6³&´*½°²yÀÂ·=³�É°´*³�Ä?¼�É_·=³�Á ¿
¹4²¤¼&ÀÃË4ÌL½4ÁÃÉ�ÁÏµ�½È²¤¼�·ÈÀÂ·=³�½°´�µ¤²¤¾jÄ:´�³-¹=Å�µ¤´*Ó,¹°×�²¤³�ÁÃ½_¿
·°µ¤·�¼&²¤ã�Î�´�¼cµ�¹°¶�¸¤³&´�¼�´*µC¶�ÁÂµQ¶&»¤´�¸¤³&´�É�ÁÃ¹4²y¼�¾�¹�Ê¤´*ÀÂ¼�Ð
ÑÒµn¹°³�Ê�´*³
¶�¹�ÁÏ¾�¸y³&¹\É°´�·=º*º�²¤³&·°ºgËCÌ4·°ÀÂÀ?¶&»¤³&´�´�¾�´�¶�»�¹¤Ê¤¼
Å�·°ÀÂÀ�Ä?·=º$×�¶&¹8¶&»¤´�Äy·°¼�´*ÀÏÁÂµ¤´�¾�´�¶�»�¹�Ê¯ÁÂÅ�¶�»�´*ËeÊ¤¹6µ�¹°¶
Ê¤´�¶&´*ºg¶�·=µ�Ën¹°×�²¤³�ÁÃ½4·=µy·�Ð

 �� 1LRHæW1�K=F I�9
��·�É�ÁÂµ�½n¶&´*·°¼�´*ÊX·=¸y·=³&¶s¶�»�´�·°ÀÂÁÃ½4µ¤¾�´�µC¶'·=µyÊe¹=×�²¤³&ÁÂ½_¿
·°µ¤·'Ê¤´�¶&´*º�¶&ÁÃ¹4µ�·°ÀÃ½=¹°³�ÁÃ¶&»y¾Õ¼�Ì_Ó�´�·=³&´�ÁÂµ�·�¸/¹4¼&ÁÃ¶&ÁÂ¹°µ�¶�¹
¼�´*¸y·=³&·=¶�´�ÀÃË�´�É=·°ÀÂ²¤·=¶�´s¶&»¤´*ÁÂ³ê¸�´�³&Åu¹°³&¾Õ·°µ¤º�´=ÐWþ�²¤³�¶�´�¼�¶
¼�´*¶�Åu¹=³�¶&»¤´�º�¹°¾�ÄyÁÂµ¤´�Êe¶&·°¼�×Xºg¹4µy¼&ÁÂ¼�¶&¼�¹°Å�I=û°û=û8³�·°µ�¿
Ê¤¹°¾ÕÀÃËJº{»�¹4¼�´*µJ·°µ¤ÊÍ¾Õ·=µ�²y·°ÀÂÀÃË ·°ÀÂÁÃ½4µ¤´*ÊJ´�Î�·°¾�¸yÀÂ´*¼
Åu³&¹4¾ ì Ê¤ÁÏºg¶*ÌSÅu³&¹4¾ Ós»yÁÂº�»¯Ó�´�¶&»¤´*µ ¼�´�¸?·_³�·=¶�´�Ê}¹4²�¶
·°µ�ÁÂµyÊyÁÃÉ�ÁÂÊ¤²y·°ÀL´*É_·°ÀÂ²y·_¶�ÁÃ¹4µ6¼�´*¶�Åu¹°³s´*·°ºg»6¼&²¤Äy¶&·=¼&×:Ð
÷�ÁÂµyºg´nÓc´n·_³&´8·=ÀÏ¼�¹XÁÂµ�¶&´�³&´*¼�¶&´*Ê ÁÂµ ´�ãnº*ÁÃ´�µ¤º�Ë°Ì�Ó�´
��� nTb _^?�klZbe\�s []o�� qgirfe\�y�beo;`Tl7icl�ar^po��kbeo�\;nm^]j=\;nTirl�z]`T{g\�\;nTb

^kqTqgic\;ic[�jm^]a�_^?�kl�a�^po��kb�ac�H� ^po;v�lZ{T` f�ar^]l;lZb�l�^]jmq=bedgf�b�hg\;ir[kjTl�[]s
\;nTb \;ngo;b�b�� ^]irj�f�ar^]l;lZb�l�z � nTirfen � b i��kjm[]o;b s []o�\;nTb l;^]v�b []slZiX� hTaricf�ic\����

148

¸y³�¹\É�ÁÂÊ¤´w´gÎ�´*º*²�¶�ÁÃ¹4µ�¶�ÁÂ¾�´�·=¼'¾�´*·°¼&²�³&´*ÊeÄ�ËQ´�ÀÂ·=¸y¼�´�Ê
¶&ÁÏ¾�´s¹4µ8·w¼�¶&·°µ¤Êy·_³�Ê ��´*µ�¶&ÁÂ²y¾ ��Ê�´�¼�×C¶&¹=¸ �c±'Ð¤þ�²�³
´*¾�¸?»y·=¼&ÁÂ¼�»¤¹_Ó
´*É°´�³�ÁÂ¼'¹4µX¶�»�´ K����
������E�s¶&ÁÏ¾�´�¶&·=×°´�µ
Ä�ËÖÊ¤Á ��´*³�´�µ�¶�·°ÀÃ½°¹=³�ÁÃ¶�»¤¾Õ¼�³�·=¶&»¤´�³È¶&»y·=µâ¶&»¤´ ´gÎ¤·=º�¶
¶&ÁÏ¾�´�·°¼�¾�´*·°¼&²�³&´�Ê�Ð
ÑéµÙ¶�»�´ñÅu¹4ÀÂÀÃ¹=ÓsÁÏµ�½Û¼�´*º�¶&ÁÃ¹4µÙÓ�´,Ôy³�¼�¶â´*É_·°ÀÂ²y·_¶&´
·°ÀÂÁÃ½4µ¤¾�´�µC¶Õ·°µ¤Êë¹°×�²¤³�ÁÃ½°·°µy· Ê¤´�¶&´*º�¶&ÁÃ¹4µ ¼�´�¸?·_³�·=¶�´*ÀÂË4Ì
¶&»¤´�µJÓ�´X´�É=·°ÀÂ²y·_¶&´X¹=×�²�³�ÁÃ½4·=µy·øÊ¤´�¶&´*º�¶&ÁÃ¹4µ�Ì�·°µ¤ÊÖÔ�¿
µy·=ÀÂÀÂË�Ó�´j·=¼&¼�´�¼&¼�¸:´*³&Åu¹=³�¾Õ·°µ¤º�´j¹\É°´�³�¶�»�´jº�¹°¾�ÄyÁÏµ�´�Ê
¶&·°¼�×/Ð

�GX8Z � f?a.bkd!6 i dCg

L�´¯Ô¤³�¼�¶�º�¹°¾�¸?·_³&´¯¶�»�´ ·=º*º�²¤³&·°ºgËï¹=Åw¶�»�´¯É=·=³&ÁÂ¹°²y¼
·°ÀÂÁÃ½4µ¤¾�´�µC¶6·=ÀÂ½=¹°³�ÁÃ¶&»y¾AÉ=·=³&ÁÏ·=µ4¶�¼�Ì�·°¼8½4ÁÃÉ°´�µÖÁÂµÍÚO·_¿
Ä?ÀÃ´¯ó_Ð ç Å�¶�´*³�¼�¹°¾�´8´�Î�¸:´*³&ÁÏ¾�´*µ�¶&·=¶&ÁÃ¹4µ�Ì�¸?·_³�·°¾�´*¶�´*³
É=·=ÀÏ²�´�¼W¹=ÅSû¤Ð ûBI�Åu¹=³7@WÌ�·°µ¤ÊQÞ�Ð#I�Å�¹=³21 3 ·°µ¤ÊG1 6 Ó�´�³&´
Åu¹4²¤µyÊe¶&¹nË�ÁÃ´�ÀÂÊe¶�»�´jÄ/´�¼�¶'³�´�¼&²¤ÀÂ¶&¼�Ì/·=µyÊeÓ�´�³&´j»�´�µ¤º�´
²y¼�´*Ê�¶�¹n½=´�µ¤´�³�·_¶&´-¶�»�´�³�´�¼&²yÀÃ¶&¼sÓc´-ÊyÁÂ¼&º*²¤¼&¼�»¤´*³�´°Ð
í?¹°³¯´*·°º{» ¹°Å�¶�»¤´ëµ�¹4µ�¿U³�·=µyÊ�¹4¾ »¤´�²�³�ÁÂ¼�¶�ÁÂº�¼�ÌjÓ�´
´gÎ�¸/´�ºg¶¯¶�»¤·=¶¯¶&»¤´ëÁÃ¶&´�³�·=¶&ÁÃÉ4´øÉ°´�³�¼&ÁÃ¹4µáÓ�ÁÂÀÂÀ�·°ºg»yÁÃ´*É=´
»yÁÃ½°»¤´*³�·=º*º�²¤³�·=º�ËÈ¶&»y·=µe¶�»¤´�µ�¹4µ�¿©ÁÃ¶�´*³�·_¶�ÁÃÉ4´wÉ4´*³�¼&ÁÃ¹°µLÌ
¼&ÁÂµyºg´j¶�»�´j¼�¶&·=¶&ÁÏ¼�¶&ÁÂº*·°À>¾�¹�Ê¤´*À�ÁÂ¼s³&´*Äy²yÁÂÀÃ¶'´�·=º{»eÁÃ¶&´�³�·_¿
¶&ÁÂ¹°µÈ·=ÊyÊyÁÂµ¤½�¶�»�´wÄ:´*¼�¶s´gÎ¤·=¾�¸?ÀÃ´wÅu³&¹°¾ ¶�»�´wÀÂ·°¼�¶�Ð ç ¼
¼&²yº{»�Ì?¶&»yÁÂ¼�³&´�¸y³&´*¼�´�µ�¶�¼s·�¶�ÁÂ¾�´'$_·°º�º�²¤³�·=º�Ë6¶�³�·=Ê¤´g¿H¹&��Ì
·wÅ�·°ºg¶
ºg¹4µ¤Ô¤³�¾�´*ÊnÄ¤Ëj¹4²�³cÊ¤·=¶&·Qðp¼&´�´'Ú�·=ÄyÀÂ´�ÞCü�ÐWÚs»¤´
½4·=ÁÂµ�� Þ4àÛÁÂµX¶�»�´�º*·=¼�´�¹°ÅWÚsí�¿UÑ K�í�Ìk��à Åu¹°³�ÑCK-í
·°ÀÃ¹°µ¤´��Æºg¹4¾�´*¼�·=¶ê¶�»�´�ºg¹4¼�¶ê¹°Å�·°µ�¹°³�Ê�´*³ê¹°Å/¾Õ·=½°µyÁ ¿
¶&²yÊ¤´�ÀÂ·_³&½°´�³�´�Î�´�º�²¤¶&ÁÃ¹4µn¶&ÁÏ¾�´=ÌCÓ�»¤ÁÂº�»�·°ÀÂ¼�¹�ÁÂµyº�³�´�·=¼�´�¼
´gÎ�¸/¹4µ�´�µC¶�ÁÂ·=ÀÏÀÃË�Ó�ÁÃ¶&»Q¶&»¤´-µ�²y¾jÄ?´*³�¹=ÅOÁÂµ�¸?²¤¶�´*µC¶&³�ÁÃ´*¼�Ð
Ñéµ�ºg¹4µC¶�³�·°¼�¶�ÌO¶&»¤´8G�·=µ7=�ÁÂÊyÁÂº8¾�¹�Ê¤´*À
ºg¹4µ¤¼�ÁÂ¼�¶�´�µ�¶�ÀÃË
·°º{»¤ÁÂ´�É°´�¼'·8É°´*³&ËÈ»¤ÁÂ½°»¯·°º�º*²�³�·°ºgËÈ³&´*½°·=³&ÊyÀÃ´�¼&¼'¹°ÅW¶&»¤´
»¤´*²¤³&ÁÏ¼�¶&ÁÂºïº{»¤¹°¼�´�µLÐ ç ÀÂ·=³�½°´Jµ�²¤¾�Ä?´�³�¹°ÅQ´�µC¶�³�ÁÃ´�¼
·=³�´�ÁÂ¾Õ¾�´�Ê¤ÁÏ·_¶&´*ÀÃËÕÊyÁÂ¼&·°¾jÄ?ÁÃ½4²¤·=¶�´�ÊÕÄ�Ë�¶&»¤´ G-·°µ7=�ÁÂÊyÁÂº
¾�¹�Ê¤´*ÀpÌj¶�»�²¤¼¯ÁÂµyÁÃ¶&ÁÏ·=ÀÏÀÃËèÁÂ¾�¸y³�¹=É�ÁÏµ�½J·°º�º�²¤³�·=º�Ë ·°µ¤Ê
¶&»¤´�µ,Å�·°º�ÁÏÀÂÁÃ¶�·_¶�ÁÂµ¤½â²y¼�´ë¹°Å8¾�¹=³&´ ·°º*º�²¤³&·=¶�´ ¼�¶&·=¶&ÁÂ¼é¿
¶&ÁÏº�¼QÁÂµï¶&»¤´¯ÁÃ¶&´�³�·_¶�ÁÃÉ4´X·°ÀÃ½°¹=³�ÁÃ¶�»¤¾ Ó�ÁÂ¶&»¤¹°²¤¶Q¼&ÁÃ½°µyÁÃÔ¤¿
º�·°µC¶j¸/´�µ¤·°ÀÃ¶ÒËý¶&¹¯´�ãnº*ÁÃ´*µyº�Ë°Ð L�´Q·°ÀÂ¼�¹X´gÎ�¸/´�ºg¶j¶&»¤´
G�·=µ7=�ÁÏÊ¤ÁÏºn¾�¹�Ê¤´*À8< ¼w´�Î�´�º�²¤¶&ÁÂ¹°µ ¶�ÁÂ¾�´8¶�¹¯¼&º�·°ÀÃ´8¾�¹=³&´
¾�¹�Ê¤´�³�·_¶&´*ÀÂËÖÓ�ÁÃ¶�» ¶&»¤´øµ�²y¾jÄ?´�³¯¹=ÅÕÁÂµ¤¸y²¤¶e´*µ�¶&³�ÁÃ´*¼
¶&»y·°µ�¶�»�´�¹°³&ÁÂ½°ÁÏµ¤·°À?ÁÂ¶�´*³&·=¶&ÁÂÉ°´s·°ÀÃ½°¹=³�ÁÃ¶�»¤¾�Ì�¼&ÁÂµyºg´'·wÅ�·=³
ÀÃ´�¼&¼�´�³�¸¤³&¹°¸/¹=³&¶�ÁÃ¹°µ6¹=Å�¶&»¤´�´*µ�¶�³�ÁÃ´*¼c³&´ : ²yÁÃ³&´-ÁÃ¶&´�³�·_¶�ÁÃÉ°´
ÊyÁÂ¼&·=¾�Ä?ÁÃ½°²y·=¶&ÁÃ¹4µ�Ð
±�¹4¾�¸?·=³&ÁÏµ�½ë¶&»¤´}ÁÂµyÊ¤ÁÃÉ�ÁÂÊy²y·=À�»¤´*²¤³�ÁÂ¼�¶&ÁÏº�¼�·=¶6¶&»yÁÂ¼
¼�¶&·=½°´=Ì\·s¼�²�³&¸¤³�ÁÂ¼�´�ÁÂ¼L¶�»¤·=¶L¶�»�´�ÑCK-í6»¤´*²¤³&ÁÏ¼�¶&ÁÂºW·_¶&¶&·°ÁÂµy¼
´ : ²yÁÃÉ=·=ÀÂ´*µ4¶
³&´*¼&²yÀÃ¶&¼
¶�¹j¶�»�´�Úsí�¿HÑCK�í�»¤´*²¤³&ÁÏ¼�¶&ÁÏº_Ì�¼&²¤½_¿
½°´*¼�¶&ÁÏµ�½e¶�»¤·=¶-Äy³�¹4·°Êý¹�º*º�²¤³&³&´*µyºg´Õ¹=Å5�% ,&)(*"�¸y·°ÁÃ³�¼wÁÂ¼
·�½=¹C¹�ÊÈÁÂµyÊ¤ÁÏº�·=¶�¹°³�¹°Å�¶�»�´�ÁÃ³�·=ÀÏÁÃ½°µy¾�´*µ�¶c¸¤³&¹°Äy·=ÄyÁÏÀÂÁÃ¶�Ë=Ð
Ús»�´'Úsí »¤´�²�³�ÁÂ¼�¶�ÁÂº�ÁÂµ8ºg¹4¾�¸y·=³�ÁÂ¼�¹4µ�¸:´*³&Åu¹°³&¾Õ¼
Ó�¹°³&¼�´
¶&»y·°µ�¼&ÁÂ¾�¸?ÀÃË�º{»�¹C¹4¼&ÁÂµ¤½�³�·=µyÊ¤¹°¾ÕÀÃË4Ì°¼&²¤½=½°´*¼�¶�ÁÂµ�½-¶&»y·_¶
¶&»¤´È¸¤³&¹=¸:¹°³&¶&ÁÃ¹4µë¹=Å'¶�ÁÂ¾�´�¼Õ·}½°³&·=¸?»�´�¾�´�¹�º�º*²¤³&¼Õ·°¼
¶&»¤´jº�²¤³&³�´�µ�¶��% ,&�(*"�¸y·°ÁÃ³'ÁÂ¼'·ÕÉ4´�³&Ë6¸:¹�¹=³'ÁÏµ¤ÊyÁÂº*·_¶�ÁÃ¹°µ
¹°ÅOÁÃ¶�¼�·=ÀÏÁÃ½4µ¤¾�´�µC¶c¸y³�¹°Äy·=Ä?ÁÂÀÂÁÃ¶�Ë=Ð

� j i9f ��� ��^e` c�� %
÷�ÁÂ¾�¸yÀÂ´ ÜE@ ÐÏó�à
G�·=µ7=�ÁÏÊ¤ÁÏº ÜE@ Ð ô à
±�¹_¿H¹�º�º*²�³&³&´*µyºg´ ÜBA Ð A à
mW´*³&ÄÈº�¹°µ7=�²¤½°·=¶&ÁÂ¹°µ ÜBA Ð A à

ÚO·=Ä?ÀÃ´ ô 3Xþ�×�²¤³�ÁÃ½4·=µy·ýÊ¤´�¶&´*º�¶&ÁÃ¹4µ ·=º*º�²¤³&·°ºgËo·°ºg³&¹°¼&¼
¾�¹�Ê�´�ÀÂ¼

�GX	� []_^_`&a.b3c3dec i gMi7�Jg�a.jkd
L�´�µ¤¹_Ó�º�¹°¾�¸?·_³&´
¶&»¤´
¸:´�³&Åu¹°³�¾Õ·=µyºg´
¹°Å�¹4²¤³�¹=×�²�³�ÁÃ½=¿
·°µ¤·�Ê¤´*¶�´*º�¶&ÁÂ¹°µ�·°ÀÃ½°¹=³�ÁÃ¶�»¤¾Õ¼�Ð ç ÀÂÀ�¶�»¤´�·=ÀÂ½=¹°³&ÁÂ¶&»y¾Õ¼�Ó�´
ºg¹4¾�¸?·_³&´�·_³&´�ÀÏÁÂµ�´�·_³�ÁÂµX¶�»�´�¼&ÁÂú�´�¹°ÅW¶&»¤´�ÁÂµ¤¸y²¤¶�·=µyÊ
¶&»�²¤¼�³�²¤µ¯ÁÏµ}¾�²¤º{»XÀÂ´*¼&¼�¶&ÁÂ¾�´�¶&»y·=µX¶�»�´Õ·=ÀÏÁÃ½°µy¾�´*µ�¶
¸?»¤·°¼�´=Ì4¶&»�²y¼�´�ãnº*ÁÃ´*µyº�ËjÁÂ¼Wµ¤¹=¶W·-¼&ÁÂ½°µyÁÃÔ?º�·°µC¶êº�³&ÁÂ¶�´�³�ÁÂ·
ÁÂµ�º{»�¹C¹4¼&ÁÂµ¤½�Ä:´*¶éÓ
´*´*µ8¶�»�´�¾�ÐWÚs»�´�·=º*º�²¤³&·°ºgË8Åu¹4²¤µyÊ
Ä�ËQ´*·°º{»�¾�¹�Ê¤´*ÀSÁÂ¼�¼&»¤¹\Ó�µ6ÁÏµÈÚ�·_Ä?ÀÃ´ ô Ð
ÑéµC¶�´*³�´�¼�¶&ÁÏµ�½4ÀÃË°Ì�¶&»¤´ñ¼&ÁÏ¾�¸yÀÃ´�¾�¹�Ê¤´*À}Ó�»yÁÂº{» ·=¼é¿
¼&²y¾�´*¼s¶�»¤·=¶�´*É4´*³�Ë8¸/¹=¶&´*µ�¶&ÁÂ·°ÀLº*·=¼�´w¹=ÅO¹=×�²�³�ÁÃ½4·°µ¤· �
¹°×�²¤³&ÁÂ½°·°µ¤·�¸/´*³&Åu¹=³�¾Õ¼W´�Î�¶&³&´*¾�´*ÀÂË�Ó�´*ÀÏÀpÌ°Ä:´�·=¶�´*µn¹4µyÀÃË
Ä�Ë6¶&»¤´j·=ÊyÊ¤ÁÂ¶&ÁÃ¹4µe¹°Å�¶�»�´ G�·=µ7=�ÁÏÊ¤ÁÏºwº�¹°¾Õ¾�¹4µÈ¹=×�²�³�Á ¿
½4·=µy·�¼�¶�´�¾�¼*Ð ç ÊyÊyÁÂµ¤½�¾�¹°³&´eÁÏµ�Å�¹=³�¾Õ·_¶�ÁÃ¹4µï¶�¹�¶&»¤´
¾�¹�Ê�´�À�·_Ä�¹°²¤¶�É=·=ÀÂÁÏÊ�¹=×�²�³�ÁÃ½4·°µ¤·e¹�º*º�²¤³&³�´�µ¤º�´*¼�´�É4´*µ
³&´*Êy²¤º�´*¼ê¶�»�´�·=º*º�²¤³�·=º�Ë�¼&ÀÏÁÃ½4»�¶&ÀÂËw¹\É°´*³�¹4²¤³ê¶&´*¼�¶�Ê¤·=¶&·¤Ð
D ·_¶&»¤´*³�¶�»¤·°µ}ÁÂµyÊyÁÂº�·=¶&ÁÏµ�½�ÄyÀÂ·°µ¤×4´�¶�¸¤³&¹=¸:´*³&¶&ÁÃ´�¼�¹=Å
¶&»¤´�¼�´8¾�¹�Ê¤´�ÀÂ¼�Ì�¶&»¤´Q³&´*¼&²yÀÃ¶�¼j¼&²¤½=½°´*¼�¶�¸y³&¹=¸:´*³�¶�ÁÃ´�¼j¹°Å
¹4²�³>¶�´�¼�¶&ÁÏµ�½'Êy·_¶�·�ÐW÷�ÁÂµ¤º�´
ÁÃ¶�ºg¹4µ¤¼&ÁÂ¼&¶&¼L´*µ�¶&ÁÂ³�´�ÀÃË�¹=Å¤Ê¤ÁÏº{¿
¶&ÁÂ¹°µy·_³&Ë ´�µ�¶&³&ÁÂ´*¼8ÓsÁÂ¶&»¤¹°²¤¶6¶&»¤´}º�¹°¾Õ¾�¹4µÍ»yÁÃ³�·_½4·=µy·
¸?·_³&¶&ÁÏº�ÀÃ´�¼jÓ�»yÁÂº{»�Óc¹°²yÀÂÊ�¹�º*º�²¤³�ÁÂµ�¹°¸/´�µ�¶�´gÎ�¶�ÌW¶&»yÁÂ¼
½°³�´*´*Ê¤Ë�·_¸y¸y³�¹4·=º�»�ÁÏ¼>ÉC´�³&Ë-¼&²¤ÁÂ¶&·_Ä?ÀÃ´°Ì=·°µ¤Êj¼&²9�/´*³�¼>Åu´*Ó
¹°Å�¶�»�´�¼&»�¹°³&¶&º�¹°¾ÕÁÂµ¤½4¼eÓ�»¤ÁÏº{»âÁÂ¶eÓc¹°²yÀÂÊèµ�¹°³�¾Õ·=ÀÏÀÃË
Å�·°ºg´°Ð
ÑéµÖ¹°¸:´*µÖ¶&´gÎ�¶�Ì'Ó�´}Ó�¹°²yÀÂÊÍºg¹4µ¤¼&ÁÏ¼�¶�´*µ�¶&ÀÂËë´gÎ�¸/´*º�¶
·°Ê¤ÊyÁÃ¶&ÁÂ¹°µy·=À�ÀÂ·°µ�½4²y·_½°´�Åu´*·=¶&²¤³&´*¼èÄ�´�¶ÒÓ�´*´*µ�ÀÃ´�Î�ÁÏº�·°À
ÁÃ¶&´*¾Õ¼êÓ�»yÁÂºg»�Óc¹4²¤ÀÏÊ�Äy³�´�·_×�¶�»�´�·=¼&¼&²y¾�¸¤¶�ÁÃ¹4µ¤¼�¾Õ·°Ê�´
Ä�Ëë¹4²�³Q¼&ÁÏ¾�¸yÀÂ´}¾�¹�Ê�´�ÀpÌ�·°µyÊï¶&»�²y¼Õ³&´*Êy²yºg´}ÁÂ¶&¼8·°º{¿
º�²¤³�·=º�ËýÊ�³�·=¾Õ·=¶&ÁÏº�·°ÀÂÀÃËCÐnÑéµ�ºg¹4µC¶�³�·°¼�¶�Ì�¶&»¤´8Å�²yÀÂÀWÉ°´�³&Ä
ºg¹4µ7=�²¤½°·=¶&ÁÃ¹4µ ¾�¹�Ê¤´*À�Ó�¹4²¤ÀÏÊø¶&»¤´�µoÄ/´�´gÎ�¸/´*º�¶�´�Êo¶&¹
¸:´�³&Å�¹=³�¾ Ä:´*¼�¶*Ìy¼&ÁÂµyºg´�ÁÃ¶s»y·°¼�¶�»�´�¾�¹°¼�¶�ÁÂµ�Å�¹=³�¾Õ·=¶&ÁÃ¹4µ
¶�¹�·=º*º�²¤³&·=¶�´�ÀÃËeÊ¤´�¶&´*º�¶�º�·°¼�´*¼�¹=ÅW¹°×�²¤³�ÁÃ½4·=µy·8´�É4´*µXÁÂµ
¶&»¤´�¸¤³&´*¼�´�µ¤º�´w¹=Å�¹°¶&»¤´*³�Å�´*·=¶&²¤³�´�¼�Ð
�GX W �;j 6�� a?dei7 �gMc 2=\
÷C´*ÀÃ´�ºg¶�ÁÂµ¤½�¶�»�´�¶ÒÓ�¹�¾�¹�Ê¤´*ÀÏ¼�Ó�»¤ÁÂºg»Q¸/´*³�Å�¹=³�¾�´*Ê6Ä/´*¼�¶
¹4µe¹°²¤³'¶�´�¼�¶�Ê¤·=¶&·¤Ì:Óc´jº�·°µXµ¤¹_Ó ´�É=·°ÀÂ²y·_¶&´�¶�»�´j¸?·=ÁÂ³
¹4µ}¶�»�´8ºg¹4¾jÄ?ÁÂµ¤´*Êý¶&·°¼�×/Ðní?¹=³�¶�»�´n·=ÀÏÁÃ½°µy¾�´*µ�¶-¼&²¤Ä�¿
¶&·°¼�×/Ì�¶&»¤´�ÑCK-í�»¤´*²¤³�ÁÂ¼�¶&ÁÏº�Ó�ÁÃ¶�»8G�·=µ7=�ÁÂÊyÁÂº'Ós·°¼
²y¼�´*ÊLÐ
í?¹=³�¶&»¤´�¹°×�²�³�ÁÃ½4·=µy·}Ê¤´�¶&´*º�¶&ÁÃ¹4µ ¼&²�Äy¶&·°¼�×:Ì
¶&»¤´e¼&ÁÂ¾�¿
¸?ÀÃ´�·°ÀÃ½°¹=³�ÁÃ¶�»¤¾"ÁÏ¼s²¤¼�´�ÊLÐ�Ús»�´�³&´*¼&²yÀÃ¶&¼�·_³&´w¼�»�¹\Ó�µ6ÁÏµ
ÚO·=Ä?ÀÃ´5�yÐ
ç Ôyµy·°À�·=º*º�²¤³�·=º�Ë8¹°Å Ü=Ý ÐßÞ4à�Ós·°¼�·°º{»¤ÁÂ´�É°´�Ê�Ì�Ó�ÁÃ¶�»
¶&»¤´�´*³�³&¹°³&¼�º�·°²y¼�´*Ê¯¾�¹4¼�¶&ÀÂËeÁÂµX¶�»�´�·°ÀÂÁÃ½4µy¾�´*µC¶�¼&²¤Ä�¿
¶&·°¼�×/Ð ç ¼8¸y³&´*ÊyÁÂº�¶�´*ÊLÌ'½=³�·=¸y»¤´*¾�´¯½4·_¸y¸?ÁÂµ�½oÓ�·°¼8·

149

�����������	��
 ðUànü 3 c3d! j 6 � � ��	�� ��� �0�
	��
�VgMi `�c!g�a	Gi � A Ð @ Þ ô Ð A Ü �yÐ A Ü=ô Ð �

Ca?debkf.i��p" c 2"2 � A Ð ô Þ ô Ð Ý Ü û¤Ð#I Ü û¤Ð @
� c3d�Ma� 7a�� Ü �¤Ð � Ü Þ�Ð Ü ÜE@ Ð û ÜBA Ð Ü
Ú�·_Ä?ÀÃ´Õó�3 ç ÀÏÁÃ½4µ¤¾�´�µC¶�·°º�º�²¤³�·=º�Ë�·=º�³�¹4¼&¼s¾�¹�Ê¤´*ÀÂ¼

����������������� 3 c3d! jC6 � � �
	�� � ���0��	 �
�'gMi�` c!gMa	Ci û 3Ïó�û Þ � 3Ïó*û Þ°Þ 3 � A Þ¤ó�3#I&�

Ya?d_bkf.i � " c 2"2 û 3Ïó�û û 3mó=ó û 3ßû Ü û 3Ïó*û
� c3d��a	 7a�� û 3Ïó*Þ û 3 Þ A û 3 Þ � û 3ßÞ&�
ÚO·=ÄyÀÃ´jÞ 3 ç ÀÂÁÃ½4µ¤¾�´�µ�¶c´�Î�´�º�²¤¶&ÁÂ¹°µ�¶&ÁÏ¾�´j·°ºg³&¹°¼�¼s¾�¹�Ê¤´*ÀÏ¼

kgMc!g�^ 2 �;j0^ dGg � i `T� i9dkgMc b3i
±
¹°³&³�´�ºg¶ � @ û Ü Ü=Ý ÐßÞ4à
ÑÒµyºg¹°³�³&´�ºg¶ ó Ü ó ô Ð @ à
� ��·=¸¤¸?ÁÂµ¤½ Ý û�ÐÏó�à
� ç ÀÂÁÃ½4µ¤¾�´�µC¶ ó Ý=ô ô Ð ô à
� þ�×�²¤³&ÁÂ½°·°µ¤· Þ°Þ û¤Ð �Cà

ÚO·=Ä?ÀÃ´>� 3�ò�´�¼�¶c¾�¹¤Ê�´�À/·=º*º�²¤³&·°ºgË8Åu¹°³�¶&»¤´-º�¹°¾�Ä?ÁÂµ¤´*Ê
¶&·°¼�×

¼�¹4²�³�ºg´e¹°Å�´*³�³&¹°³&¼n¹°µyÀÃË ÁÂµï·�¼&¾Õ·=ÀÏÀ�¸/´*³�ºg´�µC¶&·=½=´È¹=Å
º�·°¼�´�¼�Ì =&²¤¼�¶�ÁÃÅuË�ÁÂµ¤½ ÁÂ¶&¼�´�Î�º*ÀÂ²y¼&ÁÃ¹°µoÅu³&¹°¾ ¹4²�³n¾�¹�Ê¤´*ÀpÐ
Ús»¤ÁÏ¼nÀÃ´*É°´*À�¹=Å-·=º*º�²¤³�·=º�ËoÁÂÅ'´ : ²yÁÃÉ=·=ÀÂ´*µC¶Õ¶�¹ ¶&»y·_¶n¹=Å
´*·=³�ÀÂÁÃ´*³e¾�¹�Ê¤´�ÀÂ¼�Ì�Ë4´*¶6ÁÃ¶È»y·=¼6Ä�´�´*µâ·=º�»¤ÁÂ´�É=´�ÊÖÓ�ÁÃ¶&»
·n¾�²yº$»eÀÃ¹\Óc´�³�ºg¹4¾�¸y²¤¶&·=¶&ÁÂ¹°µy·=À�º�¹°¼�¶*Ð ì Î�·°¾�¸yÀÂ´*¼�¹°Å
ÁÂµyºg¹°³&³�´�ºg¶�·=ÀÏÁÃ½°µy¾�´*µ�¶ê·=³�´s½°ÁÂÉ°´*µ�ÁÂµÕí�ÁÃ½4²�³&´ �-Ä:´�ÀÃ¹_Ó�Ð
·¤Ð � � "k� � I !�" ¾Õ·\¿©¼�!y¼&·\¿H×_·_¿U³�Á

#JKVK��0.� I !�" ¾Õ·\¿{ðp¼{ü$!?¼&·\¿U×=·_¿U³�Á
�éÅp²¤ÀÏÀ�ÄyÀÂ¹�¹°¾ �

ÄSÐ � � "k� � % !�& !¤ºg»yÁ »y·_¿H¼&·'!¤¾�ÁÃ¿H²(!¤ºg»yÁ
#JKVK��0.� % !�& !¤ºg»yÁ »y·_¿H¼&·_¿H¾ÕÁ)!¤²(!¤ºg»yÁ

�é¸?ÁÂµyºg´*³�·_¶&¶&·=ºg× �
º_Ð � � "k� � *ø¿Hµ(!�+ ·\¿H×_·_¿Hµ,!yÄ/¹_¿©²

#JKVK��0.� * !¤µ-!�+ ·\¿H×=·.!yµ/!¤Ä:¹=¿H²
�éÄ?·_Ä¤Ë �

í�ÁÂ½°²¤³�´)� 3 ì Î¤·=¾�¸?ÀÃ´�¼8¹°Å-ÁÏµ¤º�¹=³&³&´*º�¶Q·=ÀÏÁÃ½°µy¾�´*µ�¶nÁÏµ
¶&»¤´wºg¹4¾�Ä?ÁÂµ¤´*Ê6¶&·°¼�×

ì Î¤·°¾�¸?ÀÃ´�ðp·�üj¼&»¤¹_Ó�¼�·}½°³�·_¸?»�´�¾�´�½4·_¸y¸?ÁÂµ�½ ´*³é¿
³&¹=³*ÌêÓ�»¤´�³&´6¶�»�´Q¹4²�¶&¸y²¤¶�Ì
·°ÀÃ¶&»¤¹°²¤½4»øºg¹°³&³�´�ºg¶�ÀÃË�¼�´*½_¿
¾�´*µ�¶�´�ÊJ·=µyÊJ·=ÀÏÁÃ½°µ¤´*ÊLÌ'·_¶&¶�³�ÁÃÄ?²�¶&´*¼8¶&»¤´}·=ÊyÊ¤ÁÂ¶&ÁÃ¹4µy·=À
 ¼�¹4²¤µyÊ�¶�¹}¶&»¤´ I ×=·=µ7=�Á�ÁÂµy¼�¶�´�·=Ê�¹°ÅsÊ�´*¶�´�ºg¶�ÁÂµ�½ýÁÃ¶
·°¼�·�½4·_¸y¸:´�Êý½°³�·_¸?»�´�¾�´=ÐÕÑÒµý´gÎ¤·=¾�¸?ÀÃ´¯ð�Ä�ü�Ó�´�¼�´�´
·e¶ÒË�¸yÁÂº*·=À�·°ÀÂÁÃ½4µ¤¾�´�µ�¶w´�³&³&¹=³*ÌOÓ�»�´*³�´8¹4µ�´8×=·°µ'=&ÁW»y·=¼
Ä/´*´*µX·=¶�¶&³&ÁÂÄy²¤¶�´�Êe¸y·=³&¶�¹°Åê¶&»¤´j³�´�·=ÊyÁÂµ¤½8¹=Å�·°µ�¹°¶&»¤´�³*Ð
í�ÁÏµ¤·°ÀÂÀÃË°Ì�´gÎ¤·°¾�¸?ÀÃ´ëð º�ü�½4ÁÃÉ°´�¼8·°µJ´*³�³&¹°³6ÁÂµJ¹°×�²¤³�ÁÃ½=¿

·°µ¤·6Ê¤´*¶�´*º�¶&ÁÂ¹°µLÌ�Ó�»�´*³&´�¶&»¤´ I�×=·=µy·QÁÂ¼�´*³�³&¹4µ�´*¹°²y¼&ÀÃË
Ê¤´�¶&´*ºg¶&´*ÊÈ·°¼�·=µ�¹=×�²¤³&ÁÂ½°·°µ¤·Õ¼&²¤ã�Î6¹°ÅO¶�»�´$*Æ×_·°µ'=&ÁpÐ
0 ��1 K_7:9�3_FUI>9
3
ç ÀÃ¶�»�¹4²�½4»ýº*²¤³�³&´*µ�¶�Óc¹°³&×eÁÂ¼�¼&²yÁÃ¶�·_Ä?ÀÃ´ÕÅu¹=³w²y¼�´�Ó�ÁÃ¶�»
¶&»¤´�í�þ�G�÷ ¼�Ë�¼�¶�´�¾6Ì
ÁÃ¶�ÁÏ¼�¼�¶&ÁÂÀÏÀc²¤µ�¶�´�¼�¶�´*Êø¹°µo¹=¸/´�µ
¶�´�Î�¶*ÐëÚs»�´eÀÂ·°º{×�¹°Å'¼&²yÁÃ¶&·=Ä?ÀÃ´È·°ÀÂÁÂ½°µ¤´*Ê Ê¤·=¶&· ÁÂ¼�¶�»�´
¾Õ·=ÁÏµ ¹=Ä?¼�¶&·°º�ÀÃ´Õ¶�¹Xº�³�´�·_¶�ÁÂµ¤½È·e¼�Ë�¼�¶�´�¾�ÓsÁÂ¶&»ýÓ�ÁÂÊ�´*³
·=¸¤¸?ÀÂÁÂº*·_Ä?ÁÂÀÏÁÃ¶ÒË°Ðáþ�Å-¶&»¤´X¶ÒÓ�¹�¼&²¤Ä¤¶�·=¼�×�¼�Ìs·°ÀÂÁÃ½4µ¤¾�´�µC¶
¼&»¤¹°²yÀÂÊ�³�´�¾Õ·=ÁÏµ�³&´*ÀÏ·_¶�ÁÃÉ°´�ÀÃËj²yµyºg»¤·°µ¤½=´�Ê�ÁÂµ�¶&»¤´s¾�¹=É_´
¶�¹Õ¹°¸/´*µ�¶�´�Î�¶*Ìy·°µ¤Ê�Ó�´�´gÎ�¸:´*º�¶�¶�»�´�ÑCK�íë·=ÀÃ½°¹=³�ÁÃ¶�»y¾
Ó�ÁÃ¶�» G�·°µ'=�ÁÏÊ¤ÁÏº-¶&¹Õº�¹°µ�¶&ÁÂµ�²¤´�¶&¹�¸�´�³&Åu¹°³&¾ Ó�´*ÀÏÀpÐ
þ�×�²�³�ÁÃ½4·=µy· Ê�´*¶�´�ºg¶�ÁÃ¹4µ ³&´*¾Õ·°ÁÂµ¤¼�¶&»¤´ »y·_³�Ê�´*³
¸y³�¹°ÄyÀÂ´*¾�Ì>Åu¹°³-¶�·=¼�×�¼-Ó�»¤ÁÏºg»¯³&´ : ²yÁÃ³&´ÕÁÃ¶*ÐÕÚs»¤´�É4´*³&Ä�¿
ºg¹4µ7=�²¤½°·=¶&ÁÃ¹4µÍ¾�¹�Ê¤´*À Ì'Ê¤´�¼�¸yÁÂ¶�´ ÁÂ¶&¼6³&´*ÀÂ·=¶&ÁÂÉ°´*ÀÂË ¸/¹C¹°³
¸:´�³&Å�¹=³�¾Õ·=µyºg´ÕÅu¹°³-ÊyÁÂº�¶&ÁÃ¹4µy·_³&Ëe´�µ�¶�³�ÁÃ´�¼�ÌL¼&²¤½=½°´*¼�¶�¼-ÁÃ¶é¿
¼�´�ÀÃÅ�·=¼Õ¶�»�´¯¾�¹4¼�¶8Åu³�²¤ÁÂ¶�Å�²yÀs·=¸y¸¤³&¹°·°ºg» ¶�¹�·°º�º*²�³�·=¶�´
Ê¤´�¶&´*ºg¶�ÁÃ¹4µ6Å�¹=³�¹=¸�´*µ�¶�´�Î�¶�Ìy·=µyÊ�º�¹°²yÀÂÊ�´*·°¼&ÁÂÀÂË8Ä:´�´gÎ�¿
¶�´�µyÊ�´�Ê�ÐØÑéµÍ¸?·_³&¶�ÁÂº�²yÀÂ·=³*Ì'¶�»�´�·°Ê¤ÊyÁÃ¶&ÁÂ¹°µâ¹=Å�ºg¹4µ'=&²�¿
½4·_¶�ÁÃ¹°µ8¼&²¤ã�Î�´�¼�¹=ÅS»¤ÁÂ½°»�¿UÅ�³�´ : ²¤´*µyº�ËnÁÃ³&³&´�½4²¤ÀÂ·=³
É4´*³&Äy¼
Ó�¹4²yÀÂÊXÄ:´�·Q¼�¶&³&·°ÁÃ½4»�¶&Åu¹°³�Ó�·=³�ÊeÓ�·�Ë�¶&¹6Ä:¹�¹4¼�¶�·=º*º�²�¿
³�·=º�Ë°Ð
2 3 I>9
;¤RUæ
3_F I>9
L�´ »y·\É=´�Ê�´�ºg¹4¾�¸/¹°¼�´�Êè¶&»¤´ �>� ·°ÀÂÁÂ½°µy¾�´*µC¶È¶&·°¼�×
ÁÂµ�¶�¹â·°µ ·°ÀÂÁÂ½°µy¾�´*µC¶ ¼&²�Äy¶&·°¼�×)·°µyÊ,·=µ ¹°×�²¤³�ÁÃ½°·°µy·
Ê¤´�¶&´*ºg¶�ÁÃ¹4µâ¼&²¤Äy¶&·°¼�×:Ì-·°µ¤Êâ´�Î�¸?ÀÃ¹°³�´�ÊÍÉ=·=³&ÁÂ¹°²y¼�·=ÀÂ½=¹=¿
³�ÁÃ¶&»y¾ É=·_³�ÁÏ·=µC¶�¼�Åu¹°³8²¤¼�´XÁÂµ Ä/¹°¶&»LÐïÑéµï¸y·=³&¶&ÁÂº*²yÀÂ·_³*Ì
¶&»¤´cÁÃ¶&´�³�·=¶&ÁÃÉ°´
Ñ K�íX»¤´*²¤³&ÁÏ¼�¶&ÁÂº�Ó�ÁÃ¶�»�· G�·°µ'=�ÁÏÊ¤ÁÏº
³�´�·°Ê�¿
ÁÂµ¤½8¾�¹�Ê�´�ÀL¸y³�¹=É�ÁÏÊ�´�Ê6¶�»�´wÄ:´�¼�¶�·°º�º*²�³�·°ºgË�ÁÂµe¼&ÁÃ½4µ¤ÁÂÅm¿
ÁÂº*·=µ�¶&ÀÃËâÀÃ´�¼&¼È¶�ÁÂ¾�´ ¶�»¤·°µè¶&»¤´�¹=³�ÁÃ½4ÁÂµy·=Àw·=ÀÂ½=¹°³&ÁÂ¶&»y¾�Ð
í?¹=³�¶&»¤´6¹°×�²¤³&ÁÂ½°·°µ¤·ýÊ�´*¶�´�ºg¶�ÁÃ¹4µo¼&²¤Ä¤¶�·=¼�×/Ì�·ý¼&ÁÂ¾�¸yÀÂ´
¾�¹�Ê�´�À
¹°²¤¶�¸�´�³&Åu¹°³&¾�´�Êø¾�¹=³&´6º�¹°¾�¸?ÀÂÁÂº*·_¶&´*Êo¾�¹�Ê¤´�ÀÂ¼
¹°ÅLº�¹°µ7=�²¤½°·=¶&ÁÂ¹°µQÊy²¤´'¶�¹�¸:´�º�²yÀÂÁÂ·=³�ÁÃ¶&ÁÂ´*¼�¹°Å>ÊyÁÂºg¶�ÁÃ¹4µ¤·=³�Ë
´*µ�¶�³�ÁÃ´�¼s·=¼sÁÏµ�¸?²�¶s¶�¹8·=ÀÏÁÃ½4µ¤¾�´�µC¶�Ð
4¯7�5é7y2°7?9
;�7?3
68789;:=<�>;:?9A@CBDBFEG9IH�JK>LEGMONQPCRL9L9;NDSTRU<VHW:=9�XAY)ET9;9LN[ZC\]B[:=<O<G^
_G`8aKb ^�cId�e=fhg�iOj�k)g�e�l?m�ini�oqpsr)gWpLiutwvsgxg�y)z�{|l�}�~q�

150

k iTf ^ � :����;MONDX��8E	� 9;N�
sETM�Z NF<��� MOEVZOZTH � :����LMON[X��8E8H
�)\ ^

�xN[ST:?M�XU7�� :?E��V:�����:=<�EGZ :=9�X���ETM <�>;NFETM��xN��LNDETMO7����CE <�7;^
_G`8`8` ^|t e� �iTd"! v"!$#Te=dqf&%?k(' e�!*))iTk d"' i�+�%�, ^ @CX;XUN[Z 789
- EVZ BDE��/. @ �1032 MOEGZOZG^

4 N��$7=<�>��5� :?BDX�6xNF9A:?9�X P 77�TR8�$N94�:?9;:�:=:U^ _G`8`8` :U^;4 >LE
: 2�2 BFN[ST:=<�ND7?9�Z�7�<IRL9�Z R 2 ETM=
KN[Z EGX BFEV:=MO9;NF98� <�7�6�: 2 :?9LEVZ E
�8M�: 2 >;E��$E>� 2 >L789LE��$E :=BDN��89��$ET9K<V^@? 9BA d�e�o$C yEDQz
F e?dHGV~�pLenm e�!JI9!L~"KGm�i d"+L' ~TiM zIiM%?d"!8'N!POQ'R!TS�%?k(KUdH%�,
z9%�!PO7K�%$OsiTH � 78BFBDE��8EU� :?M=:WH��)JL@ ^

4 N��$7=<�>��V� :?B[X�6xND9 :?9�X PC7��GR��$N94�:?9;:�:=:L^ _G`?`8` �I^ @CR��
<�77� :=<OEVXw6�: 2 :=9;EGZ EW�8M�: 2 >LE��$E�� 2 >;7?9;E��$E]:?BDN��?98�$ET9K<V^
? 9*A d�eGoLC]v"!;k i d"!X%?k(' e�!X%�,&D�e�!$#TiTd�i�!�oni e�!JD�eMO7!8'�k('R+=i
lWo�' i>!�o i H 2 :��?EVZZY�[`�\ Y^]�[;H84�77:_�?7LHL6s: 2 :?9I^

4 N��$7=<�>��`� :?B[X�6xND9 :?9;X P 77�TR8�$NE4 :?9�:a:=:L^Tb�c7c7cL^ @
S 77� 2 :=M�:=<�N�
�E Z <�R�X�� 7a< RL9�Z R 2 ETMH
sN[Z EGX3�8M�: 2 >LE�� E>�
2 >L789LE��E:?BFN��89��$ET9s<W�$E <�>;7KXLZT^Z? 9dA dOeVoLCfe^e7!X yW!;�
!8K8%�, t iqiTk('R!PO eg# k�pLi�D�eHO7!8'�k('R+=i�lWo�' i�!�oniqlWe�o>' iTk }=H
2 :a�8EGZh] `Kb�_i c^bUH���>LNDB[:?XLETB 2 >LN[:LH8�]JU@ ^

JKB[:a
?ET9j��NDB[:8S :?9;X PC77�TR��$NE4�:=9�:�:�:L^kb�c7c^]=:L^'Y)NFMOEVSq<
S 77�E�LND9;:=<�ND789 7�<xZ 2 EGBFBDND9�� :?9�X 2 MO789URL9�S ND:=<�ND789 ND9�< 78Ml�
� :=<�NF789m< 78M�MO77�LR�Z <9�;:8SM:^� <�M�:?9;ZOBFNF<�ETM�:=<�NF789I^n? 9 @CBFE�oU:?9��
XLETMqp]EGB��;R�:K>IHuEGXLN <�78MGH/D�e?f mrKUk�%?k(' ea!X%�, zs'N!PO7K_' ~nk(' o ~
%�!X .v"!;k i�,R,t'tOsi�!;k g�i�j8k�A d�eGoni ~n~"'R!PO8H 2 :��8EGZ/[_ Y \ [Pba[L^
6�:?9UR�:?M=�8^

JKB[:a
?ET9d� NFB[:8Sw:?9;X P 77�TR8�$N;4 :?9;:�:=:U^Eb�c�c^]a�I^�?� 2 MO7�
^�
ND9��h�;:8S":P� <�M�:?9;Z BDNF<OEGM�:�<�ND789u���]ST7��E�;NF9;NF98�xND9�< 78M=� :�<�ND789
Z 78R;M�S EGZG^v? 9�\ ET>����)ND> JKRIH 68R;9LN[Sq>LNw4xZ Rax NDN H 68789����
Ph��EG7�:zyIEGE8H;:?9;Xq{)Nr�	EGE \m6 7?98�;HsEVXUNF<�7?M�ZGHrA�dneGoLC}|=~qk
v>!;k iTd"!X%=k�' e�!X%�,�~Uea'N!;k�D�e�!$#TiTd�i�!�o�i e�!kS�%?k(KUdH%�, z9%�!;�
O7K�%$OsiuA dOeVoni ~n~M'N!PO8H 2 :��8EGZ�b _�i�\ b7b�YUH�6�:?9UR;:?M=�8^

JKB[:a
?ET9���NDB[:?S8H�4 N��$7?<�>P��� :?BDX�6xNF9�Hh:?9�X P 77�TR8�$N
4�:?9;:�:�:L^ _G`8`8` ^z? 9�S MOE��$EG9K<n:=B 6�: 2 :?9;EGZ E/�8M�: 2 >LE��$E��
2 >L789LE��$E :?BDN��?98�$ET9s<V^d? 9 v"!$#Te?dqfw%?k(' e�!jA�d�eVoni ~�~"'N!PO
lWe=o>' iTk } el#�~_%nmX%�! lKva��S e?k i ~nH�
s78BFR8�$E `?` ����y��gbac ` H
2 :a�8EGZZ[b�\]a[L^

JKB[:a
?ET9���NDB[:?S8H�4 N��$7?<�>P��� :?BDX�6xNF9�Hh:?9�X P 77�TR8�$N
4�:?9;:�:�:L^�bac7c^bU^�� MOND9��8NF98�-<�>LE XUN[Sq<�NF789�:=M=� <�7-<�>LE
R�Z ETM$�$<�>LEV�}{]\uJ.Zl�UZ <�E�� ^�? 9�A�dneVoLC�|7�8k�p v>!;k iTd"!X%?�
k(' e�!X%�,�D�e�!$#TiTd�i�!�oni�e�!�D�e?f mrKUk�%?k(' e�!X%�,�zs'N!PO7K_' ~qk(' o ~qH
2 :a�8EGZ a] \K`L_ H�4�:?N 2 EGN H�4�:?N�6 :?9I^

JKB[:a
?ET9Q� NFB[:8S?^wb�c�c^bU^�? 9U<OEGBFBDN��?EG98< XUN[Sq<�ND7?9�:?M=� ND9K<�ETMl< :?STE
< 7?M$BFEV:=MO9;ETM�Z 7a<]6�: 2 :?9;EGZ E8^ 0 :8Z <OEGM$� Z�<O>;EGZ N[ZTH;4Q77:_�?7
? 9�Z <�N <�RU<�Eu7�<}4QEVSn>L9L78BD7��7�8^

@CBD:?9&- ^P� B[:?S>:�Hs\]E�
KND9 @ ^_yIEG9��T7;HK:?9;Xw�)NF9�S ET9U<;��:��8ETB�^
_G`8`8a ^�? ZOZ R;EGZ$NF9T�;RLNDBDXLNF98���8ET9;ETM�:?B BDE <O<OEGM$<�7 ZO7?R;9;X
MOR;BFEVZT^�? 9`A d�eVoLCu�8dH ���l9D�y�F e=dHG�~�pLenm e�!/l?m�i�inoqp
l�}�!;k�pLiq~"' ~nH 2 :a�8EVZ b8b>\Ka cLHK68ET9L78B[:?9 � :a
8EGZTHs@CR;Z <�M�:?BFN[:L^

68N�� � MOETET9�^ _G`8`]U^ �ZK�'N,� �'R!PO %�! i�,Fi oTk dOe�!8' o
~�%�mX%�!�iq~TiT���;!PO7,t'[~�p� �' oTk(' e�!X%?dq}=^ 6�: 2 :?9LEVZ E Js<�R;X_�
NDEGZ @)ZOZ 7LS N[:=<OND789 7�< @ R�Z <�M�:?BFN[: � 789�<�ETMOEG9;S E
�N�_�_�^�1�=�_���P�_�1�H�_ P �¡f�£¢X¤�¥8¦� L�§�g¡^¨7©§�g¦�©X��ªa«7�P¬�
«8 �¦P¦�®a��¦��8¡7¯8�a�P��¦��8¡7¯;���_�a¢±°7² ^

� E <�ETM�� ^^��MO7�6x9IH�JK<OE 2 >LEG9 @ ^8Y)ETBDB[:m��NFET<OMn:UHP�)NF9�S ET9s<�6;^
Y)EGBFB[:³��NFET<OM�:LH�:=9�Xd�x77�WETM <&y	^ 0 ETM�S ETMV^ _G`8` YL^E4 >;E
� :=<�>LE�� :=<�N[STZ 7�< Z <n:�<�N[Z <�NDSG:?Bz� :8Sq>LND9LE <OM�:?9;ZOBD:=<�ND7?9n�
��:?M�:a�$ET<OEGM EGZ <�N�� :�<�ND789I^�D�e?f mrKUk�%?k(' e�!X%�, zs'N!PO7K_' ~n�
k(' o ~nH _T` � b ² � b i Y \ Y _8_ ^

\]E$
sND9|\]9;N��8>K< :=9�X 68789;:=<�>;:?9´p]M�:?ET>;B ^ _G`8`?a ^ 0 :��

Sq>;NF9;E <�M�:?9;Z BDNF<OEGM�:=<OND789I^zD	e?f mrKKk%=k�' e�!X%�,�z}'R!PO7K�'[~qk(' o ~qH
ba[� [² �µ] `?`�_iL_ bK^

p]M=�TE$�87?M=� \]789�XUM�:�:�^¶b�c7c7YU^·? XUEG9K<�Nt<£�sND9�� S 77� 2 BFE>o
Z 78R;9;X S 78MOMOEVZ 2 7?9�XUET9�S EGZ ND9¸�;NFBDND9��8R;:?B¹6 78M�XUBDN[Z <nZT^m? 9
@CBDE>oU:?9�XUETMkp]ETB��LR8:s>�H EGXUNF<�78MGH/A�dneVoLC�º;k�p(v>!;k iTd"!X%?�
k(' e�!X%�,�D	e�!$# iTd�i�!�oni e�!*D�e?fCmrKKk�%?k(' e�!X%�,Czs'N!PO�K�'[~qk(' o ~
%�!X .v"!;k i�,R,t'tOsi�!;k g�i�j8k�A dOeVoni ~n~"'R!PO8H 2 :��8EGZ/[7Y^b \ [7[^YUH
� ETMOBDNF9�^�J 2 MONF98�8ETMl���	ETMOB[:a�;^

� >LMON[Z <�7 2 >;ETM Y�^ 0 :?9L9LND9�� :?9�X�PCND9LMON[Sq> JLSq>9»RU<H�TE8^}b�c�c7cL^
c�e�K_!X ^%?k(' e�!L~ eg# l�k�%?k(' ~nk�' o"%�,8S�%=k�KKdH%�,Wz9%a!PO7K8%$O�imA d�e?�
oqi ~n~"'R!PO8^ 0 ?g4�� MOEVZOZTH � :a���LMON[X��8E8H 0 :8ZOZO:8Sq>KR;ZOE <O<�ZG^

��^±� :��8ETB�HI\$^ry�ET9��G7LHQ:=9�X @ ^ - ^±� B[:?S>:�^ _G`8`8a ^�yIET< <�ETM
<�7 ZO7?R;9;X MOR;BFEVZu<�78M :?SGS ET9K<�EGX BDE>oUN[S 789 S 77� 2 MOEGZ�Z ND7?9�^
? 9dA�d�eVo$C¹¼?k�p v"!;k iTd"!X%?k(' e�!X%�,;D	e�!$# iTd�i�!�oni$e�! l?m;e�G8i>!
z9%�!PO7K�%$Osi�A d�e�oniq~n~n~"'R!PO8H 2 :��8EGZhb7]7b \ b7]7]U^

½�MONDS¾�x7�Z ET9�^ b�c7c�YL^ J��KZ <OE$� :=<ON[S NDMOMOE��8RLB[:?MONF<g� ND9
6�: 2 :=9;EGZ E MOET9�XL:�:KR±� PC7�6 <�>;ET�8M�:��w� :?M=�$EGXLND:=<�EGZ
2 :�<O<�ETMO9LEVX,BDE>oUN[ST:?B)E�oUS E 2 <�NF789�ZT^	D¹%�!X%^ a'(%�!`~Ue�KKd"!X%�,
el#]zs'N!PO7K_' ~nk(' o ~qH � [a ² � _"\ Y b ^

4 ^�JUEgx 9;7a6 Zl:KNI:?9;X � ^8� 7�Z ET9���ETM=�;^ _G`8aKb ^f� :?M�:?BDBFETBI9LE <=�
6 78M=:KZ�<�>�:�<�BDEG:?MO9 <O7 2 MO789L78RL9;STE;½�9��8BDNDZO> <�E>oK<G^WD�e?f �
mr,DiOjwl�}�~qk iTf ~qH _ � _ [P] \�_�i8a ^

�xN[Sq>;:?M�X JKBD7�:�<V^ _G`?`7i ^ 0 RLBF<�NFBDND9��8R;:?B <�E>oK< :?9;:?B��KZONDZm< 7?M
<�E>oK<=� <O7�� Z 2 ETEGSq> Zl�K9s<O>;EGZ N[ZT^fS�%?k(KUdH%�,�zn%�!PO�K8%$Osi��1!PO�'��
!�iqiTd"'N!PO8H_[� b ² ^

4 N��$7=<�>�� 6;^d� :?9;S E8^ _G`8aKb ^ yW! v"!;k dneL �KLoTk(' ea! k e
~�%�mX%�!�iq~TiWA�pLe�!�e�,Fe"O8}=^�J������¿��MOEGZOZGH�� E$6	��78M=:�^

68N[:?9L9;:C68N[:?9EÀ�>;:?9��;H?PC7�6�:?M�Xu6;^�P):a�$NDBF<O789�H�:?9�XU�CNDS":]6;^
� ETM�ST789LE8^ _T`8`8` ^�y�EG:?MO9LND9�� ET9��8BDNDZO>T�?M�: 2 >LE��$EAZ E$�a�
�$ET9U<�:=<�ND7?9 R�Z ND9��A<�>LE NF<OEGM�:=<OEVX¸
8ETM�ZONF789.Z 2 :8S Ew:?B��?7��
MONF<�>�� ^n? 9 @C9;XUM=�GEgx�J_:�7a6xMO789 :?9;X&À8�;N��89;NFE$6d- ^a� :nÁZTH
EGXLN <�78M�ZTH�A d�eVoLCu|7|?k�p.v>!;k iTd"!X%?k(' e�!X%�, l�}=f m�e�~"'NKKf ea!
t i k�pLea �e�,Fe=O7' i ~�#Te?d v>!;k i>,N,Â'�Osi>!;k l�}�~qk iTf�~nH&-.:=M�Z�:$6uH
� 78BD:?9;XI^LJ 2 MOND9��8ETM=����EGMOBD:��;^

151

Proceedings of the Australasian Language Technology Workshop 2005, pages 152–159,
Sydney, Australia, December 2005.

Statistical Interpretation of Compound Nominalisations

Jeremy Nicholson† and Timothy Baldwin‡

†‡ Dept. of Computer Science and Software
Engineering

University of Melbourne
Victoria 3010 Australia

‡ NICTA Victoria Lab
University of Melbourne
Victoria 3010 Australia

{jeremymn,tim}@cs.mu.oz.au

Abstract

This paper presents a method for detecting
compound nominalisations from open data, and
providing a semantic intepretation. It uses a
statistical model based on confidence intervals
over frequencies extracted from a large, bal-
anced corpus. Using three paraphrases of the
given compound nominalisation, and interpre-
tation preferences of its components, the algo-
rithm achieves about 70% accuracy in classify-
ing the semantic relationship as one of subject,
and object, and 57% between subject, di-
rect object, and prepositional object.

1 Introduction

Compound nouns have been a thorn in the side
of computational linguistics since its inception,
as it is almost impossible to avoid the issue
of compound noun interpretation in any lan-
guage task with a semantic or lexical seman-
tic dimension. For example, an information ex-
traction task may need to predict the semantic
divergences between the compound nouns news
print (“cheap paper on which newspapers are
printed”), thumb print (“impression of the pat-
tern on a thumb”), and colour print (“printed
matter in colour”).

Interpreting these divergences has become yet
another instance of disaccord between the em-
piricists and rationalists of theoretical and com-
putational linguistics. While the rationalists
contend that compound nouns can be semanti-
cally described by some small, hand-crafted set
of relations, the empiricists point to discordant
examples which defy such natural sets, and rely
on data sets for the necessary description. The
rationalists then call this approach biased and
brittle.

Needless to say, the argument is not one
which will be resolved here. What we do hope
to shed some light on is the applicability of an
empiricist approach to the interpretation of an

important subclass of compound nouns: com-

pound nominalisations, or those compound
nouns whose head derives from a verb. One ex-
ample is pattern generation, where generation is
derived from generate. These compounds tend
to have a clearer semantic definition and are
well-suited to techniques based on corpus statis-
tics.

We propose a method for taking English1

raw text input, detecting the compound nouns
within, and applying a semantic interpretation
for the compound nominalisations.

Section 2 details some of the previous work
performed in the task. Section 3 outlines the
resources used in our study. Section 4 describes
the method we applied, with an analysis of the
results in Section 5, and a discussion in Section
6.

2 Background

The first notable work on interpreting com-
pound nouns focussed on the development of
discrete semantic classes with which to classify
all compound nouns: Levi (1978) proposed a
nine-way classification, Warren (1978) identi-
fied a basic set of twelve paraphrases, Leonard
(1984) developed an eight-way typology, and
Finin (1980) put forth a much larger number of
possible roles. This early research established
a basic dichotomy in classification approaches:
semantic class-based approaches (e.g. linguistics
textbook ≡ topic(textbook) = linguistics) and
syntactic paraphrase-based approaches (e.g. lin-
guistics textbook = textbook on linguistics). A
basic assumption underlying both approaches is
that all compound nouns can be classified ac-
cording to a finite set of relations, although re-
searchers rarely agree on the number and ele-

1Although this paper focusses on English compounds,
the phenomenon occurs readily in other languages, such
as German, Modern Greek, Japanese, and Welsh. With
some caveats for morphology and syntax, our concepts
still apply.

152

ments. Many identify nominalisations as a sub-
class, or include subjective and objective rela-
tions, which imply deverbal forms.

Automatically interpreting compound nouns
has usually taken one of two approaches: one
conceptual, in that the modifier fills a slot ac-
cording to the concept of the head (Finin, 1980;
McDonald, 1982); the other rule-based, in that
the relation is selected by the first applicable
rule taken from a series (Leonard, 1984; Van-
derwende, 1994). Few, however, include evalu-
ation of their systems — notable exceptions are
the rule-based systems of Leonard (1984), who
achieves 76% accuracy over a training set, Van-
derwende (1994), who reports 52% over a test
set for thirteen relations, and the concept-based
work of Rosario and Hearst (2001), scoring 70%
in a specific domain.

The first notable work on statistically in-
terpreting compound nouns was that of Lauer
(1995), who used prepositional paraphrases as
an interpretation model, similar to those of
Leonard (1984). Another useful element of this
work was that of automatic compound noun
bracketing, which has allowed work since to dis-
miss ternary and higher-arity compounds as a
solved problem, and reduce the task to consider-
ing interesting binary compounds only. Lauer’s
interpretations get 47% accuracy over a set of
twelve paraphrases, explicitly excluding subjec-
tive and objective relations. Lapata (2002),
performs much better using a combination of
a probabilistic method with a decision tree
learner, to achieve 86% accuracy, albeit on a
far better-defined and far simpler two-way clas-
sification task. Moldovan et al. (2004) get an F-
score of 43% using statistical techniques across
a wide semantic space. Finally, Grover et al.
(2005) use a technique similar to that of Lapata
to achieve 77% accuracy in a domain-specific
setting over a broader thirteen item set.

Lapata (2002) and Grover et al. (2005)
provide the usual statistical interpretation of
a given compound nominalisation: corpus fre-
quencies are derived for the verb-argument pair
of a given deverbal head and modifer across
a list of semantic relations. The selected re-
lation is that which has the most attested in-
stances in the corpus. To counter the problem
of data sparseness, they examine the influence of
backing-off, class-based, and distance-weighted
smoothing, which are not found to perform sig-
nificantly differently.

Automatic detection of compound nouns and

compound nominalisations has had much less
analysis than their interpretation, partly be-
cause detecting simple compounds is usually
considered trivial, and reliably detecting nom-
inalisations requires a semantic interpretation.
Consider corner piece (of a puzzle): a naive
system can certainly identify this contiguous
noun sequence in an NP as a compound noun,
but correctly dismissing a nominalisation inter-
pretation requires semantic analysis of the ab-
surdity of “*corner pieces [st]”, “*[st] pieces
the corner”, “??[so] pieces together the cor-
ner”, and so on. Nonetheless, examination per-
formed by Leonard (1984) notes the increas-
ing frequency of compound noun usage over the
past 250 years, and Grover et al. (2005) note
that 72% of a small sample of sentences con-
tained one or more compound nouns in a do-
main in which they are prevalent. 35% of these
are compound nominalisations.

3 Resources

3.1 Tools

Similarly to both Lapata (2002) and Grover et
al. (2005), we use the British National Cor-
pus (BNC: Burnard (2000)), but only the 90M-
token written component. We parsed the cor-
pus using rasp (Briscoe and Carroll, 2002), a
tag sequence grammar-based stochastic parser,
in order to extract the corpus frequencies for use
in disambiguation. We use tagging and chunk-
ing tools built with fntbl 1.0 (Ngai and Florian,
2001) over the BNC independently, and for use
in the detection of compound nominalisations.

3.2 2-Way Classification

We attempt to replicate the experiment per-
formed by Lapata (2002), who manually ex-
tracted and annotated a sample of 796 binary
compound nominalisations out of about 170,000
candidates automatically identified in the BNC.

In the original Lapata data, the underlying
verb form of the head noun was uniquely iden-
tified using a combination of Celex (Burnage,
1990) and Nomlex (Macleod et al., 1998) data,
sometimes resulting in sub-optimal results (e.g.
the base verb of question is given as quest). In
order to ameliorate such quirks in morpholog-
ical analysis and expand the coverage of our
method, we mined Celex and Nomlex, and
also the word clusters in CatVar (Habash and
Dorr, 2003) for morphologically-related noun–
verb pairs. This culminated in a total of about
14,000 deverbal nouns, many of which are listed

153

with multiple base verb forms (e.g. divination is
listed as all of divine, divinise and divinize).

To validate the data for consistency, we re-
moved those nominalisations which were not as-
sociated with a context sentence in the data set,
those which did not occur in the same chunk in
that sentence, according to the chunker above,
those for which we did not find a verbal form
(e.g. decision-maker), and those consisting of
one or more proper nouns. We were left with
695 items which were classified as one of subj
or obj interpretations.

3.3 3-Way Classification

We also attempt to replicate the experiment
performed by Grover et al. (2005), but in a
domain-inspecific environment. To do so, we
extract 1000 sentences randomly from the BNC
which are then examined for compound nouns.
About 32% of these contained at least one com-
pound, much lower than the number in the
biomedical domain of Grover et al. (2005).

We overtly exclude compounds which were of
higher arity than two, (e.g. silk jersey halter-
neck evening dress) and those consisting at least
in part of proper nouns, similarly to the two-way
task. They represented about 7.5% and 25% of
the total compounds in the sample space respec-
tively. The rest we classified according to the
relations in Table 1: that of subject, direct ob-
ject, prepositional object, not verbal (where the
head does not have a verbal form), and not ap-
plicable (where the modifier is not the argument
of the verbal head in an acceptable paraphrase).

We thereby collated a small data set, that
of 129 items which occurred in a nominalisa-
tion relationship. The kappa coefficient, where
the raw agreement is corrected for chance agree-
ment (Carletta, 1996), between three annota-
tors was κ = 0.83 (N = 129, k = 3) in detecting
noun compounds.2 This corresponds to a uni-
gram agreement between the judges of 98.4%.
Compared to the gold standard, the annota-
tors had a mean precision of 92.5% and recall
of 84.8% in detection of compound nouns, and
78.8% mean accuracy in semantic classiification
of the compound nominalisations within.

4 Proposed Method

We propose an algorithm to detect compound
nominalisations based on the output of a chun-
ker, and then interpret each detected compound
nominalisation by way of corpus evidence.

2
κ ≥ 0.8 indicates good agreement.

4.1 Detection of Compound

Nominalisations in Open Data

To detect compound nominalisations in open
data, we examine sequences of nouns that occur
with the same chunk. Hence, we chunk parse a
given sentence, and check for noun chunks with
common noun modifiers immediately preceding
the chunk head.

Next, we perform a table lookup over the
head of each compound noun to check if it is
contained in the combined set of deverbal nouns
mined from Nomlex, Celex and CatVar. If
the head noun is not found to be deverbal, we
conclude that the compound noun is not a com-
pound nominalisation.

While our combined set of deverbal nouns
provides excellent coverage, it suffers from low
precision, largely because of CatVar lacking
explicit word-to-word derivational information.
That is, we are able to access clusters of words
which share the same stem, but have no way of
checking for direct derivational correspondence
between a given noun and verb. As a result, the
output of the filter tends to have excellent recall,
but diminished precision. We combat this effect
by additionally checking for the plausibility of a
subject or object interpretation against corpus
data and thresholding over the probability for
each interpretation type.

We evaluated the detection method by at-
tempting to re-extract the gold standard two-
way classification data from the BNC, and over
our annotated data set for the three-way classi-
fication.

4.2 Paraphrase Tests

Lapata (2002) and Grover et al. (2005) pro-
vide the usual statistical interpretation of a
compound nominalisation: that of the most
attested relation in corpus frequencies for the
verb-argument pair.

Other paraphrases are also used, however:
as Lauer (1995) notes, the system by Leonard
(1984) has paraphrasing as a goal, whereby
mountain vista is interpreted via paraphrasing
as vista of a mountain or mountains. Lauer
himself also attempts to paraphrase compounds
based on corpus statistics.

We notice that the other direction is also pro-
ductive: instances of vista of mountains occur
in the corpus, and they supply evidence for
the reading “view mountains”. We can thus
form paraphrase tests to influence our interpre-
tations.

154

Table 1: Classes of Compounds in the Sample Data
Class Example Frequency

subj eyewitness report 22 (6.4%)
dobj eye irritation 63 (18.2%)
pobj side show 44 (12.8%)

nv scout hut 58 (16.8%)
na memory size 158 (45.8%)

We can search plain text for instances where
the head noun is separated from the modifier by
the preposition, and count corpus frequencies
from these. For the preposition by, we assume
a subject interpretation, as samples like passage
by animals for animal passage imply that it is
the animals that are passing. For the prepo-
sition of, we assume an direct object interpre-
tation, as samples like speaker of language for
language speaker imply that there is someone
or something that speaks the language. Other
prepositions separating the head and modifier
contribute to a prepositional object interpreta-
tion, as samples like operation on leg imply that
someone or something operates on a leg.

A second, related paraphrase test is for ad-
jectival participles of the verbal form of the
head connected to the modifier noun. In this
case, present participles like [the] passing ani-
mals contribute to the subject interpretation,
and past participles like [a] spoken language
contribute to the direct object interpretation.
There are no sensible cases in this test for prepo-
sitional objects, as ?operating on leg would al-
most certainly be termed an indirect object re-
lation by rasp, and included in our standard
frequency counts.

A possible drawback to the prepositional test
is losing phrasal verbs which legitimately take
by or of. As well, paraphrases in this form blur
somewhat in current English. Consider child
behaviour, where a child behaves. Instances of
?behaviour by child are greatly overwhelmed by
occurrences of behaviour of child and child’s be-
haviour. Despite examples such as this, this
test is indicative of most paraphrases in the lan-
guage.

4.3 Statistical interpretation

We interpret compound nominalisations by con-
sidering pairwise subj vs. dobj and subj vs.
pobj. First, we make the null hypothesis that
the probabilities of all relations are equal, i.e.
P (relA | (relA ∪ relB)) = 0.5. We then con-
sider each occurrence of a verb–noun pair to be

a normally-distributed binomial trial for the two
relations under consideration.

We derive our selection preferences based on
the largest confidence interval between that of
the subj-dobj comparison (as Lapata (2002)),
and that of the subj-pobj comparison.

A Confidence Interval P is the region un-
der a normal curve with mean µ and standard
deviation σ between [µ − nσ, µ + nσ], where n
is the z-score of a trial. Kenney and Keeping
(1962) show that:

P =
2√
π

∫ n/
√

2

0

e−t2dt (1)

where t ≡ (x− µ)/
√

2σ, so as to normalise the
curve. We observe that P is strictly increasing
on n, so choosing the largest confidence interval
from a set is simply a matter of choosing the
largest z-score.

For a large set, calculating the z-score exactly
is very costly. Instead, we estimate the sample
z-scores for our observed trial by way of the bi-
nomial approximation to the normal distribu-
tion. Considering two relations at a time, hav-
ing equal probability from the null hypothesis,
our sample mean is the arithmetic mean of the
frequencies, and our sample standard deviation
is half of the square root of twice this number.
The z-scores are then: Z = f−µ

σ .
For example, consider the compound nomi-

nalisation from the Lapata data set adult provi-
sion found in the BNC in the following context:
...protecting someone’s rights in the justice sys-
tem (for example, appropriate adult provision).
We attempt to interpret the compound nomi-
nalisation, relative to the verbal forms provide
and provision. provision adult is not produc-
tive, while provide adult gives the counts seen
in Table 2.

From this, the highest z-score is ZPS, for the
prepositional object interpretation, which co-
incides with the correct reading “provide for
adults”, and the gold-standard tag object.
The correct reading here would not have been

155

Verb-noun subj dobj pobj ZSD ZDS ZSP ZPS

adult provision 7 5 18 0.58 -0.58 -2.20 2.20

Table 2: Z-scores for sample verb–noun pairs extracted from the BNC

captured by a simple subj-dobj comparison, as
Lapata would perform.

It is, however, not the case that we wish to
examine prepositional object interpretations in
every instance. If a verb does not take any
prepositional objects at all, they will not occur
in the data, and calculating the subj-pobj com-
parison will not be meaningful, and may intro-
duce incorrect interpretations if it has a higher
z-score than the subj-dobj interpretation. As
such, we construct a list of prepositional verbs
derived from WordNet, Comlex, the ERG, and
the Longman Phrasal Verb Dictionary, and we
can choose to apply the subj-pobj z-scores if
the verb in question coincides with one of these.

4.4 The Algorithm

For a given detected compound nominalisation,
we perform a number of steps to attempt to
arrive at an interpretation.

First, we derive a set of verbal forms for
the head using the table lookup from Nomlex,
Celex, and CatVar, as mentioned above, and
note whether any of the forms occur in our set of
prepositional verbs. If Nomlex indicates that
the head absorbs one of the possible interpreta-
tions, we automatically assume that the oppo-
site interpretation is correct. For example, in
license holder, the head absorbs the subj rela-
tion, so we are left with obj. In business em-
ployee, employee absorbs the dobj relation, so
we consider only subj or pobj.

This occurs for 8.9% of our compounds in the
binary set, with all but one of them accurate
(woman referee, who does not referee women,
but is a woman who referees). In the ternary
set, 6.2% of the compounds have such an in-
terpretation, again with all but one accurate
(immigrant worker, who is an immigrant who
works).

This is similar to the suffix indications used
by Lapata (2002), and the affixes used by
Grover et al. (2005). Lapata identifies 12.9%
of her set as having one of -er, -or, -ant suf-
fixes, leading to an object interpretation, or
an -ee suffix, leading to a subj interpretation.
Grover et al. identify that -er affixes receive an
dobj relation, and -or, -our a subj. These are
also features to a decision tree learner. Nom-
lex only captures a portion of these, but a head

can have one of the endings without demanding
such an interpretation. For example, transfer
ends with -er, but does not take a dobj rela-
tion in bank transfer.

Next, we normalise the lemmas and attempt
an interpretation. We acquire subject, direct
object, and prepositional object counts for the
modifier and verbal head pair, for each indi-
vidual verbal form, as well as counts for the
prepositional and participial paraphrase tests.
We then calculate each of the four z-scores
ZSD, ZDS , ZSP , ZPS for the three tests, and se-
lect the interpretation having the highest z-
score from the set.

If the best z-score for two differing interpreta-
tions are equal, we employ the simplest smooth-
ing method from Lapata (2002): backing-off.
Lapata assumes that the ratio of the counts can
be approximated by backing-off to the counts of
the modifier noun:

P (rel | n1, n2) = α
f(rel, n1)

f(n1)
(2)

The reason for this being superior to backing-off
to the verb counts is not immediately clear, so
we compare backing-off to those counts as well.
We also examine another form of “backing-off”
— that of the deverbal head counts, which can-
not be directly examined from the corpus. In-
stead, we mine the BNC for sentences which
contain the head in an instance which we can
interpret using corpus frequencies, and count
frequencies based on the number interpreted as
subj, dobj or pobj.

Regardless of the chosen method, the need
for backing-off occurs quite often in practice,
as some 16% of the Lapata data set has no in-
stances of the verb–noun pair attested to in the
corpus, as well as 36% of the open data set.

We implement backing-off by examining the
interpretation preferences, again using confi-
dence intervals. The preference for the modi-
fier noun or verbal head is the greatest z-score
from the counts of all instances of that noun or
verb occurring as or with a subject, direct ob-
ject, or prepositional object. The preference for
the deverbal head is the greatest z-score from
the counts of all instances of that head occur-
ring with a modifier for which we can provide

156

an interpretation of subject, direct object, or
prepositional object using corpus frequencies.

5 Experimental Results

5.1 Detection

We evaluated the detection method first by run-
ning it over the contextual sentences and seeing
how many of the compound nominalisations in
the normalised Lapata data set were detected
by our method. On this data set, we were able
to detect 88.8% of the instances.

On the open text data set, our algorithm de-
tected 69.8% of the subj, dobj, and pobj com-
pounds. The more general compound nouns
were detected with a precision of 86.6% and a
recall of 77.0%, comparable to the human an-
notators.

The primary causes of data instances being
missed by our method were that the head noun
was not contained as a nominalisation in our
combined lexicon (e.g. decision-maker), or the
input had been misanalysed by the chunker.
Many of the latter errors were caused by poorly
punctuated sentences in the corpus (e.g. citizen
charter in Ministers ’ views were set out in the
citizens charter), with some mistakes made by
the POS tagger (e.g. calling covers a verb in
leopardskin seat covers).

As for the various relations in our set above,
the detection algorithm discovers nv relations
with a precision of 58.4% and a recall of 77.6%,
na relations with a precision of 65.1% and a
recall of 53.2%, and subj/ dobj/ pobj with a
precision of 57.1% and a recall of 49.6%.

Recalling that CatVar lacks derivational in-
formation, and therefore tends to broaden cov-
erage at the cost of precision, we examine the
detection procedure without CatVar in the de-
verbal filter. This algorithm discovers nv with
a precision of 22.2% and a recall of 82.8%, na
with a precision of 26.5% and a recall of 5.7%,
and nominalised relations with a precision of
72.3% and a recall of 26.4%. Indeed, the preci-
sion in detecting nominalisations increases, but
at a substantial cost of recall.

Errors cascade in this definition, so that a
noun incorrectly given a verbal form causes a
false negative in nv and a false positive in na,
and so on. This explains the loss of precision in
the latter classifier, when a compound is classi-
fied as nv from not recognising that the head is
verbal and is an na relation.

These figures occur for a baseline classifier,
where nv implies that the noun was not in our

 50

 60

 70

 80

 90

 100
Deverbal Head Pref

Modifier Pref
Verbal Head Pref Upper Bound

Default

V
N

,P
re

p
,P

a
rt

P
re

p
,P

a
rt

V
N

,P
a

rt

V
N

,P
re

p

P
a

rt

P
re

p

V
N

IP

Figure 1: Disambiguation Accuracy for the 2-
Way Classification Task

deverbal list, na implies that the verb-noun pair
was not attested in the corpus, and one of subj,
dobj, or pobj otherwise.

5.2 2-Way Classification

The data set from Lapata had 695 compound
nominalisations: of these, 258 had a subj inter-
pretation and 437 had a object interpretation.
So, the baseline of choosing the object relation
each time has a performance of 62.9%.

Figure 1 shows the performance for the three
paraphrase tests: using verb–noun pair counts
(VN), using participial paraphrases (Part), and
using prepositional paraphrases (Prep). We can
back-off to the verbal head, modifier noun, or
deverbal head in each case. We also contrast
these with the performance of the baseline (De-

fault) and the interpretation preferences when
used without the paraphrase tests (IP).

The prepositional and participial para-
phrases, when used on their own, do not per-
form significantly better than the baseline (χ2 =
1.97, p ≤ 0.2). This is not overly surprising, as
coverage over the data set is quite poor: only
40% could be given an interpretation using one
test, and 58% for both tests — far lower than
the 84% for the verb–noun pairs.

The verb–noun counts are significantly better
than the baseline (χ2 = 9.45, p ≤ 0.01), and
also slightly improve upon the figures recorded
by Lapata for backing-off — namely, 69.6% over
the test set and 68.0% over the entire data set.

Interestingly, backing-off to the deverbal head
is consistently slightly better than backing-off to
the modifier noun or verbal head, at the cost of
extra examination of the corpus. Also, the best

157

 20

 30

 40

 50

 60

 70

 80

 90

 100
Deverbal Head Pref

Modifier Pref
Verbal Head Pref Upper Bound

Default

V
N

,P
re

p
,P

a
rt

P
re

p
,P

a
rt

V
N

,P
a

rt

V
N

,P
re

p

P
a

rt

P
re

p

V
N

IP

Figure 2: Disambiguation Accuracy for the 3-
Way Classification Task

performance occurs for the verb–noun pairs us-
ing backing-off to the deverbal head, but includ-
ing the paraphrases does not give results that
are significantly different to these.

5.3 3-Way Classification

Our collated data set had a baseline of 48.8%,
that of selecting dobj each time. Figure 2 shows
the results of our experiments, similarly to the
two-way classification.

Again, the later paraphrases do not perform
significantly better than the baseline (χ2 =
0.39, p ≤ 1), while the verb–counts do perform
better (χ2 = 4.01, p ≤ 0.05)), and slightly im-
prove on the figures reported by Grover et al.
(2005) using frequency counts and affixes.

In this case, backing-off to the modifier noun
proves better than to either the verbal or de-
verbal head, and the further paraphrases do
not improve the performance of the frequency
counts. Also of note is the fact that the de-
verbal head preferences on their own perform
quite poorly here, in stark contrast to their per-
formance on the binary task.

6 Discussion

We presented a method for detecting compound
nominalisations and deriving an interpretation
in open data for a two-way classification task be-
tween an underlying subject or object semantic
relation between a head noun and its modifier,
and for a three-way task between subject, di-
rect object, and prepositional object relations.
This achieved about 70% accuracy in the two-
way task, and 57% in the three-way task, us-
ing a statistical measure based on z-scores —

the confidence interval — in selecting one the
relations. We investigated the performance of
three paraphrase tests across the BNC: the fre-
quency of the modifier noun and verbal head
pair, the frequency of prepositions separating
instances of the head and modifier nouns, and
the frequency of the verbal head occuring as a
participial adjective connected to the modifier
noun. We also examined the interpretation pref-
erences of the modifier noun independent of the
verbal head and the head as both verbal and de-
verbal, and used these for backing-off the para-
phrase counts. Interestingly, the performance
of the different tests was not altogether dissim-
ilar: the best-performing set for the two-way
classification task was the deverbal interpreta-
tion preferences for the verb–noun counts, and
verb–noun counts backed-off to the modifier in
the three-way task.

This method was useful in that it can act over
open data to detect and interpret compound
nominalisations. It performed comparably to
the human annotators in detecting compound
nominalisations, and the generosity of CatVar
in classifying a deverbal noun was avoided to
some extent by thresholding over the probabili-
ties of interpretation in the corpus frequencies.

Our method also extended the scope of the
interpretation of nominalisations away from the
need for pre-filtered data, such as was neces-
sary for the two statistical works of interpre-
tation using corpus frequencies, that of Lapata
(2002) and Grover et al. (2005). Our method
also does not presuppose hand-crafted parsed
data, which is necessary for both of these inves-
tigations. It also can operate more or less inde-
pendently of the domain in which it is used, as
we demonstrated in sampling random sentences
over a balanced corpus.

The utility of the two proposed paraphrases
tests, using prepositions and participles, is that
they do not require parsed data to acquire cor-
pus frequencies. This allows us to take counts
for these tests from the Web, which we believe
will alleviate the data sparseness problem for
these tests to some extent.

The fact that the performance of the algo-
rithm (70% and 57% for the two tasks) does not
match the state-of-the-art performance by these
works (86% and 77% respectively) does not
worry us too much, as they match the simple
performance of the works, and these better fig-
ures included a variety of class-based smoothing
tasks, contextual features, and machine learning

158

tools.

Acknowledgements

We would like to thank Mirella Lapata for gen-
erously contributing her data set to the study.

References

Ted Briscoe and John Carroll. 2002. Robust ac-
curate statistical annotation of general text.
In Proc. of the 3rd International Conference
on Language Resources and Evaluation, pages
1499–1504, Las Palmas, Canary Islands.

Gavin Burnage. 1990. CELEX: A guide for
users. Technical report, University of Ni-
jmegen.

Lou Burnard. 2000. User Reference Guide for
the British National Corpus. Technical re-
port, Oxford University Computing Services.

Jean Carletta. 1996. Assessing agreement on
classification tasks: the kappa statistic. Com-
putational Linguistics, 22(2):249–254.

Tim Finin. 1980. The semantic interpreta-
tion of nominal compounds. In Proc. of the
First National Conference on Artificial Intel-
ligence, pages 310–315, Stanford, California.
AAAI Press.

Claire Grover, Mirella Lapata, and Alex Las-
carides. 2005. A comparison of parsing tech-
nologies for the biomedical domain. Journal
of Natural Language Engineering, 11(01):27–
65.

Nizar Habash and Bonnie Dorr. 2003. A cat-
egorial variation database for English. In
Proc. of the 2003 Human Language Technol-
ogy Conference of the North American Chap-
ter of the ACL, pages 17–23, Edmonton, Al-
berta.

John F. Kenney and E. S. Keeping, 1962. Math-
ematics of Statistics, Pt. 1, chapter 11.4,
pages 167–9. Van Nostrand, Princeton, New
Jersey, 3rd edition.

Maria Lapata. 2002. The disambiguation of
nominalizations. Computational Linguistics,
28(3):357–388.

Mark Lauer. 1995. Designing Statistical Lan-
guage Learners: Experiments on Noun Com-
pounds. Ph.D. thesis, Macquarie University,
Sydney, Australia.

Rosemary Leonard. 1984. The Interpretation
of English Noun Sequences on the Computer.
Elsevier Science, Amsterdam.

Judith Levi. 1978. The Syntax and Semantics
of Complex Nominals. Academic Press, New
York.

Catherine Macleod, Ralph Grishman, Adam
Meyers, Leslie Barrett, and Ruth Reeves.
1998. NOMLEX: A lexicon of nominaliza-
tions. In Proc. of the 8th International
Congress of the European Association for
Lexicography, pages 187–193, Liege, Belgium.

David McDonald. 1982. Understanding Noun
Compounds. Ph.D. thesis, Carnegie Mellon
University, Pittsburgh, Pennsylvania.

Dan Moldovan, Adriana Badulescu, Marta
Tatu, Daniel Antohe, and Roxana Girju.
2004. Models for the semantic classification of
noun phrases. In Proc. of HLT-NAACL 2004
Workshop on Computational Lexical Seman-
tics, pages 60–7, Boston, USA.

Grace Ngai and Radu Florian. 2001.
Transformation-based learning in the fast
lane. In Proc. of the 2nd Annual Meeting
of the North American Chapter of the ACL,
pages 40–7, Pittsburgh, USA.

Barbara Rosario and Marti Hearst. 2001. Clas-
sifying the semantic relations in noun com-
pounds via a domain-specific lexical hierar-
chy. In Proc. of the 6th Conference on Empir-
ical Methods in Natural Language Processing,
Pittsburgh, USA.

Lucy Vanderwende. 1994. Algorithm for auto-
matic interpretation of noun sequences. In
Proc. of the 15th International Conference on
Computational Linguistics, pages 782–788,
Kyoto, Japan.

Beatrice Warren. 1978. Semantic Patterns of
Noun-Noun Compounds. Acta Universitatis
Gothoburgensis, Göteborg, Sweden.

159

Proceedings of the Australasian Language Technology Workshop 2005, pages 160–166,
Sydney, Australia, December 2005.

Paraphrase Identification by Text Canonicalization

Yitao Zhang and Jon Patrick
School of Information Technology

University of Sydney
Sydney, Australia, 2006

{yitao, jonpat}@it.usyd.edu.au

Abstract

This paper proposes an approach to sentence-
level paraphrase identification by text canon-
icalization. The source sentence pairs are
first converted into surface text that approxi-
mates canonical forms. A decision tree learn-
ing module which employs simple lexical match-
ing features then takes the output canonical-
ized texts as its input for a supervised learn-
ing process. Experiments on the Microsoft Re-
search (MSR) Paraphrase Corpus give compa-
rable performance to other systems that are
equipped with more sophisticated lexical se-
mantic and syntactic matching components,
with a Confidence-weighted Score of 0.791. An
ancillary experiment using the occurrence of
nominalizations suggests that the MSR Para-
phrase Corpus might not be a rich source for
learning paraphrasing patterns.

1 Introduction

Paraphrase identification is the task of recog-
nizing text fragments with approximately the
same meaning within a specific context. It
has been recently proposed as an application-
independent framework for measuring semantic
equivalence in text, which is critical to many
natural language systems like Question Answer-
ing, Information Extraction, Information Re-
trieval, Document Summarization, and Machine
Translation.

This paper proposes an approach to identi-
fying sentence-level paraphrase pairs by trans-
forming source sentences into more canonical-
ized text forms. By “canonical form”, we mean
a transformed text which is more generic and
simpler in someway than the original text, fol-
lowing the idea of restricted languages. For ex-
ample, the sentence

Remaining shares will be held by
QVC’s management.

is transformed into a more canonicalized form
by changing it from the passive to active voice
producing

QVC ’s management will hold Re-
maining shares.

which is more common in Subject-Verb-Object
(SVO) languages like English, while the Passive
Voice in the source sentence usually occurs in
scientific and business text where a more formal
writing style is used.

This approach is consistent with Chomsky’s
Transformational Grammar, in which syntacti-
cally different, but semantically equivalent sen-
tences can be related by their identical deep se-
mantic structures (Chomsky, 1957). However,
it is generally difficult to efficiently analyze any
corpus by using the Transformational Grammar
due to its high complexity and computational
overhead (Hausser, 2001). In our approach, we
only attempt to transform parts of the surface
structure into a more generic text representa-
tion within the context of the paraphrase identi-
fication problem. The underlying hypothesis of
this approach is that if two sentences are para-
phrases of each other, they have a higher chance
of being transformed into similar surface texts
than a pair of non-paraphrase sentences.

In this paper, only a set of limited canoni-
calization rules have been applied as a prelim-
inary attempt to evaluate the effectiveness of
the methodology. The objective is not to cre-
ate grammatically correct text sequences from
source sentences, but to enable the true para-
phrases to share as much surface text, both lex-
ically and syntactically, as possible. Despite
this simple model, experiments on the MSR
Paraphrase Corpus nevertheless show compara-
ble results to those scores reported in the re-
cent ACL Workshop on Empirical Modeling of
Semantic Equivalence and Entailment (2005).
They also show that this approach increases the
Recall rate of the system quite significantly.

160

2 Background

Recent work on sentence-level paraphrasing
generally views the problem as one of identify-
ing bidirectional entailment in text pairs. Given
an entailment text T and a hypothesis text H, T
entails H if H can be inferred from the contents
of T (Dagan et al., 2005). A pair of sentences is
therefore considered as a paraphrase pair if the
entailment relationship holds from both direc-
tions.

However, this strict mutual entailment rela-
tionship does not hold in most naturally oc-
curred sentence-level paraphrases. Recent at-
tempts on extracting paraphrase pairs from
the web, notably the MSR Paraphrase Cor-
pus (Dolan et al., 2004), have shown a large
quantity of “more or less semantically equiv-
alent” paraphrase pairs, such as the examples
in Table 1. In the paraphrase pair “913945-
914112”, “Dewhurst” in the first sentence can-
not be inferred from the second without giving
the specific context knowledge that this person
is someone belongs to the “committee”. In the
pair “420631-420719”, the first sentence does
not include any information that the minister
is Saudi which occurs in the second sentence.
Human judges have generally shown little dif-
ficulty in identifying these loose semantically
equivalent sentence pairs as paraphrases. A sur-
prisingly high inter-rater agreement of 83% was
reported in the construction of the MSR Para-
phrase Corpus despite the rather vague guide-
line of identifying sentence-level paraphrases
that was used. It suggests that human judges
were only interested in the matching of main
propositions in sentence pairs, while neglecting
the existence of other non-entailed trivial con-
tents.

Bar-Haim et al. (2005) decomposed the en-
tailment task into two sub-levels, namely, lex-
ical and lexical-syntactic. At the lexical level,
for each word or phrase h in Hypothesis H, if
h can be matched with a corresponding item
t in Text T using either lexical matching, or
a sequence of lexical transformations, then H
and T are tagged as a true entailment pair.
Lexical transformation rules include morpho-
logical derivations like nominalization (example
“913945-914112” in Table 1, “proposal => pro-
pose”), ontological relations like synonym and
hypernym, or world knowledge such as “Tal-
iban => organization”. At the lexical-syntactic
level, entailment between H and T holds if
both the lexical and syntactic relations in H are

also found in T. The relations evaluated at the
lexical-syntactic level include syntactic move-
ment triggered by morphological derivation of
words, passive to active voice transformation
of verbs, co-reference in text, and the syntactic
level paraphrases like “X was born in Y <=>

X is Y man by birth”. In an empirical anal-
ysis of the PASCAL Recognising Textual En-
tailment Challenge (RTE) corpus (Dagan et al.,
2005), 240 sentence pairs were randomly chosen
and tagged by human annotators based on the
above criteria for semantic entailment. What
they have found is that working on the lexical-
syntactic level outperforms on the lexical level
by a significant increase of the Precision score,
namely, from 59% to 86%. However, the Recall
rate shows only 6% improvement by switching
from lexical to a lexical-syntactic level.

In a similar effort to evaluate the contribution
of syntactic knowledge in the entailment task,
Vanderwende et al. (2005) found that 37% of
the RTE Entailment Corpus examples could be
handled by syntax alone, assuming the existence
of an ideal parser. With additional help from a
thesaurus, this figure can be increased to 49%.

Corley and Mihalcea (2005) proposed a bag-
of-words model for identifying entailments and
paraphrases by measuring the semantic similar-
ity of two texts. In their model, the semantic
similarity of two text segments Ti and Tj is de-
fined as a score function that combines the se-
mantic similarities of nouns and verbs, the lex-
ical similarities of other open class words, to-
gether with word specificities measured by the
inverse document frequency metric derived from
the British National Corpus. Experimental re-
sults on the MSR Paraphrase Corpus showed a
4.4% increase of system accuracy by incorporat-
ing semantic knowledge.

Inversion Transduction Grammars (ITG),
which is previously proposed as a framework
for machine translation, has also been applied
in the context of the paraphrase and entail-
ment task by Wu (2005). Without consult-
ing any thesaurus, the Bracketing ITG model
worked mainly on a syntactic matching level
and achieved a Confidence-weighted Score of
0.761, which is 10% higher than the random
baseline.

3 The Dataset

The Microsoft Research Paraphrase Corpus has
been used throughout our experiments. It is the
result of a recent effort to construct a large scale

161

Table 1: Examples of MSR Paraphrase Corpus
ID Text1 Text2 Description
913945-
914112

Dewhurst’s proposal calls for
an abrupt end to the contro-
versial ”Robin Hood” plan for
school finance.

The committee would pro-
pose a replacement for the
”Robin Hood” school finance
system.

Nominalization

2484044-
2483683

The tour plans to make stops
in 103 cities before rallying in
Washington on Oct. 1-2, and
in New York City on Oct. 3-4.

The tour will stop in 103 cities
before rallying in Washington
on Oct. 1 and 2, and New
York on Oct. 3 and 4.

Nominalization +
Future Tense

420631-
420719

Those reports were denied by
the interior minister, Prince
Nayef.

However, the Saudi interior
minister, Prince Nayef, de-
nied the reports.

Passive/Active
Voice

paraphrase corpus for generic purposes (Dolan
et al., 2004). It consists of 5,801 sentence pairs
extracted from online newswire text, in which
3,900 are tagged as true paraphrases by human
judges. This high proportion of occurrences
of paraphrase pairs can be explained by the
methodology used to create the corpus. In the
construction of the corpus, edit distance is used
as the only metric to filter out lexically unsim-
ilar sentence pairs, which means the remaining
instances have large lexical overlaps. As a con-
sequence, although the MSR Paraphrase Cor-
pus is rich in the number of paraphrase pairs,
it is not enriched with a good variety of lexical
and syntactic patterns. Weeds et al. (2005)
argue that this ”high overlap in words” makes
it a poor source for studying the distributional
similarity of syntactic paraphrasing patterns.

In an effort to substantiate this claim, we
made an evaluation of the occurrence of nomi-
nalization, which is a classical linguistic device
for paraphrasing, in both the MSR Paraphrase
Corpus and the RTE Entailment Corpus. We
used a semi-automatic method to calculate the
occurrence of nominalizations. First we pos-
tagged sentence pairs in the corpus and lemma-
tized all the verbs and nouns. If there was an
exact string match between a lemmatized verb
and a lemmatized noun in a sentence pair, we
marked it as a candidate of nominalization, and
asked human judges to verify it at a later stage.
A walk-through example of finding nominaliza-
tion is shown in Table 2.

This method gives a reliable lower bound on
the occurrence of nominalizations in the cor-
pora. The results are shown in Table 3. No-
tice that in the MSR training dataset only 60
true nominalizations exist in over 4,000 sentence
pairs, compared to the number of 44 over 800 in

Table 3: Occurrence of Nominalizations
True Nomi-
nalizations

Corpus
Size(sentence
pairs)

RTE 44 800
MSR 60 4076

the RTE testing dataset. This result suggests
that the distribution of paraphrasing patterns
in the MSR Paraphrase Corpus is likely to be
below the normal distribution in natural text,
or at least not that rich compared to a human
constructed and balanced corpus. Therefore, it
might not be a rich resource for studying the
real distribution of features of naturally occur-
ring paraphrases and Weeds et al.’s comments
are justified.

Despite these innate problems of the cor-
pus, it is still by far the largest sample dataset
of paraphrasing phenomenon, which provides a
solid base for system testing. Therefore, we de-
cided to focus our research on this corpus as the
first stage of our experiments.

4 Experiments

This section describes the details of the two
modules in the system, namely the text canon-
icalization module and the supervised learning
module.

4.1 Text Canonicalization

The function of the text canonicalization mod-
ule is to constrain the language choices, both
at lexical and syntactic level, of any text that
carries meanings. In this paper, only a set of
limited canonicalization rules has been applied.

Number Entities Number entities include
dates, times, monetary values, and other quan-

162

Table 2: An Example of Finding Nominalizations
ID 913945 914112

Dewhurst/NNP ’s/POS proposal/NN
calls/VBZ for/IN an/DT abrupt/JJ
end/NN to/TO the/DT contro-
versial/JJ ”/NNP Robin/NNP
Hood/NNP ”/NNP plan/NN for/IN
school/NN finance/NN ./.

The/DT committee/NN would/MD
propose/VB a/DT replacement/NN
for/IN the/DT ”/NNP Robin/NNP
Hood/NNP ”/NNP school/NN fi-
nance/NN system/NN ./.

Nouns proposal=>propos, end, Robin, Hood,
plan, school, finance=>financ

committee=>committe,
replacement=>replac, Robin, Hood,
school, finance=>financ, system

Verbs calls=>call propose=>propos
Candidate Nominalizations: (proposal, propose)

Table 4: Passive to Active Voice
id = 420631 id = 420719

Before
transfor-
mation

Those reports
were denied
by the inte-
rior minister,
Prince Nayef.

However, the
Saudi inte-
rior minister,
Prince Nayef,
denied the
reports.

After
transfor-
mation

the interior
minister,
Prince Nayef
denied Those
reports.

unchanged

tities like percentages. In the experiments, the
system will replace those number entities with
generic tags in the text.

Passive/Active Voice In the passive to ac-
tive voice transformation, the system first con-
sults Minipar (Lin, 1998), which is a principle-
base English parser, to get the parsed depen-
dency tree structure of the text. Then it finds
all the verbs in passive voice, together with their
grammatical subjects and the objects. Finally,
the system swaps the child nodes of the subjects
and the objects of each verb. The canonical-
ized text is then created from the transformed
syntactic tree. An example of passive to active
voice transformation is shown in Table 4.

Future Tense The expression of future tense
in text has also been canonicalized to constrain
the lexical choices which refer to future action
and willingness. An example of future tense us-
age in the MSR Paraphrase Corpus is given by
the text pair ”2484044-2483683” in Table 1. In
the sentence, “plans to” and “will” both refer
to the future actions the subject will be taking.
They have to be canonicalized into the same

surface text to create higher probabilities to be
matched at a later stage. In the experiments,
we compile a list of common words and phrase
structures(like “plan to” and “be expected to”)
to be substituted by a single word “will”, which
the system defines as the generic expression of
future actions.

4.2 Supervised Learning

At the supervised learning stage, the decision
tree learning module of Weka (Witten and
Frank, 1999) was used. The training dataset
and the test dataset used in the experiments
are the corresponding training and test dataset
in MSR Paraphrase Corpus as described in Sec-
tion 3.

Lexical Matching Features The features
used in the supervised learning stage are

• Longest Common Substring measures the
length of the longest common strings
shared by two sentences. It is a consecu-
tive sequence of words.

• Longest Common Subsequence measures
the length of the longest common sequence
of strings shared by two sentences. It does
not require this sequence to be consecutive
in the original text.

• Edit Distance describes how many edit op-
erations (add, delete, or replace of a word
token at a time) are required to convert a
source text into a target text. The fewer
edit operations needed, the less edit dis-
tance and the more lexical overlap of the
two text segments.

• Modified N-gram Precision is also an im-
portant metric adopted from the BLEU

163

algorithm for evaluating machine transla-
tions (Papineni et al., 2001). It was orig-
inally proposed to capture both the accu-
racy and the fluency of a translated text
with reference to a set of candidate trans-
lations. In the context of paraphrases, we
try to calculate the modified n-gram preci-
sion from both directions of a sentence pair.
For example, given the following sentence
pair:

T1: the the the the the the the.
T2: The cat is on the mat.

we first define the modified count of an
n-gram t in T1 as the minimum between
the occurrence of t in T1 and the maxi-
mum occurrence of t in T2. For instance,
Countmodified(“the”) is 2 because the un-
igram “the” occurs only twice in the sec-
ond sentence. The directional modified n-
gram precisions from T1 to T2 is defined in
Equation 1, in which m is the order of n-
gram (up to trigram m=3 was used in our
experiment), and Count(k) simply counts
the number of k in the source sentence T1.
We also calculated the directional modified
n-gram precision score from T2 to T1, and
used the average of the two directional pre-
cision as the modified n-gram precision of
the sentence pair by Equation 2.

Moreover, our calculation of the above features
is solely based on word token level. For instance,
we use word n-gram instead of letter n-gram in
calculating the modified n-gram precision.

mnpT1
=

1

m

m∑

i=1

− log (

∑
t∈n-gram

i

Countmodified(t)

∑
k∈n-gram

i

Count(k)
)

(1)

mnp(T1, T2) =
mnpT1

+ mnpT2

2
(2)

Evaluation Metrics To assess the system
performance, we adopt the Confidence-weighted
Score(CWS) as the main figure for our evalua-
tions. CWS is defined in Equation 3

cws =
1

n

n∑

i=1

#correct-up-to-i

i
(3)

in which #correct-up-to-i is the number of cor-
rect tagging instances up to the current position

i, and the test data samples are first ranked in
decreasing order according to their confidence
level of tagging judgments. The CWS metric
generally rewards a system that assigns higher
confidence values to correct tagging decisions
than to those wrong ones (Dagan et al., 2005).
Meanwhile, traditional machine learning met-
rics like accuracy, precision, recall, and F1 val-
ues are also reported for better understanding
of the system.

The Baselines Two baselines have been pro-
vided for the task. The first baseline system uni-
formly predicts true for paraphrase pairs. The
second baseline system uses the lexical match-
ing features in Section 4.2 on the original text
pairs for the supervised learning stage.

5 Results

The experiment results are shown in Table 5.
For comparison, scores of Wu (2005), and Cor-
ley and Mihalcea (2005)’s systems are also in-
cluded in the table.1

For the two baseline systems, B2, which em-
ploys pure lexical matching features on the
source text, outperforms B1, the system that
uniformly predicts paraphrases, both in Accu-
racy by 6%, and in CWS by 12%. The B2 sys-
tem also shows comparable results with respect
to Wu, and Corley and Mihalcea’s systems and
sets a high standard as a baseline system. This
further reveals the main characteristic of the
MSR Paraphrase Corpus: paraphrase text pairs
in the corpus share more lexical overlaps than
non-paraphrase pairs.

Compared with B2, systems using canoni-
calized text, namely S1 - S7, generally suffer
a slightly poorer performance in the Accuracy
score. However, the Recall rate rises signifi-
cantly in all systems except in S3 and S6. Inter-
estingly, S3 and S6 also show the highest CWS
score and the Precision score at the same time.
This suggests that the canonicalization of fu-
ture tense helps systems to make more precise
and reliable tagging decisions. Canonicalization
on Passive/Active voice (S2) also increases the
Recall rate by almost 10% compared with B2.
This suggests that a pure lexical matching sys-
tem could be further improved by even some
preliminary syntactic transformations. Number
entity canonicalization helps to increase the Re-
call rate of the system. This could be explained

1Wu only reported the CWS score on MSR corpus in

his paper, while Corley and Mihalcea did not report any

CWS score in their paper.

164

Table 5: Experiment results on MSR Paraphrase Corpus
CWS Acc Pre Rec F1

Systems using Canonicalized Text
S1: (a)number entities 0.740 0.692 0.713 0.898 0.795
S2: (b)passive/active 0.742 0.719 0.743 0.882 0.807
S3: (c)future tense 0.791 0.708 0.784 0.775 0.779
S4: (a)+(b) 0.739 0.697 0.716 0.900 0.798
S5: (a)+(c) 0.731 0.701 0.732 0.869 0.794
S6: (b)+(c) 0.791 0.709 0.784 0.776 0.780
S7: (a)+(b)+(c) 0.723 0.703 0.734 0.867 0.795

Baselines
B1: Uniform 0.664 0.664 0.664 1 0.798
B2: LexicalMatch 0.783 0.723 0.788 0.798 0.793

Other Systems with Reported Scores
Wu (2005) 0.761
Corley and Mihalcea (2005) 0.715 0.723 0.925 0.812

by how the MSR Paraphrase Corpus was con-
structed. During the tagging process, source
sentences were already pre-processed by replac-
ing number entities with generic tags. Human
judges then made their decisions based on the
canonicalized text. While the dataset revealed
to the public, the source text is provided instead
of the data used by human judges.

In general, systems S1-S7 show competitive
performance with respect to Wu, and Corley
and Mihalcea’s systems. Corley and Mihalcea’s
system gives a better Recall rate, which suggests
the importance of introducing lexical semantics
features in the system. Our approach currently
does not model synonyms into any canonical-
ized form, therefore loses the possibility of cap-
turing this lexical variance. On the other hand,
neither Wu, nor Corley and Mihalcea’s system
outperforms the lexical matching system B2 in
terms of CWS and Accuracy. This again sug-
gests that the nature of the paraphrases in the
corpus is that they share more lexical overlaps
than non-paraphrases, rather than employing
sophisticated syntactic paraphrasing patterns.

6 Conclusion

This paper proposes a text canonicalization ap-
proach to the paraphrase identification task.
Our approach tries to tackle the problem on
both the lexical and the grammatical level,
as distinct from existing research which has
concentrated on lexical analyses. Despite the
simple transformation rules applied, this ap-
proach has shown competitive figures of sys-
tem performance on the MSR Paraphrase Cor-
pus with that reported in current state-of-the-

art systems. Moreover, this method reports a
significant increase in the recall rate of para-
phrases compared with a system using non-
canonicalized text. It clearly encourages the
use of more conceptualized and more canonical
syntax which tries to approximate the deeper
semantic information of the original text.

However, further research is required to re-
veal how many transformation rules are needed
for the task. It would also be interesting to de-
velop an effective engineering method for man-
aging the expanding canonicalization rule set.
In the future, more work has also to be done to
equip the system with lexical semantic knowl-
edge from either manually constructed lexical
databases like WordNet (Fellbaum, 1998), or
other resources that automatically learned from
corpora like VerbOcean (Chklovski and Pantel,
2004).

Acknowledgments

This paper was supported by the School of In-
formation Technologies, University of Sydney.
We would also like to thank the reviewers for
their insightful comments, and all members of
the Sydney Language Technology Group for
their support.

References

Roy Bar-Haim, Idan Szpecktor, and Oren Glick-
man. 2005. Definition and analysis of inter-
mediate entailment levels. In Proceedings of
the ACL Workshop on Empirical Modeling of
Semantic Equivalence and Entailment, pages
55–60, Ann Arbor, Michigan, June. Associa-
tion for Computational Linguistics.

165

Timothy Chklovski and Patrick Pantel. 2004.
VerbOcean: Mining the Web for Fine-
Grained Semantic Verb Relations. In Pro-
ceedings of Conference on Empirical Methods
in Natural Language Processing (EMNLP-
04), Barcelona, Spain.

Noam Chomsky. 1957. Syntactic Structures.
Mouton.

Courtney Corley and Rada Mihalcea. 2005.
Measuring the semantic similarity of texts.
In Proceedings of the ACL Workshop on Em-
pirical Modeling of Semantic Equivalence and
Entailment, pages 13–18, Ann Arbor, Michi-
gan, June. Association for Computational
Linguistics.

Ido Dagan, Bernardo Magnini, and Oren Glick-
man. 2005. The PASCAL Recognising Tex-
tual Entailment Challenge. In PASCAL Pro-
ceedings of the First Challenge Workshop,
Recognizing Textual Entailment, Southamp-
ton, U.K., April.

Bill Dolan and Ido Dagan, editors. 2005. Pro-
ceedings of the ACL Workshop on Empirical
Modeling of Semantic Equivalence and En-
tailment. Association for Computational Lin-
guistics, Ann Arbor, Michigan, June.

William B. Dolan, Chris Quirk, and Chris
Brockett. 2004. Unsupervised Construction
of Large Paraphrase Corpora: Exploiting
Massively Parallel News Sources. In Proceed-
ings of COLING 2004.

Christiane Fellbaum, editor. 1998. WordNet:
An Electronic Lexical Database. MIT Press.

Roland Hausser. 2001. Foundations of Compu-
tational Linguistics: Human-Computer Com-
munication in Natural Language. Springer.

Dekang Lin. 1998. Dependency-based Evalua-
tion of MINIPAR. In Workshop on the Evalu-
ation of Parsing Systems, First International
Conference on Language Resources and Eval-
uation, Granada, Spain, May.

K. Papineni, S. Roukos, T. Ward, and W. Zhu.
2001. Bleu: a method for automatic evalua-
tion of machine translation.

Lucy Vanderwende, Deborah Coughlin, and Bill
Dolan. 2005. What Syntax can Contribute
in Entailment Task. In PASCAL Proceedings
of the First Challenge Workshop, Recognizing
Textual Entailment, Southampton, U.K.

Julie Weeds, David Weir, and Bill Keller. 2005.
The distributional similarity of sub-parses. In
Proceedings of the ACL Workshop on Empir-
ical Modeling of Semantic Equivalence and
Entailment, pages 7–12, Ann Arbor, Michi-

gan, June. Association for Computational
Linguistics.

Ian H. Witten and Eibe Frank. 1999. Data
Mining: Practical Machine Learning Tools
and Techniques with Java Implementations.
Morgan Kaufmann.

Dekai Wu. 2005. Recognizing paraphrases and
textual entailment using inversion transduc-
tion grammars. In Proceedings of the ACL
Workshop on Empirical Modeling of Seman-
tic Equivalence and Entailment, pages 25–30,
Ann Arbor, Michigan, June. Association for
Computational Linguistics.

166

Proceedings of the Australasian Language Technology Workshop 2005, pages 167–175,
Sydney, Australia, December 2005.

Words and Word Usage: Newspaper Text versus the Web

Vinci Liu and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{vinci,james}@it.usyd.edu.au

Abstract

This paper explores the differences in words and
word usage in two corpora – one derived from
newspaper text and the other from the web. A
corpus of web pages is compiled from a con-
trolled traversal of the web, producing a topic-
diverse collection of 2 billion words of web text1.
We compare this Web Corpus with the Giga-
word Corpus, a 2 billion word collection of news
articles. The Web Corpus is applied to the
task of automatic thesaurus extraction, obtain-
ing similar overall results to using the Gigaword.
The quality of synonyms extracted for each tar-
get word is dependent on the word’s usage in
the corpus. With many more words available
on the web, a much larger Web Corpus can be
created to obtain better results in different nlp
tasks.

1 Introduction

In corpus-based Natural Language Processing
(nlp), the corpus is the primary representation
of a language from which algorithms extract in-
formation and build linguistic models. Words
and word usage in a corpus of newspaper text
will differ from that of a corpus of web pages,
due to the different genres of text and as an
artifact of the corpus collection process.

Words are used differently across different
medium and corpora. While newspaper text
is usually written by experienced writers and
carefully checked by editors for accuracy, few
restrictions exist for web text. It has a wider
range of writing styles and less adherence to for-
mal grammar. Anyone with access to the web
can create web pages and there is no restriction
as to what topics are written about on the web.
Thus, a web corpus will contain a wider range
of topics than a newspaper corpus.

1In this paper, we report on the number of tokens
after the corpus has been tokenised, counting both words
and punctuation.

Some differences between corpora can be at-
tributed to the collection process. A corpus of
newspaper text is usually collected from a few
publishers across a set period of time. This cor-
pus will reflect the topics in the news over that
period as well as the types of news targeted by
the publishers (e.g. political, financial). A cor-
pus of web pages can contain pages from any
time before its creation. It will have a different
distribution of dates than a newspaper corpus.

In this paper, we explore the difference be-
tween a corpus of newspaper text and a corpus
of web text. We conduct three experiments to
highlight some of the differences. First, the to-
ken types that exist within each corpus are ex-
amined and the vocabulary unique to each cor-
pus is accounted for. We then analysed words
frequent in one corpus that are infrequent in the
other to reveal topic skew. Finally we extract
synonyms for common nouns to show the word
usage and topic coverage of the two corpora and
to demonstrate the usefulness of web corpora.

2 Corpora

A corpus is a collection of text fulfilling some
specified criteria. If a corpus is intended to be
used for study of English or any other language,
it must incorporate samples across all usage of
the target language. For example, an English
corpus should include both written and spoken
English. Each major type of text, across topic
and genre, should be represented in the corpus
in proportion to their usage in the language.

While a corpus can be broadly representative
of a language, no collection of text can defini-
tively represent a language. There is no set per-
centages that can be specified across mode and
genre. We cannot ask how much more or less
is English written than spoken? Instead, a cor-
pus is better defined by its composition. In this
paper, we compare two corpora – the ldc’s Gi-
gaword Corpus of newspaper text and our own
Web Corpus.

167

2.1 Existing Corpora

One of the first machine-readable corpora was
the Brown Corpus (Francis and Kucera, 1979),
created in 1964 and consisting of 1 million words
of American English. Another step forward
in corpus development came with the Penn
Treebank, which consists of 4.5 million words
of American English manually annotated with
part of speech (pos) tags and parse trees (Mar-
cus et al., 1994). The British National Corpus
(bnc) is a collection of British English, consist-
ing of 90 million words of written text and 10
million words of transcribed speech (Burnard,
2000). At almost one hundred times the size of
the Brown Corpus and more than twenty times
the size of the Penn Treebank, it is too large to
be manually annotated and so the bnc is auto-
matically tagged with pos tags.

While languages such as English are rich with
language resources, minority languages often re-
sort to using freely available web text. One of
the first web-collected corpora was the Hungar-
ian Web Corpus (Halacsy et al., 2004), created
by downloading pages from the .hu domain. It
has about 1 billion words of text after removal
of duplicates and non-Hungarian text.

2.2 The Gigaword Corpus

The English Gigaword Corpus consists of over 4
million documents and 1.75 billion words (Graff,
2003), with more than 2 billion tokens when
the text is tokenised, including punctuation.
It is the next progression up in size from the
bnc. The Gigaword is the large single collec-
tion of English news text available to-date. It
consists of newspaper text from the Associated
Press, Agence France Press (English Service),
the New York Times Newswire, and Xinhua
News Agency (English Service) from the years
1994-2001. Parts of Gigaword have been re-
leased by the ldc in other collections. The data
is skewed toward the New York Times (∼ 50%)
and the Associated Press (∼ 25%). The Agence
France Press and Xinhua News Agency articles
together make up the last 25%.

3 The Web Corpus

We collected the Web Corpus by a controlled
traversal of the web. If a web spider were to tra-
verse the web starting from a single seed url,
many more pages of the seed url topics would
be visited than other topics. As some topics
on the web are linked to by a larger number of
pages than others, these topics also tend to be

over-represented in such a sample of the web.
Pages pertaining to these topics tend to have
more incoming links than others, but this is not
entirely reflective of the popularity of such web-
sites. Gambling and adult websites, for exam-
ple, are known to densely link to one another.

3.1 Uniform Web Sampling
The web is too large to be downloaded entirely
or for a significant percentage to be collected
by most research projects. Two primary ap-
proaches exist for obtaining a uniform sample
of the web. ip address sampling techniques
(Lawrence and Giles, 1999; O’Neill et al., 1997)
obtain a uniform sample by randomly gener-
ating addresses and exploring the associated
server. While the ip address sampling approach
has been successfully implemented and used for
extraction statistics of the web, it is costly in the
resources required. Lawrence and Giles report
that only 1 in 269 tries of a random ip address
received a response.

Random walk techniques (e.g. Henzinger et
al., 2000) attempt to create a regular undi-
rected web graph on which a random traversal
would produce a uniform sample. This is usu-
ally accomplished using search engines to calcu-
late the number of backward links (making the
web undirected) and creating self-loops to stan-
dardise the number of links (both incoming and
outgoing) for each page.

3.2 USyd-NLP-Spider
Our Web Corpus is compiled from the web using
a method based on link-to-link traversal, similar
to the random walk approaches. It allows faster
download of web pages than the ip sampling
technique but does not produce a uniform sam-
ple. Web pages are collected by the USyd-NLP-
Spider, a multi-thread spider written in Python.
We seeded the spider with links from the Open
Directory2. The broad topic coverage of this
open source classification tree allows us to cre-
ate a topic-diverse collection of web text. How-
ever, certain topics in the directory have more
links than others (not reflective of its coverage
on the web) and topics of similar generality are
placed at different depths. The Open Directory
is flattened using a rule-based algorithm to re-
duce the topic skew. A list of 358 general topics
and associated urls is created.

From these seed urls, the spider performs
a breadth-first search. For each link, the spi-

2The Open Directory Project, http://www.dmoz.org

168

der samples pages from the same section of the
website until a minimum word quota has been
reached. External links are extracted and added
to the link collection of the parent topic.

4 Text Cleaning

The html collected by the USyd-NLP-Spider
must be transformed into a format usable by
nlp algorithms – whitespace delimited tokens,
organised into sentences, one per line. We call
this process text cleaning. Text cleaning consists
of many low-level processes, beginning with in-
terpreting character encoding on html pages
and transforming them into iso Latin-1, fol-
lowed by sentence boundary identification, to-
kenisation, and text filtering.

Our sentence boundary identification com-
ponent is based on Ratnaparkhi (1998). We
adapted his model for regular English text by
adding additional features for html tags. Our
tokeniser is based on the one used for the Penn
Treebank (MacIntyre, 1995), modified to cor-
rectly tokenise urls, email addresses, and other
web-specific text.

The filtering component is especially impor-
tant for cleaning web text. Not all parts of
web pages consists of grammatical sentences;
they may contain an ingredient list for a cook-
ing recipe or fragment of C++ code. Our rule-
based filter removes non-content words and for-
eign language text. It removes sentences and
documents with a low percentage of dictionary
words.

5 Token Types

We are interested in the type of tokens in each
corpus. For example, are there more numbers
on the web than in newspaper text? From each
corpus, we randomly select a 1 billion word sam-
ple and classified the tokens into seven disjoint:

Numeric – At least one digit and zero or more
punctuation characters, e.g. 2, 3.14, $5.50

Uppercase – Only uppercase, e.g. REUTERS
Title Case – An uppercase letter followed by

one or more lowercase letters, e.g. Dilbert
Lowercase – Only lowercase, e.g. violin
Alphanumeric – At least one alphabetic and

one digit (allowing for other characters),
e.g. B2B, mp3, RedHat-9

Hyphenated Word – Alphabetic characters
and hyphens, e.g. serb-dominated, vis-a-vis

Other – Any other tokens

Finally, we also measure the number of dictio-
nary words using the Unix words file.

Gigaword Web Corpus
Numeric 1.8% 1.2%

Uppercase 1.4% 2.2%
Title Case 14.2% 14.4%
Lowercase 68.4% 68.7%

Alphanumeric 0.3% 0.2%
Hyphenated 0.9% 0.7%

Other 13.0% 12.6%
Dictionary Words 69.6% 66.9%

Table 1: Tokens for each corpus

Gigaword Web Corpus
Tokens 1 billion 1 billion

Token Types 2.2 million 4.8 million
Numeric 343k 15.6% 374k 7.7%

Uppercase 95k 4.3% 241k 5.0%
Title Case 645k 29.3% 946k 19.6%
Lowercase 263k 12.0% 734k 15.2%

Alphanumeric 165k 7.6% 417k 8.6%
Hyphenated 533k 24.3% 970k 20.1%

Other 150k 6.8% 1,146k 23.7%
Dict. Words 43k 2.0% 45k 0.9%
% of Dict. 94.3% 98.0%

45,427 words 42,835 words 44,539 words

Table 2: Token types for each corpus

5.1 Token Classification
At the macroscopic level, the two corpora ap-
pear similar. Table 1 shows the percentage by
token in each corpora across the seven cate-
gories. The results are very close, with the only
significant difference being the 2.7% drop for
dictionary words in the Web Corpus relative to
the Gigaword. However, an analysis by token
type shows big differences between the two cor-
pora (see Table 2). The same size samples of
the Gigaword and the Web Corpus have very
different number of token types. While only 2.2
million token types are found in the 1 billion
word sample of the Gigaword, about twice as
many token types (4.8 million) are found in an
equivalent sample of the Web Corpus.

An analysis of the token types show similar
percentages in four of the seven categories: up-
percase, lowercase, alphanumeric, and hyphen-
ated tokens. Although the Web Corpus has
about twice the number of token types, it has
similar number of numeric token types as the
Gigaword. The percentage of numeric token
types in the Gigaword is more than twice that of
the Web Corpus. The Web Corpus has a lower
percentage of title case tokens, at 19.6%, than
the Gigaword at 29.3%.

169

Unique to Unique to
Gigaword Web Corpus

All 1,413,427 4,048,531
Numeric 282k 19.9% 313k 7.7%
Uppercase 36k 2.5% 182k 4.5%
Title Case 351k 24.8% 654k 16.2%
Lower Case 100k 7.1% 571k 14.1%
Alphanumeric 138k 9.8% 389k 9.6%
Hyphenated 395k 28.0% 832k 20.5%
Other 111k 7.9% 1,107k 27.3%
Dict. Words 0k 0.0% 2k 0.0%

Table 3: Token types unique to each corpus

A large percentage difference is also observed
in the number of dictionary words. These per-
centages don’t give the whole picture, as the
Unix dictionary has only 45,427 words. Both
corpora contain a high percentage of the words
in the Unix dictionary, at 98.0% for the Web
Corpus and 94.3% for the Gigaword.

The percentages of token types within a cor-
pus is also very informative. While only 0.9% of
the Web Corpus vocabulary is dictionary words,
it accounts for 66.9% of the actual tokens. In
the Gigaword, the dictionary words account for
2.0% of the token types but 69.6% of the token
instances. About 734,000 (15.2%) of Web Cor-
pus token types are lowercase, most of which are
not found in the dictionary. Another 946,000
(19.6%) of Web Corpus token types are title
case, which includes named entities. In the Web
Corpus, and similarly in the Gigaword, the non-
dictionary words are a large percentage of the
token types but a relatively small percentage of
the actual tokens.

5.2 Unique Token Types
To better account for the difference between the
2.2 million token types in the Gigaword com-
pared with the 4.8 million token types in Web
Corpus, we extracted the terms found in one
corpus but not the other. Table 3 shows the
percentage of token types unique to each cor-
pus (i.e. found in the Gigaword but not in the
Web Corpus, or vice-versa). Virtually no dictio-
nary words are unique to each corpus, as both
corpora already contain most of the words in
the Unix dictionary.

Four significant categories are numeric, title
case, hyphenated, and other tokens. They ex-
plain some of the difference between the vocab-
ulary of the two corpora. Numeric tokens tend
to be unique to texts; for example, the number
1,349,343 is unlikely to appear again in a dif-

ferent context. Title case tokens contains many
named entities, which tend to be context spe-
cific. Hyphenated tokens behave more like bi-
grams as they are the combination of two un-
igrams. Other than the conventional hyphen-
ated words (e.g. ice-cream), these bigram-like
words tend to be more sparse. The above re-
sults suggest that the token types unique to Gi-
gaword tend to be numbers and named-entities,
whereas token types unique to the Web Corpus
are non-standard words (e.g. email addresses
and urls).

5.3 Misspellings

A possible explanation for the significant differ-
ence between the number of token types is the
misspelling of words. The web contains doc-
uments written by people with a widely vary-
ing command of English. Their work is not
checked by professional editors unlike the news-
paper text. Thus we expect that there are
many more ungrammatical sentences and mis-
spellings in the Web Corpus than the Gigaword.
The misspellings in the Web Corpus are new
“words” that contribute to the relatively higher
token type count than the Gigaword.

To determine the degree that misspellings
contribute to the number token types in the
Web Corpus, we examined letter combinations
that are one character away from the correct
spelling. For a target word, we generate the let-
ter combinations that are one operation from
the correct spelling. Four operations are con-
sidered:

Insertion – A new letter is inserted into the
correct word (not before the first letter)

Deletion – One letter in the correct word (ex-
cept the first) is deleted

Substitution – One letter in the correct word
(except the first) is substituted by another
letter in the alphabet

Letter Reordering – One letter in the correct
word (except the first) is swapped with the
next letter

The only letter preserved in all of the above
transformations is the first, as very few mis-
spelling replaces the first letter of the word. Any
combination found in a dictionary is also dis-
counted, so that the correct word is not trans-
formed into another valid word (e.g. difference
to differences). Figure 4 shows the misspellings

170

Web Corpus Gigaword
differeince disfference differencre
differrence differience differencce
differece differenced differnce

differenece diffeerence diffference
dfference differenc diference
differnce differnence diffrence

diffference differennce diffderence
diference diffeence differencel
diffrence
3.7 matches per word 1.7 matches per word

Table 4: Misspelling of difference in Web Corpus
and Gigaword

of the word difference found in the Web Cor-
pus and the Gigaword. While there are 17 mis-
spellings of difference that are one transforma-
tion from the correct spelling in the Web Cor-
pus, there are only 8 such misspellings in Giga-
word. For all words found in the Unix dictio-
nary, we calculated the average number of mis-
spellings found in each of the two corpora. The
Web Corpus has more than twice the number
of misspellings than the Gigaword, 3.7 per word
compared to 1.7 for the latter. Misspellings are
another cause of the higher token type count for
the Web Corpus.

6 Topical Words

Some topical differences between two corpora
can be identified by finding words frequent in
one corpora but not the other, and vice-versa.
From each corpus we extract the 10,000 most
frequent words and find the words with the
biggest difference in rank between the corpora.
This process highlights the differences between
the two corpora, showing the words and topics
with high coverage in one but little or no cover-
age in the other.

6.1 Frequent Gigaword Words
Table 5 shows examples of the top 10,000 ranked
words in the Gigaword with the biggest differ-
ence with the Web Corpus rank. The words
shown in the figure were selected to illustrate
certain points and they are not indicative of all
the words with a large difference in rank. The
words can be divided into three groups:

The words in the first group, Kafelnikov, Vi-
cario, Ivanisevic, and Seles, reflect the years
covered by documents in the Gigaword. As
the Gigaword contains newspaper articles from
the years 1994-2001, these terms correspond to
names of active professional tennis players of the

Gigaword Web Corpus Diff.
Rank Rank Rank

Kafelnikov 7,078 733,477 14
Vicario 9,658 613,056 19
Ivanisevic 7,147 569,627 23
Seles 5,285 179,175 77
McCurry 5,631 147,544 111
Walesa 7,287 146,494 112
Ciller 7,537 1,125,901 9
Serb-held 4,343 569,627 21
Muslim-Croat 8,791 381,462 32
SARAJEVO 9,556 300,220 38

Table 5: Selected words with Gigaword rank
much higher than Web Corpus

time. This included Yevgeny Kafelnikov (ac-
tive 1995-2004), Arantxa Sánchez Vicario (ac-
tive 1989-2002), and Goran Ivanisevic (active
1988-2001). The Web Corpus on the other hand
contains mostly texts from late 1990’s onward,
with a significant proportion written in the past
few years. As these tennis players were no
longer active (or no longer making the head-
lines) at the time that many Web Corpus doc-
uments were written, their names were not fre-
quent terms in the Web Corpus.

The next two groups also reflect the news cov-
ered by the Gigaword articles. McCurry, Walesa,
and Ciller are names of political figures during
early and mid-1990’s. Mike McCurry was the
press secretary of U.S. President Bill Clinton
from 1994-98, Lech Walesa was the Polish Pres-
ident from 1990-95, and Tansu Ciller was the
Turkish Prime Minister from 1993-96.

The terms Serb-held, Muslim-Croat, and
SARAJEVO in the third group are terms from
newspaper articles about the Yugoslav War (a
series of conflicts from 1991-2001). Possible
phrases include Serb-held territories and Muslim-
Croat army and SARAJEVO as the locational
identifier at the start of an article.

6.2 Frequent Web Corpus Words
The terms dvd, MySQL, and mp3 were not found
in the Gigaword. The all lowercase formatting
of dvd and mp3 is likely the reason they were
not found. While both were invented in the
mid-1990’s, they would probably always appear
capitalised in newspapers text as DVD and MP3.
MySQL, released in 1995, does not appear in the
1 billion word Gigaword sample.

Some web-oriented words with much higher
ranks in the Web Corpus include unsubscribe
and emailed. As the Internet only began to

171

Web Corpus Gigaword Diff.
Rank Rank Rank

dvd 6,546 Not found 16
MySQL 6,948 Not found 23
mp3 9,092 Not found 30
unsubscribe 8,932 753,428 47
emailed 8,102 641,461 52
pissing 8,337 351,980 63
pee 8,946 119,101 157

Table 6: Selected words with Web Corpus rank
much higher than Gigaword

gain prominence only during the second half of
the Gigaword timeline, such terms rarely ap-
peared in that corpus. Many instances of the
term unsubscribe may also have not been prop-
erly filtered out from the Web Corpus with non-
content terms such as Click here to unsubscribe.
This increased word rank of unsubscribe is an
artifact of the text cleaning process of the Web
Corpus.

Slang and expletives also have much lower us-
age in newspaper text. The terms pissing and
pee, slang words for urinate, appear relatively
more frequently in web text than in newspaper
text. As newspaper text is carefully edited, use
of expletives is restricted, and the use of slang
and other colloquialisms is discouraged.

7 Thesaurus Extraction

Thesauri are useful in many nlp and Informa-
tion Retrieval (ir) applications. They expand
the recall and coverage of the system by provid-
ing synonyms of a target word. In nlp, for ex-
ample, this expansion technique is helpful when
n-gram counts for a target word are unreliable.
In ir, synonyms help expand keyword queries
into many related queries, boosting the recall
rate of the system. While thesauri are tradition-
ally manually collected, automatic thesaurus
extraction is superior to manual construction
in several aspects (Curran, 2004). Manual the-
saurus construction is labour-intensive and time
consuming, and the result suffers from bias, low
coverage, and inconsistency. Bias and inconsis-
tency of lexical resources can be seen in Word-
Net, in which similar categories of words have
different degrees of distinction. As such lexi-
cal resources are constructed by human experts,
their personal biases are also reflected in the fi-
nal product. We extract thesauri from the Gi-
gaword and the Web Corpus for the same set of
headwords to see the differences in word usage

and word similarity in each corpus.

7.1 Method

We used the thesaurus extraction system de-
veloped by Curran (2004). It is based on the
distributional hypothesis that similar words ap-
pear in similar contexts. The system extracts
one-word noun synonyms (i.e. not multi-word
expressions). The extraction process is divided
into two main parts. First, all target noun con-
texts are represented as relations and compiled
into one context vector for each noun. Second, a
comparison between all context vectors is made
to identify the closest (i.e. most similar) terms.

Contexts are extracted from raw sentences
using a maximum entropy pos tagger, chun-
ker, and a relation extractor (Curran and Clark,
2003). Six different types of relationship are
identified:

• Between a noun and a modifying adjective.
• Between a noun and a noun modifier.
• Between a verb and a subject.
• Between a verb and a direct object.
• Between a verb and an indirect object.
• Between a noun and the head of a modify-

ing prepositional phrase.

The nouns in each case (including the sub-
jects and objects) are the target headword. All
context relations for a particular headword are
aggregated into the headword’s context vector.
Words are identified as synonyms on the basis
of the number of context vectors they have in
common.

7.2 Evaluation

Curran evaluates against a combination of four
gold standard thesauri: Macquarie (Bernard,
1990), Roget’s (Roget, 1911), Moby (Ward,
1996), and Oxford (Hanks, 2000). The gold
standard synonyms of a headword are aggre-
gated into one unranked list. The inverse rank
(InvR) evaluation metric takes the rankings
within the extracted list into account. For ex-
ample, if the extracted terms at ranks 3, 5, and
28 are found in the gold standard list, then
InvR = 1

3 + 1
5 + 1

28
∼= 0.569.

200 synonyms are extracted for 300 head-
words from 2 billion words of the Web Corpus
and from 2 billion words of the Gigaword. The
headwords are test nouns created to cover inter-
esting properties – including across frequency
bands of several corpora (Curran, 2004).

172

Corpus InvR InvR max
Gigaword 1.86 5.92

Web Corpus 1.81 5.92

Table 7: Average InvR for 300 headwords

Word InvR Scores Diff.
1 picture 3.322 to 0.568 2.754
2 star 2.380 to 0.119 2.261
3 program 3.218 to 1.184 2.034
4 aristocrat 2.056 to 0.031 2.025
5 box 3.194 to 1.265 1.929
6 cent 2.389 to 0.503 1.886
7 home 2.306 to 0.523 1.783
8 newspaper 3.036 to 1.381 1.655
9 statement 3.199 to 1.629 1.570
10 firm 2.347 to 0.829 1.518

Table 8: Headwords with biggest InvR differ-
ence, Gigaword > Web Corpus

7.3 Results
Table 7 shows the average InvR scores for the
Gigaword and the Web Corpus for the 300 head-
words. While the overall performance of the two
corpora are very similar, on a per word basis one
corpus can significantly outperform the other.

7.4 Gigaword Higher InvR Score
Table 8 shows the top 10 terms which the Giga-
word InvR results were better than Web Cor-
pus. For the headword home, much better syn-
onyms were extracted from the Gigaword. Ta-
ble 9 shows the top 50 extracted terms from
both corpora. A similar number of matches
were made with the gold standard list, with 24
matches for Gigaword to 18 for the Web Cor-
pus. However, the matches were among the top
terms in Gigaword but not in the Web Corpus.
The top two terms house and apartment were ex-
tracted from the Gigaword, but the terms such
as page and loan were extracted from the Web
Corpus. Collocations, such as home page, were
incorrectly extracted instead of synonyms.

7.5 Web Corpus Higher InvR Score
Table 10 shows the top 10 terms which the Web
Corpus InvR results were better than Giga-
word. The Web Corpus outperformed Gigaword
in extracting synonyms for terms such as chain.
Table 11 shows the top 50 extracted terms from
both corpora. 53 gold standard synoyms were
extracted out of the Web Corpus compared to
only 9 for the Gigaword. This difference in per-
formance can be attributed to the topic skew

Gigaword (24 matches out of 200)
house apartment building run office resident res-
idence headquarters victory native place man-
sion room trip mile family night hometown town
win neighborhood life suburb school restaurant hotel
store city street season area road homer day car shop
hospital friend game farm facility center north child
land weekend community loss return hour . . .
Web Corpus (18 matches out of 200)
page loan contact house us owner search finance
mortgage office map links building faq equity news
center estate privacy community info business car
site web improvement extention heating rate direc-
tory room apartment family service rental credit
shop life city school property place location job
online vacation store facility library free . . .

Table 9: Synonyms for home

Word InvR Scores Diff.
1 chain 3.139 to 0.224 2.915
2 walk 3.184 to 0.774 2.410
3 point 3.540 to 1.477 2.063
4 bloke 2.445 to 0.425 2.020
5 game 2.799 to 1.097 1.702
6 graph 2.400 to 0.714 1.686
7 reinforce- 1.808 to 0.244 1.564

ment
8 announce- 1.993 to 0.495 1.498

ment
9 sport 3.116 to 1.642 1.474
10 solicitor 1.634 to 0.161 1.473

Table 10: Headwords with biggest InvR differ-
ence, Web Corpus > Gigaword

of the Gigaword and the gold standards. The
terms extracted by Gigaword belong to only one
sense of the word chain, as in chain stores. The
gold standard terms included a more physical
sense of chain, such as necklace chain.

A bias is apparent in the topic coverage of
both Gigaword and the gold standard. Giga-
word is skewed toward the business sense of
chains, reflecting financial text that is a signif-
icant portion of newspaper articles. The gold
standard is skewed toward other senses. The
wide topic coverage of Web Corpus becomes ap-
parent in this example. While the top extracted
Web Corpus terms also corresponds to the phys-
ical sense of chains (e.g. necklace, bracelet, and
pendant), terms were also extracted belonging
to the business sense of the word (e.g. retailer).
Synonyms of chain extracted from the Web Cor-
pus have a much better coverage of the different
senses of the word than Gigaword or the gold
standard thesauri alone.

173

Gigaword (9 matches out of 200)
store retailer supermarket restaurant outlet operator
shop shelf owner grocery company hotel manufac-
turer retail franchise clerk maker discount business
sale superstore brand clothing food giant shopping
firm retailing industry drugstore distributor supplier
bar insurer inc. conglomerate network unit apparel
boutique mall electronics carrier division brokerage
toy producer pharmacy airline inc . . .
Web Corpus (53 matches out of 200)
necklace supply bracelet pendant rope belt ring
earring gold bead silver pin wire cord reaction
clasp jewelry charm frame bangle strap sterling
loop timing plate metal collar turn hook arm length
string retailer repair strand plug diamond wheel
industry tube surface neck brooch store molecule
ribbon pump choker shaft body . . .

Table 11: Synonyms for chain

Gigaword (13 out of 200)
acushnet zoolander working-class marshak inter-
changeability scouse ghyll dubliner fella film guy
yorkshireman aussie bostonite irishman lad bumbler
chap scrum-half texan ex-marine profane kansan me-
davoy gentleman guy ballplayer Irishman anybody
lunk somebody up-and-down vaudevillian yorker
theatricality englishman person hobby newspaper-
man klutz goof everyman chicagoan scotsman ar-
tilleryman brazilian fellow midwesterner ref ballclub
. . .
Web Corpus (16 matches out of 200)
lad fella somebody bondsman endomorphism gen-
tleman aussie dude boucher guy englishman chap
stranger balfour iraqi youngster nobody policeman
cop passer-by everybody waitress boyfriend anybody
no-one punter mum irishman lowepro teenager busi-
nessman bartender girlfriend fiance buffy neighbour
40ml hippie bastard beggar sandstorm kiwi foreigner
grandma frenchman dad yank pooch brit spectator
. . .

Table 12: Synonyms for bloke

Web Corpus also significantly outperformed
Gigaword for the term bloke (see Table 12).
Bloke, British and Australian slang for a man,
has a much higher InvR score on the Web Cor-
pus list than the Gigaword list. This reflects
the international nature of the web, where terms
specific to British and Australian English were
found often enough to be reliably characterised
by their context. Documents included in Giga-
word have a skew towards American English,
with the New York Times contributing the ma-
jority of text in that corpora. Without many
training examples in non-American English, it is
difficult to correctly extract synonyms for words
such as bloke.

7.6 Discussion
While the Gigaword and Web Corpus have simi-
lar overall averages in the InvR scores, there are
significant differences in performance for differ-
ent terms. The Gigaword consists of newspaper
text and better synonyms are extracted for top-
ics covered in the news. The Web Corpus is
more international and more topic-diverse, suc-
cessfully extracting synonyms in different vari-
eties of English and for different senses of words.
However the dominance of certain topics on the
web, with web-specific vocabulary, means that
sometimes a highly biased thesauri is extracted.

To create a better Web Corpus, not only is
there a need to cover a wide ranging number
of topics, but one must actively prevent specific
topics from dominating the corpus. A more bal-
anced corpus can be created with better spider-
ing strategies. For example, the spider could be
designed to automatically identify the topics of
the websites visited.

8 Conclusion

The web is a promising source for creating large
corpora for Natural Language Processing. In
this paper, we compared our Web Corpus to the
traditional Gigaword Corpus and demonstrated
that the Web Corpus is useful for the task of
automatic thesaurus creation.

Words and word usage differ in corpora, es-
pecially when they are compiled from differ-
ent sources and medium. We examined the
words and word usage in the Gigaword Corpus
as compared with the Web Corpus. We have
shown some of the differences in topics covered
by the two corpora, as well as vocabulary vari-
ants and errors. Some of these contrasts can be
attributed to the genre of text, but some are
artifacts of the corpus creation process.

Our results in thesaurus extraction showed
that the web text obtained similar overall re-
sults to a corpus of newspaper text. The al-
ternative topical and lingustic information sug-
gests that web-collected corpora is a viable ad-
dition or even alternative to traditional corpora
of newspaper and other printed text.

As the Web Corpus is significantly larger than
most corpora of printed text, better results can
be obtained by training algorithms on the Web
Corpus. This is especially true of tasks that
suffer from the data sparseness problem. With
much more text available for download on the
web, the limits of the Web Corpus in size have
yet to be reached.

174

Acknowledgements

We like to thank our anonymous reviewers and
the Language Technology Research Group at
the University of Sydney for their comments
and feedback. This work has been supported
by the Australian Research Council under Dis-
covery Project DP0453131.

References

John R.L. Bernard, editor. 1990. The Mac-
quarie Encyclopedic Thesaurus. The Mac-
quarie Library, Sydney, Australia.

Lou Burnard, editor. 2000. Reference Guide
British National Corpus (World Edition).
British National Corpus Consortium.

James R. Curran and Stephen Clark. 2003.
Investigating GIS and smoothing for maxi-
mum entropy taggers. In Proceedings of the
10th Conference of the European Chapter of
the Association for Computational Linguis-
tics, pages 91–98, Budapest, Hungary, 12–17
April.

James Curran. 2004. From Distributional to
Semantic Similarity. Ph.D. thesis, University
of Edinburgh, Edinburgh, UK.

W. Nelson Francis and Henry Kucera. 1979.
Manual of Information to accompany A Stan-
dard Corpus of Present-Day Edited Ameri-
can English, for use with Digital Computers.
Technical report, Brown University, Provi-
dence, RI USA.

David Graff. 2003. English Gigaword. Tech-
nical Report LDC2003T05, Linguistic Data
Consortium, Philadelphia, PA USA.

Peter Halacsy, Andras Kornai, Laszlo Nemeth,
Andras Rung, Istvan Szakadat, and Vikto
Tron. 2004. Creating open language re-
sources for Hungarian. In Proceedings of the
Language Resources and Evaluation (LREC),
pages 203–210, Lisbon, Portugal.

Patrick Hanks, editor. 2000. The New Ox-
ford Thesaurus of English. Oxford University
Press, Oxford, UK.

M. R. Henzinger, A. Heydon, M. Mitzenmacher,
and M. Najork. 2000. On Near-Uniform URL
Sampling. In Proceedings of the 9th Interna-
tional World Wide Web Conference.

Steve Lawrence and C. Lee Giles. 1999. Ac-
cessibility of information on the web. Nature,
400:107–109, 8 July.

Robert MacIntyre. 1995. Sed script
to produce Penn Treebank tok-
enization on arbitrary raw text.

http://www.cis.upenn.edu/˜treebank/tok-
enizer.sed.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1994. Building
a large annotated corpus of English: the
Penn Treebank. Computational Linguistics,
19(2):313–330.

Edward T. O’Neill, Patrick D. McClain, and
Brain F. Lavoie. 1997. A Methodology for
Sampling the World Wide Web. Annual
Review of Online Computer Library Center
(OCLC) Research.

Adwait Ratnaparkhi. 1998. Maximum Entropy
Models for Natural Language Ambiguity Res-
olution. Ph.D. thesis, University of Pennsyl-
vania, Philadelphia, PA USA.

Peter Mark Roget. 1911. Thesaurus of En-
glish words and phrases. Longmans, Green
and Company, London, UK. Available from
http://promo.net/pg/.

Grady Ward. 1996. Moby Thesaurus.
Moby Lexicon Project. Available from
http://etext.icewire.com/moby/.

175

Proceedings of the Australasian Language Technology Workshop 2005, pages 176–183,
Sydney, Australia, December 2005.

Automatic induction of a POS tagset for Italian

R. Bernardi
KRDB,

Free University of Bolzano Bozen,
P.zza Domenicani, 3

39100 Bolzano Bozen, Italy,
bernardi@inf.unibz.it

A. Bolognesi, C. Seidenari and F. Tamburini
CILTA,

University of Bologna,
P.zza San Giovanni in Monte, 4,

I-40124, Bologna, Italy,
{bolognesi,seidenari,tamburini}@cilta.unibo.it

Abstract

In this paper we present work in progress on the
PoS annotation of an Italian Corpus (CORIS)
developed at CILTA (University of Bologna).
We aim to automatically induce the PoS tagset
by analysing the distributional behaviour of
Italian words by relying only on theory-neutral
linguistic knowledge. To this end, we propose
an algorithm that derives a possible tagset to be
further interpreted and defined by the linguist.
The algorithm extracts information from loosely
labelled dependency structures that encode only
basic and broadly accepted syntactic relations,
namely Head/Dependent, and the distinction of
dependents into Argument vs. Adjunct.

1 Introduction

The work presented in this paper is
part of a project aiming to annotate
CORIS/CODIS (Rossini Favretti et al., 2002),
a 100-million-word synchronic corpus of con-
temporary written Italian, with part-of-speech
(PoS) tags.

Italian is one of the languages for which a set
of annotation guidelines has been developed in
the context of the EAGLES project (Monachini,
1995). Several research groups have worked on
PoS annotation in practice (for example, Torino
University, Xerox and Venice University), but
comparing the tag sets used by these groups
with Monachini’s guidelines reveals that though
there is a general agreement on the main parts
of speech to be used1, considerable divergence
exists when it comes to the actual classifica-
tion of Italian words with respect to these main
PoS classes. The classes for which differences
of opinion are most evident are adjectives, de-
terminers and adverbs. For instance, words like

1The standard classification consists of nouns, verbs,
adjectives, determiners, articles, adverbs, prepositions,
conjunctions, numerals, interjections, punctuation and
a class of residual items which differs from project to
project.

molti (many) have been classified as “indefinite
determiners” by Monachini, “plural quantifiers”
by Xerox, “indefinite adjectives” by the Venice
and Turin groups. It is not simply a matter of
different terminological options resolvable by a
mere one-to-one relabelling, nor a matter of sim-
ply mapping different classes into a greater one.
Crossings between tagsets are complex mostly
because of the different theoretical points of
view used in categorizing words. For instance,
the single tag DET “determiner” in the Xerox
tagset matches with DIM “demonstrative ad-
jective” or ART “article” in the Venice group
(and with DET “determiner” or ART “article”
in Monachini) whereas, viceversa, the single tag
DEIT “deictic pronoun” by the Venice group
matches alternatively with DEM “demonstra-
tive” or PRON “personal pronoun” in Xerox.

These simple examples show that the choice
of PoS tag is already influenced by the underly-
ing linguistic theory adopted. This theoretical
bias will then influence the kind of conclusions
one can draw from the annotated corpus.

Our aim is to automatically derive an empir-
ically founded PoS classification making no a

priori assumptions about the PoS classes to be
distinguished.

Early approaches to this problem were based
on the hypothesis that if two words are syntac-
tically and semantically different, they will ap-
pear in different contexts. There are a number
of studies based on this hypothesis in the fields
of both computational linguistics and cognitive
science aiming at building automatic or semi-
automatic procedures for clustering words (Brill
and Marcus, 1992; Pereira et al., 1993; Schütze,
1993; Clark, 2000; Redington et al., 1998).These
papers examine the distributional behaviour of
some target words by comparing the lexical
distribution of their respective collocates and
by using quantitative measures of distributional
similarity.

The main drawback of these techniques is the

176

limited context of analysis. Information is col-
lected from a restricted context, of for instance
3 words, which can conceal syntactic dependen-
cies longer than the context interval.

Our approach to solve this problem is to use
basic syntactic relations together with distribu-
tional and morphological information. The sys-
tem we have developed consists of three phases:
(1) a first basic distinction of word classes is in-
duced by means of Brill’s algorithm (Brill and
Marcus, 1992); (2) in the second phase, this dis-
tinction is further specified by means of mini-
mal syntactic information; and (3) in the third
phase, the ultimate PoS tagset is obtained by
using distributional and morphological knowl-
edge. Little, if any, language-specific knowledge
is used, hence the method is in principle appli-
cable to any language.

A large number of localized syntactic descrip-
tions per word are exploited to identify differ-
ences in the syntactic behaviour of words. Asso-
ciating rich descriptions to lexical items, our ap-
proach is, to some extent, related to supertags
(Bangalore and Joshi, 1999).

The outcome is a hierarchy of PoS tags that
is expected to help annotators and enhance the
search interface of the annotated corpus.

Section 2 gives an outline of our work; Sec-
tion 3 describes in details the algorithm; Sec-
tion 4 analyses the results of the work, listing
the PoS tags obtained with this method; sec-
tion 5 briefly outlines further work.

2 Proposal

The present paper focuses on the second phase
of the system describing how syntactic informa-
tion can be exploited to induce the PoS tagset.
It builds on the results obtained in (Tamburini
et al., 2002) where it is shown that Brill’s algo-
rithm identifies three main word classes, namely
noun (N), verbs (V) and all the others (X).

In this article we will focus on the X class, de-
scribing how this can be further broken down by
automatically grouping words that share similar
syntactic behaviours. The algorithm uses the
tags obtained in the first phase and dependency
structures carrying only basic syntactic infor-
mation about Head/Dependent relations and
Argument/Adjunct distinctions among the De-
pendents.

Starting from these loosely labelled depen-
dency structures, the type resolution algorithm
obtains type assignments for each word. The
syntactic type assignments obtained encode the

different syntactic behaviour exhibited by each
word. Examples of the labelled dependency
structures and the obtained assignments are
given in Figure 2. An information lossless sim-
plification algorithm is used to automatically
derive a first tagset approximation (see Sec-
tion 3).

At the end of the second phase, the X class is
divided into 9 PoS tags that are sets of syntac-
tic behaviours. In the third phase, we plan to
further divide the classes obtained by means of
distributional and morphological information.

3 The Algorithm

The algorithm consists essentially of three com-
ponents: (i) in the first, each word is assigned
the complete set of syntactic types extracted
from loosely labelled dependency structures; (ii)
in the second, we obtain a first approximation
of relevant classes by grouping words that dis-
play similar behaviours, and we build their in-
clusion chart. This is obtained by creating the
sets of those words that in (i) showed the same
type at least once, and by pairing these sets of
words with their shared set of types. In the
following sections we will refer to such pairs as
Potential PoS (PPoS); (iii) finally, we prune the
obtained inclusion chart by highlighting those
paths that relate pairs which are significantly
similar, where the similarity is measured in
terms of frequency of types and words. The
pruning results in a forest of trees whose leaves
form sets identifying the induced PoS tags.

Figure 1 shows a flow chart which summarizes
the three phases of our algorithm.

3.1 Dependency Structures

Our dependency structures are derived from
a sub-treebank of TUT, The Turin University
Treebank (Bosco et al., 2000; Bosco, 2003). The
treebank currently includes 1500 sentences or-
ganized in different sub-corpora from which we
converted 441 dependency trees, maintaining
only the basic syntactic information required for
this study. More specifically, we mantained in-
formation on Head-Dependent relations by dis-
tinguishing each dependent either as an Argu-
ment or as an Adjunct.

Moreover, words are marked as N (nouns),
V (verbs) or X (all others) according to the
results obtained in (Tamburini et al., 2002).
We use < > to mark Head-Argument relation
and � and � to mark Head-Adjunct relation
where the arrows point to the Head. From

177

Figure 1: Algorithm Architecture

these dependency structures we extract syntac-
tic type assignments by projecting dependency
links onto formulas. Formulas are built out
of {<,>,�,�, N,X, V, lex} where the symbol
lex stands for the word the formula has been
assigned to. The formal details of the type res-
olution algorithm are provided below.

Type Resolution Let W = 〈w1, ..., wn〉
stand for an ordered sequence of words in a
given sentence and let wj = 〈orthj, blj , tj〉 stand
for a word in the sentence, where orthj, blj ∈
{N,V,X} and tj represent the orthographic
transcription, the basic label and the type of the
j-th word respectively. Let E = {〈R,wi, wk〉}
be the set of edges where R ∈ {<,>,�,�} is
ordered by |k − i| in ascending order. Given a
dependency structure represented by means of
W and E,
−∀wj ∈ W, tj = lex

− foreach 〈R,wi, wj〉 ∈ E

if R =′>′ 〈wj, blj , tj〉 ; 〈wj , blj , bli > tj〉
if R =′<′ 〈wi, bli, ti〉 ; 〈wi, bli, ti < blj〉
if R =′�′ 〈wj, blj , tj〉 ; 〈wj , blj , bli � tj〉
if R =′�′ 〈wi, bli, ti〉 ; 〈wi, bli, ti � blj〉

where the operator ; replaces the first item
with the second in W .

For the sake of simplicity in Figure 2 for each
word wj only orthj and blj are displayed.

After applying the type resolution algorithm
to all the given dependency structures, a lexicon
is built with sets of types assigned to all words
except nouns and verbs, which are discarded as

Initial dep. structure Final type resolution

 il
 X

 (the)

 libro
 N

 (book)

 rosso
 X

 (red)

r
<

r
«

il: lex<N
libro: lex
rosso: N�lex

 Carlo
 N

 (Carlo)

 e
 X

 (and)

 Carla
 N

 (Carla)

 corrono
 V

 (run)

r
>

r
<

r
> Carlo: lex

e: N>lex<N
Carla: lex

corrono: X>lex

Figure 2: Type resolution example

they are not the subject of the present investi-
gation.

For instance, the lexicon entry for the word
“e” (and) is as below.

e :

X>lex<X
V >lex<V
N>lex<N
N�X>lex<X
V �X>lex<X
N�V >lex<V
N>lex<X
X>lex<N
X>lex<X � N

3.2 Inclusion chart

Lexicon entries are gathered together by con-
necting words which have received the same
types. This results in a set of pairs 〈W,T 〉 com-
prising a set of words W and their shared set of
types T .

A consequence of this is that sets of words are
composed of at least two occurrence words. In
doing this we are assuming that a set of syntac-
tic types represented by a single word does not
have a linguistic significance.

Consider for example the following sample
words with the corresponding types:

w1 :

{

t1
t2
t4

w2 :

{

t1
t4

w3 :

{

t3
t5

w4 :

{

t1
t2
t3

where w1, w2, ..., wn, n ∈
�

is the lexicon of
our example, and ti, i ∈

�
stands for types.

w1 is connected both to w4 and w2 since they
have {t1, t2} and {t1, t4} types in common re-
spectively; furthermore, w4 is connected both
to w2 and w3 since they have {t1} and {t3} in
common, as shown in Figure 3.

From the connection structure built as de-
scribed above, we obtain the pairs 〈W,T 〉 where
W is the set of connected words and T is the

178

Figure 3: Example of connection structures

set of types carried by the corresponding con-
nection arrow.

For instance, from the example in Figure 3
we obtain the following pairs:

〈 {w1, w4}, {t1, t2} 〉,

〈 {w1, w2}, {t1, t4} 〉,

〈 {w1, w2, w4}, {t1} 〉,

〈 {w3, w4}, {t3} 〉

We will refer to each pair 〈W,T 〉 as Potential

PoS (PPoS).

From the given dependency structures we
have obtained 215 pairs. They provide us with
a first word class approximation with their as-
sociated syntactic behaviours.

In order to interpret the classification ob-
tained and to further refine it, we first organize
the pairs into an Inclusion chart based on sub-
set relations among the PPoS and then we prune
it as described below.

Our basic assumption is that type-set inclu-
sions are due to syntactic similarities between
words.

Definition 1 (Inclusion Chart) The nodes

of the Inclusion chart are pairs 〈W,T 〉 where W
and T are sets of words and sets of types respec-

tively. Given two nodes ni = 〈Wi, Ti〉 and nj =
〈Wj , Tj〉 of the Inclusion chart, there is an in-
clusion relation between ni and nj, and we write

ni < nj, iff Wi ⊃ Wj and Ti ⊂ Tj. Two

nodes ni, nj of the Inclusions chart are con-

nected, and we write ni → nj, iff ni < nj

and ¬∃ nk such that ni < nk and nk < nj.

To illustrate this, let us consider the lexi-
con entries “e” (and), “o” (or) and “p com”
(comma separator). The set of types assigned to
“e” is shown above, those for “o” and “p com”
are as below.

o :

X>lex<X
X>lex<X�V
N>lex<N
V >lex<V
N�X>lex<X
N�N>lex<N

p com :

X>lex<X
V >lex<V
N>lex<N
N�X>lex<X
N>lex<X
N�V >lex<V
N>lex<X
V >lex<X

The set of words

W1 = { p com, e, o }

with the shared set of types

T1 = {V >lex<V,X>lex<X,N>lex<N,

N�X>lex<X}

constitute the pair 〈W1, T1〉.
Once we have obtained the set of all pairs

out of the lexicon entries, we build the Inclusion

chart. Figure 4 shows a portion of this, which
contains the pair 〈W1, T1〉 discussed above.

[{ che, p_com,
 e, ma, o} ,

{ X>lex<X}]

0.796
[{ ma, o, p_com, e} ,

{ V>lex<V, X>lex<X,
 N<<X>lex<X}]

0.789
[{ p_com, o, e} ,

{ V>lex<V, X>lex<X,
 N>lex<N, N<<X>lex<X}]

0.884
[{ ma, p_com, e} ,

{ V>lex<V, X>lex<X, V>lex<X,
 N>lex<X, N<<X>lex<X}]

0.652
[{ p_com, ed, e, o} ,

{ V>lex<V, N>lex<N}]

0.879
[{ p_com, e} ,

{ V>lex<X, V>lex<V, N>lex<X,
 X>lex<X, N>lex<N,

 N<<X>lex<X, N<<V>lex<V}]

0.764
[{ ma, e} ,

{ V>lex<V, X>lex<X, X>lex<N,
 V>lex<X, N>lex<X,

 N<<X>lex<X, V<<X>lex<X}]

[{ ma, ed, o, e,
 mentre, p_com} ,

{ V>lex<V}]

[{ né, p_com,
 e, ed, o} ,

{ N>lex<N}]

Figure 4: Example of Inclusion chart.

Since the Inclusion chart obtained displays
all possible subset relations between all the
pairs, it is rather complex and it conceals the
linguistically relevant information we are actu-
ally looking for, namely the syntactic similari-
ties between words which lead to their PoS clas-
sification.

It is our belief that by identifying the closest
connections we can establish the correct PPoS

links, i.e. induce a PoS hypothesis.
Consider the example at the beginning of

this section, where P1 = 〈{w1, w2, w4}, {t1}〉

179

is included in P2 = 〈{w1, w4}, {t1, t2}〉 and
P3 = 〈{w1, w2}, {t1, t4}〉. This means that both
PPoS P2 and P3 increase PPoS P1 by one syn-
tactic type. The following Inclusion chart rep-
resents the connections between these pairs:

[{w1,w2,w4},{t1}]

[{w1,w4},{t1,t2}] [{w1,w2},{t1,t4}]

At this point, it is necessary to establish which
is the better way to extend P1, i.e. which of the
two syntactic behaviours represented by t2 and
t4 has to be selected to make the PPoS P1 closer
to a correct PoS.

In order to extract a suitable PoS classifi-
cation from the Inclusion chart, this must be
pruned by discarding less relevant nodes; hence,
we need to introduce a relevance criterion.

3.3 Forest of Trees

The pruning phase is handled by means of a
distance measure between PPoS which helps to
highlight the closest pairs.

Before formally defining the distance measure
and explaining its role in depth, we present the
pruning algorithm.

Pruning Algorithm Let P be the set of
all pairs of the Inclusion chart and let e =
〈pi, pj , weightj〉 be an edge, where pi is con-
nected to pj and weightj is a cohesion measure
of pj. For all pi ∈ P we indicate with Epi

the
set of all edges leaving pi.
Given P :
∀pi ∈ P

∀〈pi, pj , weightj〉 ∈ Epi

if weightj differs from maxj{weightj}
then remove 〈pi, pj, weightj〉 from Epi

For each pair pi only the edge connecting it
to a pair pj exhibiting the maximal cohesion
measure is maintained.

Figure 5 shows the pruned portion of the In-

clusion chart given in Figure 4. Notice that
each node is weighted apart from the leaf node,
because weighting leaves is not necessary for the
algorithm proposed. The graph is then trans-
formed into a Forest of trees.

We can now move on to explain how linguis-
tically relevant similarities are automatically
identified by means of the distance measure.
First of all, we need to measure the relevance of
a PPoS in terms of how representative its mem-
bers are with respect to each other.

Definition 2 (Word Frequency)
Let Ω be the set of all words, Ψ the set of all

types, and o : Ω × Ψ →
�

the function which
returns the number of occurrences of word per

type. Let η : Ω →
�

be a function which returns
the total number of occurrences of a given word.

We call word frequency of 〈W,T 〉 the func-

tion Fwords : P(Ω) × P(Ψ) →
�

defined as fol-
lows:

Fwords(〈W,T 〉) =
1

|W |
·

k
∑

i=1

m
∑

j=1

o(〈wi, tj〉)

η(wi)

where W = {w1, w2, ..., wk} is a set of words

and T = {t1, t2, ...tm} is a set of types.

Definition 3 (Type Frequency)
Let ξ : Ψ →

�
be a function which returns the

total number of occurrences of a given type.

We call type frequency of 〈W,T 〉 the func-
tion Ftype : P(Ω) × P(Ψ) →

�
defined as fol-

lows:

Ftypes(〈W,T 〉) =
1

|T |
·

k
∑

i=1

m
∑

j=1

o(〈wi, tj〉)

ξ(tj)

where W and T are as in Definition 2.

Given a pair 〈W,T 〉, we evaluate the inter-
nal cohesion of its members as follows. The
word frequency focuses on the similarity be-
tween words in W by rating how far words agree
in their syntactic behaviour. Roughly, if the
word frequency returns a high value for a pair
then we can conclude that words within that
pair have a close syntactic resemblance. On the
other hand, the type frequency rates the similar-
ity between types in T according to the number
of times the words to which they have been as-
signed in the lexicon have shown that syntactic
behavior in the dependency structures.

The evaluation of the pair pi = 〈Wi, Ti〉 is
given by the average of the two cohesion evalu-
ations. We indicate this value by means of the
symbol Ci:

Ci =
Fwords(〈Wi, Ti〉) + Ftypes(〈Wi, Ti〉)

2
.

For each node of the example seen so far Fig-
ure 5 displays a weight which measures the co-
hesion of each node pair.

At first sight, C1 may appear simplistic, with
words and types being equally weighted. How-
ever other measures had been tried before C1

180

[{ che, p_com,
 e, ma, o} ,

{ X>lex<X}]

0.796
[{ ma, o, p_com, e} ,

{ V>lex<V, X>lex<X,
 N<<X>lex<X}]

0.884
[{ ma, p_com, e} ,

{ V>lex<V, X>lex<X, V>lex<X,
 N>lex<X, N<<X>lex<X}]

0.652
[{ p_com, ed, e, o} ,

{ V>lex<V, N>lex<N}]

0.789
[{ p_com, o, e} ,

{ V>lex<V, X>lex<X,
 N>lex<N, N<<X>lex<X}]

0.879
[{ p_com, e} ,

{ V>lex<X, V>lex<V, N>lex<X,
 X>lex<X, N>lex<N,

 N<<X>lex<X, N<<V>lex<V}]

0.764
[{ ma, e} ,

{ V>lex<V, X>lex<X, X>lex<N,
 V>lex<X, N>lex<X,

 N<<X>lex<X, V<<X>lex<X}]

[{ ma, ed, o, e,
 mentre, p_com} ,

{ V>lex<V}]

[{ né, p_com,
 e, ed, o} ,

{ N>lex<N}]

Figure 5: Example of Forest of trees.

was decided on, as giving the same importance
to a set of words and a set of syntactic be-
haviours showed itself to be effective.

New kind of measures are currently being car-
ried out. For instance, we are testing how the
system works by varying the weight for each
edge on the basis of the words added and the fre-
quency with which they demonstrated the syn-
tactic types of the augmented initial PPoS.

3.4 Induced PoS

Each tree in the Forest marks off complex
groups of syntactic types. However, the same
types occur in more than one tree, therefore we
need to identify all and only those belonging to
a given tree.

To this end, let us call leaf nodes2 those
PPoS with singleton type set not including any
other; root nodes3 PPoS not included by any
other.

Leaves of each tree are grouped together; such
groups constitute the whole type set partition.
Clearly each group corresponds to a unique root
node.

Syntactic types from leaf nodes encode few
specialized syntactic patterns. We assume those
patterns to be the syntactic core of a given tree,
i.e. the relevant syntactic component of the cor-
responding PPoS root node.

Once a syntactic core is defined, the corre-

2shown at the top of the tree in Figure 5
3shown at the bottom of the tree in Figure 5

sponding lexical core is automatically derived
by identifying word sets showing exclusively sets
of types belonging to that syntactic core.

Syntactic core extraction algorithm The
following algorithm extracts syntactic cores
from root nodes: for all type sets belonging to
root nodes we identify the syntactic core as the
subset of types obtained by the union of all
type sets from the leaves of the corresponding
tree. Given R, sets of root nodes:
∀〈Wi, Ti〉 = pi ∈ R

∀tk ∈ Ti

N =
⋃

j Tj ,where pj leaf node of pi tree
if tk ∈ N then

let tk ∈ Ti into the syntactic core

Consider the example proposed in Figure 5,
which displays a portion of the Inclusion chart.
Here we have the following two PPoS root nodes:

〈 {ma, e} , {V >Lex<V, X>Lex<X, X>Lex<N,

V >Lex<X, N>Lex<X,

V �X>Lex<X, N�X>Lex<X} 〉,

〈 {p com, e} , {V >Lex<X, V >Lex<V, N>Lex<X,

X>Lex<X, N>Lex<N,

N�X>Lex<X, N�V >Lex<V } 〉

The first root node has no leaf, being a root
without branches, so it contains no syntactic
core. On the other hand, the second has the
following three leaves:

〈 {che, p com, e, ma, o} , {X>Lex<X} 〉

〈 {ma, ed, o, e, mentre, p com} , {V >Lex<V } 〉

〈 {nep apo, p com, e, ed, o} , {N>Lex<N} 〉

Thus its type set contains the syntactic core

{X>Lex<X, V >Lex<V,N>Lex<N}

In order to associate it with its lexical core a
visit to the tree rooted by this node is needed
to collect those words w ∈ W which show only
types belonging to the syntactic core, for a given
pair 〈W,T 〉.

For example, the word “o” has shown
X>Lex<X, V >Lex<V , N>Lex<N , but also
N�X>Lex<X which belongs to both root
nodes so the word “o” cannot be part of the
lexical entries the syntactic core is represented
by.

The second root node is then associ-
ated with the lexical core consisting of
{ ed, mentre, né, che }. Hence the algorithm

181

concludes the existence of the following PoS pro-
totype:

〈 {ed, mentre, né, che},

{X>Lex<X, V >Lex<V, N>Lex<N} 〉

Notice that this PoS corresponds to the Coor-

dinators PoS depicted in Table 1, but here it
is simpler because of the simplification of the
Inclusion chart taken as an example.

The syntactic and lexical core is the output
of our algorithm. We assume the core to be the
syntactic (and lexical) prototype to be used for
PoS classification.

4 Results and Evaluation

The proposed automatic method leads to the
subdivision of the first level within the X class
(see Section 2) as shown in Table 1.

The sets of automatically extracted syntac-
tic types represent the prototypical syntactic
behaviours of the corresponding words sum-
marised by the explanatory PoS labels.

This classification is not fine-grained enough
to be used by a tagger to reach an informative
and useful annotation and should be intended
as a first step through the empirical construc-
tion of a hierarchical tagset, e.g. following the
parameters for taxonomic classification shown
in (Kawata, 2005). Further analysis for each
class must be carried out to increase the gran-
ularity of the tagset, for instance by exploiting
morphological information.

The present study was carried out on a lim-
ited quantity of data; the sparseness of pri-
mary information we used to derive the pro-
posed tagset might affect the conclusions we
have drawn. The results will need to be checked
with more data and with different treebanks to
avoid biases introduced by the treebank used
(TUT) from which the initial dependency struc-
tures were extracted.

Despite this, and the fact that further results
of the third phase are currently being induced
and remain to be investigated, it is promising
that the 9 parts of speech induced in this sec-
ond phase are not in marked contrast with tradi-
tional ones nor with widely accepted guidelines,
such as (Monachini, 1995).

However, employing dependency structures
as described in section 3.1, which means min-
imal syntactic information, leads to some ambi-
guities between word classes which may disagree
with the linguist’s intuitions.

From this point of view, the overlapping of
determiners and prepositions within the same
PoS is noteworthy. The lack of accuracy this
classification results in is due, on the one hand,
to the wide range of highly specific syntactic
constructions involving determiners and prepo-
sitions that share the same loosely labelled de-
pendency structures. Moreover, Italian mono-
syllabic (or ‘proper’) prepositions may be mor-
phologically joined with the definite article (for
example di (‘of’) + il (‘the’) = del (‘of the’)),
performing sintactically both as a preposition
and a determiner. Clearly this class will be fur-
ther specialized by exploiting morphological in-
formation.

Polysyllabic (or ‘not proper’) prepositions, as
opposed to monosyllabic ones, tend to occur in
a lower number of syntactic patterns and, more
crucially, cannot be fused with the article. In
this case our system performs more accurately
as it is able to correctly detect the syntactic
similarities between such prepositions. As they
typically tend to carry the function of the head
(together with prepositional locutions) in verb-
modifying structures they have been classified
as ‘Verb-Modifing Prepositionals’ as shown in
Table 1.

The 4 word classes grouping words commonly
classified as adjectives and conjunctions may be
considered an interesting result of the syntacti-
cally motivated induction algorithm presented
here. As for adjectives4 they have been divided
into 2 separate classes depending on predica-
tive or attributive distribution with respect to
the noun they modify (‘Left/Right Adjectivals’
in Table 1). As far as conjunctions (and con-
junctional locutions) are concerned, again, their
syntactic patterning enforced a very clear split
between ‘Coordinators’ and ‘Subordinators’.

By contrast a relatively strong syntactic re-
semblance has been automatically recognised
between words (and locutions) traditionally de-
scribed as adverbs (and adverbial locutions):
hence, the single ‘Adverbials’ word class is de-
rived. Again, further anlysis exploiting distri-
butional and morphological data may be useful
in obtaining a finer-grained classification if nec-
essary.

A final point to make is about copulative
structures: our system proved not to prop-

4We refer to qualifying adjectives; other items tradi-
tionally classified as adjectives, for example ‘determina-
tive adjectives’ as proposed by (Serianni, 1989), in our
system are grouped together with determiners

182

PoS Label Associated types Prototypical words
Nouns N nuvola, finestra, tv

Verbs V stupire, raggiunto, concludendo, abbiamo

X Prepositionals & Determiners Lex<N, Lex<X, N�Lex<N, N�Lex<X, alcuna, della, dieci, diversi, le, molti,

N�Lex<V, X�Lex<N, X�Lex<V, X�Lex<X negli, numerose, quegli, questi, sei, sull’

Verb-Modif. Prepositionals V�Lex<N, Lex<N�V, V�Lex<X, Lex<X�V a causa del, attraverso, contro, davanti al,

secondo, senza

Left Adjectivals Lex�N forti, giovane, grande, nuove, piccolo, suo,

Right Adjectivals N�Lex, X�Lex economici, elettorale, idrica, importanti,

positiva, ufficiale

Adverbials V�Lex, Lex�V, Lex�X allora, appena, decisamente, ieri, mai,

molto, persino, rapidamente, presto, troppo

Coordinators V>Lex<V, N>Lex<N, X>Lex<X, N>Lex<X, e, ed, ma, mentre, o, sia

X>Lex<N, V>Lex<X, V�X>Lex<X,

N�V>Lex<V, N�X>Lex<X

Subordinators Lex<V, Lex<V�V, V�Lex<V in modo da, oltre a, quando, perché, se

Relatives N>Lex che, cui, dove, quale

Entities Lex ci, di più, in salvo, io, inferocito, noi, ti,

sprovveduto, una

Table 1: Resulting PoS classification

erly process them in general, as shown by the
fact that their predicative components ended up
classified under either ‘Entities’ or ‘Preposition-
als & Determiners’.

5 Conclusions and Further Research

The final output of the three phase system will
be a hierarchy of PoS tags. Such structured or-
ganization is expected to help the linguist dur-
ing the annotation phase as well as when search-
ing the annotated corpus.

On the one hand, the linguist can browse the
graph for a given word to get a sense of its syn-
tactic distribution or to improve the proposed
classification (e.g. by splitting an induced cate-
gory that is too coarse.)

On the other hand, since the resulted PoS

classification is organized as a hierarchy with
inclusion relations, a more intelligent search in-
terface can be constructed to help the user ex-
tract the relevant information from the anno-
tated corpus.

References

S. Bangalore and A. Joshi. 1999. Supertagging:
An approach to Almost Parsing. Computa-

tional Linguistics, 25(2):237–265.

C. Bosco, V. Lombardo, Vassallo D., and Lesmo
L. 2000. Building a treebank for Italian: a
data-driven annotation schema. In Proc. 2nd
International Conference on Language Re-

sources and Evaluation - LREC 2000, pages
99–105, Athens.

C. Bosco. 2003. A grammatical relation system

for treebank annotation. Ph.D. thesis, Com-
puter Science Department, Turin University.

E. Brill and M. Marcus. 1992. Tagging an un-
familiar text with minimal human supervi-
sion. In Proceedings of the Fall Symposium

on Probabilistic Approaches to Natural Lan-

guage, pages 10–16, Cambridge.
A. Clark. 2000. Inducing Syntactic Categories

by Context Distribution Clustering. In Pro-
ceedings of CoNLL-2000 and LLL-2000 Con-

ference, pages 94–91, Lisbon, Portugal.
Y. Kawata. 2005. Tagsets for Morphosyntactic

Corpus Annotation: the idea of a ‘reference
tagset’ for Japanese. Ph.D. thesis, University
of Essex, Colchester, UK.

M. Monachini. 1995. ELM-IT: An Italian
Incarnation of the EAGLES-TS. Definition
of Lexicon Specification and Classification
Guidelines. Technical report, Pisa.

F. Pereira, T. Tishby, and L. Lee. 1993. Dis-
tributional clustering of English words. In
Proceedings of the 31st ACL, pages 183–190,
Columbus, Ohio.

M. Redington, N. Chater, and S. Finch. 1998.
Distributional Information: a Powerful Cue
for Acquiring Syntactic Categories. Cognitive
Science, 22(4):425–469.

R. Rossini Favretti, F. Tamburini, and
C. De Santis. 2002. CORIS/CODIS: A cor-
pus of written Italian based on a defined and
a dynamic model. In A. Wilson, P. Rayson,
and T. McEnery, editors, A Rainbow of Cor-

pora: Corpus Linguistics and the Languages
of the World. Munich: Lincom-Europa.

H. Schütze. 1993. Part-of-speech induction
from scratch. In Proceedings of the 31st ACL,
pages 251–258, Columbus, Ohio.

L. Serianni. 1989. Grammatica italiana. Ital-

iano comune e lingua letteraria. UTET,
Torino.

F. Tamburini, C. De Santis, and Zamuner E.
2002. Identifying phrasal connectives in Ital-
ian using quantitative methods. In S. Nuc-
corini, editor, Phrases and Phraseology -Data

and Description. Berlin: Peter Lang.

183

Proceedings of the Australasian Language Technology Workshop 2005, pages 184–190,
Sydney, Australia, December 2005.

A Dual-Iterative Method for Concept-Word Acquisition from Large-Scale
Chinese Corpora

Guogang Tian
Key Laboratory of Intelligent Information

Processing,
Institute of Computing Technology, Chinese

Academy of Sciences
Graduate University of the Chinese Academy of

Sciences
Beijing, China 100080

naitgg@hotmail.com

Cungen Cao
Key Laboratory of Intelligent Information

Processing,
Institute of Computing Technology, Chinese

Academy of Sciences
Graduate University of the Chinese Academy of

Sciences
Beijing, China 100080

cgcao@ict.ac.cn

Abstract - This paper proposes a dual-iterative
method, a hierarchical inner and outer iteration
method (HIO), to acquire concept words from a
large-scale, un-segmented Chinese corpus. It has
two levels of iteration: the EM-CLS algorithm
and the Viterbi-C/S algorithm constitute the inner
iteration for generating concept words, and the
concept word validation constitutes the outer
iteration together with the concept word
generation. Through multiple iterations, it
integrates the concept word generation and
validation into a uniform acquisition process. In
the process of acquisition, the HIO method can
cope with the problem of over-segmentation,
over-combination and data sparseness. The
experimental result shows that the HIO method is
valid for concept word acquisition that can
simultaneously increase the precision and recall
rate of concept word acquisition.

1. Introduction

Concept word acquisition is an important research in
knowledge acquisition from text (KAT) (Cao and Sui,
2003), and it is also the foundation of ontology
learning (Maedche, 2002). Its main purpose is to
acquire plentiful concept words from text corpora. It
is very similar to unknown word recognition (Chen
and Bai, 1998), (Feng, Chen, et al., 2004) and term
extraction (Bourigault and Jacquemin, 1999).
However, there are subtle distinctions among these
three researches. Generally, concept word can be
classified into three types: proper name, compound
word and derived word. Except for these three word
types, unknown word recognition also identifies
numeric-type compounds, and it does not concern
known words listed in a dictionary. Term extraction
(Bourigault and Jacquemin, 1999) mainly processes
domain texts, and often extracts commonly used
professional terms from a specific domain text
corpus.

Fu and Luke (2003) proposed a two-stage Chinese

segmentation system. At the first stage, it segmented
the input text according to known words on the basis
of 2-gram statistical model, and then identified
unknown words at the second stage using a hybrid
method which consisted of word context, word
composition and word juncture model.

Yang and Li (2003) proposed a heuristic method
that it generated five rules using mutual information
and significance estimation to extract unknown
word.

Peng and Schuurmans (2001) proposed an
unsupervised training method to build probability
models that accurately segmented Chinese character
sequences into words. It used successive EM phases
to learn a good probability model over character
strings, and then prunes the model with a mutual
information selection criterion to obtain a more
accurate word lexicon.

Lai and Wu (2000, 2002) proposed a likelihood
ratio method to extract possible unknown words or
phrases defined by PLUs (phrase-like-unit). The final
PLU was decided by two principles of overlap
competition and inclusion competition.

Nagao and Mori (1994) proposed a rapid n-gram
extraction method to extract adjacent substrings with
same prefix in an ordered prefix table. It was noted
that it was an affix method intrinsically.

From these above works, we can summarize that
there are two kinds of method to identify or acquire
unknown words, that is, the non-iterative statistical
method and the affix method. The non-iterative
unknown word recognition (Fu and Luke, 2003),
(Yang and Li, 2003) , (Peng and Schuurmans, 2001) ,
(Lai and Wu, 2000, 2002), (Zhang, Lv, et al., 2003)
usually adopts n-gram statistical model that is
combined with segmentation and combination
operation to identify unknown words. It can deal
with over-segmentation, but can not tackle
over-combination. In addition, the length of
unknown word must be restricted in order to ensure
system performance. The acquired unknown words
are often 2-grams, 3-grams and 4-grams. The affix
method (Nagao and Mori, 1994) has even more

184

limits. For example, it can not deal with unknown
words that have not obvious affix features, and it can
not use contextual information of unknown words,
either.

This paper, motivated by the work of Chang and
Su (1997) and Liu, Zhang, et al. (2004) presents a
hierarchical inner and outer iteration method to
acquire concept words from a large-scale,
un-segmented Chinese text corpus. It has two levels
of iteration which involves concept word generation
and validation. It makes some extension on EM
algorithm and Viterbi algorithm which make up the
concept word generation. The concept word
validation combines mutual information and context
entropy into a validation criterion. These two levels
of iteration can simultaneously increase the precision
and recall rate of concept word acquisition.

The main contribution of this paper is that it
proposes a HIO method for concept word acquisition.
The HIO method unifies concept word generation
and validation into a consecutively iterative process
so that it can increase precision and recall
simultaneously. The rest of this paper is organized as
follows: Section 2 presents the HIO method. Concept
word generation is discussed in section 2.1, and
concept word validation is discussed in section 2.2.
The whole HIO algorithm is presented in Section 2.3.
The experiment result and error analysis are provided
in section 3. Section 4 concludes this paper and
outlines the future work.

2. The HIO Method

The HIO method (a Hierarchical Inner and Outer
iteration method) has two levels of iteration, that is,
the inner iteration and the outer iteration. The
alternation of EM-CLS and Viterbi-C/S algorithm
constitutes the inner iteration of the HIO – concept
word generation, and concept word validation
constitutes the outer iteration of the HIO. The basic
structure of the HIO method is illustrated in Fig. 1.

The HIO method can cope with the two primary
problems in concept word acquisition:
over-segmentation and over-combination. Data
sparseness is one of common problems in statistical
language processing. Concept word acquisition is not
the exception. In the acquisition process, it may
produce the sparse data. Katz smoothing is applied in
the HIO method to smooth sparse data and reduce
their effect on concept word acquisition.

2.1 Concept Word Generation

2.1.1 EM-CLS algorithm

The EM-CLS algorithm, which is based on EM
(expectation maximization) algorithm, estimates
generated terms’ probability distribution and

identifies their types in a large corpus.

Concept Word
Validation

CT: candidate term
OST: over-segmented term
NT: normal term
OCT: over-combined term

SC: segmented corpus
CAS: combination-ambiguity sentence
NS: normal sentence
OAS: overlap-ambiguity sentence

EM-CLS

Viterbi-C/S

CT
OST

NT
OCT

CAS

NS
OAS

SC

Concept Word Generation

Concept Word
Validation

CT: candidate term
OST: over-segmented term
NT: normal term
OCT: over-combined term

SC: segmented corpus
CAS: combination-ambiguity sentence
NS: normal sentence
OAS: overlap-ambiguity sentence

EM-CLS

Viterbi-C/S

CT
OST

NT
OCT

CT
OST

NT
OCT

CAS

NS
OAS

SC

CAS

NS
OAS

SC

Concept Word Generation

Fig.1. The Structure of HIO Method

EM algorithm (Figueiredo, 2004), (Prescher, 2003)
is a common method for estimating
maximum-likelihood when missing data are present.
It has two steps: E-step (expectation step) and M-step
(maximization step). Given the observed data x and
the current parameter estimation)t(^

θ , E-step computes
the conditional expectation (with respect to the
missing data y) of the logarithm of a complete
posteriori probability function, logp(y,θ|x). Usually
E-step is called as Q function, as illustrated in (1).
Equation (2) shows the M-step of EM algorithm.
M-step chooses the parameters which can maximize
Q function as the estimated parameters. Through
consecutive iterations of E-Step and M-Step, EM
algorithm can get stabilized parameters.

E-Step:

∫+=

+∝

≡

dyxypxypp

xxypEp

xxypEQ

t

t

tt

)|,(log),|()(log

],|)|,([log)(log

],|)|,([log)|(

)(^

)(^

)(^)(^

θθθ

θθθ

θθθθ

(1)

M-Step:

)|(maxarg
)(^)1(^ tt

Q θθθ
θ

=
+

(2)

An un-segmented corpus is denoted as C={C1,
C2, … ,Cn} where Ci(1 ≤ i ≤ n) represents an

185

un-segmented sentence. After segmentation, C is
converted into the segmented corpus denoted as
S={S1, S2, …, Sn} where Si (1 ≤ i ≤ n) is a
segmentation of Ci. The generated candidate terms1
are grouped into a set denoted as T={t1, t2, …, tm},
where tj (1≤j≤m) is the generated candidate term.

If Ci is taken as the observed data, Si as the
missing data, we can estimate the
maximum-likelihood of term tj with the EM
algorithm which is deemed as its probability
distribution in the corpus C. Equation (3) shows the
probability estimation of term tj. In (3), Si

* denotes
the optimal segmentation of sentence Ci, which can
be achieved by the Viterbi-C/S algorithm (to be
discussed in the next section). f(tj, Si) denotes the
frequency of term tj in sentence Si.

}|)({),(
^^

TttpTtpt jjjj ∈== .
After estimating the probability of term tj, we still

have to judge to which type it belongs. The candidate
term has three types that are normal term,
over-segmented term and over-combined term.

∑ ∑

∑

∑ ∑

∑

= =

=

= =

=
+

×

×

=

×

×

=

m

j

n

i

t

iiij

n

i

t

iiij

m

j

n

i

t

iiij

n

i

t

iiijt

j

TCSpStf

TCSpStf

TCSpStf

TCSpStf
t

1 1

)(^
*

1

)(^
*

1 1

)(^
*

1

)(^
*

)1(^

)|,(),(

)|,(),(

),|(),(

),|(),(

(3)

If a concept word (or meaningful word) is
segmented into several components, it is called
over-segmented term. For example, 高 血 糖
(hyperglycemia) is possibly spitted into 高 (high)
and 血糖 (blood sugar).

If a word is combined with another word, but their
combination is not a concept word (or meaningful
word), it is called over-combined term, such as 但也
(but also).

Equation (4) can assign a type label to tj, which is
denoted by CLS(tj).

|)(|
|})(|{|

maxarg)(
)(

)(j

i
kjkk

H
j tSen

HStSenSS
tCLS

i

∈∧∈
= (4)

In (4), Sen(tj)={Si| tj∈Si}, H(i) denotes the sentence
type label.

2.1.2 Viterbi-C/S algorithm

The Viterbi-C/S algorithm dynamically segments a

1 The meaning of “term” here is different from the meaning of “term” in
term extraction. Here term refers to ordinary word.

corpus using the estimated probability of candidate
terms and executes combination and segmentation
operations on ambiguous terms in order to achieve
the optimal segmentation. After completing corpus
segmentation, it judges if a sentence contains overlap
ambiguity or combination ambiguity.

Given a segmented sentence Si, Si=t1t2…tk (1≤j≤
k,tj∈T), it is assumed that terms are independent
each other, the likelihood of sentence Si is defined as:

∏
=

=
k

j
ji tpSp

1

)()((5)

Definition 1: It is the optimal segmentation that its
likelihood is maximal among all segmentations of a
sentence. The optimal segmentation is denoted as Si

*

)|,(maxarg),|(maxarg
^^

* TCSpTCSpS ii
S

ii
S

i
ii

== (6)

Like candidate terms, segmented sentences are
also classified into three types: normal sentence
(N-Sen), overlap-ambiguity sentence (OA-Sen), and
combination-ambiguity sentence (CA-Sen).

If a segmented sentence contains over-combined
terms, it is considered as an OA-Sen.

If a segmented sentence contains over-segmented
terms, it is considered as a CA-Sen.

It is observed that there is a direct correspondence
between the type of candidate term and segmented
sentence: normal term – N-Sen, over-segmented term
– CA-Sen and over-combined term – OA-Sen.

Definition 2: Segmented Density is defined as the
number of segmented term in each length unit.

For a sentence Si,

)(
)()()(

i

ii
i Slength

SNTSpSSD ×
= (7).

For a corpus S,

∑
∑∑

∈

∈∈

×

=

×

=

SS
i

SS
ii

SS
ii

i

ii

Slength

SNTSp

Slength

SNTSp

SSD
)(

)()(

)(

)()(

)((8).

In (7)-(8), NT(X) denotes the number of terms in
sentence X, and length(Y) denotes the length of
sentence Y.

The type of segmented sentence is measured by
(9). Setting a threshold range [r1, r2] (r1<r2), if
CLS(Si)<r1, Si is a OA-Sen, if CLS(Si)>r2, Si is a
CA-Sen, if r1≤CLS(Si)≤r2, Si is a N-Sen.

)(SD
)(SD)(

S
SSCLS i

i = (9)

186

We make an extension to the classical Viterbi
algorithm (Rabiner, 1989), thus get the Viterbi-C/S
algorithm as illustrated in Fig. 2.

When segmenting a corpus, Viterbi-C/S binds
combination and segmentation operations (C/S
operation) on the selected terms according to their
types. If over-segmented term is selected,
combination operation is performed, if
over-combined term is selected, segmentation
operation is performed. These combination or
segmentation operations on candidate term possibly
causes data sparseness problem. So we use Katz
Smoothing method (Goodman, 2001) as the
smoothing strategy to eliminate sparse data.

)...()...()...(121111 iiniiniiini tttptttttp −+−−+−−+− = α (10)

In (10), t’=ti-n+1…ti-1ti doesn’t exist in candidate term
set T, α is a normalization constant.

2.2 Concept Word Validation

The generated candidate terms need to be further
validated to filter out ambiguous terms. The
validation takes into considerations candidate term’s
composition and local context. The former is
considered as a cohesion validation which adopts
mutual information method (Sproat and Shih, 1990).
The latter is considered as an independence
validation which adopts context entropy method
(Tung and Lee, 1994). So the concept word
validation is the combination of mutual information
and context entropy method.

Viterbi-C/S Algorithm
Input: un-segmented corpus C, candidate terms’ probability

estimation
Output: the optimal segmentation and its type
1. selecting a sentence Ci from corpus C;
2. selecting all possible candidate terms at the current position

of sentence Ci, which constitute a set denoted as Tp={t1
p, t2

p ,
t3

p , …};
3. selecting a candidate term which has maximum-likelihood

from the set Tp as a possible segmented term of sentence Ci,
denoted as st;

4. performing the corresponding operation according to the
type of term st
a. if an over-segmented term, performing segmenting

operation on it and re-estimating the likelihood of new
term, goto (3);

b. if an over-combined term, performing combining
operation on it and re-estimating the likelihood of new
term, goto (3);

c. if a normal term, segmenting the sentence, computing
the likelihood of current segmentation and moving the
position pointer forwardly

5. repeating step 1-4, until all sentences in corpus are
segmented

6. computing segmented density for corpus and sentences, and
determining the type label of sentence

Fig. 2. The Viterbi-C/S Algorithm

The basic assumptions of concept word validation
are that:

If a term is an over-combined term, it contains at
least a division point where its cohesion degree must
be low.

If a term is an over-segmented term, its local
context features in corpus must be weak.

2.2.1 Mutual Information

It is assumed that there is at most two division points
in a validating term tv= c1c2…cn.

If tv
l=c1c2…cl∈T (1≤l<n) and t’= c1c2…clcl+1∉T,

tv
l is called the maximal left substring of tv, and l is

the left division point of tv.

If tv
r=crcr+1…cn∈T (1<r≤n) and t’= cr-1cr…cn∉T,

tv
r is called the maximal right substring of tv, and r is

the right division point of tv.

(1) If l<r-1, tv has two division points, which is
denoted as tv=tv

2=tv
ltv

mtv
r;

(2) If l=r-1, tv has a division point, which is
denoted as tv=tv

1=tv
ltv

r;

(3) If l≥r, tv has two possible divisions which are
denoted as tv=tv

1-L= tv
ltv

-l and tv
1-R= tv=tv

-rtv
r

respectively.
To case (1)

)()()()()()()(
)(log

)()(2

r
v

m
v

l
v

r
v

m
v

l
v

r
v

m
v

l
v

r
v

m
v

l
v

vv

tpttpttptptptptp
tttp

tMItMI

++
=

=

(11)

To case (2),

)()(
)(log)()(1
r
v

l
v

r
v

l
v

vv tptp
ttptMItMI == (12)

To case (3),

)}(),(min{)(

;
)()(

)(log)(

;
)()(

)(log)(

11

1

1

R
v

L
vv

r
v

r
v

r
v

r
vR

v

l
v

l
v

l
v

l
vL

v

tMItMItMI

tptp
ttptMI

tptp
ttptMI

−−

−

−
−

−

−
−

=

=

=

(13)

Before computing the mutual information of the
validating term, we above all identify to which type
it belongs among the above case (1) to (3) and then
adopt the corresponding equation (11-13). Similarly,
we still apply equation (10) to deal with data
sparseness problem.

2.2.2 Context Entropy

It is assumed that tv is a validating term. Its left

187

context is denoted as α={α1, α2, … ,αl}, and its right
context is denoted as β={β1, β2, … , βr}. The left
context entropy, right context entropy and context
entropy of the validating term tv is defined in (14).

)}(),(min{)(

;)(log)()(

;)(log)()(

vRvLv

ivivvR

vivivL

tEntrtEntrtEntr

tptptEntr

tptptEntr

i

i

=

−=

−=

∑

∑

∈

∈

ββ

αα

ββ

αα

(14)

Table 1 lists the joint validation rules combining
mutual information and context entropy criterions.
thmi and thentr are thresholds we designate to mutual
information and context entropy, respectively.

The wrong candidates are removed from the
dictionary. The other three types of terms are saved
into the candidate dictionary again. After validating
terms, concept word generation is restarted again and
the concept word acquisition goes into the next
iteration.

2.3 The HIO Algorithm

The HIO Algorithm is illustrated in Fig.3.

HIO Algorithm
Input: un-segmented corpus C, system dictionary, the

predefined iteration number (including outer iteration and
inner iteration)

Output: concept words set
1. Initialization

a. identifying numeric-type string and English string;
b. extracting concept words matching with specific

pattern;
c. segmenting corpus C with dictionary and Forward

Maximum Matching algorithm, and estimating initial
probability of terms

2. outer iteration
a. concept word generation

I. estimating term probability and identifying
term’s type using EM-CLS algorithm;

II. achieving the optimal segmentation of sentence
and identifying their type using Viterbi-C/S
algorithm;

III. if the number of iteration < the predefined
number, goto (Ⅰ);

b. concept word validation
I. validating normal candidate terms using mutual

information and context entropy, identifying their
type and precluding wrong results

II. if the number of iteration < the predefine number,
goto (2.a)

3. outputting all normal candidate terms as concept
words set

Fig.3. The HIO Algorithm

3. Experimental Result and Error Analysis

Table 1. The Joint Validation of MI and Entropy

MI(tv) Entr(tv) Term type(tv)
≥thmi ≥thentr correct candidate
≥thmi <thentr over-segmented
<thmi ≥thentr over-combined
<thmi <thentr wrong candidate

We adopt a 400M Chinese corpus extracted from
web pages as the experimental corpus. Before
running the HIO method, a series of preprocessing
operations are performed, which involve recognizing
special unknown words such as numeric-type words,
English words, etc., acquiring concept words
matching with specific context patterns, using
forward maximum matching method to initially
segment the corpus and estimating the initial
probability of terms.
We set the inner iteration to 10 times and the outer
iteration to 5 times. When completing the HIO
operations, we randomly select 2000 sentences from
this corpus. After filtering out many common words
such as auxiliary words, adjectives and adverbs, we
get many concept words which have higher precision
and recall rates as listed in Table 2.

Table 2. The Experimental Result

length Count P (%) R (%)
2 7782 92.2 83.4
3 2234 86.1 69.0
4 1627 89.3 70.4
5 1893 94.7 60.3
≥6 856 91.6 51.1
Sum. 14392 91.2 73.1

50

55

60

65

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10

inner iteration number

Pr
ec

is
io

n/
R

ec
al

l (
%

)

P (outer iteration 1)

P (outer iteration 3)
P (outer iteration 5)

R (outer iteration 1)
R (outer iteration 3)

R (outer iteration 5)

Fig. 4. The Precision and Recall w.r.t. the Inner and
Outer Iteration

We get 5387 unknown words in total 14392 terms,
among which there are 833 bi-gram words, 1593
tri-gram words, 1049 four-gram words, 1196
five-gram words, 716 six- and over-six-gram words.

188

Fig. 4 shows the effect of the inner and outer
iteration on the precision and recall rate of concept
word acquisition. It is observed that the precision and
recall rate are both increased with the increase of
iteration times.

There are two types of errors produced in HIO:
commission error and omission error (Yang and Li,
2004). A commission error is that an acquired term is
actually not a concept word, but the HIO considers it
as a concept word. The reason is that every
component of this term is common words and often
occurs simultaneously. An omission error is that the
HIO misses a concept word in the corpus. The reason
is that one component of this word is more
commonly used than the rest and the statistical
feature of their combination is not prominent.
However, the error distribution we get is contrary to
the result of Yang and Li (2004). The number of
omission errors exceeds that of commission errors,
especially in tri-gram concept word.

4. Conclusions and Future Work

This paper proposes a hierarchical inner and outer
iteration method (HIO) for concept word acquisition.
It can deal with the problem of over-segmentation,
over-combination and data sparseness produced in
the process of acquisition. Its prominent features
involve:
(1) The HIO method is the combination of the inner

and outer iteration, which can increase the
precision and recall rate of concept words
acquisition simultaneously.

(2) Concept word generation and validation are
uniform and consistent in the HIO method.

(3) The EM-CLS algorithm can classify candidate
terms as well as estimate their probability
distribution.

(4) The Viterbi-C/S can perform segmenting and
combining operations on terms while
segmenting corpus.

(5) HIO uses Katz smoothing to lessen data
sparseness effect on concept word acquisition.

Now we are going on a series of research on
knowledge acquisition from text. The acquired
knowledge types include concepts and their relations.
Concept word acquisition is fundamental, which can
provide essential support for other work in KAT
research. We are also developing methods for
acquiring relations, including isa, part-of and co-title.

Acknowledgement

This work is supported by the Natural Science
Foundation (grant no. 60273019 and 60496326), and
the National 973 Programme (grant no.
2003CB317008).

References

Christopher C. Yang and K.W. Li. 2003. Segmenting
Chinese Unknown Words by Heuristic Method,
ICADL 2003, LNCS 2911, pp 510–520

Christopher C. Yang and K.W. Li. 2004. Error
Analysis of Chinese Text Segmentation using
Statistical Approach. Proceedings of 2004 Joint
ACM/IEEE Conference on Digital Library (JCDL’
04), Tucson, Arizona, USA, pp256-257

Cungen Cao and Yuefei Sui. 2003. Constructing
Ontology and Knowledge Bases from Text. 20th
International Conference on Computer Processing
of Oriental Languages, Shenyang, China, pp
34-42

Detlef Prescher. 2003. A Tutorial on the
Expectation-Maximization Algorithm Including
Maximum-Likelihood Estimation and EM
Training of Probabilistic Context-Free Grammars,
Presented at the 15th European Summer School in
Logic, Language and Information (ESSLLI 2003),
Vienna, Austria, August 18-29, 2003

Didier Bourigault and Christian Jacquemin. 1999.
TERM EXTRACTION + TERM CLUSTERING:
An Integrated Platform for Computer-Aided
Terminology. Proceedings of EACL '99, pp. 15-22

Fuchun Peng and Dale Schuurmans. 2001
Self-supervised Chinese Word Segmentation. In
Advances in Intelligent Data Analysis
(Proceedings of IDA-01), pp 238-247

Goodman, J. T. 2001. A Bit of Progress in Language
Modeling. Computer Speech and Language, 2001
(10), pp 403-434

Guhong Fu and K.K Luke. 2003. A two-stage
statistical word segmentation system for Chinese,
Second SIGHAN Workshop on Chinese Language
Processing, Sapporo, Japan, pp. 156-159

Haodi Feng, Kang Chen, Xiaotie Deng, Weimin
Zheng. 2004. Accessor Variety Criteria for
Chinese Word Extraction, Computational
Linguistics, 30 (1), pp. 75-93

Jing-Shin Chang and Keh-Yih Su. 1997. An
Unsupervised Iterative Method for Chinese New
Lexicon Extraction, Computational Linguistics
and Chinese Language Processing, 2 (2), pp
97-148

Keh-Jiann Chen and Ming-Hong Bai. 1998.
Unknown word detection for Chinese by a
corpus-based learning method, International
Journal of Computational Linguistics and Chinese
Language Processing, 3(1):27–44

Lawrence R. Rabiner. 1989. A Tutorial on Hidden
Markov Models and Selected Applications in

189

Speech Recognition. Proceedings of the IEEE, 77
(2), pp 257-286

Liu Qun, Zhang Huaping, Yu HongKui, and Cheng
Xueqi. 2004. Chinese Lexical Analysis Using
Cascaded Hidden Markov Model, Journal of
Computer Research and Development, 41(8), pp.
1421-1429

Maedche. 2002. Ontology Learning for the Semantic
Web. Kluwer Academic Publishers

Mário A. T, Figueiredo. 2004. Lecture Notes on the
EM Algorithm,
http://www.lx.it.pt/~mtf/learning/aboutEM.pdf

Nagao, M and Mori,S. 1994. A New Method of
N-gram Statistics for Large Number of N and
Automatic Extraction of Words and Phrases from
Large Text Data of Japanese. COLING-94

Sproat, R. and Shih, C. 1990. A Statistical Method
for Finding Word Boundaries in Chinese Text,
Computer Processing of Chinese and Oriental
Languages, 1990 (4), pp.336–351

Tung, Cheng-Huang and Hsi-Jian Lee. 1994.
Identification of Unknown Words from a Corpus,
Computer Processing of Chinese and Oriental
Languages, Vol. 8, pp. 131-145

Yusheng Lai and ChungHsien Wu. 2000. Unknown
Word and Phrase Extraction Using a
Phrase-Like-Unit-Based Likelihood Ratio.
International Journal of Computer Processing of
Oriental Languages, 13 (1), pp 83–95

Yu-sheng Lai and Chung-hsien Wu. 2002.
Meaningful Term Extraction and Discriminative
Term Selection in Text Categorization via
Unknown-Word Methodology. ACM Transactions
on Asian Language Information Processing, Vol. 1,
No. 1, March 2002, pp 34-64

Zhang Le, Lv Xue-qiang, Shen Yan-na and Yao
Tian-shun. A Statistical Approach to Extract
Chinese Chunk Candidates from Large Corpora.
ICCPOL 2003, pp109-117, 2003

190

Proceedings of the Australasian Language Technology Workshop 2005, pages 191–199,
Sydney, Australia, December 2005.

Programming With Unrestricted Natural Language

David Vadas and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{dvadas1,james}@it.usyd.edu.au

Abstract

We argue it is better to program in a natural lan-
guage such as English, instead of a programming
language like Java. A natural language interface
for programming should result in greater readabil-
ity, as well as making possible a more intuitive way
of writing code. In contrast to previous controlled
language systems, we allow unrestricted syntax, us-
ing wide-coverage syntactic and semantic methods
to extract information from the user’s instructions.

We also look at how people actually give pro-
gramming instructions in English, collecting and
annotating a corpus of such statements. We identify
differences between sentences in this corpus and in
typical newspaper text, and the effect they have on
how we process the natural language input. Finally,
we demonstrate a prototype system, that is capable
of translating some English instructions into exe-
cutable code.

1 Introduction

Programming is hard. It requires a number of spe-
cialised skills and knowledge of the syntax of the
particular programming language being used. Pro-
grammers need to know a number of different lan-
guages, that can vary in control structures, syntax,
and standard libraries. In order to reduce these dif-
ficulties, we would like to express the steps of the
algorithm we are writing in a more natural manner,
without being forced into a particular syntax. Ide-
ally, we want aplain English description.

We have built an initial prototype of such a
system, taking unrestricted English as input, and
outputting code in the Python programming lan-
guage. There are many advantages of such a system.
Firstly, any person that can write English, but not a
programming language, would still be able to pro-
gram. Also, it is often easier to write an English sen-
tence describing what is to be done, than to figure
out the equivalent code. Many programmers write
in a pseudocode style that is almost English before
elaborating on the details of an algorithm. There are

also many tasks that can easily be described using
English sentences, but are much harder to express
as code, such as negation and quantification.

Another advantage is that code written in English
will be much easier to read and understand than in a
traditional programming language. Quite often, it is
a difficult task to read another programmer’s code.
Even understanding one’s own code can be hard af-
ter a period of time. This is because without suffi-
cient commenting — this is an explanation in plain
English — one cannot tell what individual steps are
meant to do together. In our system, the comments
become the code.

Novice programmers could make great use out
of such a system. They make simple syntax er-
rors because they do not know the language well
enough. Similarly, a novice programmer may know
what function they want to use, but not its specific
name and required arguments.

Finally, standard programming languages exhibit
numerous technical details that are not evident in
natural languages. Examples of this include typing,
integer division and variable declarations. When we
say in English3

5
, we expect the result to be 0.6, not

0, as will result in many programming languages.
These complications are a result of the computer’s
implementation, rather than the algorithm we are
trying to describe. We would like to abstract away
these issues, using information present in the En-
glish sentences to figure out the correct action to
take.

2 An Example
We can see in Figure 1 two example programs that
could be entered by a user. The code for the first
program matches what is outputted by the current
system, but the second is more complicated and
does yet work correctly.

Looking at the these examples, we can see a num-
ber of difficulties that make the problem hard, as
well as form some intuitions that can help to solve
the task. For example, the first line of both programs
involves three function calls because of variable typ-

191

ENGLISH PYTHON

read in a number number = int(sys.stdin.readline().strip())
add 2 to the number number += 2
print out the number print number
read in 2 numbers number1 = int(sys.stdin.readline().strip())

number2 = int(sys.stdin.readline().strip())
add them together result = number1 + number2
print out the result print result

Figure 1: Some example English sentences and their Python translations.

ing. In Python, we must first read in a string, then
strip away the newline character, and finally convert
it to an integer. We can tell that integer conversion is
required, firstly because of the name of the variable
itself, and secondly, because a mathematical opera-
tion is applied to it later on. Of course, it is still am-
biguous. The user may have expected the number
to be a string, and to have the string2 concatenated
to what was read in. However, the code in Figure 1
is more likely to be correct, and if the user wants to
use a string representation, then they could specify
as much by saying:read in a number as a string.

Another problem to deal with is the referencing
of variables. In the first program, it is fairly easy to
know thatnumber is the same variable in all three
sentences, but this is not as easy in the second. For
the first sentence of the second program, the system
needs to interpret2 numbers correctly, and map it
to multiple lines of code. Another complication is
them, which references the previously mentioned
variables. Finally,result, which does not appear in
the second line, must still be part of the equivalent
code, so that it can be used later.

One possibility that we could use to simplify the
task that we are undertaking is to use a restricted
natural language. However, we do not want to re-
strict the vocabulary available to a user, or force
them to construct sentences in a specific way, as
is the case for existing restricted natural languages
(Fuchs and Schwitter, 1996). Of course, this means
that we must then deal with the inherent ambigu-
ity and the great breadth of unrestricted natural En-
glish. For this reason, we employ wide-coverage
syntactic and semantic processing, that is able to
process this extensive range of inputs. In order to
resolve ambiguities, we can apply the intuitions we
have described above. We may not be sure that the
number should be treated as an integer, but this is
more likely than treating it as a string. This is the
conclusion that our system should come to as well.

3 Background

Clearly, the task we are undertaking is not trivial.
Though there are a number of related systems to
the one we propose, which have had success imple-
menting a natural language interface for some task.

3.1 Natural Language Interfaces to Databases

The most popular task is a Natural Language In-
terface for a Database (NLIDB) (Androutsopoulos
et al., 1995). This is because databases present a
large amount of information, which both novice and
expert users need to query. A specific query lan-
guage such as SQL must be used, which requires
one to understand the syntax for entering a query,
and also the way to join the underlying tables to ex-
tract data that is needed. A NLIDB simplifies the
task, by not requiring any knowledge of a specific
query language, or of the underlying table structure
of the database. We can see how this is similar to
the English programming system that we are con-
structing. Both take a natural language as input, and
map to some output that a computer can process.

There are a number of problems that exist with
NLIDBs. Firstly, it is not easy to understand all
the ambiguity of natural language, and as such,
a NLIDB can simply respond with the wrong an-
swers. As a result of this, many NLIDBs only ac-
cept a restricted subset of natural language. For ex-
ample, in the NLIDB PRE (Epstein, 1985), relative
clauses must come directly after the noun phrases
they are attached to.

One feature of many NLIDBs, is the ability to
engage the user in a dialogue, so that past events
and previously mentioned objects can be referenced
more easily. Two examples of this, anaphora and
elliptical sentences, are shown in Figure 2.

Understanding thatit refers to the ship, and that
the female manager’s degrees are again the subject
of the question, reduces the amount of effort re-
quired by the user, and makes the discourse more
natural. We also intend to maintain a discourse be-
tween the user and the computer for our own sys-

192

• ANAPHORA

> Is there a ship whose destination is unknown?
Yes.
> What is it?
What is [the ship whose
destination is unknown]?

Saratoga

• ELLIPTICAL SENTENCE

> Does the highest paid female manager have
any degrees from Harvard?

Yes, 1.
> How about MIT?
No, none.

Figure 2: An example of anaphora and an elliptical
sentence

tem. This would also allow us to resolve much of
the ambiguity involved in natural language by ask-
ing the user which possibility they actually meant.

3.2 Early Systems

One of the first natural language interfaces is
SHRDLU (Winograd, 1972), which allows users to
interact with a number of objects in what was called
Blocksworld. This system is capable of discriminat-
ing between objects, fulfilling goals, and answering
questions entered by the user. It also uses discourse
in order to better interpret sentences from the user.

There were also a handful of systems that at-
tempted to build a system similar to what we de-
scribe in this paper (Heidorn, 1976; Biermann et al.,
1983). Most of these used a restricted syntax, or de-
fined a specific domain over which they could be
used. Our system should have much greater cover-
age, and be able to interpret most instructions from
the user in some way.

More generally, we can look at a system that in-
terprets natural language utterances about planetary
bodies (Frost and Launchbury, 1989). This system
processes queries about its knowledge base, but is
restricted to sentences that are covered by its vocab-
ulary and grammar. It deals with ambiguous ques-
tions by providing answers to each possible reading,
even when those readings would be easily dismissed
by humans. With our system, we will determine the
most likely reading, and process the sentence ac-
cordingly.

3.3 Understanding Natural Language

One thing that we have not yet considered is how
people would describe a task to be carried out, if
they could use English to do so. The constructs
and formalisms required by traditional program-
ming languages do not apply when using a natu-
ral language. In fact, there are many differences
between the way non-programmers describe a task,
to the method that would be employed if one were
using a typical programming language (Pane et al.,
2001). Firstly, loops are hardly ever used explicitly,
and instead, aggregate operations are applied to an
entire list. These two methods for describing the
same action are shown in Figure 3.

• AGGREGATE

sum up all the values in the list

• ITERATION

start the sum at 0

for each in value in the list

add this value to the sum

Figure 3: Finding the sum of the values in a list

Another point of difference comes in the way
people use logical connectives such asAND andOR,
which are not neccesarily meant in the strictly logi-
cal way that is the case when using a programming
language. There are also differences in the way that
people describe conditions, remember the state of
objects, and the way they reference those objects.

HANDS (Pane et al., 2002) is a programming lan-
guage that has been designed with this information,
and with the idea of providing a programming in-
terface that is more natural to a human user. This
system takes a controlled language as input, but still
demonstrates a number of methods, such as the ag-
gregate operations described above, which make it
possible for people to describe the actions they want
performed as if they were writing in English.

There are actually many ways in which natu-
ral language constructions map onto programming
concepts. Theseprogrammatic semantics(Liu and
Lieberman, 2004) can be seen in syntactic types,
where nouns map to objects or classes, verbs map to
methods, and adjectives to attributes of the classes.
Using these concepts could allow us to more eas-
ily understand an English sentence, and map it to a
corresponding code output.

Metafor (Liu and Lieberman, 2005) is a system

193

that uses these ideas, taking a natural language de-
scription as input. As output, the system provides
scaffolding code, that is, the outline for classes and
methods, and only a small amount of actual con-
tent. The code is not immediately executable, but
can help the programmer in getting started.

NaturalJava (Price et al., 2000) is another natural
language programming system that allows users to
create and edit Java programs using English com-
mands. Each sentence in the natural language input
given to the system is mapped to one of 400 man-
ually created case frames, which then extracts the
triggering word and the arguments required for that
frame. The frame can generate a change in the Ab-
stract Syntax Tree (AST), an intermediate represen-
tation of the code, which is turned in Java code later.

This system has a number of problems that we
intend to improve on. Firstly, it can only handle
one action per sentence. Our prototype can detect
multiple verbs in a sentence, and generate code for
each of them. Also, the AST representation Natu-
ralJava uses makes it hard to navigate around a large
amount of code, since only simple movement oper-
ations are available.

Another problem with NaturalJava is that it maps
to specific operations that are included in Java,
rather than more general programming language
concepts. This means that it is not adaptable to
different programming languages. We intend to be
more language-neutral. A user of our system should
not need to look at the underlying code at all, just as
a programmer writing in C does not need to look at
the machine code.

4 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a type-
driven, lexicalised theory of grammar (Steedman,
2000). Each word receives a syntactic category that
defines its predicate-argument relationship with sur-
rounding words. We can see a simple example of
this in Figure 4.

Each word is assigned a category that defines
how it is involved with other words in the sentence.
These relationships are carried out through a num-
ber of rules, such as forward and backward applica-
tion, which can be seen in the example. Additional
rules such as composition and conjuction also al-
low the formalism to easily capture long-range de-
pendencies. This is particularly important for our
system, as the constructions used to describe pro-
gramming instructions often contain non-standard
constituents such as extraction, relativization, and
coordination.

These possiblities result in a large number of

interpretations, as a single word can be assigned
a different category depending on how it is used,
and the words that surround it. However, the ap-
plication of statistical parsing techniques forCCG

have shown that it is capable of performing wide-
coverage parsing at state-of-the-art levels (Clark and
Curran, 2004).

5 English Code Corpus

In order to investigate the way that people would
use English to describe a programming task, we el-
licited responses from programmers, asking them
to describe how they would solve sample tasks.
These tasks included finding the smallest number in
a list, splitting a string on a character and finding
all primes less than 100. The respondents were all
experienced programmers, since computer science
staff were all that were easily available. As a re-
sult of this, they tended to impose typical program-
ming constructs on what they wanted to do, rather
than using a simpler English sentence. For example,
one respondent wroteFor each number in the list
compare to min., whenCompare each number
in the list to the min. is more straightforward. This
demonstrates quite well the way that programming
languages force us to use a specific unnatural syn-
tax, rather than the freer style that a natural language
allows. It also shows that experienced programmers
can supply utterances that are less grammatically
correct and thereforeharder to process than what
novices would be expected to write.

The corpus is comprised of 370 sentences, from
12 different respondents. They range in style quite
significantly, with some using typically procedural
constructs such as loops and ifs (complete with the
non-sensical English statement:end loop in some
cases), while others used a more declarative style.

We have semi-automatically tagged the entire
corpus withCCGcategories (calledsupertags). This
process consisted of running the parser on the cor-
pus, and then manually correcting each parse. Cor-
rections were required in most sentences, as the way
people express programming statements varies sig-
nificantly from sentences found in newspaper text.
An example of this is in Figure 5.

This sentence uses an imperative construction,
beginning with a verb, which is quite different
from declarative sentences found in newspaper text,
and the earlier example in Figure 4. We can also
notice that the final category for the sentence is
S[b]\NP , rather than simply S. Another differ-
ence is in the vocabulary used for programming
tasks, compared to Wall Street Journal (WSJ) text.
We find if, loop, andvariables in the former, and

194

John hit Mary with the bat

N ((S[dcl]\NP)/PP)/NP N PP/NP NP [nb]/N N
<T <T >

NP NP NP
> >

(S[dcl]\NP)/PP PP
>

S[dcl]\NP
<

S

Figure 4: An example CCG derivation

Initialise min variable to zero

((S[b]\NP)/PP)/NP N/N N PP/NP N
> <T

N NP
<T >

NP PP
>

((S[b]\NP)/PP)
>

S[b]\NP

Figure 5: A CCG derivation for an English programming instruction

million, dollars, andexecutives in the latter. Par-
ticular words can also have different grammatical
functions. For example:print is usually a noun in
the WSJ, but mostly a verb while programming.

6 System Architecture
The system architecture and its components are
shown in Figure 6.

Figure 6: The system architechture

Firstly, the user will enter text that will be parsed
by theCCG parser. We then translate the predicate-
argument structure generated by the parser into a
first-order logic representation of DRS predicates.

This gives us a more generic representation of the
sentence, rather than the specific wording chosen by
the user. The final step is to generate the code itself.

Throughout these three phases, we also intend to
use a dialogue system that will interact with the user
in order to resolve ambiguity in their input. For ex-
ample, if the probability with which the parser gives
its output is too low, we may ask the user to con-
firm the main verb or noun. This is especially im-
portant, as we do not intend for the system to be
foolproof, but we do intend that the user should be
able to solve the problems that they encounter, ei-
ther through greater specification or rephrasing.

There are also a number of smaller tasks to be
dealt with, such as anaphora resolution, and GUI
construction. At this current stage though, we have
only dealt with basic functionality.

We will now describe each of the components of
the system in detail. Also, as we progress through
each stage, we will follow the example previously
shown in Figure 5. We will see how the processing
we do manages to begin with this English input, and
eventually output working Python code.

7 Parser

We use theC&C CCG parser (Clark and Curran,
2004) for this first stage of processing. This has the
advantage of being a broad coverage, robust parser,
that is able to extract long range dependancies re-
liably. We also have access to the code, and are
thus able to make changes if needed, and are able to
build new training models. In fact, we found that we

195

did indeed need to train a new model for the parser
as a result of the differences between programming
statements and typical newspaper text, as described
above. If we look at our example sentence, we can
see some of the problems quite well. Figure 7 shows
the parse provided by the original model.

We can see thatInitialise not been identified as
a verb, but is instead tagged as a proper noun.min
is also misclassified as a verb, when it is the noun.
This highlights the fact that the parser does not ex-
pect the first word in a sentence to be a verb. We
could not use this parse and expect to perform ade-
quately in the following stages of the system.

For this reason we created and annotated the En-
glish code corpus, in order to provide training data
and allow us to build a new, and better perform-
ing model. A similar process had been followed in
Question Answering (QA) (Clark et al., 2004), be-
cause questions also show quite different syntactic
properties to newspaper text. This technique pro-
duced a significant improvement for QA, and so we
have reused this idea.

Following Clark et al., we used multiples of the
English corpus, as it is quite small in comparison
to the entire WSJ. These results are shown in Fig-
ure 8, for training with just the WSJ (original), with
the WSJ and the English code corpus (1x code), and
with the WSJ and multiples of the English corpus
(5x, 10x, 20x). We show results for POS tagging
and supertagging, on a word-by-word basis, and
also the proportion of whole lines that are tagged
correctly. We can see that as we add more copies of
the English code corpus, all accuracies continue to
improve.

These results come from both training and testing
on the English corpus, and thus are not completely
rigourous. However, it does demonstrate the data
is fairly consistently annotated. As a fairer compar-
ison, we conducted 10-fold cross validation on the
20x corpus, where each fold contained the 20 copies
of one-tenth of the English code corpus, together
with sentences from sections 2–21 of the WSJ. Each
fold contained lines from throughout the English
corpus and the WSJ. The results show that the ac-
curacies from training with the English code cor-
pus were still significantly greater than the original
model. Finally, with this new model, our example
sentence is parsed correctly, as shown in Figure 5.

8 Semantics

From the syntactic representation of the sentence,
we wish to build a more semantically abstracted ver-
sion of what the user wants to translate into code.
The advantage of this is that we can more readily ex-

%%% Initialise ’min’ variable to zero .

x4 x3 x5 x1 x2
thing(x4)
’min’(x5)
nn(x5,x3)
variable(x3)
initialise(x1)
agent(x1,x4)
patient(x1,x3)
to(x1,x2)
event(x1)

Figure 9: DRS for example sentence

tract the particular verbs and nouns that will become
functions and their arguments respectively. Having
a logical form also means we can apply inference
tools, and thereby detect anomolies in the user’s
descriptions, as well as including other sources of
knowledge into the system.

Theccg2sem system (Bos et al., 2004; Black-
burn and Bos, 2005) performs this task, takingCCG

parse trees as input, and outputting DRS logical
predicates. A single unambiguous reading is always
outputted for each sentence. The DRS for our ex-
ample sentence is shown in Figure 9. We can see
that the verb (x1) is identified by an event predicate,
while the agent (x4) and patient (x3) are also found.
One particular discriminating feature of the imper-
ative sentences that we see, is that the agent has no
representation in the sentence. We can also find the
preposition (x2) attached to the verb, and this be-
comes an additional argument for the function.

This logical form also extracts conditions that
would be found in if statements and loops very well.
Figure 10 shows the DRSs for the sentence:If num
is -1, quit. We can see the proposition DRS (the
middle box) and the proposition itself (x2), which
entails another verb (x3) to be interpreted. That is,
we should carry out the verbquit (x1), if the propo-
sition is true. Almost all if statements in the corpus
are identified in this way.

9 Generation
Having extracted the functional verb and its argu-
ments, we then need to find a mapping onto an
equivalent line of code. The simplest technique,
which the current system uses, consists of a list of
primitives, each of which describes the specific verb
in question as well as a number of arguments. If
the semantic information matches perfectly with a

196

Initialise min variable to zero

N (S[dcl]\NP)/(S[adj]\NP) (S[adj]\NP)/PP PP/NP N
<T

NP
>

PP
>

S[adj]\NP
>

S[dcl]\NP
<

S[dcl]

Figure 7: The original, incorrect CCG derivation

TRAINING DATA COVERAGE POS WORD SUPER WORD POS LINE SUPER L INE
Original model 95.6757% 0.873 0.736 0.359 0.197

1x code 93.2432% 0.975 0.848 0.829 0.510
5x code 85.9459% 0.994 0.931 0.962 0.708
10x code 82.4324% 0.996 0.962 0.975 0.821
20x code 82.7027% 0.998 0.978 0.986 0.889

20x code, 10-fold cross validation 85.40542% 0.974 0.896 0.840 0.624

Figure 8: Parser results

%%% If num is -1 , quit

x6 x1 x2
thing(x6)
quit(x1)
agent(x1,x6)
proposition(x2)
if(x1,x2)

x2:
event(x1)

Figure 10: DRS for if statement

primitive, then the equivalent code is generated. At
present, there exist only a few primitives, shown
in Figure 11. These primitives are made up of the
functional verb, the list of arguments they take, and
a code template that the arguments are used in.

This system obviously has a number of weak-
nesses. Firstly, that if the user chooses a verb that
is not listed in a primitive, then no code can be gen-

erated. Also, some primitives would be described
with the same verb and arguments, but require dif-
ferent code, such as adding two numbers together,
compared to adding one number to a list. This is
similar to operator overloading, a feature present in
a number of programming languages such as C++.

We can make a number of observations that can
help us improve this step in the system. Firstly,
we can reduce the number of possibilities by look-
ing at the program as a whole, rather than as in-
dividual lines. For example, for the second prob-
lem mentioned above, if the user had previously de-
clared that the second argument was a list, then we
would know which of the two primitive operations
was correct. We can also constrain the number of
possibilities by using intuitive notions, such as not
being able to output a previously unseen variable.

Also, we can take advantage of the limited do-
main of programming. Rather than trying to list
every sense of every verb in the English language
together with its equivalent programming concept,
we could create a much smaller set of programming
primitives, and simply map everything onto one of
those. Considering the small number of choices and
the constraints mentioned above, this may be possi-
ble using a machine learning approach.

Of course, we must consider what to do when a
function that is not one of the primitives is referred
to. In such a case, and assuming it can be detected,
we believe the most sensible thing to do is to ask
the user to describe how to carry out such a func-
tion, using the more basic primitive functions that
already exist. Thus we would allow the creation

197

FUNCTIONAL VERB ARGUMENTS CODE TEMPLATE
read input <input> = int(sys.stdin.readline())
print output print <output>
add addAmount, addTo <addTo> += <addAmount>

initialise variable, setting <variable> = <setting>
set variable, setting <variable> = <setting>

assign variable, setting <variable> = <setting>
iterate item, list for <item> in <list>:

Figure 11: Primitives used for generation

of user-defined functions, just as a normal program-
ming language would.

Looking back to our example sentence once
more, we proceed to extract the predicate (initialise)
and argument information (min variable, 0) from
the DRS. This maps to the initialise primitive in Fig-
ure 11. The matching code, stored in the primitive,
then comes out as:

min variable = 0

This is clearly a suitable outcome, and we can say
that for this case, the system has worked perfectly.

10 Future Work
There is a great deal of work still to be done, be-
fore we will have constructed a usable system. We
intend to progress initially by expanding the gener-
ation component to be able to process most of the
commands contained in the English code corpus.
We also expect to do more work with the parser and
semantic engine. For example, if we find that the
coverage or accuracy of the parser is insufficient,
then we can create more data for our corpus, or de-
sign specialised features to help disambiguate cer-
tain word types. Similarly, we may find that some
information is not relevant or simply missing from
the DRSs that are currently produced, in which case
we would be required to extend the current system
so that it can extract what is needed.

Once the three basic components described above
function at a satisfactory level, then we will be-
gin work on other components of the system. The
largest of these is a dialogue component, which
should solve a wide range of problems. These could
include simple questions about the parse for a sen-
tence:

> Blerg the number
Is Blerg a verb?

It could also help in resolving some ambiguity, or
inquire about some missing information.

> Read in 2 numbers

> Add 2 to the number
Which number do you mean?

> Open a file for reading
What is the name of the file?

Anaphora resolution is another problem fre-
quently encountered in the English code corpus we
have collected. As discovered previously in the case
of NLIDBs, having a system capable of dealing with
this phenonemon makes it a great deal easier to use.
For this reason, we intend to implement such a com-
ponent for our final system.

Lastly, we intend to develop a GUI that allows a
user to interact more easily with the system. Inte-
grating the syntactic, semantic and generation com-
ponents, together with a text editor, would allow the
system to highlight certain functions and arguments.
This would make it clearer to the user what the sys-
tem is doing. The dialogue component in particu-
lar would gain a great deal from this, as it could be
made clear what sentence or word was being clari-
fied, as well as the context it was in.

11 Conclusion
Programming is a very complicated task, and any
way in which it can be simplified will be of great
benefit. The system we have outlined and proto-
typed aims to allow a user describe their instructions
in a natural language. For this, a user may be asked
to clarify or rephrase a number of points, but will
not have to corrrect syntax errors as when using a
normal programming language.

Using modern parsing techniques, and a bet-
ter understanding of just how programmers would
write English code, we have built a prototype that
is capable of translating natural language input to
working code. More complicated sentences that de-
scribe typical programming structures, such as if
statements and loops, are also understood. Indeed,
much of the work to be done involves increasing the
coverage of the system in a general manner, so that
it is able to understand a wider variety of user input.
Once we have built a complete system that can make

198

some understanding of almost any input, we expect
it to be usable by novice and experienced program-
mers alike.

Acknowledgements
We would like to thank members of the Language
Technology Research Group and the anonymous re-
viewers for their helpful feedback. This work has
been supported by the Australian Research Council
under Discovery Project DP0453131.

References
I. Androutsopoulos, G.D. Ritchie, and P. Thanisch.

1995. Natural language interfaces to databases–
an introduction.Journal of Language Engineer-
ing, 1(1):29–81.

A. Biermann, B. Ballard, and A. Sigmon. 1983. An
experimental study of natural language program-
ming. International Journal of Man-Machine
Studies, 18:71–87.

P. Blackburn and J. Bos. 2005.Representation and
Inference for Natural Language. A First Course
in Computational Semantics.CSLI Publications.

J. Bos, S. Clark, M. Steedman, J.R. Curran, and
J. Hockenmaier. 2004. Wide-coverage seman-
tic representations from a CCG parser. InPro-
ceedings of the 20th International Conference
on Computational Linguistics (COLING ’04),
Geneva, Switzerland.

S. Clark and J.R. Curran. 2004. Parsing the WSJ
using CCG and log-linear models. InProceed-
ings of the 42nd Meeting of the ACL, Barcelona,
Spain.

S. Clark, M. Steedman, and J.R. Curran. 2004.
Object-extraction and question-parsing using
CCG. InProceedings of the SIGDAT Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP-04), pages 111–118, Barcelona,
Spain.

S.S. Epstein. 1985. Transportable natural language
processing through simplicity – the PRE system.
ACM Transactions on Office Information Sys-
tems, 3:107–120.

R. Frost and J. Launchbury. 1989. Constructing
natural language interpreters in a lazy functional
language.The Computer Journal. Special issue
on lazy functional programming, 32(2):108–121,
April.

N. E. Fuchs and R. Schwitter. 1996. Attempto
controlled English (ACE). InProceedings of the
First International Workshop on Controlled Lan-
guage Applications, pages 124–136.

G. E. Heidorn. 1976. Automatic programming
though natural language dialogue: A survey.

IBM Journal of Research and Development,
20(4):302–313, July.

H. Liu and H. Lieberman. 2004. Toward a pro-
grammatic semantics of natural language. In
Proceedings of VL/HCC’04: the 20th IEEE Sym-
posium on Visual Languages and Human-Centric
Computing, pages 281–282, Rome, September.

H. Liu and H. Lieberman. 2005. Metafor: Visual-
izing stories as code. InProceedings of the ACM
International Conference on Intelligent User In-
terfaces, pages 305–307, San Diego, CA, USA,
January.

J.F. Pane, C.A. Ratanamahatana, and B.A. My-
ers. 2001. Studying the language and struc-
ture in non-programmers’ solutions to program-
ming problems.International Journal of Human-
Computer Studies, 54(2):237–264, February.

J.F. Pane, B.A. Myers, and L.B. Miller. 2002. Us-
ing hci techniques to design a more usable pro-
gramming system. InProceedings of IEEE 2002
Symposia on Human Centric Computing Lan-
guages and Environments (HCC 2002), pages
198–206, Arlington, VA, September.

D. Price, E. Riloff, J. Zachary, and B. Harvey. 2000.
NaturalJava: A natural language interface for
programming in Java. InProceedings of the 2000
International Conference on Intelligent User In-
terfaces, pages 207–211.

M. Steedman. 2000.The Syntactic Process. The
MIT Press, Cambridge, MA.

T. Winograd. 1972.Understanding Natural Lan-
guage. Academic Press.

199

Proceedings of the Australasian Language Technology Workshop 2005, pages 200–206,
Sydney, Australia, December 2005.

Identifying FrameNet Frames for Verbs from a Real-Text Corpus

Matthew HONNIBAL and Tobias HAWKER
Language Technology Research Group

School of Information Technologies
Madsen Building (F09)
University of Sydney
NSW 2006, Australia

{mhonn,toby}@it.usyd.edu.au

Abstract

Previous systems that automatically tag text with
FrameNet labels have been trained from the
FrameNet example data, as there is no FrameNet
annotated corpus. The FrameNet data is systemat-
ically biased by the criteria for the examples’ se-
lection, as annotators attempt to select simple sen-
tences that include the target word.

Instead of using the FrameNet examples, we train
a maximum entropy model classifier to identify verb
frames on text from the Penn Treebank. We use ex-
amples of verbs with only one entry in FrameNet
as training data, and evaluate the system on human
annotated text from the Wall Street Journal. We ac-
curately identify the frame used by 76% of finite
verbs.

We also investigate how well the system performs
on verbs it has not encountered before. This task
examines the feasibility of using the system to auto-
matically extend the coverage of FrameNet by clas-
sifying verbs with no FrameNet entries. The classi-
fier accurately assigns a frame to 55% of instances
of verbs it has not been trained on.

1 Introduction

FrameNet (Ruppenhofer et al., 2005) is a lexical se-
mantic database that categorises words into frames,
and gives extensive examples of their use. A frame
records the semantic type of a predicate and the se-
mantic roles of its arguments. Usually, the predicate
will be a verb, and its roles will be realised by con-
stituents of its clause.

Recently, Senseval-3 (Litowski, 2004) used
FrameNet as the basis of a semantic role labelling
shared task. Participants were asked to replicate the
role labelling of frame elements in the FrameNet
example data given the frame. However, a system
which is trained and evaluated on the FrameNet ex-
amples may not perform comparably on other text.
FrameNet examples are selected by the annotators
to illustrate the semantic and syntactic combinatory
possibilities of each word, with minimal confusion

from irrelevant performance variables and com-
plicated syntactic constructions. They are there-
fore a systematically skewed sample, with much of
the complexity of natural text under-represented or
missing entirely.

The problem is that there is currently no
FrameNet annotated corpus — only four manually
annotated Wall Street Journal texts, recently re-
leased on the FrameNet website. There is, how-
ever, still a way to train a system for a subset of
the FrameNet annotation task on real text without
one. Frame selection is often unambiguous given
a particular verb: currently, 73% of verbs entered
in FrameNet are associated with only one frame.
These verbs head 40% of the finite clauses in the
Penn Treebank (Marcus et al., 1993).

The verb senses associated with a particu-
lar FrameNet frame share similar semantics and
argument structures. For instance, theActiv-
ity finish frame includes the unambiguous verbsfin-
ishandcomplete, and the ambiguous verbconclude,
which is also associated with theComing to believe
frame.

Clearly, these two types ofconcludeare different
word senses, and theActivity finish sense should
be closer to the otherActivity finish verbs than
the Coming to believe sense in a sense taxonomy
like WordNet (Fellbaum, 1998). The two frames
also have different argument structures: theActiv-
ity finish verbs are all transitive, and would usually
require a conscious agent and an event noun object.
TheComing to believe frame verbs, such asascer-
tain and deduce, expect a sentiential complement
instead of a noun phrase object. Such patterns can
be learnt even if the learner has access to examples
using only a few verbs of each frame.

We train a maximum entropy model on the un-
ambiguous clauses in the Penn Treebank, and eval-
uate it on two tasks. First, the FrameNet website
has recently added four human annotated texts from
the Wall Street Journal, which we use as test data.
Second, we hold out the instances of one quarter
of the verbs in FrameNet, in order to evaluate how

200

well the classifier can deal with unknown words.
FrameNet’s lexical coverage is currently quite low,
so a system which can accurately assign frames to
currently unclassified words could be used to auto-
matically extend FrameNet’s vocabulary.

2 Labelling FrameNet predicates
FrameNet is a lexical semantic database that records
the semantic type of a predicate and the seman-
tic roles of its arguments, as well as how they are
realised syntactically. The predicates are usually
verbs, but can also be nouns, adjectives, adverbs or
prepositions. The database is organised intoframes,
which group predicates that share similar semantics
and argument structures.

Full FrameNet annotation involves labelling each
predicate with a frame, and then allocating role la-
bels to the constituents that realise its frame ele-
ments. Verb frame elements are usually realised by
direct arguments of the predicate, such as its subject
and object.

The seminal work on automatic FrameNet an-
notation, Gildea and Jurafsky (2002), and the
Senseval-3 task (Litowski, 2004) after it, both con-
centrate on labelling frame elements given a frame
label. This semantic role labelling task is a sequence
tagging problem, a little like chunk tagging, in terms
of its sequantiality and boundary detection.

We are not aware of any other attempts to identify
frame labels, rather than frame elements. This prob-
lem is rather different, as there will be exactly one
label per frame. We therefore assign labels to each
clause independently, based on the semantics of the
verb and the semantics of its syntactic arguments.
Section 5 discusses how we capture this informa-
tion in our features.

3 FrameNet and WordNet
The current problem with using FrameNet as the ba-
sis of a semantic parser is its coverage. The latest
release of FrameNet, 1.2, has approximately 6,765
lexical entries, covering only 64% of tokens (and
26% of token types) in the Penn Treebank. An-
other potential issue is that annotation is proceed-
ing frame by frame, rather than word by word. This
means that there is no guarantee that existing lexi-
cal entries are complete. For instance, the verboc-
cur belongs only to theEvent frame; its cognition
sense, as in‘the idea never occurred to me’, is un-
documented.

Both of the problems noted above could be cor-
rected — or at least, alleviated — by mapping
FrameNet entries to WordNet senses. WordNet
(Fellbaum, 1998) is a lexical database that focuses

on semantic relations between synonym sets, such
as hyponymy and meronymy, and exhaustively cat-
aloguing all senses of its entries. Unlike FrameNet,
it does not include much detail on argument struc-
ture or type. The two resources are therefore com-
plementary.

Shi and Mihalcea (2005) argue that mapping
the lexical entries in FrameNet to WordNet senses
via VerbNet (Kipper et al., 2000) is a promising
approach to connecting these complementary re-
sources. They map the 2,393 verb intersection of
these three resources, and additionally map another
839 verbs by generalising with WordNet synonymy
and hyponymy. This is a relatively small subset of
the 11,488 verbs entered in WordNet, and only in-
creases the size of FrameNet a little.

However, the mapping does reduce frame ambi-
guity a little in WordNet sense disambiguated text
— of which there is a reasonably sized corpus. We
find that using the mapping Shi and Mihalcea pub-
lish allows us to increase the diversity of verbs in
our training data, which consists of examples of un-
ambiguous verbs, thereby increasing performance.

4 Training Data

We use examples of a limited set of verbs — the
unambiguous ones — to represent each frame. This
allows us to train the system without annotated data.
This approximation rests on several assumptions,
none of which are quite correct. We take a few sim-
ple steps to alleviate the problems they introduce.

First, we assume that the similarities between the
verbs in each frame are strong enough that an ex-
ample of one verb is a reasonable surrogate for an
example of a different verb. In the best case sce-
nario, the two verb senses will have identical se-
mantic and syntactic profiles: those senses will be
interchangeable in all contexts, but one verb will be
polysemous, and the other monosemous.

Second, we assume that using only the unam-
biguous instances will not radically change the dis-
tribution of the classes in the training data. In
the worst case scenario, some frames will have no
monosemous verbs from which to learn, so some
of the classes will be missing entirely in the train-
ing data. The distribution may also be skewed
when a frame has a particularly common unam-
biguous verb, over-representing it significantly. For
instance, the verbbe is associated with only one
frame,Performers and roles. The problem is exac-
erbated by the fact that polysemy is correlated with
the frequency of the word, so most other frequent
verbs will be ambiguous.

Of course,be is not actually monosemous: in

201

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350

U
n

am
b

ig
u

o
u

s
C

la
u

se
s

Verb’s Position in Frequency Rank

With Shi Mapping
Without Shi Mapping

Figure 1: Training data available with and without Shi & Mihalcea’s mapping

WordNet, it has thirteen senses. We assume that the
lexical entries in FrameNet are complete; that when
a verb has only one frame associated with it, there
is only one frame it can use. In reality, FrameNet is
a work in progress, and it is proceeding frame-by-
frame, rather than word-by-word. The annotators
add a frame, populate it with some lexemes, find
examples for them, and describe its semantics and
relations to other frames. They do not ensure that
a given word is associated with every frame it can
use.

Of the three assumptions, this last is the most
troubling — as it makes it difficult to know what the
answer is, not just how it can be predicted. We alle-
viate the other two problems with two measures that
are both designed to increase the variety of verbs we
can train from.

First, we use the FrameNet-WordNet mapping re-
leased by Shi and Mihalcea (2005) and use the Sem-
Cor corpus (Miller et al., 1993), which is a Word-
Net sense disambiguated portion of the Brown cor-
pus (Francis, 1964) as part of our training data. So
our training data includes the WordNet sense of the
verb, and Shi and Mihalcea’s map translates that
into a single frame label. We can then use instances
of that verb as training data, where before it may
have been ambiguous. Figure 1 shows how many
clauses in the Penn Treebank are available for train-
ing for each class with and without Shi and Mihal-
cea’s mapping.

The second way we try to correct for the under-

representation of classes in the training data is to
use an iterative bootstrapping system. We first train
a classifier on the unambiguous instances, and then
use it to predict a class for those whose frame we
are unsure of. When the predicted class is within
the possibilities listed in FrameNet (if there are
any), and the confidence of the prediction is above a
thresholdC, we add the instance to the training data
for the next iteration. Figure 2 shows how many
instances are drawn into the training data at each it-
eration whenC is set to 0.4. Clearly, the number
levels off, so we limit it to six iterations.

5 Feature extraction and selection
A frame is defined by the semantic type of its
predicate and the semantic roles of its arguments.
FrameNet does not allow contextual elements to re-
alise semantic roles. Instead, semantic roles must
be realised by a syntactically local constituent, or
be considered missing (“null instantiation”).

The classifier therefore must have access to some
representation of the semantic type of each con-
stituent in the predicate’s clause, as some of these
will realise the semantic roles which partly define
the frame. Representing the semantics of a whole
constituent is difficult, so we restrict ourselves to
using head words. For instance, if the subject of a
clause is‘those two old electric trains’, we will at-
tempt to represent the semantics of‘trains’ . Some-
times, the grammatical head is not the semantic
head, particularly in‘of ’ expressions like‘a glass

202

 95000

 100000

 105000

 110000

 115000

 120000

 125000

 130000

 135000

 140000

 145000

 150000

 1 2 3 4 5 6 7 8 9 10

T
ra

in
in

g
 In

st
an

ce
s

Iteration

Figure 2: Training instances available per iteration (bootstrapping process)

of wine’. This type of construction is difficult to re-
liably distinguish from uses of‘of ’ like ‘a glass of
the finest crystal’, so we simply accept the imprecis-
sion. We do, however, consider the head of prepo-
sitional phrases to be the head of their component
noun phrase, instead of the preposition. We attempt
to model the semantics of the following clause con-
stituents:

• Main verb

• Logical subject

• Logical object

• Indirect object

• Prepositional phrases

• Adverbial phrases

We represent the semantics of a word using its
WordNet synset and hypernyms. The feature space
consists of a list of WordNet synsets, whose value
is initially the probability that a given constituent’s
head is either a member or hyponym of that synset.

Probabilities allow us to use non-word sense dis-
ambiguated data, by distributing the probability (or
in Bayesian terms, belief) mass amongst the possi-
ble senses of the word. It would be possible to use
a sophisticated word sense disambiguation system
to arrive at these belief scores, but we use a naive
method which simply weights the distribution by

the senses’ frequency ranks, such that the most fre-
quent sense has twice the belief strength of the least
frequent sense. Hypernym belief scores are the sum
of the belief scores of its hyponymys, as shown in
figure 3. So even if a word is sense-ambiguous, it
can have an unambiguous synset amongst its hyper-
nyms, if its senses have one in common. The classi-
fier will therefore favour features corresponding to
more general synsets, because they will usually oc-
cur more frequently and have higher belief scores.

Each constituent type listed above controls its
own section of the feature space, as shown in table
1. There are 152,059 unique synsets in WordNet,
but 335,928 possible features in our feature space.
This is because the same noun synset might be four
distinct features, depending on whether it occurs in
the logical subject, logical object, indirect object or
a prepositional phrase. This replication preserves
the distinction between the different grammatical
functions, so that a clause with an animate subject
and an inanimate object is represented differently
from a clause with an inanimate subject and an an-
imate patient. Compare‘he considered his options’
with ‘the current swept him away’.

Of course, in the examples above, the word‘he’
will have no entry in WordNet at all. Animacy is
one of the most important lexical semantic distinc-
tions, and animate constituents are realised most
commonly by pronouns and proper nouns. To cor-
rect this problem, we supply the “person” synset for
variants of‘he’ and‘she’, as well as‘who’. We con-

203

Syntactic Role Synset Count
Verb 13,508
Log. Subj. 79,689
Dir. Obj. 79,689
Ind. Obj. 79,689
PP Head 79,689
Adverb 3,664
Total 335,928

Table 1: Potential Feature Space Size

sider proper nouns, as distinguished by their Tree-
bank part of speech, to be polysemous: it is not im-
mediately obvious whether they stand for a person,
organisation, country, etc. We therefore supply a
small group of general synsets (“person”, “organi-
sation”, “place”) to represent them.

We reduce the size and complexity of our feature
space by discretising each feature into a boolean
value, and selecting features with the topN infor-
mation gain. The maximum entropy implementa-
tion we are using, Zhang Le’s Maxent Toolkit (Le,
2005), does allow real valued features, but they are
nevertheless unideal with our data. Real valued fea-
tures with non-uniform distributions may interfere
with the parameter estimation algorithm, so we dis-
cretise them into boolean features at the threshold
which maximises their information gain. We then
use the information gain scores to rank the features
and select theN best, thereby reducing the feature
space.

6 Evaluating on unseen verbs

We paid particular attention to how the system
would perform on verbs it had not been trained
with, to explore how well it can deal with unknown
words. Paying individual attention to unknown
words is a familiar strategy in tagging problems, but
to our knowledge has not been applied to FrameNet
labelling tasks.

There are two reasons why unknown words are
even more important for a FrameNet tagger than,
for example, a part-of-speech tagger. First, the vo-
cabulary of FrameNet is quite small, so a tagger
running on natural text will encounter plenty of
them. In the Penn Treebank (Marcus et al., 1993),
only 64% of tokens and 26% of token types have
an entry in FrameNet. Second, assigning labels to
previously unclassified words could be used to ex-
tend FrameNet’s vocabulary semi-automatically, by
manually correcting the tagger’s suggestions.

To evaluate performance on unknown verbs, we
set aside instances of 25% of the verbs in the train-
ing set. This is a tough evaluation measure. First,

Unseen verbs WSJ Data
SemCor Shi 47% 62%
PTB Shi 55% 76%
SemCor no Shi 44% 52%
PTB no Shi 48% 67%
Baseline 27% 40%

Table 2: Results

we already struggle to represent each frame ade-
quately, as section 4 discusses. This problem is ex-
acerbated by holding out a set of the verbs, since
the test set may contain a disproportionate amount
of the verbs associated with a particular frame, leav-
ing few or no instances of that frame in the training
data. Stratifying the held out set so that it contains
roughly 25% of the instances, 25% of the verbs,
and maintains a similar distribution of frames to the
training data has proven difficult.

To alleviate the problem, we allow the early iter-
ations of the classifier access to the test data, only
removing it for the final classifier. This means that
the final classifier has not had access to the test data,
but the system has the opportunity to draw in exam-
ples similar to it from the unclassified data during
the bootstrapping process.

For instance, if all of the unambiguous examples
of the Performers and roles frame use the verbbe,
and be is a test data verb, the training data will
contain no examples from that class, and conse-
quently get every example ofbe wrong. So we at
first allow the system to train on examples ofbe, so
that it can classify ambiguous examples ofPerform-
ers and roles, such as instances of the verbplay. Fi-
nally, instances ofbeare removed before the final it-
eration, so that the final classifier has some instances
of Performers and roles, from verbs likeplay, but
has not been trained on instances ofbe. The classi-
fiers for the earlier iterations just need to be as accu-
rate as possible. We do not need to evaluate them, so
we can provide them the test data to build a better
model. However, we do need to evaluate the final
classifier, so we cannot train it with the test data.

7 Results

Table 2 presents results from different datasets on
our two classification tasks, with and without us-
ing the mapping described by Shi and Mihalcea
(2005). The “WSJ Data” task evaluates our clas-
sifier on four human annotated Wall Street Journal
texts made available on the FrameNet website. This
quantity of text is obviously insufficient for training,
but does make a good test set, after the texts have
been set aside from the rest of the WSJ training data.

204

Figure 3: Belief propagation to hypernyms

The “Unseen verbs” task is the classification of in-
stances of verbs the classifier has not been trained
with, as discussed in section 6 above. Assigning the
most common frame to all examples gives an accu-
racy of 27%, which we use as the baseline in table
2.

As discussed in section 4, using the WordNet
mapping improves the balance of the training data
by making more verbs available for training, so it is
not surprising that there is such a clear improvement
in performance.

The other obvious result is that performance is
better when the classifier is trained on the whole
Penn Treebank, instead of simply the SemCor sub-
set. This indicates that on these tasks, it is worth
having more data even at the cost of more ambigu-
ous feature values. The disparity between the two
datasets is much greater on the Wall Street Journal
test data than on the classification of unseen verbs.
We believe this is because the Penn Treebank train-
ing data includes the rest of the Wall Street Journal
text, while our SemCor data is limited to the inter-
section of the SemCor text and the parsed Brown
section from the Penn Treebank. This intersection
is 31,456 clauses, and contains no newswire text.
The Penn Treebank does not include skeletal parses
of the newswire sections of the Brown corpus be-
cause the Wall Street Journal data amply represents
that genre.

The performance on unseen verbs is relatively
poor, but nevertheless encouraging. Even noisy pre-
diction on this task may reduce the time required for
manual extension of FrameNet’s vocabulary. This
is especially true if only verbs classified with espe-
cially high confidence are considered as candidates
for addition.

The main result we report is the 76% accuracy
identifying verb frames in real text. While there are
no directly comparable results reported in the litera-
ture, this result considerably outperforms the trivial

method of simply assigning frames to verbs when
they are unambiguous, which gives 40% accuracy.
We use this figure as the baseline for comparison.

8 Related Work
This research falls under the broad umbrella of lex-
ical semantics acquisition, such as the work of Pan-
tel and Ravichandran (2004) or Fouvry (2003). The
most pertinent research of this type to our system
comes from the SALSA project(Erk et al., 2003),
which is creating a German frame lexicon and an-
notated corpus. In particular, Erk (2005) uses com-
plement and adjunct heads (in addition to bigram
and trigrams) as features in a naive Bayes classi-
fier to assign frame labels to verbs. She reports
a result of 74% on this task for the SALSA lexi-
con. Because the classification scheme — and in-
deed, its language — is different from ours, this re-
sult is not directly comparable with our own; how-
ever, Erk does compare baseline scores for both the
SALSA projecttask and the equivalent FrameNet
task, finding that the SALSA task’s baseline is con-
siderably lower: assigning each verb its most fre-
quent frame yields 93% accuracy for the labelling
task on the FrameNet example corpus, and only
69% on the SALSA corpus. This reflects the fact
that the SALSA lexicon is more polysemous than
the current release of FrameNet: 4.12 for SALSA,
2.27 for FrameNet. This baseline would be quite
meaningless for our task, as we are testing on unam-
biguous verbs — so our baseline according to Erk’s
method would be 100%.

9 Conclusion
We have reported two results on a novel kind of
task: the assignment of frame labels to text which
was not manually selected for FrameNet annotation.
Despite the lack of obvious training data, our system
achieves 76% accuracy, 55% when the verb is new.

These results support the argument made by Shi

205

and Mihalcea (2005): a comprehensive mapping be-
tween WordNet and FrameNet is both possible and
desirable. A comprehensive mapping will imme-
diately make available a corpus of frame labelled
material, in the form of the SemCor corpus. This
text will also be annotated with syntactic bracketing
and WordNet senses. A useful task for future work
is to investigate how the results from our classifier
might be used to produce such a mapping semi-
automatically. High confidence misclassifications
may also be able to reveal situations where a word
is missing from one or more frames.

For now, we demonstrate that the FrameNet clas-
sification scheme is at least robust enough to per-
form on data that was not used to design it.

10 Acknowledgements
We would like to thank Zhang Le for making the
Maximum Entropy toolkit publicly available. Our
thanks also go to Shi and Mihalcea for releasing
the list of mappings their system produces between
WordNet and FrameNet. Finally we would like to
thank Jon Patrick and James Curran from the Uni-
versity of Sydney for their invaluable insights.

References
K. Erk. 2005. Frame assignment as word sense dis-

ambiguation. InProceedings of IWCS.

K. Erk, A. Kowalski, S. Pad́o, and M. Pinkal. 2003.
Towards a resource for lexical semantics: A large
german corpus with extensive semantic annota-
tion. In Proceedings of ACL-03.

Christiane Fellbaum, editor. 1998.Wordnet: An
Electronic Lexical Database. MIT Press.

Frederik Fouvry. 2003. Lexicon acquisition with
a large-coverage unification-based grammar. In
Proceedings of the 10th Conference of the EACL
(EACL 2003).

W. Francis. 1964. A standard sample of present-day
english for use with digital computers. Report
to the U.S Office of Education on Cooperative
Research Project No. E–007. Brown University,
Providence.

Daniel Gildea and Daniel Jurafsky. 2002. Auto-
matic labeling of semantic roles.Computational
Linguistics, 28(3):245–288.

Karin Kipper, Hoa Trang Dang, and Martha Palmer.
2000. Class-based construction of a verb lexi-
con. InProceedings of the Seventh National Con-
ference on Artificial Intelligence (AAAI-2000).
Austin, Texas.

Zhang Le. 2005. Maximum entropy
modeling toolkit for python and c++.
http://homepages.inf.ed.ac.uk/s0450736/
maxenttoolkit.html.

Kenneth C. Litowski. 2004. Senseval-3 task: Auto-
matic labeling of semantic roles. InSENSEVAL-
3: Third International Workshop on the Evalua-
tion of Systems for the Semantic Analysis of Text,
pages 9–12.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a large
annotated corpus of english: The penn treebank.
Computational Linguistics, 19(2):313–330.

G. A. Miller, C. Leacock, T. Randee, and R. Bunker.
1993. A semantic concordance. InProceedings
of the 3 DARPA Workshop on Human Language
Technology, pages 303–308.

Patrick Pantel and Deepak Ravichandran. 2004. Au-
tomatically labeling semantic classes. InPro-
ceedings of HLT/NAACL-04, pages 321–328.

Josef Ruppenhofer, Michael Ellsworth, Miriam
R. L. Petruck, and Christopher R. Johnson. 2005.
FrameNet: Theory and Practice. Online, avail-
able at http://framenet.icsi.berkeley.edu.

Lei Shi and Rada Mihalcea. 2005. Putting pieces to-
gether: Combining framenet, verbnet and word-
net for robust semantic parsing. In A. Gelbukh,
editor,CICLing 2005, pages 100–111.

206

Proceedings of the Australasian Language Technology Workshop 2005, pages 207–214,
Sydney, Australia, December 2005.

A Distributed Architecture for Interactive Parse Annotation

Baden Hughes
Department of Computer Science

and Software Engineering
The University of Melbourne

Victoria 3010, Australia
badenh@csse.unimelb.edu.au

James Haggerty, Saritha Manickam
Joel Nothman, James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{j.h,jnothman,saritha}@student.usyd.edu.au
james@it.usyd.edu.au

Abstract

In this paper we describe a modular system ar-
chitecture for distributed parse annotation us-
ing interactive correction. This involves inter-
actively adding constraints to an existing parse
until the returned parse is correct. Using a
mixed initiative approach, human annotators in-
teract live with distributed ccg parser servers
through an annotation gui. The examples pre-
sented to each annotator are selected by an ac-
tive learning framework to maximise the value
of the annotated corpus for machine learners.
We report on an initial implementation based
on a distributed workflow architecture.

1 Introduction

Annotating sentences with parse trees is per-
haps the most complex and intensive linguistic
annotation. The time and expense of develop-
ing parsed corpora is almost prohibitive. As a
result there are only a small number of such cor-
pora, including the Penn Treebank (Marcus et
al., 1994), the German TiGer Corpus (Skut et
al., 1997) and more recently the LinGO Red-
woods Treebank (Oepen et al., 2002). These
corpora are also limited in size, typically around
one million words.

Unfortunately, the statistical approaches to
parsing which have been most successful rely
heavily on both the quality and quantity of an-
notated resources. Also, these approaches are
very sensitive to the statistical properties of the
corpus, and so a parser trained on one genre
may perform badly on another (Gildea, 2001).

Another major problem with parsed corpora
is that they must, at least to some extent, fol-
low a particular syntactic theory or formalism.
This is a major difficulty for two reasons: firstly,
it means we need separate annotated corpora
for each formalism; and secondly, it means that
comparing parser evaluations across formalisms
is difficult.

Fully automated conversion of parse trees be-
tween formalisms is difficult because each analy-
ses certain constructs in idiosyncratic ways. An
example is CCGbank (Hockenmaier and Steed-
man, 2002), a treebank of Combinatory Cate-
gorial Grammar (Steedman, 2000) derivations
which were converted semi-automatically from
the Penn Treebank trees. The result still re-
quired laborious editing to produce idiomatic
ccg derivations (Hockenmaier, 2003).

We intend to create a new corpus of ccg
derivations on a wide range of text. We face
three key problems: 1) selecting sentence to an-
notate which creates the most useful corpus for
statistical parsers. 2) maximising the annota-
tor efficiency and minimising error; 3) allowing
distributed annotators to share expertise.

The selection problem is addressed using ac-
tive learning (al). Active learning involves
computing which training instances provide the
most new information to one (or more) machine
learners (Cohn et al., 1995; Dagan and Engel-
son, 1995). The annotators become oracles an-
swering specific queries posed by the learners.

The annotation problem is addressed by in-
teractive correction of the output of our statis-
tical ccg parser. This is similar to the dis-
criminant strategy employed for Redwoods an-
notation (Oepen et al., 2002) but generalises to
grammars where parse enumeration is infeasi-
ble. Annotators interactively add constraints
to the parser which returns the most probable
parse satisfying the constraints.

The distributed expertise problem is ad-
dressed using a workflow manager. Annotators
will be able to add comments and queries to
derivations and have them sent to (potentially
remote) experienced annotators for verification.
The workflow manager will also handle schedul-
ing for the active learning infrastructure.

This paper describes the architecture and ini-
tial implementation of a system which addresses
these problems for distributed parse annotation.

207

The WSJ is a publication that I enjoy reading

NP/N N (S [dcl]\NP)/NP NP/N N (NP\NP)/(S [dcl]/NP) NP (S [dcl]\NP)/(S [ng]\NP) (S [ng]\NP)/NP

Figure 1: Example sentence with ccg lexical categories

2 Related Work

Since annotating parse trees is a significant bot-
tleneck in nlp there have been several attempts
to make the process more efficient. In this
work we exploit two approaches: using choice
points to select the correct parse and using ac-
tive learning to select sentences to parse.

A discriminant is a property that distin-
guishes between a set of interpretations. They
can be designed for linguistic non-experts
(Carter, 1997). In the Redwoods project, the
annotator is presented with discriminants on
the trees themselves which eventually lead to
the correct hpsg parse (Oepen et al., 2002).
These discriminants are calculated from the
enumerated set of all parses. Unfortunately, our
automatically extracted ccg grammar produces
far too many derivations (billions) for enumer-
ation to be feasible.

Baldridge and Osborne (2004) demonstrate
how active learning (al) can be used to signif-
icantly reduce the annotation cost for annotat-
ing text with hpsg parses. They compare ran-
dom selection with approaches based on uncer-
tainty sampling (Cohn et al., 1995) and com-
mittee based sampling (Dagan and Engelson,
1995) and demonstrate a reduction in annota-
tion effort of 72%. A key point that Baldridge
and Osborne identify is that each sentence can-
not be treated as equally difficult to annotate.
Tang et al. (2002) also evaluate al on statisti-
cal parsing and find the total cost of annotation
can be reduced to one third. Finally, Becker et
al. (2005) compares bootstrapping techniques
including al for developing new named entity
corpora.

Formally introduced in Day et al. (1997),
mixed initiative annotation (where the division
of labour between computational facilities and
human effort is coordinated for increased ef-
ficiency) has become an increasingly common
methodology for the preparation of large cor-
pora. Typically however, mixed initiative ap-
proaches have largely decoupled human and ma-
chine effort, even for larger scale tasks.

Extending the mixed initiative model specifi-
cally to a distributed environment, Hughes and
Bird (2003) offer a model for the type of solu-
tion we implement here. Additionally, the ar-

chitecture advocated by Curran (2003) allows
us flexibility in designing individual components
of this system independently, and then mar-
shalling them into a single application instance.

Experiments with distributed NLP tasks of
building n-gram language models (Hughes et
al., 2004a) and generalised textual indexing and
linguistically motivated retrieval (Hughes et al.,
2004b) are broadly indicative of other work in
this area. To date, however we are not aware
of any work in this vein specifically involving
mixed initiative annotation.

3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman,
2000) is a type-driven lexicalized theory of
grammar based on categorial grammar. Al-
most all of the grammatical information in
ccg is represented in the categories assigned to
each word, which are either simple atomic cat-
egories (e.g. NP) or complex functor categories
(e.g. (S [dcl]\NP)/NP a transitive declarative verb).
An example sentence with lexical categories is
shown in Figure 1. These categories are com-
bined together according to a small number of
combinatory rules.

The set of these lexical categories is ob-
tained from CCGbank (Hockenmaier and Steed-
man, 2002; Hockenmaier, 2003), a corpus
of ccg normal-form derivations derived semi-
automatically from the Penn Treebank. The
category set consists of those category types
which occur at least 10 times in sections 2-21
of CCGbank, which results in a set of 409 cate-
gories. Clark and Curran (2004a) demonstrates
that this relatively small set has high coverage
on unseen data and can be used to create a ro-
bust and accurate parser. In order to obtain se-
mantic representations for a particular formal-
ism, only 409 categories have to be annotated.

3.1 CCG Parsing
In our system we are using the c&c ccg parser
(Clark and Curran, 2004b), which uses a log-
linear model over normal-form derivations to se-
lect an analysis. The parser takes a pos tagged
sentence as input with a set of one ore more cat-
egories assigned to each word. A ccg supertag-
ger (Clark and Curran, 2004a) assigns the lexi-

208

cal categories, using a log-linear model to iden-
tify the most probable categories. Clark and
Curran (2004a) show how dynamic use of the
supertagger — starting off with a small number
of categories assigned to each word and gradu-
ally increasing the number until an analysis is
found — can lead to a highly efficient and ro-
bust parser.

The parser uses the cky chart-parsing algo-
rithm from Steedman (2000). The combina-
tory rules used by the parser are functional ap-
plication (forward and backward), generalised
forward composition, backward composition,
generalised backward-crossed composition, and
type raising. There is also a coordination rule
which conjoins categories of the same type.

3.2 CCG Supertagging
Lexicalised grammar formalisms, such as ltag
and ccg, assign one or more syntactic struc-
tures to each word which are then manipulated
by the parser. Supertagging was introduced for
ltag to increase parsing efficiency by reducing
the number of structures assigned to each word
(Bangalore and Joshi, 1999).

The parser model parameters are estimated
using a discriminative method, that is, one
which requires statistics across all incorrect
parses for a sentence as well as the correct parse.
Since an automatically extracted ccg gram-
mar can produce an extremely large number of
parses, the use of a supertagger is crucial in lim-
iting the total number of parses for the training
data to a computationally manageable number.

The supertagger is also crucial for increas-
ing the speed of the parser. We have shown
that spectacular increases in speed can be ob-
tained, without affecting accuracy or coverage,
by tightly integrating the supertagger with the
ccg grammar and parser (Clark and Curran,
2004a). To achieve maximum speed, the su-
pertagger initially assigns only a small num-
ber of ccg categories to each word, and the
parser only requests more categories from the
supertagger if it cannot provide an analysis.
Clark et al. (2004) has demonstrated that an-
notating new data at just the lexical category
level can be enough to significantly improve the
performance of a parser on a new domain.

3.3 Interactive Correction
For a given sentence, the automatically ex-
tracted grammar can produce a very large num-
ber of derivations. Clark and Curran (2004b)
describes how a packed chart can be used to

efficiently represent the derivation space, and
also efficient algorithms for finding the most
probable derivation. Unfortunately, this mas-
sive derivation space means it is not possible to
enumerate all parses, so the discriminant strat-
egy for interactive annotation outlined previous
is infeasible.

We therefore introduce the idea of interactive
correction where the parser is given a number of
constraints by the annotator. Rather than enu-
merate the parse, the process only involves find-
ing the most probable parse that satisfies the
expressed constraints. This can be performed
efficiently as part of the dynamic programming
algorithm which finds the highest probability
derivation.

Given that the ccg categories contain so
much information we expect that it will only
require annotators to constrain the lexical cat-
egories on a few words to reach a correct parse.

4 Example Use Case

The annotation process begins by the annotator
requesting a sentence to annotate. The active
learning component determines which sentence
from a large corpus of raw sentences may pro-
vide the most new information if it were to be
annotated. al can be very computationally in-
tensive process and so will only occur after a
given number of sentences have been annotated.
The al component will return a queue of sen-
tences that then scheduled to be annotated.

The annotator will receive the top sentence on
the queue along with the most probable deriva-
tion for that sentence. They can add the follow-
ing constraints to a given sentence:

force a specific lexical category
ban a current lexical category
ban a current non-leaf category
force a specific chart span
ban a current chart span

Adding one (or more) new constraints will cause
the derivation to be returned which satisfies the
existing and new constraints (if such a deriva-
tion exists). This process continues until the
correct derivation is reached and the parse is
checked in as correct. Once enough new an-
notated sentences have been completed the al
component regenerates a new queue of sentences
based on the retrained statistical parser model.

An alternative case is that the annotator is
not sure about the correct derivation for the sen-
tence. They can then annotate the derivation

209

Visualization
and Analysis

Workflow
Management

Computational
Management

Messaging

Active Learning

Grid

Messaging

User Management

Task Queue

Figure 2: System Architecture

with a comment/question and it will be sched-
uled on the queue for other more experienced
annotators. The experienced annotator will see
the constraints and the comments added by the
original annotator. They can make a decision
or propagate it to some other annotator. Once
a decision has been reached the information is
returned to all annotators. This process is han-
dled by the workflow manager.

5 System Architecture

The system architecture for distributed anno-
tation and parsing with active learning can be
seen in Figure 1. The Visualization and Anal-
ysis module provides the end user interface by
which a human annotator can review and re-
vise the parser output. The actual content ren-
dered by this module is provided by the Work-
flow Management module.

The Workflow Management module has three
main roles: first to interact with the Visualiza-
tion and Analysis, providing parses to be visu-
alised and refined; second to manage the user
and tasks in the process of analysis; and third
to interact with the Computational Manage-
ment module by instantiating the active learn-
ing framework for incremental parsing of the
corpus data, and subsequent grid execution.

The Computational Management module has
two sub-modules. The Active Learning sub-
module allows for incremental application of re-
fined parses as training data for subsequent iter-
ations of the parser. The Grid sub-module han-
dles low level execution including the queuing,
dispatch and execution of analysis tasks, and
fetching the results from the distributed com-
putation environment.

Having described the high level architecture
of the system, we now turn to an in depth dis-
cussion of each of the components in turn.

6 Visualization and Analysis Module

The visualisation gui is implemented in wx-
Python (Dunn, 2005), an extension of the cross-
platform gui toolkit wxWidgets (Smart et al.,
2005) for Python. wxWidgets is particularly no-
table for its use of native graphical components
for a given operating system platform, allowing
the interface a native look and feel when run on
Windows, Mac or Linux environments.

Both the gui and the export to file function-
ality are built on a flexible cross-platform code
base. As can be seen in Figure 3 an initial im-
plementation already succeeds in displaying the
ccg parser output in a user-friendly form simi-
lar to that used by (Steedman, 2000) and widely
adopted as a standard format.

To facilitate the re-use of the rendered parse
tree, our gui uses the ReportLab Toolkit (Rep,
2005) to facilitate export to common vector
graphics formats such as PDF, PostScript, PNG
and SVG. These are useful for inclusion in pub-
lications and presentations.

By using basically the same rendering code,
consistent output is provided to the gui and the
export formats, including plain-text. Each pro-
vides a Canvas object whose role is simply to
provide metric information for displaying text
on that output device, and then to place the
text at given locations. All calculations for po-
sitioning text nodes are done external to the
canvas, so new output formats can easily be sup-
ported. Similarly, if a user selects a change in
font-styling, this is reflected in all graphical ex-
port formats and on-screen.

The graphical interface provides some inter-
activity in order to assist a user in viewing,
manipulating and annotating a parsed sentence
Most importantly, an annotator can change or
constrain the available categories for sentence

210

Figure 3: Screenshot from gui

constituents. As soon as these constraints are
added, they are passed back in real-time to the
Workflow Management module, and the gui is
updated to reflect the results of those changes.
Thus, in almost all cases, correct parses can be
generated without the need for the user to la-
boriously construct an entire derivation.

To simplify the viewing of large parse trees,
a user has the facility to ‘collapse’ chosen sec-
tions of the tree with a simple point-and-click
operation. Hiding most collapsed words from
view and only showing the derived category can
significantly reduce the horizontal and vertical
space occupied by the parse image. This feature
is particularly useful when an annotator needs
to focus on a particular section of a given parse:
once a certain partial derivation is checked, it
may be collapsed and will remain fixed there
through other parse modifications.

Collectively these features should make the
job of annotators far less painful. The graphi-
cal rendering of the ccg parser’s output makes
the incorrect grouping of words obvious, and by
using the parser in collaboration with the user
as described above, annotating a sentence cor-
rectly will usually be a matter of seconds rather
than minutes.

7 Workflow Management Module

The basic workflow of the system is as follows.
Sentences are parsed from a corpus by the ccg

parser on the grid, results being added to re-
view stack. A user logs in and starts a session,
requesting the next review parse. The user re-
views parse, and either confirms parse, or mod-
ifies and submits a revised parse or promotes
the candidate parse to new reviewer. Accepted
parses are sent back to the active learner for
subsequent retraining of the ccg parser.

As mentioned earlier, the Workflow Manage-
ment module has two interfaces: one to the Vi-
sualization and Analysis module, and the other
to the Execution module; as well as an internal
user and task management function. We will
first discuss the latter, before returning to the
interfaces themselves. It is however, important
to note that the workflow here is analytical, as
distinct from computational.

7.1 User Management Sub-module

The user registry allows for the tracking of
user (i.e. annotator) names, together with cor-
responding passwords and user level attributes.
In addition, a log is kept of the activity of each
user, in particular annotation times, which are
useful for monitoring the effectiveness of the in-
teractive correction approach.

7.2 Task Queue Sub-module

The task queue sub-module is basically a parse
review queue contains the list of sentences pend-
ing review together with an user allocation, and

211

a parse/sentence status (pending, reviewed).

7.3 Interface to Visualization and
Analysis

To facilitate communication the Simple Object
Access Protocol (soap) (Gudgin et al., 2003)
has been used to implement a lightweight in-
terface. The soap implementation supports 5
basic functions:

• authenticate user implements a
lightweight user authentication proto-
col based on a username and password;

• submit accepted parse is used when the
current parse and constraints are accept-
able, and is parameterised by the sentence
ID, a parse ID, and the set of constraints
with any associated commentary.

• submit uncertain parse is used when the
current parse is not fully understood by the
user, and a second opinion is required. It
is is parameterised by the sentence ID, a
parse ID, and the set of constraints with
any associated commentary.

• get next parse is the stack retrieval
method, used to retrieve the next parsed
sentence in the individual user queue. It
returns a the next sentence ID, sentence,
parse ID, and set of constraints and associ-
ated commentary.

• get modified parse allows the user to get
a subsequent sentence and parse matching
a revised set of constraints. It takes a parse
ID and a set of constraints.

7.4 Interface to Computational
Management

Again to facilitate communication the Simple
Object Access Protocol (soap) (Gudgin et
al., 2003) has been used to implement a
lightweight interface between the Workflow
Management module and the Computa-
tional Management module. The soap
implementation supports 2 basic func-
tions: submit sentence for parsing and
get next sentence for review.

• submit sentence for parsing is used for
transferring the sentences from the re-
viewed sentences queue to the active learn-
ing framework; and

• get next sentence for review is used for
transferring the parsed sentences from the

active learning framework to the Workflow
Management module

8 Computational Management
Module

As mentioned earlier, the Computational Man-
agement Module consists of two further sub-
modules, one for active learning and the other
for computational grid interaction management.

8.1 Active Learning Sub-Module
Our implementation of active learning involves
a variety of differently parameterised instances
of the ccg parser, with the view that an evalu-
ation of each model will identify the best parse
and constraints for a given sentence.

This module is instantiated based on some
threshold - either time based (e.g. once every
24 hours) or queue based (e.g. when there are
100 modified parses). This asynchronous server
side component allows discontinuity between
the user-centric review process and the compu-
tational impact of large scale re-parsing.

Our active learner uses committee-based sam-
pling (Dagan and Engelson, 1995) using differ-
ing supertagging and parsing statistical models
as committee members. Where there are many
annotation options, the most popular alterna-
tives from the committee will be passed to anno-
tators to help select the correct annotation more
efficiently. This will minimise the cognitive load
of selecting between too many alternatives.

8.2 Grid Sub-Module
The purpose of the Grid component is to man-
age all aspects of interaction with the dis-
tributed computational environment in which
the parser itself is running. The Grid sub-
module handles low level execution including
the queuing, dispatch and execution of analy-
sis tasks, and fetching the results.

The experimental environment is setup with
compute infrastructure in Sydney and in Mel-
bourne. At the Sydney node, the system envi-
ronment is a cluster of 9 dual-cpu Linux ma-
chines running MPI middleware. At the Mel-
bourne node the system environment is a clus-
ter of machines running Linux, managed by
the NorduGrid Advanced Resource Connector
(ARC). On each node, the ccg parser is in-
stalled.

The ccg toolkit is installed on the respective
clusters and simply instantiated by the active
learning framework as threshold boundaries are
reached.

212

The Grid sub module selects the relevant
compute node for execution of the current parse
task. (In the simplest case, perhaps a round
robin approach to selecting the compute facil-
ity for subsequent re-parsing runs would appear
to be sufficient, although for more intensive hu-
man annotation sessions, batch mode parser ex-
ecution with probe-based load measurement is
probably desirable for a scalable and robust im-
plementation). A job description is then cre-
ated specific to the node requirements. The job
is then passed to the head node of the cluster.

9 Discussion

The previous sections describe an architec-
ture for distributed, computationally intensive,
mixed initiative linguistic analysis. We believe
this contribution is notable for a number of rea-
sons including:

• a completely modular systems architecture,
in contrast with tightly bound end-to-end
systems which typically dominate this ap-
plication space;

• coordinated yet distinctly decoupled com-
putational and human effort, allowing both
parties to contribute to the overall effort
with maximum efficiency;

• re-usable, open sourced components which
are sufficiently flexible to allow other inter-
ested parties to build from an established
base, rather than the ground up

• an instantiation of service oriented nlp via
open standards

We are motivated to modularise the overall
system as much as possible to allow maximum
flexibility for future extensions. In particular,
our selection of the ccg parser is relatively arbi-
trary; any parser should be able to be swapped
in for the ccg parser (e.g. an hpsg parser) with
the only overhead being support for paralleli-
sation and an api which can be functionally
mapped to our soap based interface. Corre-
spondingly, we envisage that the gui compo-
nent should be generalised sufficiently to allow
for the rendering of a variety of different parse
tree representations.

10 Status

At the time of writing the status of the compo-
nents required is as follows:

• Visualization and Analysis module

A prototype gui has been implemented
which can render ccg derivations in sev-
eral formats. Lexical categories can now be
modified in the gui and the parse regen-
erated directly with the new constraints.
This does not currently use soap for get-
ting next parse.

• Workflow Management module

The 7 soap methods (5 for Visualization
and Analysis module interface, and 2 for
Computational Management module inter-
face) are implemented as a cgi application
in Python. Basic user and task manage-
ment implemented.

• Computational Management module

The parameterisation and brokering frame-
work for grid execution is deployed in pro-
duction.

Production grids are operational (building
over existing infrastructure) at both Mel-
bourne and Sydney sites. The ccg parser
on these systems; in the Melbourne case,
the active learning framework can be in-
statiated by a web services / SOAP based
interface to NorduGrid’s native job broker-
ing system.

11 Conclusion

We have proposed an architecture for perform-
ing distributed annotation of ccg derivations.
This architecture attempts to solve three key
problems in the efficient preparation of large
scale NLP resources: 1) selecting sentence to
annotate which creates the most useful corpus
for statistical parsers. 2) maximising the anno-
tator efficiency and minimising error; 3) allow-
ing distributed annotators to share expertise.

We have attempted to address these prob-
lems using a combination of machine learning
techniques and grid computing infrastructure.
In particular, Active Learning will identify the
best sentences to annotate; interactive correc-
tion will make the most of our annotators time;
and our workflow manager will allow (even re-
mote) annotators to share their expertise more
effectively.

While our implementation is relatively imma-
ture at this point, we believe the architecture
proposed in this paper, along with the specific
components, will be able to be reused in multi-
ple contexts.

213

Acknowledgements

We would like to thank the anonymous review-
ers for their helpful feedback, and to David
Vadas and Toby Hawker for testing the ccg
gui. This work has been supported by the
Australian Research Council under Discovery
Project DP0453131.

References
Jason Baldridge and Miles Osborne. 2004. Active

learning and the total cost of annotation. In Pro-
ceedings of the EMNLP Conference, pages 9–16,
Barcelona, Spain.

Srinivas Bangalore and Aravind Joshi. 1999. Su-
pertagging: An approach to almost parsing.
Computational Linguistics, 25(2):237–265.

Marcus Becker, Ben Hachey, Beatrice Alex, and
Claire Grover. 2005. Optimising selective sam-
pling for bootstrapping named entity recognition.
In Proc. of the ICML-2005 Workshop on Learning
with Multiple Views.

David Carter. 1997. The treebanker: a tool for
supervised training of parsed corpora. In Proc.
of the Workshop on Computational Environments
for Grammar Development and Language Engi-
neering, Madrid, Spain.

Stephen Clark and James R. Curran. 2004a. The
importance of supertagging for wide-coverage
CCG parsing. In Proc. of the 20th COLING,
pages 282–288, Geneva, Switzerland.

Stephen Clark and James R. Curran. 2004b. Pars-
ing the WSJ using CCG and log-linear models.
In Proceedings of the 42nd Annual Meeting of the
ACL, pages 103–110.

Stephen Clark, Mark Steedman, and James R.
Curran. 2004. Object-extraction and question-
parsing using CCG. In Proc. of the EMNLP Con-
ference, pages 111–118, Barcelona, Spain.

David A. Cohn, Zoubin Ghahramani, and Michael I.
Jordan. 1995. Active learning with statisti-
cal models. In G. Tesauro, D. Touretzky, and
T. Leen, editors, Advances in Neural Informa-
tion Processing Systems, volume 7, pages 705–
712. MIT Press.

James Curran. 2003. Blueprint for a high perfor-
mance nlp infrastructure. In Proc. of the Work-
shop on Software Engineering and Architecture
of Language Technology Systems (SEALTS), Ed-
monton, Canada.

Ido Dagan and Sean P. Engelson. 1995. Committee-
based sampling for training probabilistic classi-
fiers. In Proc. of the ICML, pages 150–157.

David Day, John Aberdeen, Lynette Hirschman,
Robyn Kozierok, Patricia Robinson, and Marc Vi-
lain. 1997. Mixed-initiative development of lan-
guage processing systems. In Proc. of the 5th con-
ference on Applied NLP, pages 348–355.

Robin Dunn. 2005. wxPython toolkit. http://
www.wxpython.org.

Daniel Gildea. 2001. Corpus variation and parser
performance. In Proceedings of the EMNLP Con-
ference, pages 167–202, Pittsburgh, PA.

Martin Gudgin, Marc Hadley, Noah Mendel-
sohn, Jean-Jacques Moreau, and Henrik Frystyk
Nielsen. 2003. SOAP version 1.2 part 1: Messag-
ing framework. http://www.w3.org/TR/2003/
REC-soap12-part1-20030624/.

Julia Hockenmaier and Mark Steedman. 2002. Ac-
quiring compact lexicalized grammars from a
cleaner treebank. In Proceedings of the 3rd LREC
Conference, pages 1974–1981, Las Palmas, Spain.

Julia Hockenmaier. 2003. Data and Models for
Statistical Parsing with Combinatory Categorial
Grammar. Ph.D. thesis, University of Edinburgh.

Baden Hughes and Steven Bird. 2003. Grid-
enabling natural language engineering by stealth.
In Proc. of the Workshop on Software Engineering
and Architecture of Language Technology Systems
(SEALTS), Edmonton, Canada.

Baden Hughes, Steven Bird, Ewan Klein, and Hae-
joong Lee. 2004a. Experiments with data inten-
sive nlp on a computational grid. In Proc. of the
2004 Hong Kong International Workshop on Lan-
guage Technology.

Baden Hughes, Srikumar Venugopal, and Rajkumar
Buyya. 2004b. Grid-based indexing of a newswire
corpus. In Proc. of the 5th IEEE Workshop on
Grid Computing.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1994. Building a large
annotated corpus of English: the Penn Treebank.
Computational Linguistics, 19(2):313–330.

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning, Dan Flickinger, and
Thorsten Brants. 2002. The LinGO Redwoods
Treebank: Motivation and preliminary applica-
tions. In Proceedings of the 19th International
Conference on Computational Linguistics, pages
1253–1257, Taipei, Taiwan.

2005. ReportLab toolkit. http://www.reportlab.
org/rl_toolkit.html.

Wojciech Skut, Brigitte Krenn, Thorsten Brants,
and Hans Uszkoreit. 1997. An annotation scheme
for free word order languages. In Proceedings of
the 5th ACL Conference on Applied NLP, pages
88–95, Washington, DC.

Julian Smart, Kevin Hock, and Stefan Csomor.
2005. Cross-Platform GUI Programming with
wxWidgets. Prentice Hall.

Mark Steedman. 2000. The Syntactic Process. The
MIT Press, Cambridge, MA.

Min Tang, Xiaoqing Luo, and Salim Roukos. 2002.
Active learning for statistical natural language
parsing. In Proc. of the 40th Annual Meeting of
the ACL, pages 120–127, Philadelphia, PA USA.

214

Proceedings of the Australasian Language Technology Workshop 2005, pages 215–223,
Sydney, Australia, December 2005.

Multi-document Summarisation and the PASCAL Textual
Entailment Challenge

Nicola Stokes
NICTA Victoria Laboratory,

Department of Computer Science
and Software Engineering,
University of Melbourne.

nicola.stokes@nicta.com.au

Eamonn Newman
School of Computer Science

and Informatics,
University College Dublin,

Ireland.
eamonn.newman@ucd.ie

Abstract

A fundamental problem for systems that re-
quire natural language understanding capabili-
ties is the identification of instances of semantic
equivalence and paraphrase in text. The PAS-
CAL Recognising Textual Entailment (RTE)
challenge is a recently proposed research ini-
tiative that addressed this problem by provid-
ing an evaluation framework for the develop-
ment of generic “semantic engines” that can be
used to identify language variability in a variety
of applications such as Information Retrieval,
Machine Translation and Question Answering.
This paper discusses the suitability of the RTE
evaluation datasets as a framework for evaluat-
ing the problem of redundancy recognition in
multi-document summarisation, i.e. the iden-
tification of repetitive information across docu-
ments. This paper also reports on the develop-
ment of an additional dataset containing exam-
ples of informationally equivalent sentence pairs
that are typically found in machine generated
summaries. The performance of a competitive
entailment recognition system on this dataset is
also reported.

1 Introduction

The aim of multi–document summarisation
(MDS) is to generate a concise and coherent
summary given a cluster of related documents.
Although this process is a natural extension of
single–document summarisation, MDS poses a
number of unique challenges such as, how to
manage contradictory and repetitive informa-
tion in the cluster, and how to order extracted
information in the resultant summary. A pop-
ular approach to the MDS problem is to first
identify and cluster repetitive information units
across documents, then select representative
sentences from the “dominant” clusters, and
finally generate an extractive summary from
these sentences. This approach assumes, like
many others in text summarisation, that the

repetition of information is an indication of in-
formation importance and consequently sum-
mary relevancy. The simplest method for de-
termining commonality across documents is to
group text units (e.g. sentences, paragraphs)
that exhibit a high concentration of word over-
lap. However, this approximate method for
recognising similar semantic content is often in-
sufficient due to instances of language variabil-
ity such as paraphrase and synonymy. Figure 1
shows two sentences (A and B) that are seman-
tically equivalent but syntactically different.

Text A: Agassi’s dream run is ended by world’s
number one player.
Text B: Federer beats Agassi.

Figure 1: Paraphrases with minimal word over-
lap

In this paper we discuss the suitability of the
recently proposed PASCAL Recognising Tex-
tual Entailment (RTE) challenge (Dagan et al.,
2005a) as an evaluation methodology for deter-
mining the performance of redundant informa-
tion identification techniques in the context of
MDS. The aim of the RTE challenge is to aid the
development of generic “semantic engines” that
can be used in a number of applications such as
Information Retrieval, Information Extraction,
Text Summarisation and Machine Translation.
Two types of language variability were investi-
gated in this year’s challenge: exact paraphrases
and textual entailment or subsumption. The
evaluation was defined as a binary classification
problem where participating systems were re-
quired to identify entailment relationships be-
tween sentence pairs, i.e. a sentence A entails
another sentence B if the meaning of B can be
inferred from the meaning of A (Dagan et al.,
2005b). During the data collection effort for
the challenge, annotators were asked to limit
the number of “difficult” cases of entailment

215

that they included in the dataset. The entail-
ment pairs shown in Figure 2 are representa-
tive of the level of difficulty of the subsumption
relationships found in the data, where entail-
ment, in the majority of cases, requires syntac-
tic matching, and synonym/paraphrase recog-
nition rather than complex logical inference. In
this way techniques that recognise redundant
information in MDS and entailment in the RTE
challenge have a lot in common. This point will
be discussed in more detail in Section 2 of the
paper.

The RTE development and test sets are com-
posed of entailment examples taken from seven
distinct application settings. The ”Compara-
ble Documents” portion of the collection is in-
tended to be representative of the types of
entailment and semantic equivalence found in
multi-document summarisation. In general,
participating systems at the RTE workshop per-
formed significantly better (achieving as high
as 87% accuracy) on this portion of the corpus.
This result suggests that the types of entailment
and semantic equivalence found in MDS are sig-
nificantly less challenging than entailment found
in other application settings. In this paper we
will show that this result is misleading, and that
the difficulty of identifying language variability
in MDS is comparable with the level of diffi-
culty observed in the other application domains
explored by the RTE initiative.

The following section motivates the need for
evaluating sub–tasks in MDS such as redundant
information identification, and provides a brief
overview of the techniques that have been used
to identify language variability in MDS and at
the RTE challenge. Section 3 discusses the RTE
framework in the context of MDS and argues for
the inclusion of additional examples of language
variablity that frequently require identification
in MDS but are not represented in the current
RTE evaluation dataset. Section 5 describes the
University College Dublin (UCD) RTE system,
which detects entailment between sentence pairs
using linguistic and statistical language analy-
sis techniques1. Section 6 discusses the perfor-
mance of this system at the RTE workshop. In
addition, the results of some initial experiments
are provided that support the assertion that the
performance of a competitive RTE system in an
MDS application is comparable with its perfor-

1The author was involved in the development of this
system before moving to the NICTA Victoria Research
Laboratory.

mance in other RTE applications settings. Fi-
nally Section 7, discusses some conclusions and
future directions for this work.

Task=Comparable Documents; Para-
phrase Example; Judgement=TRUE
Text A: Satomi Mitarai died of blood loss.
Text B: Satomi Mitarai bled to death.

Task=Comparable Documents; Textual
Entailment Example; Judgement=TRUE
Text A: The Kota (Fort), or Old City, for ex-
ample, sometimes called the downtown section,
is the central business district and Indonesia’s
financial capital.
Text B: The Kota is the country’s business
center.

Task=Comparable Documents; Syntactic
Variation Example; Judgement=TRUE
Text A: Jakarta floods easily during the rainy
season.
Text B: Jakarta is easily flooded during the
rainy season.

Figure 2: Examples of syntactic variation, para-
phrase and information subsumption in the
RTE dataset

2 MDS and RTE

So why is the RTE challenge an attractive sub–
task evaluation methodology for MDS? Firstly,
identifying semantic relationships and correctly
clustering informationally equivalent sentences
is a critical analysis component in many MDS
systems for the following reasons: if sentences
are incorrectly clustered then the commonal-
ity between the documents is harder to deter-
mine, and redundant (i.e. repetitive) infor-
mation will be included in the summary – an
outcome that summarisation systems want to
avoid at all costs. Secondly, there are inher-
ent limitations with the current summarisation
evaluation standard provided by the Document
Understanding Conference (DUC)2, where both
automatic and manual evaluation strategies are
used to measure summary quality in terms of
coverage, information redundancy, readability,

2DUC is an annual NIST sponsored workshop that
provides participants with summarisation tasks and a
corresponding evaluation framework, i.e. corpora, gold
standard summaries and evaluation metrics.
http://duc.nist.gov

216

coherence and grammaticality. Since its cre-
ation in 2001, the DUC initiative has helped
to ensure that real and transparent progress
is being made in summarisation research; how-
ever, because the DUC evaluation methodology
is determining the performance of many diffi-
cult natural language processing (NLP) com-
ponents concurrently (i.e. semantic analysis,
content selection, sentence ordering and natu-
ral language generation), it is often difficult to
establish which techniques employed by a par-
ticular high performing summarisation system
have contributed most to its overall success.
As such summarisation researchers are recog-
nising the need for distinct evaluation frame-
works for each of these sub-components. For
example, researchers at Columbia University
have separately evaluated their sentence cluster-
ing algorithm, SimFinder, which is employed in
their NewsBlaster summarisation system (McK-
eown et al., 2002). More recently Barzilay and
Lapata (Barzilay and Lapata, 2005) describe
an evaluation methodology for text coherence
techniques, which are commonly used by sum-
marisation systems to improve text readability.
The following subsection provides a flavour of
the Entailment and Semantic Equivalence tech-
niques presented at the PASCAL RTE–2005
challenge, followed by a description of two im-
portant contributions made by Text Summari-
sation researchers in this area.

2.1 Language Variability Recognition
Techniques

The 2005 PASCAL RTE challenge is described
by the organisers as “an initial attempt to form
a generic empirical task that captures major se-
mantic inferences across applications” (Dagan
et al., 2005b). Sixteen groups submitted their
RTE system results to the workshop. The sys-
tems used a broad range of linguistic knowl-
edge resources, statistical association metrics
and logical inference mechanisms. As already
stated, the simplest type of semantic equiva-
lence measure that can be used to identify en-
tailment is a measure of vocabulary overlap.
Consequently, nearly all of the systems at the
workshop considered uni-gram or n-gram over-
lap metrics when classifying entailment. A
number of more sophisticated methods were
also proposed. These measures either used sta-
tistical cooccurrence metrics (e.g. latent seman-
tic indexing), lexical resources for detecting se-
mantic relationships between verbs, nouns, and

adjectives (e.g. WordNet (Millar, 1995)) or a
combination of both. Syntactic–based overlap
measures, which involves calculating the degree
of match between parse tree representations of
the sentence pair, were also popular. A few
groups also incorporated a logical prover with
some additional world knowledge resource such
as a geospatial ontology or a semantic taxon-
omy. Many of the submitted systems, such as
the UCD submission described in the following
section, considered more than just one of these
measures during the entailment recognition pro-
cess. More specifically, these lexical, syntac-
tic, semantic or logical–based inference mea-
sures were used as partial (rather than conclu-
sive) evidence of the presence or absence of an
entailment relationship between two sentences.

Overall the entailment recognition accuracy
(see Section 6 for definition) of the participating
systems at the workshop ranged from 50-60%
where accuracy measures greater than 0.535 and
0.546 are better than chance at the 0.05 and 0.01
level, respectively (Dagan et al., 2005b). The
general conclusion of the workshop was that
relatively simple metrics used in combination
performed better than more complex, “deeper”
metrics such as logical inference or the incorpo-
ration of world knowledge into the classification
computation. An obvious explanation for this
outcome is that deep linguistic analysis meth-
ods are more prone to errors than simple term
overlap metrics due to additional complexities
such as word sense disambiguation.

So how do RTE techniques compare to the
repetitive information detection methods used
by the text summarisation community? Well
as already stated, summarisation researchers
have tended to favour simple similarity metrics
based on the number of shared words. There
are a couple of notable exceptions, however,
which have been investigated by researchers at
Columbia University.

Possibly the most well-known and success-
ful approach to similarity detection in auto-
matic summarisation is the SimFinder (Hatzi-
vassiloglou et al., 2001) algorithm. This al-
gorithm clusters sentences that share thematic
content determined by a set of similarity fea-
tures based on word, stem and Wordnet con-
cept overlap as well as more complex features
that capture match at a syntactic level such
as subject-verb and verb-object relations. The
subsequent clustering of sentences is then per-
formed using a non-hierarchical clustering tech-

217

nique. Representative sentences from these
clusters are then used to generate a summary.

(Barzilay and McKeown, 2005a) describe a
revision strategy for improving the readabil-
ity of the summary output of the SimFinder
algorithm. Their revision system, MultiGen,
searches for semantically equivalent textual
units in the dependency tree graph represen-
tations of the summary sentences. Semanti-
cally similar words and phrases are identified
using the WordNet taxonomy and a paraphrase
dictionary, automatically constructed from par-
allel monolingual corpora. So once an over-
lapping paraphrase has been detected in the
dependency trees this analysis then facilitates
“information fusion”, i.e. the generation of a
single sentence that represents the information
in the overlapping sentences. This text gen-
eration technique has been integrated into the
Columbia NewsBlaster multi–document sum-
marisation system (McKeown et al., 2002).

It is clear from this discussion that the Text
Summarisation community has much to gain
from, and contribute to, the advancement of En-
tailment and Semantic Equivalence recognition
research.

3 RTE and language variability in
MDS

In this section of the paper we comment on the
coverage of the RTE evaluation corpora with re-
spect to the type of real-world examples of se-
mantic equivalence that require detection dur-
ing multi-document summarisation. For the
RTE 2005 challenge two development collec-
tions and one test collection where released to
participants3. In each case, the datasets con-
sisted of an even number of positive and neg-
ative examples of entailment between sentence
pairs. During the development of these datasets
annotators were asked to collect relevant exam-
ples that corresponded to typical success and
failure settings in seven different applications,
i.e. Information Retrieval (IR), Information Ex-
traction (IE), Machine Translation (MT), Ques-
tion Answering (QA), Paraphrase Acquisition
(PP), Reading Comprehension (RC) and Com-
parable Documents–style tasks (CD) such as
multi–document summarisation. A more de-
tailed discussion of the annotation process can
be found in (Dagan et al., 2005b).

3The RTE datasets can be downloaded from:
http://www.pascal-network.org/Challenges/RTE/
Datasets

As already stated, the motivation behind this
paper is to establish whether or not these exam-
ples of language variablity are reflective of the
types of information redundancy found in an
MDS setting. Particularly in the case of the CD
sentence pairs which are reportedly representive
of the MDS task. To answer this question we
considered Mani’s analysis of this problem in
his review of MDS methods, where he defines 4
distinct types of redundancy between text ele-
ments in MDS (Mani, 2001):

1. Two text elements are string identical when
they are exact repetitions, i.e. the same
sentence is repeated in multiple articles.

2. Two text elements are semantically equiv-
alent when they are exact paraphrases of
each other.

3. Two text elements are informationally
equivalent if they are judged by humans to
contain the same information.

4. A text element A informationally subsumes
text element B if the information in ele-
ment B is contained in A.

A manual examination of the RTE datasets
shows that string identity and informational
equivalence are not represented in these col-
lections. Figure 2 provides examples of para-
phrase and informational subsumption, i.e. tex-
tual entailment in the RTE data. The exclu-
sion of string identical examples isn’t consid-
ered critical as the detection of exact repetition
is trivial. However, the lack of Mani’s informa-
tional equivalence type examples is more trou-
blesome. An example of informational equiva-
lence is shown in Figure 3. What differentiates
this example of language variablity from those
in Figure 2, is that the common information
unit is an embedded paraphrase surrounding in
both sentences by additional information. More
specifically, while Text A and B share the infor-
mation unit: “American Airlines laid off flight
attendants”, they also contain additional non-
overlapping information units, i.e. the federal
judge turned aside a union bid to block the job
losses; unions warned travellers to expect long
delays due to protests. From our analysis we
can conclude that examples of exact paraphrase
and entailment are the exception rather than
the rule in MDS and other CD–type applica-
tions. More often than not these systems will be
required to deal with noisier instances of seman-
tic equivalence where sentences repeat embed-

218

Task=MDS; Embedded Paraphrase Ex-
ample; Judgement=TRUE
Text A: American Airlines began laying off
hundreds of flight attendants on Tuesday, after
a federal judge turned aside a union bid to
block the job losses.
Text B: Unions have warned travellers that
they can expect long delays this weekend as
protests begin after American Airlines let a
large number of flight attendants go last week.

Figure 3: An example of informational equiva-
lence and embedded paraphrase

ded information units rather than exhibit com-
plete semantic overlap (i.e. exact paraphrase)
or subsumption.

In MDS, if the system can successfully de-
tect these fuzzier examples of information re-
dundancy it can make an informed decision on
whether to: (a) substituted one sentence for an-
other in the summary without any critical loss
of information or (b) fuse these sentences to-
gether as proposed by (Barzilay and McKeown,
2005a). Sentence fusion would probably be the
most appropriate option in the case of the em-
bedded paraphrase example shown in Figure 3.
With this type of natural language generation
application in mind, it would be beneficial if the
RTE classification task also required systems to
explicitly identify and return the common infor-
mation unit(s) between each sentence pair, i.e.
the system must justify its classification deci-
sion.

4 An MDS-based Informational
Equivalence Dataset

This section describes the development of a
complementary RTE-style corpus of sentence–
pairs that are more reflective of the types
of information redundancy observed during
multi-document summarisation.4. Annotators
were asked to use Columbia’s online News-
Blaster summarisation system5 (a consistent
top-performer at the annual DUC summarisa-
tion evaluation workshop) to aquire relevant
sentence pairs. This curation strategy was em-
ployed to ensure that the MDS dataset was rep-

4The MDS corpus can be downloaded from:
http://www.cs.mu.oz.au/~nstokes/TE/MDS_corpus_
1.0.xml

5The NewsBlaster summarisation system:
http://newsblaster.cs.columbia.edu

resentive of the types of informational equiv-
alence that are problematic in MDS. A subse-
quent analysis of the official DUC summary sub-
missions to the multi-document summarisation
task defined for the 2004 challenge (i.e. DUC
task 2) indicates that these NewsBlaster ex-
amples are consistent with the types of repet-
itive information that were missed by sentence
clustering strategies employed by other top per-
forming summarisation systems at the work-
shop.

In line with the task-specific subsets in the
RTE collection, the MDS dataset consists of 100
sentence pairs: 50 positive and 50 negative in-
stances of informational equivalence. Figure 4
shows an example of each classification type. In
the previous section it was explained that in or-
der for a sentence pair to be tagged as a positive
instance of informational equivalence it had to
share an information unit; however, no formal
definition of what constitutes such as unit was
provided. The formulation of such a definition
is a challenge in itself, and is currently receiving
significant attention from the Text Summari-
sation community in the context of summari-
sation evaluation (Nenkova and Passonneau,
2004; Amigo, 2004). In the context of this task,
an information unit is defined as a unit of text
that contains at least one subject-verb relation-
ship, (i.e. a noun phrase like “Air France Flight
358” is not a large enough information unit but
“Air France Flight 358 crashed” is). In addition,
when choosing these examples annotators were
asked to be mindful of the underlying classifi-
cation task in the context of a summarisation
application, i.e. would the inclusion of both
sentences result in unnecessary repetition in a
summary. Any disagreement between annota-
tor regarding the classification of certain pairs
was discussed and resolved before experimenta-
tion on the corpus began.

From the MDS examples in Figure 4 it can
also be seen that these sentences often make
reference to vague temporal expressions such as
“deadline...set for Monday” and “Monday dead-
line”. In order to ground these temporal refer-
ences to points in time the full text of the orig-
inal source document would need to be anal-
ysed. However, temporal resolution is not nec-
essary in this classification task since examples
were carefully chosen to ensure that if an event
(such as a “suicide bomb attack”) is mentioned
in both sentences, then the system can assume
that this information unit is referring to the

219

same instance of the event in time.

Task=MDS; Pair Id=4; Judge-
ment=TRUE;
Text A: The United States ratcheted up its
pressure Saturday on Iraqi negotiators who are
trying to meet a deadline for writing a draft
constitution set for Monday.
Text B: With Iraq’s parliament facing a Monday
deadline to approve a new constitution, Presi-
dent Bush said Saturday that the document “is
a critical step on the path to Iraqi self-reliance”.

Task=MDS; Pair Id=62; Judge-
ment=FALSE;
Text A: Discovery was loaded with nearly 7,000
pounds of garbage that had accumulated in
the space station since it was last visited by a
shuttle in December 2002.
Text B: The Discovery crew spent nine of their
first 13 days in orbit transferring supplies to
the space station.

Figure 4: Pair 4 and Pair 62 are examples of
positive and negative informational equivalence
in the MDS dataset.

With regard to the negative examples of in-
formation overlap in the MDS corpus, sentence
pairs were picked from summaries that con-
tained some word overlap, but which would still
be considered unique information contributors
to a summary. This helped to ensure that these
negative sentence pairs were non–trivial.

During the creation of this corpus a num-
ber of examples of “contradiction” (i.e. con-
flicting news reports on the details of a specific
event) between potential informationally equiv-
alent sentence pairs were found. Although these
examples represent another important problem
in MDS, they were not included in the final ver-
sion of the corpus because they frequently oc-
cur in the RTE challenge datasets in the form of
negative entailment examples as shown in Fig-
ure 5.

In the following sections we describe the UCD
RTE system, and compare its performance on
the MDS dataset to its performance on the RTE
test set. As already stated, this experiment is
used to investigate our claim that the CD task
data in the RTE challenge is unrepresentative
of language variability in MDS.

Task=Comparable Documents; Judge-
ment=False;
Text A: Jennifer Hawkins is the 21-year-old
beauty queen from Australia.
Text B: Jennifer Hawkins is Australia’s 20-
year-old beauty queen.

Figure 5: An example of contradiction in the
RTE data collection.

5 The UCD Textual Entailment
Recognition System

In this section, we present an overview of the
UCD Textual Entailment Recognition system,
which was originally presented at the PASCAL
RTE workshop (Newman et al., 2005). This
system uses a decision tree classifier to detect
an entailment relationship between pairs of sen-
tences that are represented using a number of
difference features such as lexical, semantic and
grammatical attributes of nouns, verbs and ad-
jectives. This entailment classifier was gener-
ated from the RTE training data using the C5.0
machine learning algorithm (Quinlan, 1993).
The features used to train and test the classi-
fier were calculated using the following similar-
ity measures:

• The ROUGE (Recall–Oriented Understudy
for Gisting Evaluation) (Lin and Hovy,
2004) n-gram overlap metrics, which have
been used as a means of evaluating sum-
mary quality at the DUC summarisation
workshop. The Rouge package provides
measurement options such as uni-gram, bi-
gram, tri-gram and 4-gram term overlap,
and a weighted and unweighted longest
common subsequence overlap measure.

• The Cosine Similarity metric calculates the
cosine of the angle between the respective
term vectors of the sentence pair.

• The Hirst–St-Onge WordNet–based mea-
sure (Millar, 1995), is an edge counting
metric that estimates the semantic dis-
tance between words by counting the num-
ber of relational links between them in
the WordNet taxonomy (Budanitsky and
Hirst, 2001). This metric also defines con-
straints on the length of the path and the
types of transitive relationships that are
allowed between concepts (nodes) in the
taxonomy. These constraints are impor-
tant because unlike other WordNet–based

220

semantic relatedness measures (which only
consider IS–A relationships) the Hirst–St
Onge metric searches for paths that tra-
verse the IS–A and HAS–A hierarchies in
the noun taxonomy. Hence, this metric
provides better coverage at an increased
risk of detecting spurious relationships if
unrestricted paths were allowed between
concepts. This feature was implemented
using the Perl Wordnet Similarity modules
developed by (Patwardhan et al., 2003).

• A verb–specific semantic overlap met-
ric, that uses the VerbOcean semantic
network (Chklovski and Pantel, 2004b;
Chklovski and Pantel, 2004a) to identify
instances of antonymy and near-synonym
between verbs. The relationships between
verb–pairs in VerbOcean were gleaned from
the web using lexico–syntactic patterns.
Although WordNet provides a verb taxon-
omy, the VerbOcean data was used because
it appears to provide better coverage of the
types of relationships needed for detecting
entailment.

• A Latent Semantic Indexing (Deerwester
et al., 1990) measure, like the WordNet
measure, attempts to calculated similarity
beyond vocabulary overlap by identifying
latent relationships between words though
the analysis of cooccurrence statistics in an
auxiliary news corpus.

• The final similarity measure is based on
a more thorough examination of verb se-
mantics. This measure finds the longest
common subsequence in the sentence–pair,
and then detects evidence of contradiction
or entailment in the subsequence (such as
verb negation, synonymy, near-synonymy,
and antonymy) using the VerbOcean tax-
onomy. An example is shown in Figure 6.

A more detailed description of the UCD
system can be found in (Newman et al., 2005).

6 Language Variability Recognition
Experiments and Results

This section of the paper reports on the perfor-
mance of the UCD RTE system on the RTE and
MDS datasets. The RTE challenge defined two
evaluation metrics:

• An accuracy score which is calculated as
the number of correctly classified sentence

pairs (positive and negative) returned by
the system divided by the number of sen-
tence pairs in the dataset.

• A confidence-weighted score (CWS) that
ranges between 0 (no correct judgements at
all) and 1 (perfect score), and rewards the
system when it assigns a higher confidence
score to correct judgements rather than to
incorrect ones.

Task=Paraphrase Acquisition; Judge-
ment=FALSE
Text A: France on Saturday flew a planeload
of United Nations aid into eastern Chad where
French soldiers prepared to deploy from their
base in Abeche towards the border with Su-
dan’s Darfur region.

Text B:France on Saturday crashed a planeload
of United Nations aid into eastern Chad

Figure 6: The Longest Common Subsequence is
highlighted in italics.

The UCD RTE and MDS results are shown
in Table 1. The entailment classifier in the
MDS and RTE experiments was trained using
the RTE corpus training sets (dev1 and dev2).
The average accuracy and CWS scores (0.565
and 0.6 respectively), and the task results listed
below this row in the table represent the official
UCD results reported at the RTE 2005 work-
shop. A manual analysis of these results showed
that many of the misclassified errors made by
the UCD system could be attributed to the oc-
currence of equivalence phrasal and composi-
tional paraphrases e.g. “X invented Y” = “Y
was incubated in the mind of X”. As explained
in Section 5 the system can only identify word–
level, atomic paraphrase units (e.g., child = kid;
eat = devour) that are defined in the VerbO-
cean and WordNet lexical resources. A more
detailed discussion of system misclassifications
is provided in (Newman et al., 2005).

Out of 16 groups UCD’s average accuracy and
CWS scores were ranked 4th and 5th respec-
tively, where system accuracy results ranged
from 0.586 to 0.495 and CWS scores from 0.686
to 0.507. In general, systems performed signif-
icantly better on the CD entailment examples,
and for many it was this score that added some
respectability to their average accuracy score.
The most plausible explanation for these high
CD scores (as high as 87% accuracy), accord-

221

ing to (Dagan et al., 2005b), is that vocabu-
lary overlap metrics performed very well on this
task because sentence pairs containing common
terms were more likely to have the same mean-
ings than in the other tasks. This implies that
MDS systems need nothing more than vocabu-
lary overlap metrics, and that the negative ef-
fect of errors from this component of an MDS
system is minimal. However, a comparison of
the UCD system results on the CD and MDS
language variablity examples suggests that re-
dundant information detection is as difficult as
the other tasks investigated, and that further
research effort is also required in this area.

Task Accuracy CWS
MDS 0.5400 0.6006
RTE Average 0.5650 0.6000
CD 0.7400 0.7764
IE 0.4917 0.5260
IR 0.5444 0.6130
PP 0.5600 0.5006
MT 0.5083 0.5130
QA 0.5385 0.5006
RC 0.5286 0.5685

Table 1: RTE and MDS Accuracy and CWS
results for the UCD entailment classifier.

7 Conclusions

This paper evaluates the RTE challenge as
a potential evaluation framework for compar-
ing the performance of redundant information
recognition strategies used in multi–document
summarisation (MDS) to detect informational
equivalence across documents. Most MDS sys-
tems use simple word counts to identify repet-
itive information. The problem with this ap-
proach is that many sentences that convey the
same information show little surface resem-
blance due to linguistic phenomenon such as
paraphrase and synonymy. The RTE challenge
provides an opportunity for summarisation re-
searchers to evaluate more sophisticate redun-
dancy identification techniques independent of
the summarisation task. However, an analysis
of the RTE development and test sets show that
this data is not representative of the types of in-
formational equivalence that require detection
during the MDS process. More specifically, al-
though subsumption relationships are a natu-
ral occurrence in applications such as Question
Answering and Information Retrieval (where
the answer/relevant document will always en-

tails the question/query) this is not the case
for Comparable Documents-style tasks. The
results of an experiment on a complementary
dataset of MDS informational equivalence ex-
amples using a competitive RTE system showed
that identifying redundancy in MDS is more
challenging than the results on the Comparable
Documents portion of the RTE test set would
suggest. Consequently, if the ultimate aim of
the PASCAL RTE challenge is to build “generic
semantic engines” then future evaluations will
also have to consider the identification of em-
bedded (semantic and syntactic) paraphrases
across sentences.

An obvious extention of this work would be
to incorporate the UCD RTE system into an
MDS system, and compare its effect on sum-
mary performance against a baseline semantic
equivalence measure such as cosine similarity.
It would also be interesting to further investi-
gate how well the RTE evaluation framework
simulates the process of identifying repetitive
information in MDS and other applications. In
a paper by Barzilay and Elhadad (2003), on
sentence alignment for monolingual comparable
corpora, it was shown that the effectiveness of
the alignment process increased when the con-
text surrounding sentences was also considered.
This conclusion suggests that future RTE eval-
uations should also consider evaluating the role
of context in the entailment detection process,
where additional context is provided by the doc-
ument in which the sentence occurred.

8 Acknowledgements

The support of Enterprise Ireland and NICTA
(National ICT Australia) is gratefully acknowl-
edged.

References

E. Amigo. 2004. An empirical study of informa-
tion synthesis tasks. In Association for Com-
putational Linguistics (ACL’04).

R. Barzilay and N. Elhadad. 2003. Sentence
alignment for monolingual comparable cor-
pora. In Empirical Methods in Natural Lan-
guage Processing (EMNLP’03).

R. Barzilay and M. Lapata. 2005. Modeling
local coherence: An entity-based approach.
In Association for Computational Linguistics
(ACL’05).

R. Barzilay and K. McKeown. 2005a. Sentence

222

fusion for multidocument news summariza-
tion. Computational Linguistics, 31(3).

A. Budanitsky and G. Hirst. 2001. Seman-
tic distance in WordNet: An experimental,
application-oriented evaluation of five mea-
sures. In the Workshop on WordNet and
Other Lexical Resources, NAACL’01.

T. Chklovski and P. Pantel. 2004a. Global
path-based refinement of noisy graphs applied
to verb semantics. In the International Joint
Conference on NLP (IJCNLP-05), pages 11–
13.

T. Chklovski and P. Pantel. 2004b. VerbO-
cean: Mining the web for fine–grained seman-
tic verb relations. In Empirical Methods in
Natural Language Processing (EMNLP-04).

I. Dagan, O. Glickman, and B. Magnini (eds).
2005a. In the PASCAL Recognising Textual
Entailment Challenge Workshop, April 11th-
13th 2005, Southampton, UK.

I. Dagan, O. Glickman, and B. Magnini. 2005b.
The PASCAL recognising textual entailment
challenge. In the PASCAL Recognising Tex-
tual Entailment Challenge Workshop 2005,
pages 1–8.

S. Deerwester, S. Dumais, G. Furnas, T. Lan-
dauer, and R. Harshman. 1990. Indexing
by Latent Semantic Analysis. Journal of the
American Society for Information Science.

V. Hatzivassiloglou, J. Klavans, M. Holcombe,
R. Barzilay, Min-Yen Kan, and K. McKeown.
2001. SimFinder: A flexible clustering tool
for summarization. In the Workshop on Au-
tomatic Summarization, NAACL-01.

C.-Y. Lin and E. Hovy. 2004. Automatic
evaluation of summaries using n-gram co–
occurence statistics. In the Document Under-
standing Conference (DUC’04), National In-
stitute of Standards and Technology.

I Mani. 2001. Automatic Summarization. John
Benjamins (Natural language processing se-
ries, edited by Ruslan Mitkov, volume 3),
Amsterdam.

K. McKeown, R. Barzilay, D. Evans, V. Hatzi-
vassiloglou, J. Klavans, A. Nenkova, C. Sable,
B. Schiffman, and S. Sigelman. 2002. Track-
ing and summarizing news on a daily basis
with Columbia’s Newsblaster. In the Human
Language Technology Conference (HLT’02).

G. Millar. 1995. WordNet: a lexical database
for english. Communications of the ACM,
38(11):39–41.

A. Nenkova and R. Passonneau. 2004. Evaluat-

ing content selection in summarization: The
Pyramid Method. In HLT–NAACL’04.

E. Newman, N. Stokes, J. Dunnion, and
J. Carthy. 2005. UCD IIRG approach to the
Textual Entailment Challenge. In the PAS-
CAL Recognising Textual Entailment Chal-
lenge Workshop, pages 53–56.

S. Patwardhan, J. Michelizzi, S. Banerjee, and
T. Pedersen. 2003. WordNet::Similarity
Perl Module http://search.cpan.org/
dist/wordnet-similarity/lib/wordnet/
similarity.%pm.

J.R. Quinlan. 1993. C5.0 machine learning al-
gorithm. http://www.rulequest.com.

223

Proceedings of the Australasian Language Technology Workshop 2005, pages 224–232,
Sydney, Australia, December 2005.

Design and development of a speech-driven control for an in-car personal
navigation system

Ying Su, Tao Bai, and Catherine I. Watson
Department of Electrical and Computer Engineering

University of Auckland, Auckland, New Zealand
c.watson@auckland.ac.nz

Abstract

The paper outlines the development and
design of a speech driven control for a
personal in-car navigation system which runs
on a standard Pocket PC. The modified system
enables speech driven menu navigation,
speech shortcut commands and interactive
dialogues. The speech recognition method is
presented, sources of inaccurate recognition
are identified, and solutions are presented.
Speech recognition accuracies of 96% and
88%, depending on the task, are achieved in
an in-car environment. One draw back is the
time taken to perform the recognition. The
speech driven control module which interfaces
with the in-car navigator is designed to be
flexible. These features are discussed.

1 Introduction

This paper presents the design and development
of a proto-type speech-driven control for a
personal in-car navigation system. The navigation
system is currently on the market, it is an as
automatic navigation software application
integrated into a Pocket PC operating environment.
Like most software applications on a Personal
Digital Assistance (PDA), it requires manual user
control via the hardware interface of the device,
which consists of the touch screen. This has
obvious limitations for in-car use, and a hand-free
speech driven solution to control the navigator is
being investigated.

With the navigation system, the user is able to
access automatically extracted map information,
GPS localization, and navigation instructions via a
graphical interface (GUI). The application also
performs analysis of the trip and automatic routing
to the destination address entered by the user,
which helps improve the efficiency of travelling.
Besides the navigation features, the application

also allows the user to customize the preference
settings using the menus as part of the GUI.

In order to develop a prototype solution to
enable speech-driven control for the in-car
navigation system (hence forth called the Drive
Router) there were two major functionality
requirements; 1. the acquisition and recognition of
user speech signals, and 2. the controlling the in-
car navigation system according to the recognized
speech commands. The control features specified
in this prototype were speech-driven menu
navigation, speech shortcut commands, and
interactive dialogs.

The menu navigation feature allows the user to
navigate through the different menus and
preference setting screens of the GUI of the Drive
Router by saying the names of the buttons on the
GUI. The shortcut command triggers a transition
that normally requires a series of GUI control
actions. For example when the application is
displaying the map screen, upon the recognition of
the phrase “GPS status”, the GPS status screen will
appear, this originally required the user to navigate
through two menus to get it. Interactive dialog
provides an efficient way for complex information
retrieval. In this prototype, it is used to retrieve a
destination address from the user.

These three features cover a relatively broad
range of speech-driven control on the Drive Router
system, as well as forming a foundation for further
development. Since the features are targeting
users, it is required that usability is taken into
account when developing the features. The
solution must be operational in the operating
environment of the Drive Router, which is a
standard Pocket PC with an integrated microphone.
A Hewlett-Packard IPAQ h2200 Pocket PC
(henceforth the HP Pocket PC) running the
Microsoft Pocket PC 2003 Premium Operating
System is used as the platform for the
implementation.

224

2 Speech acquisition and recognition

2.1 Embedded speech recognition system

A large amount of effort has been gone into the
development of robust speech recognition
solutions. However, most solutions are designed
to operate on a PC based platform. The Driver
Router, runs on a pocket PC and is in an
embedded system. An embedded system is one
that has CPU and is programmable but is not a
general-purpose Personal Computer. Few speech
recognition solutions are suitable for an embedded
environment due to the limited amount of memory
and computation power. Typically, embedded
system does not have large enough hardware
capacity to process large recognition vocabulary
[1] and store statistical parameters [2]. Other
limitations specific to speech related applications
include poor speech acquisition, mainly due to the
quality of the microphone, and internal noise
generated within the device. The quality of the
received speech signal directly affects the
recognition accuracy.

Some embedded speech recognition solutions,
such as the IBM personal speech assistant [3],
require additional hardware support to overcome
the constraints. Some others, such as the one
mentioned in [4], make use of wireless
communication to delegate the responsibility of
recognition processing to more powerful remote
servers. Within the scope of this project, the
Driver Router is designed to operate in a standard
Pocket PC with no extra hardware or remote
server support. Thus an embedded speech
recognition solution developed in software is
desired. Among the few speech recognition
software solutions available for embedded systems,
the ScanSoft Automatic Speech Recognition (ASR)
Embedded Development System (EDS) is used for
experimental and evaluation purposes in the
development of the prototype.

2.2 The ScanSoft ASR system

The ScanSoft ASR EDS is designed for the
development of software based speech enabled
features into Windows based applications. In
particular, it can be incorporated into a Microsoft
Windows CE environment, which the Microsoft
Pocket PC operating system is configured upon.

The speech acquisition and recognition system
recommended by [5] (see Figure 1) comprised of

two major components, which are the AudioIn
driver and the Vocon3200 Speech Recognition
Engine. These components can be developed and
configured using the Application Programming
Interfaces (APIs) provided in the package, which
are a range of functions in the C++ programming
language, allowing the developer to construct and
configure different modules of the system.

Configuration Modules Recognition Thread

Results
Recogniser

Spelled-word
Post Processor

AudioIn Thread

Speech Signal

Windows Multi-Media Library

Audio Input Hardware

Context

Grammar

Output
ModulesGrapheme

to
Phoneme

Configuration Modules Recognition Thread

Results
Recogniser

Spelled-word
Post Processor

AudioIn Thread

Speech Signal

Windows Multi-Media Library

Audio Input Hardware

Context

Grammar

Output
ModulesGrapheme

to
Phoneme

 Figure 1: Speech acquisition and recognition
using the ScanSoft ASR EDS. Produced based on

[5] and [6].

The AudioIn driver is in charge of streaming
analogue audio signals from the audio input
hardware and supplying the samples of the signals
to the recognition thread of the Vocon3200 Speech
recognition Engine.

The engine performs recognition on 16-bit
digital speech signal samples taken at a sampling
frequency of 16 kHz. The engine performs
continuous recognition. The speech signal is
recognized against a limited set of commands, each
specified as a vocabulary item in text and
converted to a phonetic transcription. The spoken
command vocabulary and the grammar rules can
be specified in the text grammar file. The phonetic
transcriptions of the text commands can then be
generated by a Grapheme to Phoneme object,
which utilizes a language model for the conversion
rules. The language model used is the standard
American English Model.

 The phonetic transcriptions are then loaded into
the context. On detection of the end of a spoken
phrase, the signal is recognized with consultation
to the context. The recognition algorithm is based
on Hidden Markov Models [7]. With these models,
each phoneme in a phonetic transcription is
associated with a probability distribution. By
analyzing an utterance, the transcriptions with
higher probability of matching the actual speech
can be found and separated from the less probable

225

ones. The recognition results generated on one
utterance are the text vocabulary items associated
with the most probable phonetic transcriptions
selected by the Hidden Markov Model. Each result
is also assigned a confidence level or confidence
score, which indicates the likelihood of the match
of result. The results with confidence levels above
the Acceptance Threshold, which is defined by the
developer, are then ready to be used by the
consumer of the results. ScanSoft [5] claims that
since the engine performs phoneme-based
recognition and works with a standard language
model to generate the phonetic transcriptions, it is
able to perform speaker independent recognition
without any training from the user.

The package also allows special development to
perform recognition on spelling. Recognition by
spelling imposes a big challenge because the
utterance for a single letter is short and likely to be
similar to other letters, hence leading to incorrect
spelling recognition. The Spelled-word Post-
Processor can be constructed using the package to
improve spelling recognition accuracy. After the
recognition engine is configured with a spelled-
word specific grammar, a sequence of intermediate
recognition results generated by the recognition
thread can be fed into the post-processor. Each
intermediate result corresponds to a character in
the spelling and its confidence level. The post-
processor then analyzes the results against a
limited set of possible spelling defined in a data
structure, namely a “spell tree”, and produces the
final recognition results, which contains the
possible spelled words, each with a corresponding
error score.

2.3 Accuracy testing

2.3.1 Testing and results
A Pocket PC based test application was

developed to facilitate testing of the performance
of speech acquisition and recognition system
developed using the ScanSoft package in the actual
operating environment of the Drive Router. The
AudioIn driver and the recognition engine were
incorporated in the test application, which was
then run on a HP Pocket PC, equipped with an
integrated microphone. The recognition accuracy
is tested in both a laboratory acoustic environment,
with a Signal-to-Noise Ratio (SNR) of 49 dB, and
an in-car environment, with a SNR of 21 dB. To

simulate the normal operating environment of the
Drive Router, the in-car acoustic environment is
setup with the Pocket PC placed 70cm away from
the user. The noise in the environment mainly
consists of engine noise and traffic noise.

Two sets of vocabularies are used in the spoken
word accuracy testing, one set being 200 words
randomly chosen from an English dictionary, the
other being 40 spoken commands to be used during
the operation of the Drive Router, including all
menu navigation and shortcut commands
developed in this prototype. To test the spelled
word recognition accuracy 100 words were spelt
and matched to a spell tree consisting of 10000
road names in the Auckland region. The test
results are summarised in Table 1. The results of
special interests are the accuracy for recognizing
the 40 speech commands and the spelled road
names in the in-car environment, which are 89%
and 80% respectively. These directly relate to the
quality of the speech-enabled features of the Drive
Router when used in practise.

Signal
to
noise
ratio

Accuracy
for 200
spoken
words

Accuracy
for 40
spoken
words

Accuracy
for 100
Spelled
words

49 dB 87% 94% 95%
21 dB 80% 89% 80%

Table 1: Test results on the accuracy of the ScanSoft
recognition system.

2.3.2 Sources of inaccurate recognition
The main sources of inaccurate recognition

include phonetic similarities between the spoken
words, spelled word recognition errors and noise.

Since the recognition is phoneme based, it is
difficult for the recognition engine to distinguish
words with similarities in their pronunciations. For
example, the English words “bit” and “pit” are
only different by one phoneme in their
pronunciations. These words form a confusable set.
When confusable sets are present in the vocabulary,
recognition errors are likely to occur if an item in
the set is spoken. The probability of having
similarities between the items increases as the size
of the vocabulary increases, resulting in lower
recognition accuracy in general. This is indicated
by the decrease of accuracy as the vocabulary size
changes from 40 to 200, shown in Table 1.

226

Spelled word recognition performed by the
ScanSoft system is essentially phoneme based and
character based, since the recognition engine is
used to recognize the characters by their phonemes
and the spelled word post processor is used to
search for the better matching character sequences.
Therefore the recognition accuracy is affected by
the phonetic similarities between the characters
and the number of characters in the spelling. Like
the similarities between some spoken words, it is
difficult for the engine to distinguish phonetically
similar characters. Examples of such characters are
the famous “ E set” , including the letters ‘b’, ‘d’,
‘p’ and ‘t’ in the English alphabet [8]. With these
characters, the engine is like to make substitution
error, meaning one character being mistaken to
another. Due to the short durations of the
pronunciations of the characters are spelled with
no obvious pauses in between, two consecutive
characters are likely to be mistaken as one,
resulting in deletion recognition errors. Finally
signal inherited from the previous character or
noise presented in the environment can be
mistaken as additional characters, leading to
insertion recognition errors.

Apart from recognition errors, there is always
the possibility for spelling mistakes made by the
user, which also include substitution, insertion and
deletion errors. Insertion and deletion errors cause
the length of the spelling to be different from the
correct form, making it difficult for the spelled
word post processor to match the input sequence
with the correct spelling in the spell tree. From
testing results, deletion errors are more likely to
produce inaccurate recognition result, because less
information is provided in the input sequence for
processing.

Noise present in the environment can corrupt the
information contained in the speech signal and
introduce unwanted elements into the signal,
which will be mistaken as part of the speech. It
also affects the accuracy of detecting the trailing
silence indicating the end of the utterance. As
indicated in Table 1, the recognition performance
is worse with a lower SNR. The test environment
is created to consist mainly of random background
noise in an in car environment. As commented in
[9] speech recognition in an in-car environment is
fragile and depends on driving conditions, further
conversations between passengers significantly
increase the level of confusion.

2.3.3 Representation of confidence level
As mentioned before, the ScanSoft recognition

system associates a numerical confidence score
with a spoken phrase recognition result to indicate
how reliable the result is, and a numerical error
score with a spelling recognition result to indicate
how inaccurate the result is. Although it is clear
that the higher the confidence score, the more
reliable the spoken recognition result is, and the
lower the error score, the more reliable the spelling
recognition result is, the exact accuracy of the
result and its relationship with the acoustic
environment are not obvious from the raw scores.
To suit the application, the raw score is converted
to percentage accuracy that indicate the actually
reliability of the result in specific to the in-car
acoustic environment. The conversions are done
using the following formulae:

%Spoken word accuracy = (100-cutoff_percentage)
*(spoken_raw_score-spoken_cutoff_score) /
(spoken_max_score-spoken_cutoff_score) +cutoff_percentage

%Spelled word accuracy = (100-cutoff_percentage)
*(spelled_cutoff_error - spelled_raw_error) /
(spelled_cutoff_error-spelled_min_error) +cutoff_percentage

The cutoff_percentage parameter is defined by
the developer so that a result with a percentage
accuracy below which will be rejected. To
maintain a reasonable sensitivity of recognition,
the cut-off percentage is set to be 90 percent. The
maximum spoken score, the minimum spelling
error score and the cut-off scores are obtained from
the accuracy testing result in the in-car
environment. With the cut-off percentage being 90
percent, the cut-off score for spoken word
recognition is the score that is less than the raw
confidence score of the correct recognition result
90 percent of the time. On the other hand, the cut-
off error for spelled word recognition is the error
score which is larger than the raw error score of
the correct result 90 percentage of the time. The
new representation of accuracy makes further
development easier, allowing efficient evaluation
of the result and comparison of confidence level
between spoken and spelling recognition results
since they are using the same measurement
standard.

3 Recognition improvement strategies

The original configuration of the ScanSoft
recognition engine, the recognition accuracy is

227

below 90 % in the in-car acoustic environment (see
Section 2). Inaccurate recognition will lead to
undesired control actions, which will affect the
functionality and usability of the speech-enabled
features. Some configuration requirements of the
engine also impose challenges to achieve certain
recognition features, which are important for the
application. For example, to perform spelling
recognition, the engine needs to be configured with
a spelling specific grammar. This means with one
configuration, an utterance can only be treated as
either spelling or spoken phrases, but not both.
Therefore, some strategies have been developed to
improve the accuracy and flexibility of recognition.

3.1 Improving accuracy

3.1.1 State-dependent vocabulary
Throughout the operation of the Drive Router,

the amount of possible speech commands can be
large, and confusions are likely to be present in
this large vocabulary. Instead of having the entire
global speech command vocabulary active all the
time, a state-dependent vocabulary configuration is
used. With this approach, the vocabulary items
activated and deployed by the engine at any point
in time is limited to only the valid speech
commands used by the Drive Router at the time.
For example, when the Drive Router is in the map
display state only the vocabulary items related to
this state are activated and used for recognition, so
these would include the phrases “ Zoom in” , “ Zoom
out” , “ Show me the menu” , and “ GPS status” .
With this smaller set of vocabulary, the chance of
having similarities between the words is reduced.
It also allows the commands to be chosen more
easily, because phonetically similar phrases can
now coexist in the vocabulary, as long as they are
in different states. A reduced vocabulary size also
helps reduce the setup time and processing time.

3.1.2 Result confirmation
Another strategy adopted is prompting for user

confirmation if there are uncertainties in the results.
If the engine has produced a list of recognition
results with similar confidence levels on one
utterance, an interactive dialog is used to inform
the user of the possible options and ask the user to
choose the correct one from the list.

3.1.3 Address recognition
The recognition accuracy also depends on the

type of words to be recognized. As one of the
desired control features, the system must be able to
handle input of location names via speech when
the user wants to specify the destination address of
the journey. However a location name can be
difficult to be recognized by its pronunciation,
because it can be a foreign name or a proper name
and its pronunciation is not as suggested by its
written form. The pronunciation of such a location
name cannot be estimated by the recognition
engine, which relies on the grapheme to phoneme
translation rules in a standard language model.

Another problem with recognizing a location
name by pronunciation is the large vocabulary with
lots of phonetically similar words. Therefore
recognition by spelling is used for location name
recognition. However, the engine is prone to make
substitution, insertion and deletion mistakes for
spelling recognition, and it is always possible for
the user to make spelling mistakes. If address
entering by speech solely relies on spelling, the
usability of the feature will not be optimum. To
improve address recognition accuracy we used a
strategy which by fully utilized the possible input
forms. Spelling of the location name was used as
the dominant input form because it is more reliable.
It is also taken into account that some location
names do have conventional pronunciations and
prompt the user for the pronunciation of the
location name if the spelling recognition result has
a low confidence level due to possible recognition
errors or spelling mistakes made by the user.

Although asking for pronunciation as additional
information does add to the complexity of the
address entering task for the user, usability is
sacrificed for recognition accuracy, which makes
the feature more competitive to manual address
look up. In addition, the user can always skip the
steps if they feel it is troublesome (see Section 4.2.
for more details) The representation of reliability
of a recognition result using percentage accuracy,
as mentioned in Section 2, allows the comparison
of the confidence of a spoken recognition result
and a spelling recognition result. If a location
name occurs in both the spelling and spoken
recognition results, the levels of confidence or
percentage accuracy in the two forms are summed
up, giving more confidence on the matching of the
name with the utterance.

228

In order to recognize the location name by
pronunciation as a backup, the speech recognition
engine needs to be configured with the valid
location names as the spoken vocabulary.
Although the user will be asked to provide the area
name first, which can be used as an address search
constraint, the resulting road names within an area
can be over 10000. This figure is only for the
Auckland region, and may be worse for a
European or the American map. With this large
vocabulary size, the problems include not only
poor recognition accuracy, due to the chance of
having similarities between the words, but also the
resource consumption of setting up and processing
the vocabulary for recognition.

Building a recognition context consisting of
10000 road names takes about 10 seconds
processing time on a HP Pocket PC with a 200
MHz processor. Since the road name set is
determined at run time, the delay is simply not
acceptable for a user oriented application. To
reduce the road name set, a partial spelling
indexing method is used. With this approach, the
spelling of the road name provided in the utterance
is stored in a buffer. The first three characters of
the spelling are extracted from the spelling and are
used as an index string to extract from a subset of
road names starting with the same letters. This
subset is then configured as the spoken vocabulary
for the engine before the user is prompted for the
pronunciation of the road name. With the New
Zealand map data used in the development of the
prototype, using up to the first three letters of the
spelling as index is sufficient to narrow the road
name set down to less than 30 names. The validity
of this approach is based on the assumption that
the user does not make spelling mistakes in the
initial part of the spelling.

3.1.4 Improved accuracy
With the accuracy improvement strategies, the

accuracy testing for the in-car environment is
repeated. For the state-dependent vocabulary
configuration, the 40 speech commands used
throughout the operation of Drive Router are
divided into 8 states. Together with result
confirmation, the recognition accuracy is increased
by 7% to 96%, (see Table 1). With spoken location
name as backup, the accuracy for spelled address
recognition is increased by 8 % to 88% (see Table
1).

Our results compare favourably with [10] who
got 91.3 % word accuracy rate and a 10.1% word
error rate, and [11] who got a 7.4% word error rate.
The vocabulary for both these studies were the
digits. Unlike our study these speech recognition
in-car studies were able to use large numbers of
speakers to test the system, and the speech
recognition platform was not an embedded system

3.2 Improving flexibility

As mention previously, some of the
configuration requirements of the ScanSoft system
discourage flexible processing of an utterance.
Apart from processing an utterance as spoken and
spelled words, the partial spelling indexing method
requires one spelling to be processed more than
once, first as the full spelling of the location name,
then to extract the partial spelling. In order to
enhance flexible utterance processing, an
interactive recognition mode is introduced into the
ScanSoft recognition system. With the interactive
mode, an utterance is saved in a buffer. The engine
is then configured multiple times to perform
different types of processing on the utterance.

4 Control feature realization

By specification there were three major control
features, including speech-driven menu navigation,
speech shortcut commands, and interactive dialogs.
In order to achieve portability of the control
features and minimise the changes needed in the
Drive Router to integrate with the speech control
features, the solution was in favour of using the
existing control mechanisms and data access
interfaces in the Drive Router. Whenever
manipulation to low level internal Drive Router
data was necessary, additional interfaces were
developed into the Drive Router to introduce a
high level of abstraction and to avoid direct access
to low level details.

4.1 Basic control mechanisms

4.1.1 Graphical user interface control
The menu navigation feature requires a

mechanism to control the GUI of the Drive Router.
The GUI was constructed using Microsoft
Foundation Class Library and is controlled with a
typical Windows message system. Windows
messages containing control information, such as a
button click or a set focus event, are dispatched in

229

the main message loop of the receiving application,
and are directed to the control component. The
control component then responds to the event.
With the knowledge of the identifiers of the
available menu items in the Drive Router, the
menu navigation control feature can be achieved
using this mechanism. As the Drive Router uses
the same system for GUI control, and the
mechanism is applicable to any Windows-based
applications, including PC based Windows,
Windows CE and Pocket PC applications, adopting
this mechanism allows the menu navigation feature
to be portability and platform independent.

4.1.2 Accessing internal functions
Shortcut behaviour essentially requires

automation of internal data processing and events
triggering. The realization of these behaviours can
be done by calling internal Drive Router functions.
Since the Drive Router implementation is object-
oriented, the functions can be accessed via an
object of the class in which the functions are
defined.

4.1.3 Sharing data
As one of the desired features, the user should

be able to specify a destination address using
speech. Within the Drive Router system, the
address data can be extracted from its map data
engine, and a set of current location results is kept
internally. The Drive Router map data engine has a
global interface available to any external module,
but the current location result data structure was
originally only used by the graphical user interface
layer of the Drive Router, which accepts and
analyzes manual input of address via the virtual
key board. Since the speech interface is an
additional plug-in to the system, it is desired that
the address input from both input mechanisms
valid at the same time. Therefore an interface is
developed to allow access to the internal current
location result data from an external module. The
resulting system enables the Drive Router to have
updated location input results from both the speech
and manual address input interfaces.

4.2 Dialog management system

The dialog management system is designed as an
advanced control component to achieve interactive
dialogs between the Drive Router and the user.
The design aims at achieving flexibility for

modification, expansion and maintenance of a
dialog. Usability issues are also considered.

4.2.1 State-oriented design
An interactive dialog can be viewed as a

sequence of question and answer pairs. Each pair
is a task of getting a particular type of information
from the user. The dialog can be very complex if
there are a large number of tasks and the sequence
of them depends on the information provided by
the user, which is exactly the case for a dialog that
handles user information intelligently. In recent
years, the Extensible Markup Language (XML)
has been frequently used in the development of
interactive dialogs [12]. The language allows the
dialog to be dynamically configured and provides a
simple interface for the developer to modify the
dialogs. However, an XML parser must be
developed and run with the system to process the
dialog specification described in the XML file,
which introduces unnecessary overhead.

As a lightweight alternative to achieve a simple
and flexible solution with the desired
functionalities, the dialog was modelled as a finite
state machine. Figure 2 shows simplified address
entering dialog state diagram. Each state,
represented by the boxes, performs a subtask of the
dialog, which involves prompting for the type of
information expected, getting the user response to
the prompt, and determining the next desired state.
The links between the tasks, represented by the
arrows, are modelled as the state transitions, which
depend on the current state and the user response.
The transitions can be executed by the dialog
management system, which oversees all the states.
This model allows the order of tasks to be easily
and dynamically arranged based on the user
response, as well as allowing easy modification
and expansion of the dialog, which simply
involves the addition of new state objects and the
possible transitions from the state.

“Go back to the
previous step”

“Cancel” “Cancel”

Got spelling Got spoken road

Valid road name

Invalid road name

End

“Skip this step” “Skip this step”
Spelled

Road Name
Entering

Spoken
Road Name

Entering
Road Name
Processing

Location
Setup

“Go back to the
previous step”

“Cancel” “ Cancel”

Got spelling Got spoken road

Valid road name

Invalid road name

End

“ Skip this step” “ Skip this step”
Spelled

Road Name
Entering

Spoken
Road Name

Entering
Road Name
Processing

Location
Setup

Figure 2: Finite state machine for a dialog

230

4.2.2 Usability
There are two interaction styles a dialog can

adopt. They are the system-driven style and the
user-driven style. The system-driven style is
necessary for an unconventional dialog, in which
the user has little knowledge about what
information is required [13]. The address entering
dialog, which requires the user to provide spoken
and spelled area and road names, can be
categorized as such systems. The user-driven mode,
on the other hand, allows the system to be user-
friendly. For usability, every dialog is designed to
have a multi-initiative style, which is the
combination of the two [13]. The flow of the
dialog is mainly driven by the system, as indicated
by the solid arrows in Figure 2, with the addition
of several transition commands, as indicated by the
dotted arrows in Figure 2, to allow the user to have
certain level of control of the flow and to change
the current subject. With the development of the
interactive recognition mode (see Section 3),
which allows one utterance to be processed as
different types of speech, the user is able to place a
spoken transition command, even when the system
is expecting the spelling of a location name.

Features have been added to improve the
responsiveness of the dialogs. A timeout event is
triggered when there is no response from the user
for a certain period of time and the prompt is
repeated as a reminder. Also when the user is
asked to choose an item from a list of available
options, such as the similar recognition results in a
confirmation dialog, the user does not have to wait
till the end of the list until they have a chance to
respond. Any valid choice between the option
prompts will be accepted and the dialog status will
change accordingly.

5 Solution implementation

The prototype solution was programmed using
C++. The language is chosen for its object oriented
nature, and consequently allows easy modification
and maintenance, as well as portability. Besides its
natural integration with the Drive Router, the C++
is also supported by many platforms so that the
solution is platform independent. The Microsoft
Pocket PC 2003 Software Development Kit is used
to configure the solution for the Microsoft Pocket
PC operating environment. The development is

done using Microsoft Embedded Visual C++ 4.0
Integrated Development Environment.

5.1 Solution structure

Speech
Recognition

Module

Speech
Control
Module

Control
Target:

SmartST

Speech
Signal

Recognized
Words

Vocabulary Current State

Internal Data

Control
ActionsSpeech

Recognition
Module

Speech
Control
Module

Control
Target:

SmartST

Speech
Signal

Recognized
Words

Vocabulary Current State

Internal Data

Control
Actions

Figure 3: Implementation structure

The solution is implemented in two modules, as
illustrated in Figure 3. Each module has a set of
APIs to allow external modules to interact with it
and configure it. The speech recognition module is
a wrapper of the ScanSoft speech acquisition and
recognition system. Speech signals are captured
and analyzed by the module and recognition results
are produced. The interactive recognition mode is
also implemented in the module, with a set of
functions to allow external modules to activate or
deactivate the mode and to decide what type of
processing should be done on the utterance. The
recognition results gathered in a customized result
structure is sent to the speech control module in
the form of a Windows message.

The speech control module controls the Control
target (the Drive Router), according to the
recognition results. The dialog management system
residing in the control module enables interactive
dialogs for result confirmation and address
entering. The implementation also incorporates the
state dependent vocabulary approach (see Section
3). The Drive Router was modified to notify the
speech control module of its current state, the
control module then configures the speech
recognition module to activate the vocabulary
items related to the valid commands in the state.

6 Testing on integrated system

The implemented solution is integrated with the
Drive Router and tested on a HP Pocket PC, with
the Intel PXA 255 200 MHz processor and 64 Mb
RAM. The device is running the Microsoft Pocket
PC 2003 Premium Operating System. On correct
recognition of the speech commands, the desired
menu navigation or shortcut events are triggered.
The confirmation dialog is activated when the user
has spoken a phrase that is confusable with other
words in the active state. The peak memory

231

consumption overhead with the speech enabled
features is 4 Mb, mainly due to the recognition
processing. The major performance limitation of
the solution is the processing time. On average, the
response time for menu navigation and shortcut
commands is 2 seconds, and the maximum
response time for address recognition can be up to
6 seconds. This is mainly due to the frequent
reconfiguration of the recognition engine at run
time. The most time consuming parts of the
configuration is the destruction of the engine.

7 Discussion

The accuracy of speech recognition ultimately
determines the functionality of the speech-driven
control features. More tests need to be done on the
performance of the ScanSoft recognition system,
especially its ability to handle different speakers.
Throughout the project, a lot of effort has gone
into getting around the configuration constraints of
the ScanSoft system to achieve the desired
functionality and accuracy, e.g.. the state-
dependent vocabulary approach and the interactive
recognition mode. However, these approaches
require frequent reconfiguration of the engine at
run time, which significantly increases the
response time. In order to achieve the desired
functionalities and accuracy without compromising
the performance, a fundamental solution is a more
flexible speech recognition package.

Our investigation focused on the feasibility
enabling the Driver Router to have speech-driven
control. This we demonstrated, but we did not
investigate improving the speech recognition via
noise adaptation techniques, microphone
placement and/or microphone arrays, Speaker
adaptation. The studies [10] and [11] demonstrated
that any combination or optimization of these will
increase the speech recognition rates .

8 Conclusions

A prototype solution is developed to enable
speech-driven control on the Drive Router
navigation system. The solution included state-
dependent vocabulary configuration, confirming
uncertain results with the user, and using both the
spelling and the pronunciation of a location name
to improve the recognition of an address, and
resulted in an accuracy of 96% for recognizing the
spoken commands developed in the prototype and

88% for address recognition. Recognition
flexibility was also achieved by the development
of the interactive recognition mode. The cost of the
accuracy and flexibility improvement is the
increase in response time due to the constraints of
the speech recognition system used.

The desired control features, including speech-
driven menu navigation, shortcut commands and
interactive dialog for result confirmation and
address entering, are developed, with flexibility
and usability taken into consideration.

9 References
[1] Dusan, S., Gadbois, G, and Flanagan, J. “ Multimodal

Interaction on PDA’ s Integrating Speech and Pen
Inputs” , Proceedings of EUROPSPEECH, Geneva,
Switzerland, pp: 2225-2228, 2003

[2] Filali, K., Li, X., and Bilmes, J. "Data-Driven Vector
Clustering for Low-Memory Footprint ASR",
International Conference on Spoken Language
Processing, Denver, Colorado, 2002

[3] Comerford, L., Frank, D., Gopalakrishnan, P., Gopinath,
R., and Sedivy, J., “ The IBM Personal Speech Assistant” ,
Proc. of the ICASSP, 2001.

[4] Huang, X. et al., “ MIPAD: A Multimodal Interaction
Prototype” , Proc. of the ICASSP, 2001.

[5] ScanSoft VoCon 3200Software Development Kit Version
2.0 Developer’ s Guide. (2004). ScanSoft Inc.

[6] Lopez, G. and Vanpoucke, P. (2004). “ ScanSoft AudioIn
Component – AudioIn API” , Version 2.0. ScanSoft Inc.

[7] Automatic Speech Recognition at CSLU. (2003). Center
for Spoken Language Understanding. Retrieved from
http://cslu.cse.ogi.edu/asr/ on 1st, September, 2005.

[8] Loizou, P., and Spanias, A., “ High-Performance
Alphabet Recognition” , IEEE Transactions on Speech
and Audio Processing, Vol 4, No.6, November 1996.

[9] Hansen, J.H.L, Zhang, X.,Akbakac, M., Yapenal,U.,
Pellom, B, and Ward, W. “ Robust Speech Processing for
In-Vehicle Voice Navigation Systems,” ICA-2004: Inter.
Congress on Acoustics, vol. 4, pp. 2603-2606, Kyoto,
Japan, April 2004.

[10] U. Yapanel, X. Zhang, J.H.L. Hansen, "High
Performance Digit Recognition in Real Car
Environments” , ICSLP-2002:Inter. Conf. on Spoken
Language Processing, vol. 2, pp. 793-796, Denver, CO
USA, Sept. 2002

[11] Delphin-Poulat, L. “ Robust speech recognition
techniques evaluation for telephony server based in-car
applications” , IEEE International Conference on
Acoustics, Speech, and Signal Processing, Proceedings.
(ICASSP '04). 65-8 vol.1, May 2004.

[12] Voice XML Forum. (2004). IEEE Industry Standard and
Technology Organization. Retrieved from
http://www.voicexml.org/, on 2nd September, 2005.

[13] Stallard, D. “ Flexible Dialogue Management in the Talk
‘n’ Travel System” , International Conference on Spoken
Language Processing, Denver, Colorado, pp:2693-2696,
2002

232

Proceedings of the Australasian Language Technology Workshop 2005, pages 233–240,
Sydney, Australia, December 2005.

Combining Confidence Scores with Contextual Features for
Robust Multi-Device Dialogue∗

Lawrence Cavedon
National ICT Australia, Victoria Research Lab

and CS&IT, RMIT University
Melbourne VIC, Australia

lawrence.cavedon@nicta.com.au

Matthew Purver, Florin Ratiu
CSLI, Stanford University

Cordura Hall, 210 Panama St. Stanford
CA 94305, USA

{mpurver,fratiu}@stanford.edu

Abstract

We present an approach to multi-device dia-
logue that evaluates and selects amongst candi-
date dialogue moves based on features at mul-
tiple levels. Multiple sources of information
can be combined, multiple speech recognition
and parsing hypotheses tested, and multiple de-
vices and moves considered to choose the high-
est scoring hypothesis overall. The approach
has the added benefit of potentially re-ordering
n-best lists of inputs, effectively correcting er-
rors in speech recognition or parsing. A current
application includes conversational interaction
with a collection of in-car devices.

1 Introduction

In this paper, we describe recent enhancements
to the CSLI Dialogue Manager (CDM) infras-
tructure to increase robustness, in particular
in (but not exclusive to) multi-device settings.
Dialogue contributions may be processed using
multiple information sources (e.g. deep syn-
tactic parsing and shallow topic classification),
scored at multiple levels (e.g. acoustic, seman-
tic and context-based), and bid for by multiple
agents, with the overall highest-confidence bid
chosen.

The CDM provides a multi-device infrastruc-
ture, with customization to new applications
and addition of plug-and-play devices eased by
a declarative dialogue-move scripting language
(Mirkovic and Cavedon, 2005). However, decid-
ing which device an utterance is directed at is
not always straightforward. One of our current
application areas is a conversational interface to
in-car devices, including entertainment, restau-
rant recommendation, navigation and telematic
systems (Weng et al., 2004); in such an envi-
ronment, a request such as “Play X” might be
∗ This work was performed while all the authors were
employed at CSLI, Stanford University, and was par-
tially supported by the US government’s NIST Advanced
Technology Program.

directed at an MP3 player or a DVD player.
Eye-gaze (useful in multi-human dialogue) is
not available, and we cannot rely on explicit
device naming. One option is to use the reso-
lution of NP arguments as disambiguating in-
formation (in our “Play X” example, whether
X is a song or a movie). However, the NP-
resolution process itself is often device-specific
(see below), preventing NPs from being prop-
erly resolved until device has been determined.

Our proposed solution, inspired by ap-
proaches to multi-agent task allocation such
as Contract Net (Smith, 1980), is to allow
all devices to perform shallow processing of
the incoming utterance, each producing multi-
ple possible candidate dialogue moves. Poten-
tial device-move combinations are then scored
against a number of features, including speech-
recognition and parse confidence, discourse con-
text, current device-under-discussion, and NP
argument analysis. The device associated with
the highest-scoring dialogue move is given first
option to process the utterance. A disambigua-
tion question may be generated if no device is
a clear winner, or a confirmation question if the
winning bid is not scored high enough.

Device choice, move choice, and selection of
best ASR/parser hypothesis are thereby made
simultaneously, rather than being treated as in-
dependent processes. As well as allowing for
principled device identification, this has the
benefit of scoring hypotheses on the basis of
multiple information sources, including context.
The highest scoring result overall may not cor-
respond to the highest-confidence result from
the ASR or parser n-best list alone, but n-best
lists are effectively re-ordered based on device
and dialogue context, allowing parsing errors
such as incorrect PP-attachment to be automat-
ically corrected. Confirmation and clarification
behaviour can also be governed not only by ASR
or parse confidence, but by the overall score.

233

Related Approaches Rayner et al. (1994)
combine speech recognition confidence scores
with various intra-utterance linguistic features
to re-order n-best hypotheses; Chotimongkol
and Rudnicky (2001) also include move bigram
statistics. Walker et al. (2000) use similar fea-
ture combination to identify misrecognised ut-
terances. More recently, Gabsdil and Lemon
(2004) also include pragmatic information such
as NP resolution, and simultaneously choose
from an n-best list while identifying misrecogni-
tion. They also divide misrecognised utterances
into two overall confidence ranges, one for out-
right rejection and one for confirmation/clarifi-
cation. Similarly Gabsdil and Bos (2003) com-
bine acoustic confidences with semantic infor-
mation, and Schlangen (2004) with bridging ref-
erence resolution, in order to allow clarification
on an integrated basis. All of these approaches
assume a single-device setting and hence no
ambiguity of move type once the correct word
string or parse has been identified. Here we
extend these approaches to allow a principled
choice of move/device pairing.

2 Background

2.1 Dialogue Manager Architecture
Our focus is on activity-oriented dialogue, dis-
cussing tasks or activities that are jointly per-
formed by a human and one or more intelligent
devices or agents. By “joint activity”, we mean
that the human participates in specifying the
activity, clarifying requests, interpreting obser-
vations, and otherwise supporting the agent in
the performance of the activity. Systems en-
gaging in such dialogue characteristically re-
quire deep knowledge about the task domain
and the devices/agents they provide access to,
in order to know what information is critical
to the tasks, and know what information about
task performance is appropriate to provide to
the user. CSLI has been developing activity-
oriented dialogue systems for a number of years,
for applications such as multimodal control of
robotic devices (Lemon et al., 2002), speech-
enabled tutoring systems (Fry et al., 2001), and
conversational interaction with in-car devices
(Weng et al., 2004).

The dialogue system architecture (Figure 1)
centers around the CSLI Dialogue Manager,
which can be used with various different exter-
nal components: speech-recognizer, NL parser,
NL generation, speech-synthesizer, as well
as connections to external application-specific

components such as ontologies or knowledge
bases, and the dialogue-enabled devices them-
selves. Clean interfaces and representation-
neutral processes enable the CDM to be used
relatively seamlessly with different NL compo-
nents, while interaction with external devices is
mediated by Activity Models, declarative spec-
ifications of device capabilities and their rela-
tionships to linguistic processes.

The CDM uses the information-state update
(ISU) approach to dialogue management (Lars-
son and Traum, 2000). The ISU approach ex-
tends the more traditional finite-state-based ap-
proaches used for simple dialogues (in which di-
alogue context is represented as one of a finite
number of states, and each dialogue move re-
sults in a state transition), maintaining a richer
representation of information-state. This in-
cludes the dialogue context as well as e.g. de-
vice and activity status, together with a set
of update rules defining the effect of dialogue
moves on the state (e.g. adding new infor-
mation and referents for anaphora resolution,
and triggering new tasks, activities and system
responses). This approach allows more com-
plex dialogue types with advanced strategies for
context-dependent utterance interpretation (in-
cluding fragments and revisions), NP resolution,
issue tracking and improved speech-recognizer
performance (Lemon and Gruenstein, 2004).

2.2 The CSLI Dialogue Manager

Generic ISU toolkits (e.g. TrindiKit (Traum
et al., 1999), DIPPER (Bos et al., 2003)) pro-
vide general data structures for representing
state and a language for specifying update rules,
but the specific state and rules used are left
to the individual application. The CDM is
a specific implementation of an ISU dialogue-
management system, providing data structures
and processes for update specifically designed
as suitable to activity-oriented dialogue, but
adaptible to different applications and domains.

The two central components of the CDM in-
formation state are the Dialogue Move Tree
(DMT) and the Activity Tree. The DMT rep-
resents the dialogue context and history, with
each dialogue move represented as a node in
the tree, and incoming moves interpreted in
context by attachment to an appropriate open
parent node (for example, WhAnswer moves at-
tach to their corresponding WhQuestion nodes).
This tree structure specifically supports multi-
threaded, multi-topic conversations (Lemon et

234

Figure 1: Dialogue System Architecture

al., 2002), with branches representing topics or
threads: a dialogue move that cannot attach
itself to the most recent active node may in-
stead attach to another open branch (corre-
sponding to a resumed conversation) or open
a new branch (a new conversation thread) by
attaching itself to the root node. The DMT
also serves as context for interpreting fragments,
multi-utterance constructs, and revisions, and
provides discourse structure for tasks such as
NP-resolution. In tandem, the Activity Tree
manages the underlying activities, fully instan-
tiating new activities via their Activity Models
(e.g. resolving NP referents or spawning sub-
dialogues to fill missing arguments), editing ex-
isting ones as a result of revisions or corrections,
and monitoring their execution (possibly gen-
erating system moves notifying completion or
failure).

Other data structures that are part of the in-
formation state include: the salience list (NPs
and their referents for anaphora resolution);
multimodal input buffers (semantic interpreta-
tions of GUI events); and the system agenda
(potential system outputs scheduled by the di-
alogue manager). See (Lemon et al., 2002) for
details.

2.3 Dialogue Move Scripting

In early versions of the CDM, dialogue moves
were coded completely programmatically (in
Java). While libraries of general-purpose di-
alogue moves (e.g. Command, WhQuestion,

etc.) were re-used wherever possible, cus-
tomization to new domains generally required
significant programming effort in defining both
new dialogue moves and their effects, and pro-
cesses such as reference resolution. More re-
cently, Mirkovic and Cavedon (2005) describe
a dialogue-move scripting language designed to
expedite customization to new domains. Each
script serves a number of purposes:

1. hierarchical definition of dialogue moves,
allowing inheritance and re-use of existing
moves, while allowing customization to a
specific domain;

2. mapping of utterance representations to
appropriate dialogue moves, including ar-
gument values for devices’ activity models;

3. definition of attachment rules for
information-state update;

4. dialogue move-specific specification of out-
put to be generated, for disambiguation or
requests for required information.

Listing 1 shows the skeleton of a sample
dialogue-move script for a play Command move
for an MP3 player. The specific syntax of the
Input and Output fields can be ignored for now:
they simply match the interfaces of the parser
and generator respectively. Variables in the di-
alogue move script correspond to variables in
the Activity Model (AM) for the corresponding
device. The AM for the MP3 device contains

235

� �
User Command:play { // inherits from generic Command dialogue move

Description "play something"
Input { // templates for matching parser output

// full parse match: ‘‘play/start X’’
1.0 SYN{ s(features(mood(imperative)), predicate (#play/vb|#start/vb),

?arglist(obj:_playable -object ,?sbj :*)) }
// full parse match: ‘‘I want to play/hear X’’
1.0 SYN{ s(features(mood(indirect)), predicate (#play/vb|#hear/vb),

?arglist(obj:_playable -object ,?sbj :*)) }
// topic classifier match
0.1 TOPIC { play_item }
// topic classifier match with argument
0.25 AND{ TOPIC{ play_item }, SYN{ arglist(obj:_playable -object ,*) } }

... }
Producing { // templates for system output : questions

System WHQuestion:disambiguate
System WHQuestion:fill:play:_playable -object {

Output {avs (e1 / play : question (q1 / what) : agent I)
}

... } // templates for system output : reports
CloseOn System Report:play:playing {

Output {avs (e1 / play : patient (p1 / [song]) : aspect continuous)
}

... }
... }� �

Listing 1: Sample dialogue move script for a play Command for an MP3 device

a play operation with a (required) playable-
object argument. When an incoming utterance
matches an Input template from Listing 1, the
playable-object variable is filled by unification,
and resolved to an object from the device’s do-
main which then fills the corresponding slot
in the activity. For details, see (Mirkovic and
Cavedon, 2005).

2.4 Multi-Device Dialogue

The CDM has also been extended to multi-
device dialogue, with the scripting approach
allowing easy dynamic plug-and-play specifica-
tion of new “dialogue-enabled” devices. Note
that this does not constitute multi-party dia-
logue: interaction is still mediated by a single
dialogue manager, between a user and a De-
vice Manager with which devices register them-
selves. However, the plug-and-play requirement
(necessitated by the in-car application (Weng et
al., 2004)) has resulted in important extensions
to the dialogue management infrastructure.

Mirkovic and Cavedon (2005) describe a
framework for encapsulating devices with in-
formation required to “dialogue-enable” them.
Each device has associated with it the following
components:

1. a set of dialogue-move scripts;

2. an Activity Model describing any device
functionality accessible by dialogue;

3. a device-specific ontology and knowledge
base (KB);

4. rules for device-specific NP-resolution.

Any significantly different forms of interac-
tion requiring device-specific dialogue manage-
ment processes must still be specified as new
Java classes (referred to as DM process exten-
sions in Figure 1), but in general the above four
components contain the device-specific informa-
tion required for dialogue-enabling new devices.

Note that NP resolution rules are included
in the device definition; while pronoun resolu-
tion tends to be domain-independent, resolving
definite descriptions and demonstratives is of-
ten device-dependent, and resolving named ref-
erents often requires constructing appropriate
queries to a device-specific knowledge-base.

Devices can now be added dynamically to the
DMT, registering themselves with the Device
Manager and becoming associated with their
own nodes to which new conversation threads
can attach; “current device” becomes part of
the information-state and interpreting incoming
utterances is performed in this context.

In this context, device selection—determining
which device an utterance is associated with—
becomes a further complication: an utterance
may (on the surface) be potentially applicable
to multiple devices: e.g. “Play X” could be
applicable to either an MP3 player or a DVD

236

player. Our original proposal was to create a
dialogue move consistent with each such device
and then score its applicability based on other
factors, e.g. ability to resolve the object ref-
erence (the MP3 player would resolve a song-
name, the DVD player a movie name). The
rest of the paper generalises this approach to
a wider range of possible disambiguities, involv-
ing a greater number of scoring features, and re-
sults in more interesting behaviours than simple
device-disambiguation.

3 Multiple Interpretation Methods

The first new extension to the CDM described
here is the use of multiple information sources
in parallel to classify dialogue move type and
produce an activity-specific representation. In
most systems (and previous incarnations of the
CDM) a single interpretation mechanism is cho-
sen which is best suited to the application
at hand, be it e.g. an open-domain statisti-
cal parser, a domain-specific constraint-based
grammar, or keyword-spotting techniques. We
extend this approach here to allow arbitrary
multiple interpretation mechanisms, each pro-
ducing its own (independent) interpretation hy-
pothesis and associated confidence. In the cur-
rent application, we use both a statistical parser
producing relatively deep dependency struc-
tures, and a shallow maximum-entropy-based
topic classifier.

Dialogue move scripts, such as the one
sketched in Listing 1, are used to construct in-
stantiations of candidate dialogue moves for a
device, based on incoming user utterances (and
planned system outputs, although we focus on
the former here). This is governed by the Input
field for each move type, which specifies a set
of patterns: when an utterance representation
matches an Input pattern, a candidate node of
the appropriate type can be created. As List-
ing 1 shows, patterns can now be defined in
terms of interpretation method as well as the
interpreted form itself: SYN patterns match the
output of the statistical parser, TOPIC patterns
match the output of the topic classifier, while
AND patterns match combinations of the two.
Further general pattern types are available (e.g.
LF for semantic logical forms, STRING for sur-
face string keyword-matching) but are not used
in the current application.

Each pattern is associated with a weight, used
in the overall move scoring function described
in Section 4 below. This allows moves cre-

ated from matches against deep structure to be
scored highly (e.g. SYN patterns in which pred-
icate and arguments are specified and matched
against), shallow matches to be scored low (e.g.
simple TOPIC matches), and combined matches
to have intermediate scores (e.g. a combina-
tion of an appropriate TOPIC classification with
a SYN parser output containing a suitable NP ar-
gument pattern). Depending on other elements
of the scoring function (e.g. the ASR confi-
dence associated with the hypothesised string
being tested) and on competing move hypothe-
ses, low scores may lead to clarification being re-
quired (and therefore clarification will be more
likely when only low-scoring (shallow) patterns
are matched). Behaviour can therefore be made
more robust: when deep parsing fails, a shallow
hypothesis can be used instead (clarifying/con-
firming this specific hypothesis as necessary de-
pending on its confidence) rather than resorting
to a rejection or general clarification. Scores are
currently set manually and determined by test-
ing on sample dialogues; future work will exam-
ine learning them from data.

4 Dialogue Move Selection

In the general case, multiple possible candidate
dialogue moves will be produced for a given user
utterance, for a number of reasons:

1. multiple hypotheses from ASR/parser out-
put;

2. multiple interpretation methods (deep
parsing vs. shallow classification);

3. multiple possible move types for a candi-
date interpretation;

4. multiple antecedent nodes (active dialogue
threads), including multiple devices, for a
particular move type.

These are not independent: it is important to
consider all factors simultaneously, to allow an
integrated scoring function for each candidate
and thus consider the best overall. The skele-
ton algorithm for instantiating and selecting a
dialogue move is therefore as follows:1

1Note that we will not create O×N ×M candidates:
only a subset of script entries (if any) will match for each
node and n-best entry.

237

� �
foreach open node O

foreach n-best list entry N
foreach matching script entry M

create candidate move
score all candidates
if (score(top) >> score(second))
then

select top candidate
else

generate question to disambiguate
if (score(selected -node) < threshold)

generate question to confirm� �
The interesting aspect of the above process

is the scoring function. Dialogue-move candi-
dates are scored using a number of weighted
features, ranging from speech-recognizer confi-
dence, through to pragmatic features such as
the “device in focus” and recency of the DMT
node the candidate would attach to. The full
list of features currently considered is shown
in Table 1. Note the inclusion of features at
many levels, from acoustic recognition confi-
dences through syntactic parse confidence to se-
mantic and pragmatic features.

4.1 Reordering n-best candidates

This integrated scoring mechanism therefore al-
lows n-best list input to be re-ordered: dialogue-
move candidates are potentially instantiated for
each n-best list entry and the highest-scoring
candidate chosen. While the n-best list rank
and confidence are factors in the overall score,
other features may outweigh them, resulting in
an initially lower-ranked n-best entry becoming
the highest-scoring dialogue move.

Evaluation so far has been limited to ini-
tial testing on a manually constructed set of
test inputs, using only a subset of the features:
those shown italicised in Table 1 are not cur-
rently available due to either implementational
issues (for full domain referent resolution and
KB queries) or lack of domain data (for move
bigram frequencies). Our test set includes 400
sentences, of which 300 have been used in train-
ing the statistical parser and 100 are unseen
variations; it currently covers only utterances
related to a single device (a restaurant recom-
mendation system) and does not include speech
recognition hypotheses (we are therefore testing
parse n-best reordering only). We are currently
working towards evaluation on a full set of fea-
tures, with user-generated multi-device speech
input.

However, even with the restricted set of fea-
tures, preliminary testing on this set shows

encouraging results: the percentage of sen-
tences for which the correct parse is chosen
increases from 90% to 94%, a 41% reduction
in error with several common parse errors be-
ing corrected. One example is incorrect PP-
attachment (a notoriously difficult challenge for
statistical parsers). The example below (from
a restaurant recommendation scenario), shows
the top two n-best list entries for a sentence as
produced by our statistical parser:� �
1. how about [a restaurant

[in Grant]] [on Mayfield]
2. how about [a restaurant

[in Grant] [on Mayfield]]� �
Here, the second is lower-ranked but correct,

taking both PPs as modifying restaurant, while
the first treats only one as modifying restau-
rant, one as a sentential modifier. As the sec-
ond allows two database-query constraints to
be filled (city and street name), and the first
just one, this boosts its overall score enough to
overcome its lower parse confidence, and it is
selected and used in DMT attachment. Similar
improvements are gained with nominal modi-
fiers:� �
1. how about [a

[[cheap] chinese] restaurant]
2. how about [a

[cheap] [chinese] restaurant]
3. how about [a

[cheap chinese] restaurant]� �
Here the second is correct, treating cheap

and chinese as both independently modifying
restaurant ; the first takes cheap as modifying
chinese, and the third takes cheap chinese as a
single multi-word unit. Again, as the second fills
two database-query constraints (price level and
cuisine type), its overall score becomes highest.
Evaluation of the improvement achieved is cur-
rently in progress.

4.2 Move type comparison
The scoring function for feature combination is
currently manually defined. When comparing
between candidate moves of the same type, this
is relatively straightforward, although hardly
trivial and inherently done to a high extent
by subjective expertise. However, it becomes
much less straightforward when comparing can-
didates of different types, as some move types
and some DMT attachment contexts will allow
only a subset of the features to have meaning-
ful values. However, comparison between move
types is essential, as two ASR hypotheses with

238

Recognition features: recognition and parse probabilities;
recognition and parse n-best ranks;

Semantic features: topic classification for the parse (with score);
for dialogue moves spawning activities:

- number of slots filled by input pattern;
- number of resolved/unresolved slots after NP resolution;
- number of ambiguously resolved slots after NP resolution;

for queries about database objects:
- set of constraints sent to the knowledge base;
- cardinality of the set of knowledge base query results;

Contextual features: current most active node;
current activity;
position and recency of the parent node in the active node list;
bi-gram frequencies of the dialogue moves:

- DMT attachments - pairs of child and parent node types;
- pairs of chronologically consecutive user nodes.
Table 1: Move Scoring Features

similar recognition scores may have very differ-
ent possible move types:

1. Command: “Play a rock song by Cher”

2. Query: “What rock songs are there?”

We are therefore currently investigating the
use of machine learning techniques to improve
on our current manual definitions. With an-
notated data the optimal weights of a scoring
function that combines all the features can be
automatically learned (see (Gabsdil and Lemon,
2004)).

4.3 Dialogue-move disambiguation
In order for a winning bid to be unambigu-
ously accepted, its score must exceed the next
highest score by more than a predefined thresh-
old. If not, we take the choice of winning bid
to be within our margin of error, and the dia-
logue manager asks a disambiguating clarifica-
tion question. For example, if the pair of sen-
tences in the previous section result in hypothe-
sis dialogue moves with scores within the margin
of error, then the dialogue manager generates a
question of the form:

“Did you want to play a rock song
by Cher or did you ask about rock
songs?”

Alternatively, in some cases there may be a
clear highest-scoring bid (i.e. one of high rel-
ative confidence) which is itself of low absolute
confidence. In such cases, rather than act on the
move unconditionally we ask the user for clarifi-
cation. If the score is below a certain confidence

threshold T1 we treat the highest bid as a rea-
sonable hypothesis, but ask for confirmation of
the intended move; following the previous ex-
ample, this would result in a question such as:

“I’m not sure I understood that. Did
you want to play a rock song by Cher?”

If the score is below a second critical minimum
threshold T2 we take this as a failure in interpre-
tation, and prompt for general clarification. As
even the best hypothesised move is likely to be
incorrect in this case (being of such low confi-
dence), asking for specific confirmation is likely
to be counter-productive or annoying (see e.g.
(San-Segundo et al., 2001)).

Threshold values are currently specified as
part of dialogue-move definitions; a future di-
rection is to automatically learn optimal values
for the thresholds.

5 Discussion and Conclusions

We have described a number of strategies im-
plemented in the CSLI Dialogue Manager to
more robustly handle ambiguous or misunder-
stood utterances, and low-confidence interpre-
tations. Features from multiple sources of ev-
idence are combined to rate the possible di-
alogue move candidates as interpretations of
a user utterance. Features include confidence
scores from ASR and parser, as well as seman-
tic and pragmatic criteria, and measures related
to the dialogue context itself. As well as se-
lecting dialogue move, in our multi-device set-
ting the approach has the benefit of selecting
the device being addressed. Although we have
not yet performed a full evaluation of the ef-

239

ficacy of this approach, we have observed sev-
eral examples of the n-best list of inputs be-
ing (correctly) re-ordered—i.e. after misclas-
sification by the statistical parser, the candi-
date dialogue-move corresponding to the correct
(though lower-confidence) parse can still be se-
lected. We are currently gathering data in order
to provide a concrete evaluation.

Confidence thresholds (upper and lower
bounds) set by the dialogue designer specify the
levels at which a candidate move is rejected, re-
quires explicit confirmation by the user, or sim-
ply accepted. Future work includes automati-
cally learning optimal values for these thresh-
olds and optimal weights on the features for
scoring candidate dialogue-moves, applying the
techniques of e.g. Gabsdil and Lemon (2004) to
our multi-device setting.

References

J. Bos, E. Klein, O. Lemon, and T. Oka. 2003.
DIPPER: Description and formalization of an
information-state update dialogue system ar-
chitecture. In Proceedings of the 4th SIGdial
Workshop on Discourse and Dialogue.

A. Chotimongkol and A. Rudnicky. 2001. N-
best speech hypotheses reordering using lin-
ear regression. In Proceedings of the 7th Eu-
ropean Conference on Speech Communication
and Technology (EUROSPEECH).

J. Fry, M. Ginzton, S. Peters, B. Clark, and
H. Pon-Barry. 2001. Automated tutoring di-
alogues for training in shipboard damage con-
trol. In Proc. 2nd SIGdial Workshop on Dis-
course and Dialogue.

M. Gabsdil and J. Bos. 2003. Combining acous-
tic confidence scores with deep semantic anal-
ysis for clarification dialogues. In Proc. 5th
International Workshop on Computational
Semantics (IWCS-5).

M. Gabsdil and O. Lemon. 2004. Combining
acoustic and pragmatic features to predict
recognition performance in spoken dialogue
systems. In Proc. 42nd Annual Meeting of the
ACL.

S. Larsson and D. Traum. 2000. Informa-
tion state and dialogue management in the
TRINDI dialogue move engine toolkit. Natu-
ral Language Engineering, 6.

O. Lemon and A. Gruenstein. 2004. Multi-
threaded context for robust conversational in-
terfaces: Context-sensitive speech recognition
and interpretation of corrective fragments.

ACM Transactions on Computer-Human In-
teraction, 11(3).

O. Lemon, A. Gruenstein, and S. Peters. 2002.
Collaborative activities and multi-tasking in
dialogue systems. Traitement Automatique
des Langues, 43(2).

D. Mirkovic and L. Cavedon. 2005. Practical
plug-and-play dialogue management. In Pro-
ceedings of the Annual Meeting of the Pa-
cific Association of Computational Linguis-
tics (PACLING).

M. Rayner, D. Carter, V. Digalakis, and
P. Price. 1994. Combining knowledge sources
to reorder n-best speech hypothesis lists. In
Proceedings of the ARPA Human Language
Technology Workshop.

R. San-Segundo, J. M. Montero, J. Ferreiros,
R. Córdoba, and J. M. Pardo. 2001. Design-
ing confirmation mechanisms and error re-
cover techniques in a railway information sys-
tem for spanish. In Proc. 2nd SIGdial Work-
shop on Discourse and Dialogue.

D. Schlangen. 2004. Causes and strategies for
requesting clarification in dialogue. In Proc.
5th SIGdial Workshop on Discourse and Di-
alogue.

R. G. Smith. 1980. The contract net protocol:
High level communication and control in a
distributed problem solver. IEEE Transac-
tions on Computers, C-29(12):1104–1113.

D. Traum, J. Bos, R. Cooper, S. Larsson,
I. Lewin, C. Matheson, and M. Poesio. 1999.
A model of dialogue moves and information
state revision. In Task Oriented Instructional
Dialogue (TRINDI): Deliverable 2.1. Univer-
sity of Gothenburg.

M. Walker, J. Wright, and I. Langkilde. 2000.
Using natural language processing and dis-
course features to identify understanding er-
rors in a spoken dialogue system. In Proceed-
ings of the 17th International Conference on
Machine Learning.

F. Weng, L. Cavedon, B. Raghunathan,
D. Mirkovic, H. Cheng, H. Schmidt, H. Bratt,
R. Mishra, S. Peters, L. Zhao, S. Upson,
E. Shriberg, and C. Bergmann. 2004. A
conversational dialogue system for cognitively
overloaded users. In Proc. 8th International
Conference on Spoken Language Processing
(INTERSPEECH).

240

Proceedings of the Australasian Language Technology Workshop 2005, pages 241–249,
Sydney, Australia, December 2005.

Automatic Utterance Segmentation in Instant Messaging Dialogue

Edward Ivanovic
Department of Computer Science and Software Engineering

University of Melbourne
edwardi@csse.unimelb.edu.au

Abstract

Instant Messaging (IM) chat sessions are
real-time, text-based conversations which
can be analyzed using dialogue-act mod-
els. Dialogue acts represent the seman-
tic information of an utterance, however,
messages must be segmented into utter-
ances before classification can take place.
We describe and compare two statistical
methods for automatic utterance segmen-
tation and dialogue-act classification in
task-based IM dialogue. It is shown that
IM messages can be automatically seg-
mented and classified to a very high ac-
curacy using statistical machine learning.

1 Introduction

Dialogue acts are a useful first level of analysis for
describing discourse structure as they represent the
illocutionary force of utterances such as assertions
and declarations. Early work on speech act theory
by Austin (1962) and Searle (1979) has been ex-
tended in dialogue acts to model the conversational
functions that utterances can perform. Table 1 shows
an example dialogue with utterance segments and
dialogue acts.

As illustrated in Table 1, some messages contain
multiple utterances and thus require segmentation
before each utterance can be classified as a dialogue
act. Once utterances are classified, the dialogue-
acts may then be used for subsequent tasks such as
machine translation (Tanaka and Yokoo, 1999), dia-
logue game detection (Levin et al., 1999), and, in the
case of spoken dialogue, speech recognition (Stol-
cke et al., 2000).

Speaker Message

Sanders [Hello Customer]CONVENTIONAL-OPENING, [thank
you for contacting MSN Shopping]THANKING .
[This is Sanders and I look forward to assist-
ing you today]STATEMENT

Sanders [How are you doing today?]OPEN-QUESTION

Customer [good]STATEMENT, [thanks]THANKING

Sanders [How may I help you today?]OPEN-QUESTION

Table 1: An example of the beginning of a dia-
logue in our corpus showing utterance boundaries
and dialogue-act tags in superscript.

Instant Messaging (IM) consists of two or more
people typing messages to each other in real time
on a line-by-line basis. Although IM dialogue can
take place with a group of people simultaneously
writing to each other, for the purposes of this study
we assume only two-party dialogue. As described
in Ivanovic (2005), sequences of words are grouped
into three levels: the first level is aTurn, consisting
of at least oneMessage, which consists of at least
oneUtterance, defined as follows:
Turn: A dialogue participant normally writes one or
more message then waits for the other participant to
respond, hence takingturns in writing messages.
Message:A message is defined as a group of words
that are sent from one dialogue participant to the
other participant as a single unit. This is usually
achieved by typing a message and pressing the En-
ter key or a ‘Send’ button on the client program. A
single turn can span multiple messages.
Utterance: An utterance can be thought of as one
complete semantic unit with respect to dialogue acts.
This can be a complete sentence or as short as an
emoticon (e.g. “:-)” to smile). Messages contain one

241

or more utterances. Although it is possible to send a
message mid-utterance, resulting in utterances span-
ning messages, so such instances occur in our cor-
pus, which our model assumes. Example utterances,
enclosed within brackets, are shown in Table 1.

Most utterance segmentation research to date
has focussed on transcribed speech. The aim of
speech segmentation, however, is different to that re-
quired by dialogue act classification. That is, large-
vocabulary speech recognisers segment speech into
acousticsegments for more efficient processing, us-
ing criteria such as non-speech intervals and turn
boundaries in dialogue. These methods are not ap-
propriate for IM utterance segmentation because the
acoustic segmentation methods rely on the recorded
waveform of speech, which does not exist in IM di-
alogue.

We show that utterance segmentation for dialogue
act classification requires very different criteria to
transcribed speech segmentation. Our methods for
dialogue act utterance segmentation are based on
linguistically and statistically motivated approaches.

The rest of this paper is organised as follows. The
data collection and dialogue act tag set are described
in Section 2. The methods and language models
used in our experiment are explained in Section 3.
Evaluation techniques we use are in Section 4. Our
experimental results and discussion are in Section 5,
with the conclusions and future work in Section 6.

2 Data and Dialogue Act Tag Set

Our data was collected in previous work (Ivanovic,
2005) from an online IM-based support service and
consisted of nine chat sessions, totalling 550 utter-
ances, 6,500 words, with a mean message length of
10 words. The chat sessions were manually seg-
mented into utterances by one person and used as a
gold standard. These utterances were then annotated
by three people

Table 2 shows the dialogue act tag set we use,
which was also taken from previous work as de-
scribed in Ivanovic (2005). The tag set was cho-
sen by manually labelling our corpus using tags that
seemed appropriate from the 42 tags used by Stol-
cke et al. (2000), which in turn were based on the
Dialog Act Markup in Several Layers (DAMSL) tag
set (Core and Allen, 1997).

Tag Example %

STATEMENT I am sending you the page now 36.0

THANKING Thank you for contacting us 14.7

YES-NO-
QUESTION

Did you receive the page? 13.9

RESPONSE-ACK Sure 7.2

REQUEST Please let me know how I can
assist

5.9

OPEN-
QUESTION

how do I use the international
version?

5.3

YES-ANSWER yes, yeah 5.1

CONVENTIONAL-
CLOSING

Bye Bye 2.9

NO-ANSWER no, nope 2.5

CONVENTIONAL-
OPENING

Hello Customer 2.3

EXPRESSIVE haha, :-), grr 2.3

DOWNPLAYER my pleasure 1.9

Table 2: The 12 dialogue act labels with examples
and frequencies given as percentages of the total
number of utterances in our corpus.

A Kappa analysis used to compare inter-annotator
agreement normalised for chance (Siegel and Castel-
lan, 1988), resulted in a value of 0.87 with 89%
agreement (Ivanovic, 2005). A Kappa statistic of
0.8 and above is considered a satisfactory indication
that our corpus can be labelled reliability using our
tag set (Carletta, 1996).

A complete list of the 12 dialogue acts we used is
shown in Table 2 along with examples and the fre-
quency of each dialogue act in our corpus.

3 Methods

Our first goal was to determine which features ob-
tained from IM transcripts would be useful in detect-
ing utterance segments within messages. The data
available from IM chat transcripts are thespeaker,
message text,andtime stampof each message. Un-
like regular written prose, IM chats are often very
informal—omitting usual punctuation such as com-
mas, periods, question marks, and initial capital let-
ters for proper names and new sentences. Spelling
mistakes, acronyms for common phrases, and un-
grammatical messages are also quite common.

The observation that utterances in our data do not
cross message boundaries allows us to focus on seg-
menting one message at a time. We use two ap-

242

A: [INTJ hello UH] [NP customerNN] , O <s> [V P thankV B] [NP you PRP] [PP for IN] [V P

contactV BG] [NP Msn NNP ShoppingNNP] . O <s> [NP this DT] [V P beV BZ] [NP SandersNNP] [O

andCC] [NP I PRP] [V P look V BP] [ADV P forwardRB] [PP to TO] [V P assistV BG] [NP you PRP] [NP

todayNN] . O

A: [ADV P how WRB] [O beV BP] [NP you PRP] [V P do V BG] [NP todayNN] ? O

B: [ADJP goodJJ] , O <s> [NP thanksNNS]

Figure 1: Sample tagged and chunked data.

proaches to segment the messages: Hidden Markov
Models (HMMs) and a probabilistic model based on
parse trees. We discuss each of these in turn.

3.1 HMM Method

In the absence of reliable punctuation cues, we
looked at approaches based on the available lexi-
cal information. One such method was to use an
HMM to find the most likely segment boundaries.
We experimented with three versions of the HMM
approach, based on sequences of: (i) lemmas, (ii)
part of speech tags, and (iii) head words of chunks.

The rationale behind using chunks is that the
number of possible segments is reduced since ut-
terance boundaries do not lie within chunks. The
data was assigned POS tags and segmented into
chunks via the FNTBL Toolkit (Ngai and Flo-
rian, 2001), which is an efficient implementation
of Eric Brill’s Transformation-based learning algo-
rithm (Brill, 1995). Lemmatisation on our corpus
was performed using the morphological tools de-
scribed in Minnen et al. (2001).

Figure 1 illustrates some characteristics of the
data. Utterance boundaries are marked by<s> tags,
chunk boundaries are enclosed within brackets, and
words’ POS tags are shown in subscript after the
word. The actual chunks in the data use IOB tags
similar to that described in Ramshaw and Marcus
(1995).

We first trained ann-gram statistical language
model with add-one smoothing and Katz backoff
(Katz, 1987) to hypothesize the most probable lo-
cations of utterance boundaries for each individual
message. The resulting segmentations were then
evaluated using the WindowDiff metric as described
in Section 4.

Elements used to represent the segments were
lemmas, POS tags, and chunks. Segment beginnings

in our training data were marked with a<s> tag.
This allowed each element to be in one of two states:
S or NO-S depending on whether it had a<s> tag
before it. We build two probability distributionsPS

andPNO−S representing the probability that token
tk is at the beginning of a segment or not, respec-
tively. Using this state information permits us to use
an HMM with the following forward computation
for the likelihoods of the states at each positionk as
described by Stolcke and Shriberg (1996):

PNO−S(t1...tk) = PNO−S(t1...tk−1)×
p(tk|tk−2tk−1)

+PS(t1...tk−1)×
p(tk|<s> tk−1)

PS(t1...tk) = PNO−S(t1...tk−1)×
p(<s> |tk−2tk−1)p(tk|<s>)

+PS(t1...tk−1)×
p(<s> |<s> tk−1)p(tk|<s>)

wheret is a lemma, POS or chunk token. A corre-
sponding Viterbi algorithm is then used to find the
most likely sequence of S and NO-S states given the
lemmatised words. Note that this model treats seg-
ment marks,<s> , as tokens.

3.2 Parse Tree Method

Parse trees generally contain nodes of clauses as
illustrated in Figure 2. We assume that utterance
boundaries only occur at major syntactic boundaries.
This is similar in principle to the use of chunks as
described in Section 3.1, where we hypothesise that
a segment boundary exists before each token. The
notion of a token, however, changes from represent-
ing chunks to sub-trees within a parse tree. Since
a token in this context represents multiple words,
and utterance segments may only occur in between
tokens, this method significantly reduces the possi-
bility of obtaining false-positive segment boundaries

243

TOP

S

NN2

ok

,

,

S

DD1

that

VP

VBZ

be+s

NP

JJ

good

NN1

news

S

RRQ

how

S

VD0

do

S

PPIS1

I

VP

VV0

use

NP

AT

the

JJ

international

NN1

version

?

?

Figure 2: Parse tree of a message showing utter-
ances separated into sub-trees as generated by RASP
(Briscoe and Carroll, 2002).

when compared with using word or chunk tokens as-
suming correct parse trees. If the parse trees are not
correct, however, this technique will have the oppo-
site effect. This is discussed in more detail in Sec-
tion 5.3.

To produce the parse trees, we use the RASP (Ro-
bust Accurate Statistical Parsing) parser described
in Briscoe and Carroll (2002). RASP is designed
to be domain-independent in order to handle text
from different genres. Given that our data comes
from instant messaging, which exhibits less pre-
dictable prose than that typically found in newspa-
pers, we chose RASP over other parsers such as
Collins (1999) and Charniak (2000) that are opti-
mised on the Wall Street Journal treebank.

Utterance segments in our data always occur
within a maximum depth of 2 nodes from the root of
the parse tree. Using this depth limit, we first build
a table of possible “cuts” through the tree. These
cuts, or proper analyses as described in Chomsky
(1965), contain every combination of sub-trees, as
illustrated in Figure 3, resulting in a sequenceC of
nodes:

C = t1, t2, t3, . . . , th (1)

where each combinationti is a sequence of tree
nodes such that:

ti = t1, t2, t3, . . . , tn (2)

where the leaves of each tree nodeti represent a pos-
sible utterance.

We then calculate the most likely dialogue act for
the leaves (words) within each node, independently

C tj,1 tj,2 tj,3

⇒
t1 A1,1

t2 B2,1 C2,2

t3 B3,1 D3,2 E3,3

Figure 3: Proper analyses,C3
1 from a parse tree.

in the combination table. The result and its corre-
sponding dialogue-act are stored with the nodeti.
Next, we calculate the probability of a correct se-
quence of utterances based on the product of the
dialogue-act classification probabilities, using the
following formulae:

〈t∗,d∗〉 = arg max
〈t∈C,d〉

∏

ti∈t

P̂ (di|ti, di−1)

P̂ (di|ti, di−1) = P (di|di−1)
∏

v∈leaves(ti)

P (v|di)

wheret∗ is the best node combination (or segments),
C is the set of proper analyses,P (di|ti) is the prob-
ability of nodeti ∈ t being dialogue-actd based on
its leaves (words),di−1 is the previously assigned
dialogue-act (using bigrams), andv is a word in
nodeti.

Using this method has the effect of evaluating
the classification and segmentation tasks at the same
time, taking the most probable combination. Al-
gorithm 1 shows the process used to find the best
proper analysis inC. The classify method re-
turns the highest probability of all dialogue acts
given the words in noden using the naive Bayes
method. It also returns the corresponding dialogue
act which is then stored with the respective noden.

Importantly, the naive Bayes algorithm uses a
bag-of-words as its features, taking the product of
each word’s probability of being in any given dia-
logue act. This allows the product in line 6 of Al-
gorithm 1 to be used as a ranking score amongst the
proper analyses even though the number of nodes
n in t may vary withinC. If a different classifica-
tion algorithm were used, then line 6 may have to be
modified to preserve mathematical tractability.

244

Algorithm 1 Find best utterance segmentationsti ∈
C. Theclassify method also returns the best di-
alogue acts and probabilities which are stored with
their nodesn.

1: maxp ← 0 {stores the best probability}
2: maxt ← None{best tree node}
3: for all t in C do
4: p ← 1
5: for all n in t do
6: p ← p×classify(leaves(n))
7: end for
8: if p > maxp then
9: maxp ← p

10: maxt ← t
11: end if
12: end for

4 Evaluation

The segmentation algorithms described in Section 3
were evaluated via 9-fold cross-validation where
eight of the chat sessions in our corpus were used for
training and one for testing. This process is repeated
for all dialogues and the mean result is presented.

In this section, we first discuss why the standard
information retrieval evaluation metrics of recall and
precision are not appropriate for this type of seg-
mentation, and then discuss the WindowDiff metric,
which is used instead.

4.1 Using the Recall and Precision Metrics for
Segmentation

The standard information retrieval metrics of recall
and precision are not well-suited to evaluating seg-
mentation tasks. Recall is the ratio of correctly hy-
pothesised segment boundaries to the total number
of actual boundaries. Precision is the ratio of correct
boundaries detected to all hypothesised boundaries.

There are two main problems with using these
metrics for segmentation tasks: the first is re-
lated to the inherently subjective nature of seg-
mentation. An example is with the message
“ok - that’s great, thanks” in which “ok - that’s
great” could be segmented and tagged as a sin-
gle ACKNOWLEDGEMENT or as the two utterances:
“[ok] ACKNOWLEDGEMENT - [that’s great]STATEMENT”.
Deciding which segmentation should be considered
correct depends largely on how the utterances will

be used, that is, the downstream task. The traditional
recall and precision metrics will regard the alterna-
tive segmentation as an error.

Similarly, if our corpus has a message that is
manually segmented into two or more adjacent ut-
terances with the same dialogue-act, the system
should not necessarily be penalised for regard-
ing the span of text as one segment. For ex-
ample, “[Goodbye]CONVENTIONAL-CLOSING and [take
care]CONVENTIONAL-CLOSING” could just be marked as
one utterance.

The second problem with using recall and preci-
sion to evaluate segmentation tasks is the question of
how to handle near-boundary misses, that is, a false-
positive that occurs near a true boundary. Using re-
call and precision in the way described will penalise
a system equally regardless of whether a hypothe-
sised segment boundary is off by one or ten words.

4.2 The WindowDiff Metric

The manually segmented data is used as a gold stan-
dard with which to compare hypothesised segmen-
tations using the WindowDiff metric. The Window-
Diff metric, proposed by Pevzner and Hearst (2002),
aims to improve segmentation evaluation by reward-
ing near-misses.

WindowDiff works by choosing a window size
k that is typically equal to half of the average seg-
ment length in a corpus. Thisk-sized window then
slides over the hypothesised segmentation data and
compares segment and non-segment marks with the
reference data. If the number of hypothesised and
reference segments within the window size differ, a
counter is incremented and the window continues to
the next position. The final score is then divided by
the number of scans performed. A perfect system
would therefore receive a zero score.

In most segmentation tasks, segment lengths are
uniformly distributed, so using a fixed value fork is
appropriate. However, because utterance lengths in
our data vary considerably, as shown in Figure 4, we
evaluate for different values ofk. We adjustk from
1 to 20 for each message, taking the mean result for
each value ofk. The maximum allowable value ofk
is the message length on a per-message basis. This
technique provides a fair evaluation given the varied
utterance lengths.

Another question for our experiment is whether

245

allowing any deviation from our reference seg-
mented data is acceptable, such as inserting a bound-
ary somewhere near an actual boundary. Depending
on where a boundary is inserted, this may result in
two incomplete utterances as in example (1) below:

(1) a. Ref: [thanks] [you’ve been very help-
ful]

b. Hyp: [thanks you’ve] [been very help-
ful]

The segments in (1) differ only by one word, but
the resulting utterances in (1-b) are confusing, espe-
cially when taken in isolation. In this case, we would
not want to allow any deviation from the reference
data. However, there are cases where a near-miss is
acceptable, such as in (2):

(2) a. Ref: [Thank you for waiting], Cus-
tomer. [I have found a page that lists a
wide variety of Rock Climbing Shoes]

b. Hyp: [Thank you for waiting, Cus-
tomer]. [I have found a page that lists a
wide variety of Rock Climbing Shoes]

Here, the hypothesised segmentation (2-b) is just as
acceptable as the reference (2-a).

The difference between examples (1) and (2) is
that (2-b) has maintained the clause boundaries. The
wordCustomerin (2-a) is not part of either segment,
so including it in the utterance does not affect the
adjacent utterance. Since an utterance is a complete
phrase, this is the only way a near-miss may still
be considered correct. Some other exceptions exist
involving single-word utterances which will not be
considered here.

5 Experimental Results and Discussion

The WindowDiff results for the various models and
window sizes are shown in Figure 5 along with the
baseline WindowDiff scores. A lower score indi-
cates higher accuracy. The best result was achieved
by the parse tree method. The worst result was given
by the HMM POS tag model, but it still exceeded the
baseline.

The relative difference between the models varies
little as the window size changes. The Window-
Diff score begins to taper off ask increases past 20
words, which is at approximately the 90th percentile

Figure 4: Frequency distribution of utterance length
in words. The mean length is 7.6 words and the me-
dian is 6 words.

of utterance lengths in our corpus. This plateau is
due to window lengths having no effect on shorter
messages as a result of the adjustment we make tok
whenk is greater than the message length.

The better evaluation scores for small values of
k are simply due to the way the WindowDiff al-
gorithm compares segments within a window. An
equal penalty is applied regardless of whether there
are five or two segments within a window that should
only contain one. Therefore, a window length span-
ning the entire message will at most return only
one penalty if the hypothesised segments differ at
all from the reference segments. Since the window
spans the entire message, only one comparison is
performed which results in the equivalent of a 100%
error rate. Conversely, whenk is small, the num-
ber of unequal windows between the reference and
hypothesised segmentations will also be small since
we have so few false positives. At the same time,
the number of comparisons will be high, leading to
a low WindowDiff score.

A perfect score of 0 is never achieved since there
are always some misaligned segments. We never see
a score of 1 since many of the single-utterance mes-
sages are accurately detected, as discussed in Sec-
tion 5.1 below. Likewise, none of the models ap-
proach the baseline as the window size increases,
which indicates that some of the multi-utterance
messages are also accurately detected.

Although no individual value ofk can be used to
judge performance because of the varying segment

246

Figure 5: WindowDiff results of various models used and varying window sizek from 1 to 20. A lower
score indicates better accuracy.

(utterance) lengths in our corpus, we can confidently
gauge the performance of each method relative to
each other method since their respective rankings re-
main constant for all values ofk.

5.1 Baseline

An analysis of our data revealed that messages con-
tain up to three utterances. Of these messages, 60%
contain only one utterance, 20% contain two utter-
ances, and the remaining 20% consist of three utter-
ances.

The baseline is calculated by assuming that each
message contains only one utterance since this is the
majority class.

5.2 HMM Results

We used three types of features with the HMM: lem-
mas, POS tags, and the head word of chunked data.
The POS tag model performs the worst, whereas the
lemma model is the best of the HMM models. This
indicates that cue words play a major part in deter-
mining utterance segment boundaries. Replacing the
words with their respective POS tags loses this infor-
mation.

Using POS tags can sometimes help overcome
data sparseness problems as it has the effect of
generalising words. However, in this case it over-

generalises, resulting in poorer performance.
The rationale behind using chunks is that it re-

duces the number of possible boundaries as we hy-
pothesise boundaries between chunks rather than
words. Since utterance boundaries do not lie within
chunks, this may have increased the probability of
correct segment boundary detection. However, the
results show that the HMM benefits from using all
words rather than only the chunks’ head words.

The main types of errors produced by the HMM
are false positives based on words that commonly
occur at the start of an utterance, such as “what”,
occurring mid-sentences as in (3):

(3) but I’m not sure what to get her

The reference data has this as one utterance, but the
HMM detects a false positive starting at “what”.

5.3 Parse Tree Results

The parse tree method gives the best results. A qual-
itative evaluation of the dialogue act classifications
assigned to detected utterances gave an accuracy of
84%. The baseline for the dialogue act classification
task was 36%, which was the majority class being
STATEMENT.

The most common type of error the parse tree
method makes is to separate words near the root of

247

TOP

UH

Thank

S

NP

PPY

you

PP

IF

for

VP

VVG

approach+ing

NP1

us.

PPIS1

I

VP

VM

would

RR

surely

VP

VV0

try

VP

TO

to

VP

VV0

help

PPY

you

RT

today

Figure 6: Erroneous parse tree of sentence (4) as
produced by RASP.

a parse tree away from a deeper right node. Figure 6
shows a parse tree produced by RASP for (4) below:

(4) Thank you for approaching us. I would
surely try to help you today

The parse tree for (4) is problematic. The
first word, “thank”, is detached from the S node
that contains the rest of the sentence. Our
model treats (4) as a sequence of word to-
kens W = w1, w2, w3, ..., w13 and finds that
P (THANKING |w1) × P (STATEMENT|W 13

2) >
P (d|W), whered is any dialogue act. In this in-
stance, RASP failed to segment the two sentences
in this message, which prevented our model from
evaluating the correct utterances. This illustrates the
high dependency our model has on the quality of the
generated parse trees.

Another type of error is that the model does not
detect any segmentations within a message where
there ought to be. An instance of this is in (5) be-
low:

(5) right, but I do not know of any and do not
speak/read french

The reference data has the word “right” segmented
and tagged asRESPONSE-ACK and the rest of the
message as oneSTATEMENT. However, our model
does not evaluate that possibility as the correspond-
ing parse tree in Figure 7 does not combine the
words as would be expected.

TOP

JA

right

,

,

S

CCB

but

S

PPIS1

I

VP

VD0

do

VP

XX

not+

VP

VP

VV0

know

IO

of

DD

any

VP

CC

and

VD0

do

XX

not+

JJ

speak/read

JJ

french

Figure 7: Parse tree of sentence (5) as produced by
RASP.

6 Conclusion and Future Work

Finding utterance boundaries in IM dialogue is a
critical step for aiding utterance classification and
downstream language processing modules such as
dialogue response planning. We have shown that the
parse trees model obtains the best results. Of the
HMM models, the HMM over lemmas in messages
performs better than using chunked data and POS-
tags, which lose too much information and impede
accuracy.

The parse tree method performed best overall and
has the advantage of combining both segmentation
and classification tasks in one step to give the op-
timal combined result. It is based on the linguistic
intuition that utterances are complete constituents,
which are modelled well by parse trees. However,
this heavy reliance on the quality of the parse trees
is also a weakness. Most of the errors obtained us-
ing the parse tree method may be attributed to poor,
or at least unexpected, parse trees being produced.
That notwithstanding, the preliminary results using
the RASP parser are very encouraging.

In future work, we intend to focus more on pars-
ing IM messages, taking into account some of its
distinct characteristics. Some obvious steps to pro-
duce better parse trees are to perform spelling cor-
rections and expand acronyms, such as “idk” for “I
don’t know”. Existing parsers will thus be able to
produce more accurate parse trees, which will in turn
result in higher segmentation accuracy.

We will also investigate the subjectiveness of ut-
terance segmentation by performing Kappa (Siegel
and Castellan, 1988) analysis on our segmentation

248

boundaries. The Kappa analysis will give an indica-
tion as to the meaningful upper bounds of the per-
formance of our system.

Acknowledgments

Thanks to Steven Bird, Timothy Baldwin, and the
Language Technology Group at Melbourne Univer-
sity for their constructive comments. Thanks also
to Trevor Cohn, Phil Blunsom, and the anonymous
reviewers for their very helpful feedback. The data
used in this study was POS tagged, chunked, and
parsed by Timothy Baldwin using the tools de-
scribed with some modifications.

References

John L. Austin. 1962.How to do Things with Words.
Clarendon Press, Oxford.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: a case study
in part-of-speech tagging.Computational Linguistics,
21(4):543–565.

Ted Briscoe and John Carroll. 2002. Robust accurate sta-
tistical annotation of general text. InProceedings of
the Third International Conference on Language Re-
sources and Evaluation, pages 1499–1504, Las Pal-
mas, Gran Canaria.

Jean Carletta. 1996. Assessing agreement on classifica-
tion tasks: the kappa statistic.Computational Linguis-
tics, 22(2):249–254.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of the first conference on North
American chapter of the Association for Computa-
tional Linguistics, pages 132–139, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Noam Chomsky. 1965.Aspects of the Theory of Syntax.
MIT Press, Cambridge, MA.

Michael John Collins. 1999.Head-driven statistical
models for natural language parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia. Supervisor-
Mitchell P. Marcus.

Mark Core and James Allen. 1997. Coding dialogs with
the DAMSL annotation scheme.Working Notes of
the AAAI Fall Symposium on Communicative Action
in Humans and Machines, pages 28–35.

Edward Ivanovic. 2005. Dialogue act tagging for instant
messaging chat sessions. InProceedings of the ACL
Student Research Workshop, pages 79–84, Ann Arbor,

Michigan, June. Association for Computational Lin-
guistics.

Slava M. Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer.IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3):400–401.

Lori Levin, Klaus Ries, Ann Thyme-Gobbel, and Alon
Lavie. 1999. Tagging of speech acts and dialogue
games in Spanish call home.Towards Standards and
Tools for Discourse Tagging (Proceedings of the ACL
Workshop at ACL’99), pages 42–47.

Guido Minnen, John Carroll, and Darren Pearce. 2001.
Applied morphological processing of english.Natural
Language Engineering, 7(3):207–223.

Grace Ngai and Radu Florian. 2001. Transformation-
based learning in the fast lane. InProceedings of
NAACL-2001, pages 40–47.

Lev Pevzner and Marti A. Hearst. 2002. A critique and
improvement of an evaluation metric for text segmen-
tation. Computational Linguistics, 28(1):19–36.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In David
Yarovsky and Kenneth Church, editors,Proceedings
of the Third Workshop on Very Large Corpora, pages
82–94, Somerset, New Jersey. Association for Compu-
tational Linguistics.

John R. Searle. 1979.Expression and Meaning: Studies
in the Theory of Speech Acts. Cambridge University
Press, Cambridge, UK.

Sidney Siegel and N. John Castellan, Jr. 1988.Nonpara-
metric statistics for the behavioral sciences. McGraw-
Hill, second edition.

Andreas Stolcke and Elizabeth Shriberg. 1996. Au-
tomatic linguistic segmentation of conversational
speech. InProceedings, ICSLP 96. Fourth Interna-
tional Conference on Spoken Language, volume 2,
pages 1005–1008, Philadelphia, PA, Oct. ICSLP.

Andreas Stolcke, Noah Coccaro, Rebecca Bates, Paul
Taylor, Carol Van Ess-Dykema, Klaus Ries, Eliza-
beth Shriberg, Daniel Jurafsky, Rachel Martin, and
Marie Meteer. 2000. Dialogue act modeling for
automatic tagging and recognition of conversational
speech.Computational Linguistics, 26(3):339–373.

Hideki Tanaka and Akio Yokoo. 1999. An efficient
statistical speech act type tagging system for speech
translation systems. InProceedings of the 37th con-
ference on Association for Computational Linguistics,
pages 381–388. Association for Computational Lin-
guistics.

249

Author Index

Assi, Seyyed Mostafa, 57

Bai, Tao, 224
Baldwin, Timothy, 40, 143, 152
Bernardi, Raffaella, 176
Bird, Steven, 120
Bolognesi, Andrea, 176
Broughton, Michael, 78

Cao, Cungen, 184
Cassidy, Steve, 96
Cavedon, Lawrence, 233
Curran, James R., 32, 49, 167, 191, 207

Dale, Robert, 7
Dras, Mark, 96

Fletcher, Jeremy, 134
Flickinger, Dan, 1

Ghayoomi, Masood, 57
Gorman, James, 49

Haggerty, James, 207
Hawker, Tobias, 200
Hoffmann, Achim, 87
Honnibal, Matthew, 200
Hughes, Baden, 207

Ivanovic, Edward, 241

Kordoni, Valia, 24

Littlefield, Jason, 78
Liu, Vinci, 167

MacKinlay, Andrew, 40, 64
Manickam, Saritha, 207
Marshall, Robert, 120
Mazur, Pawel, 7
McKeown, Kathy, 4
Molla, Diego, 15, 105
Musgrave, Simon, 113

Newman, Eamonn, 215

Nicholson, Jeremy, 152
Nothman, Joel, 207

Patrick, Jon, 134, 160
Pham, Son Bao, 87
Pizzato, Luiz Augusto, 105
Purver, Matthew, 233

Ratiu, Florin, 233

Seidenari, Corrado, 176
Somers, Harold, 71, 127
Sornlertlamvanich, Virach, 5
Stokes, Nicola, 215
Stuckey, Peter, 120
Su, Ying, 224

Tamburini, Fabio, 176
Tian, Guogang, 184

Vadas, David, 32, 191
van Zaanen, Menno, 15

Watson, Catherine I., 224

Yencken, Lars, 143

Zhang, Yi, 24
Zhang, Yitao, 160

251

	Program
	Dimensions of Deep Grammar Validation
	Text Summarization: News and Beyond
	From Non-segmenting Language Processing to Web Language Engineering
	Disambiguating Conjunctions in Named Entities
	Learning of Graph Rules for Question Answering
	A Statistical Approach towards Unknown Word Type Prediction for Deep Grammars
	Tagging Unknown Words with Raw Text Features
	POS Tagging with a More Informative Tagset
	Augmenting Approximate Similarity Searching with Lexical Information
	Word Prediction in a Running Text: A Statistical Language Modeling for the Persian Language
	Using Diverse Information Sources to Retrieve Samples of Low Density Languages
	Faking it: Synthetic Text-to-speech Synthesis for Under-resourced Languages -- Experimental Design
	Dual-Type Automatic Speech Recogniser Designs for Spoken Dialogue Systems
	Efficient Knowledge Acquisition for Extracting Temporal Relations
	Formal Grammars for Linguistic Treebank Queries
	Extracting Exact Answers using a Meta Question Answering System
	Multimedia Presentation of Grammatical Description: Design Issues
	Structuring Documents Efficiently
	Round-trip Translation: What Is It Good For?
	Evaluating the Utility of Appraisal Hierarchies as a Method for Sentiment Classification
	Efficient Grapheme-phoneme Alignment for Japanese
	Statistical Interpretation of Compound Nominalisations
	Paraphrase Identification by Text Canonicalization
	Words and Word Usage: Newspaper Text versus the Web
	Automatic Induction of a POS Tagset for Italian
	A Dual-Iterative Method for Concept-Word Acquisition from Large-Scale Chinese Corpora
	Programming With Unrestricted Natural Language
	Identifying FrameNet Frames for Verbs from a Real-Text Corpus
	A Distributed Architecture for Interactive Parse Annotation
	Multi-document Summarisation and the PASCAL Textual Entailment Challenge
	Design and Development of a Speech-driven Control for a In-car Personal Navigation System
	Combining Confidence Scores with Contextual Features for Robust Multi-Device Dialogue
	Automatic Utterance Segmentation in Instant Messaging Dialogue

