
Taxonomic Lattice Structures for Situation Recognition

William A. Woods
Bolt Beranek and Newman Inc.

50 Moulton Street
Cambridge, MA 02138

I. The Role of a Knowledge Network for an
Intelligent Machine

The kinds of intelligent computer
assistants that we would like to be able
to construct are very much like
intelligent organisms in their own right.
Imagine for a moment an intelligent
organism trying to get along in the world
(find enough food, stay out of trouble,
satisfy basic needs, etc.). The most
valuable service played by an internal
knowledge base for such an organism is to
repeatedly answer questions like "what's
going on out there?", "can it harm me?",
"how can I avoid/placate it?", "Is it good
to eat?", "Is there any special thing I
should do about it?", etc. To support
this kind of activity, a substantial part
of the knowledge base must be organized as
a recognition device for classifying and
identifying situations in the world. The
major purpose of this situation
recognition is to locate internal
procedures which are applicable
(appropriate, permitted, mandatory, etc.)
to the current situation.

In constructing an intelligent
computer assistant, the roles of knowledge
are very similar. The basic goals of food
getting and danger avoidance are replaced
by goals of doing what the user wants and
avoiding things that the machine has been
instructed to avoid. However, the
fundamental problem of analyzing a
situation (one established either
linguistically or physically or by some
combination of the two) in order to
determine whether it is one for which
there are procedures to be executed, or
one which was to be avoided (or one which
might lead to one that is to be avoided),
etc. is basically the same. For example,
one might want to instruct such a system
to remind the user in advance of any
upcoming scheduled meetings, to inform him
if he tries to assign a resource that has
already been committed, to always print
out messages in reverse chronological
order (when requested), to assume that
"the first" refers to the first day of the
upcoming month in a future scheduling
context and the first day of the current
month in a past context, etc.

The principal role of the knowledge
network for such a system is essentially
to serve as a "coat rack" upon which to
hang various pieces of advice for the
system to execute. Thus the notion of
procedural attachment becomes not just an
efficiency technique, but the main purpose
for the existence of the network. This
does not necessarily imply, however, that
the procedures involved consist of
low-level machine code. They may instead,
and probably usually will, be high level
specifications of things to be done or
goals to be achieved. The principal
structure that organizes all of these
procedures is a conceptual taxonomy of
situations about which the machine knows
something.

TO support the above uses of
knowledge, an important characteristic
required of an efficient knowledge
representation seems to be a mechanism of
inheritance that will permit information
to be stored in its most general form and
yet still be triggered by any more
specific situation or instance to which it
applies. Moreover, the nodes in the
network (or at least a major class of
nodes) should be interpretable as
situation descriptions. One of the most
fundamental kinds of information to be
stored in the knowledge base will be rules
of the form "if <situation description> is
satisfied then do <action description>",
or "if <situation description> then expect
<situation description>". Situation
descriptions are in general
characterizations of classes of situations
that the machine could be in. They are
not complete descriptions of world states,
but only partial descriptions that apply
to classes of world states. (The machine
should never be assumed or required to
have a complete description of a world
state if it is to deal with the real
world.) A situation in this partial sense
is defined by the results of certain
measurements, computations, or recognition
procedures applied to the system's input.
Examples of situations might be "You have
a goal to achieve which is an example of
situation Y", "You are perceiving an
object of class Z", "The user has asked
you to perform a task of type W", etc.

33

More specific situations might be:
"trying to schedule a meeting for three
people, two of which have busy schedules",
"about to print a message from a user to
himself", "about to refer to a date in a
recent previous year in a context where
precision but conciseness is required".

The major references to this
conceptual taxonomy by the intelligent
machine will be attempts to identify and
activate those situation descriptions that
apply to its current situation or some
hypothesized situation in order to
consider any advice that may be stored
there. Note that "considering advice of
type X" is itself an example of a
situation, so that this process can easily
become recursive and potentially
unmanageable without appropriate care.

Conceptually, one might think of the
process of activating all of the
descriptions that are satisfied by the
current situation as one of taking a
description of the current situation and
matching it against descriptions stored in
the system. However, there are in general
many different ways in which the current
situation might be described, and it is
not clear how one should construct such a
description.

Moreover, until it is so recognized,
a situation consists of a collection of
unrelated events and conditions. The
process of recognizing the elements
currently being perceived as an instance
of a situation about which some
information is known consists of
discovering that those elements can be
interpreted as filling roles in a
situation description known to the system.
In fact, the process of creating a
description of the current situation is
very much like the process of parsing a
sentence, and inherently uses the
knowledge structure of the system like a
parser uses a grammar in order to
construct the appropriate description.
Consequently, by the time a description of
the situation has been constructed, it has
already been effectively matched against
the descriptions in the knowledge base.

2. Parsing Situations

As suggested above, the process of
recognizing that a current situation is an
instance of an internal situation
description is similar to the process of
parsing a sentence, although considerably
more difficult due to a more open ended
set of possible relationships among the
"constituents" of a situation. That is,
whereas the principal relationship between
constituents in sentences is merely
adjacency in the input string, the
relationships among constituents of a
situation may be arbitrary (e.g. events
preceding one another in time, people,

places, or physical objects in various
spatial relationships with each other,
objects in physical or legal possession of
people, people in relationships of
authority to other people, etc.) However,
the basic characteristic of parsers, that
the objects recognized are characterized
as structured objects assembled out of
recognizable parts according to known
rules of assembly, is shared by this task
of situation recognition.

Note that it is not sufficient merely
to characterize a situation as a member of
one of a finite number of known classes.
That is, where it is not sufficient for a
parser to simply say that its input is an
example of a declarative sentence (one
wants to be able to ask what the subject
is, what the verb is, whether the sentence
has past, present or future tense, etc.),
in a similar way it is insufficient to
merely say that an input situation is an
example of someone doing something. One
must generate a detailed description of
who is doing what to whom, etc.

It is also not sufficient to
characterize a situation as a single
instance of an existing concept with
values filled in for empty slots. In
general, a situation description must be a
composite structured object, various
subparts of which will be instances of
other concepts assembled together in ways
that are formally permitted, in much the
same way that the description of a
sentence is put together from instances of
noun phrases, clauses, and prepositional
phrases. The specific instance built up
must keep track of which constituents of
the specific situation fill which roles of
the concepts being recognized. Moreover,
it cannot do so by simply filling in the
slots of those general concepts, since a
general concept may have multiple
instantiations in many situations.
Rather, new structures representing
instances of those concepts must be
constructed and pairings of constituent
roles from the concept and role fillers
from the current situation must be
associated with each new instance.

3. ~he Process of Situation Recognition

The process of situation recognition
consists of detecting that a set of
participants of certain kinds stand in
some specified relationship to each other.
In general, when some set of participants
is present at the sensory interface of the
system (immediate input plus past memory),
the task of determining whether there is
some situation description in memory that
will account for the relationships of
those inputs is not trivial. If the total
number of situation descriptions in the
system is sufficiently small, all of them
can be individually tested against the
input to see if any are satisfied. If the

34

number of such descriptions is
sufficiently large, however, this is not
feasible.

Alternatively, if there is some
particular participant that by virtue of
its type strongly suggests what situation
descriptions it might participate in, then
an index from this participant might
select a more manageable set of situation
descriptions to test. Even in this case,
however, the number of situations in which
the constituent could participate may
still be too large to test efficiently.
In the most difficult situation, no single
participant in the input is sufficiently
suggestive by itself to constrain the set
of possible patterns to a reasonable
number. However, it may still be that the
coincidence of several constituents and
relationships may suffice, providing that
the coincidence can be detected. It is
this problem of coincidence detection that
I believe to be crucial to solving the
general situation recognition problem.

As an example, consider the following
fragment of a protocol of a commander
giving commands to an intelligent display
system:

Cdr : Show me a display of the
eastern Mediterranean.
[computer produces display]

Cdr: Focus in more on Israel and
Jordan.
[computer does so]

Cdr: Not that much; I want to be
able to see Port Said and the
Island of Cyprus.

In the first clause of the third command
of this discourse, (i.e. "not that much"),
there is no single word that is strongly
suggestive of the interpretation of the
sentence. Moreover, there is nothing
explicit to suggest the relationship of
this clause to the one that follows the
semicolon. The latter, if interpreted in
isolation, would merely be a request for a
display, or perhaps a succession of two
displays, while in the context given, it
is a request to modify a previous display.

There are two methods that I believe
may be sufficient, either individually or
in combination, to model coincidence
detection. One is the use of factored
know!ed@e structures that merge common
parts of alternative hypotheses. The
other involves the use of a markable
classification structure in which the
individual" recognit{on predicates
triggered by the ongoing discourse will
leave traces of their having fired, so
that coincidences of such traces can be
efficiently detected. I have been
investigating a structure which I call a
"taxonomic lattice", that combines some
features of both methods.

3;1 Factored Knowledge Structures

Given a knowledge-based system with
large numbers of situation-action rules,
where it is infeasible to find the rules
that match a given situation by
systematically considering each rule, one
needs to have some way of reducing the
computational load. As mentioned before,
one approach is to index the rules
according to some salient feature that
will be easily detectable in the input
situation and can then be used to find a
much more limited set of rules to apply.
This has been done in many systems,
including the LUNAR system for natural
language question answering [Woods, 1973,
1977]. In that system, rules for
interpreting the meanings of sentences
were indexed according to the verb of the
sentence and rules for interpreting noun
phrases were indexed by the head noun.
Although this approach reduces the number
of rules that need to be considered, it
has several limitations still. The first
is that there may be some values of the
index key for which there are still a
large number of rules to consider. In the
case of the LUNAR system, for example, the
verb "be" had a large number of rules to
account for different senses of the word.
Another is that there can be certain
constructions for which there is no single
easily detected feature that is strongly
constraining as to possible meaning. In
this case, there is no useful index key
that can be used to select a sufficiently
constrained set of rules to try.

Another limitation of this indexing
approach as the range of language becomes
more fluent is that in certain elliptical
sentences, the constraining key may be
ellipsed, and although one can have the
rules indexed by other keys as well, the
remaining ones may not sufficiently
constrain the set of rules that need to be
considered. Finally, even when the set of
rules has been constrained to a relatively
small set, there is frequently a good deal
of sharing of common tests among different
rules, and considering each rule
independently results in repeating these
tests separately for each rule.

One approach to solving all of the
above problems is to use what I have been
calling a "factored knowledge structure"
for the recognition process. In such a
structure, the common parts of different
rules are merged so that the process of
testing them is done only once. With such
structures, one can effectively test all
of the rules in a very large set, and do
so efficiently, but never consider any
single rule individually. At each point
in a factored knowledge structure, a test
is made and some information gained about
the input. The result of this test
determines the next test to be made. As
each test is made and additional
information accumulated, the set of

35

possible rules that could be satisfied by
the input, given the values of the tests
so far made, is gradually narrowed until
eventually only rules that actually match
the input remain. Until the end of this
decision structure is reached, however,
none of these rules is actually considered
explicitly. This principle of factoring
together common parts of different
patterns to facilitate shared processing
is the basic technique that makes ATN
grammars [Woods, 1970] more efficient in
some sense than ordinary phrase structure
grammars. It has also been used by the
lexical retrieval component of the BBN
speech understanding system [Woods et al.,
1976; Wolf and Woods, 1977] and accounts
for the efficiency of the finite state
grammar approach of the CMU Harpy system
[Lowerre, 1976]. A recent innovative use
of this principle appears in Rieger's
"trigger trees" for organizing spontaneous
computations [Rieger, 1977].

Whether factored together or not, the
task of accessing rules is not a simple
one. One problem is that rules don't
match the input letter-for-letter: rather,
they have variables in them with various
restrictions on what they can match. For
example a rule might say that whenever an
access is made to a classified file, then
a record of the person making the request
should be made. The description, "an
access to a classified file" needs to be
matched against the user's request (or
some subpart of it) and in that match, the
description "a classified file" will be
matched against some specific file name.
In this kind of situation, there is no
natural ordering of the rules, analogous
to the alphabetical ordering of words,
that will help in finding the rules that
are satisfied by the given situation. Nor
is a structure as simple as the dictionary
tree above adequate for this case.

Another problem is that a given
situation may be matched by several rules
simultaneously with differing degrees of
generality. For example, there may be a
rule that says "whenever access is made to
a top secret file (more specific than
classified), then check the need-to-know
status of the user for that information
and block access if not satisfied". In
the case of a request to a top secret
file, both of the above rules must be
found, while in the case of an ordinary
classified file, only the first should.
The actual input, however, will not
explicitly mention either "top-secret" or
"classified", but will merely be some file
name that has many attributes and
properties, among which the attribute
"classified" is not particularly salient.

3.2 Markable Classification Structures

Another technique that holds promise
for situation recognition is the use of a
markable classification structure in which
coincidences of relatively non-salient
events can be detected. The keystone of
this approach is a technique that Quillian
proposed for modeling certain aspects of
human associative memory [Quillian, 1966,
1968]. Quillian's technique of "semantic
intersection" consisted of propagating
traces of "activation" through a semantic
network structure so that connection paths
relating arbitrary concepts could be
detected. For example, his system was
able to connect concepts such as "plant"
and "nourishment" by discovering the
"chain" equivalent to "plants draw
nourishment from the soil". If the
appropriate information were in the
network, this technique would also find
chains of indirect connections such as
"Plants can be food for people" and
"People draw nourishment from food." The
method was capable of finding paths of
arbitrary length.

The problem of finding connections
between concepts in a knowledge network is
like the problem of finding a path through
a maze from a source node to some goal
node. At the lowest level, it requires a
trial and error search in a space that can
be large and potentially combinatoric.
That is, if one element of the input could
be connected to k different concepts, each
of which would in turn be connected to k
others, and so on, until finally a concept
that connected to the goal was discovered,
then the space in which one would have to
search to find a path of length n would
contain k n paths. However, if one started
from both ends (assuming a branching
factor of k also in the reverse
direction), one could find all the paths
of l~Dgth n/2 from either end in only
2.kn/z .

If one then had an efficient way to
determine whether any of the paths from
the source node connected with any of the
paths from the goal node, such a search
from both ends would have a considerable
savings. This can be done quite
efficiently if the algorithm is capable of
putting marks in the structure of the maze
itself (or some structure isomorphic to
it), so that it can tell when reaching a
given node whether a path from the source
or the goal has already reached that node.
However, without such ability to mark the
nodes of the maze, the process of testing
whether a given path from the source can
hook up with a path from the goal would
involve a search through all the paths
from the goal individually, and a search
down each such path to see if the node at
the end of the source path occurred
anywhere on that path. If this were
necessary, then all of the advantage of
searching from both ends would be lost.

36

The use of the graph structure itself to
hold marks is thus critical to gaining
advantage from this algorithm.
Essentially, the nodes of the graph serve
as rendezvous points where paths that are
compatible can meet each other. The
coincidence of a path from the source
meeting a path from the goal at some node
guarantees the discovery of a complete
path without any path requiring more than
a simple test at the corresponding node in
the graph as each link is added to the
path.

What is needed for situation
recognition in a generalization of
Quillian's semantic intersection technique
in which the source and goal nodes are
replaced by a potentially large number of
concept nodes, some of which are
stimulated by immediate input, and some of
which are remembering recent activation in
the past. Moreover, what is significant
is not just simple paths between two
nodes, but the confluence of marks from
multiple sources in predetermined
patterns. Moreover, unlike Quillian, who
considered all connections identically in
searching for paths, we will consider
marker passing strategies in which marks
can be passed selectively along certain
links. Recently, Fahlman [1977] has
presented some interesting formal machine
specifications of Quillian-type spreading
activation processes which have this
characteristic.

4. The Structure of Concepts

In building up internal descriptions
of situations, one needs to make use of
concepts of objects, substances, times,
places, events, conditions, predicates,
functions, individuals, etc. Each such
internal concept will itself have a
structure and can be represented as a
configuration of attributes or parts,
satisfying certain restrictions and
standing in specified relationships to
each other. Brachman [1978] has developed
a set of epistemologically explicit
conventions for representing such concepts
in a "Structured Inheritance Network", in
which interrelationships of various parts
of concepts to each other and to more
general and more specific concepts are
explicitly represented. The essential
characteristic of these networks is their
ability to represent descriptions of
structured objects of various degrees of
generality with explicit representation of
the inheritance relationships between
corresponding constituents of those
structures. A concept node in Brachman's
formulation consists of a set of dattrs (a
generalization of the notions of
attribute, part, constituent, feature,
etc.) and a set of structural
relationships among them. Some of these
dattrs are represented directly at a given
node, and others are inherited indirectly

from other nodes in the network to which
they are related.

Let us assume that each concept that
the system understands is represented as a
node in one of these structured
inheritance networks. The network, as a
whole, then serves as a conceptual
taxonomy of all possible "entities" that
the system can perceive or understand.
Each node in this taxonomy can be thought
of as a micro schema for the recognition
of instances of that concept. Each has a
set of dattrs with individual restrictions
and a set of structural conditions that
relate the dattrs to one another. These
restrictions and structural conditions may
themselves be defined in terms of other
concepts defined by other micro schemata,
and so on until a level of primitively
defined, directly perceivable concepts is
reached.

Each concept in the taxonomy can be
thought of as having a level of
abstractness defined as the maximum depth
of nesting of its constituent structure.
Instances of primitively defined concepts
have level 0, constellations of those
concepts have level i, a concept having
level 1 and lower concepts as dattrs has
level 2,, and so on. If a taxonomy
contained only level 0 and level 1
concepts, then the situation recognition
problem would be greatly simplified, since
one never needs to recognize portions of
the input as entities that participate as
constituents of larger entities. The
general problem, however, requires us to
do exactly that. More seriously, the
general case requires us to recognize a
concept some of whose dattrs may have
restrictions defined in terms of the
concept itself. This is true, for
example, for the concept of noun phrase in
a taxonomy of syntactic constructions.
Such recursively defined concepts have no
maximum level of abstractness, although
any given instance will only involve a
finite number of levels of recursion.
This potential for recursive definition
must be kept in mind when formulating
algorithms for situation recognition.

5. The Need for Inheritance Structures

AS a result of having different
levels of abstraction in one's taxonomy,
an input situation will often satisfy
several situation, descriptions
simultaneously, no one of which will
account for all of the input nor supplant
the relevance of the others. For example,
adding a ship to a display is
simultaneously an example of changing a
display and of displaying a ship. Advice
for both activities must be considered.
Moreover, a single description may have
several different instantiations in the
current situation, with situation
descriptions becoming arbitrarily complex

37

by the addition of various qualifiers, by
the conjunction and disjunction of
descriptions, etc. For example, one might
want to store advice associated with the
situation [wanting to display a large ship
at a location on the screen that is within
one unit distance from either the top,
bottom, or side of the screen when the
scale of the display is greater than
1:1000]. Finally, situation descriptions
may subsume other descriptions at lower
levels of detail, and advice from both may
be relevant and may either supplement or
contradict each other. For example,
displaying an aircraft carrier is a
special case of displaying a ship, and
there may be specific advice associated
with displaying carriers as well as more
general advice for displaying any ship.
Thus, conventions will be required to
determine which advice takes precedence
over the other if conflicts arise.

The organization of large numbers of
such situation descriptions of varying
degrees of generality so that all
descriptions more general or more specific
than a given one can efficiently be found
is one thing we require of an intelligent
computer assistant. In order to build and
maintain such a structure, it is important
to store each rule at the appropriate
level of generality, relying on a
mechanism whereby more specific situations
automatically inherit information from
more general ones. That is, when one
wants to create a situation description
that is more specific than a given one in
some dimension, one does not want to have
to copy all of the attributes of the
general situation, but only those that are
changed. Aside from conserving memory
storage, avoiding such copying also
facilitates updating and maintaining the
consistency of the data base by avoiding
the creation of duplicate copies of
information that then may need to be
independently modified and could
accidentally be modified inconsistently.

For example, one may want to store
advice about displaying geographical
features, about displaying such features
that cover an area, about displaying
bodies of water, about displaying lakes,
etc. Thus, information about finding the
area covered by a feature would be stored
at the level of dealing with such
area-covering features, information about
displaying water in a certain color would
be stored at the level of displaying
bodies of water, and information about
having inlets and outlets would be stored
at the level of lakes. In any specific
situation that the system finds itself,
many such concepts at different levels of
generality will be satisfied, and the
advice associated with all of them becomes
applicable. That is, any more specific
concept, including that of the current
situation, inherits a great deal of
information that is explicitly stored at
higher levels in the taxonomy.

In the case of the situation
descriptions that we are dealing with,
even the specification of what dattrs a
given concept possesses is stored at the
most general level and inherited by more
specific concepts. Thus, for example, the
descriptions of attribute dattrs for color
and weight are stored for a general
concept of physical object. These dattrs
are then inherited by any more specific
concepts of physical objects, such as
planes, ships, desks, and pencils.

6. ~e T a x o n o m i c Lattice

I believe that a general solution to
the situation recognition problem can be
obtained by the use of a classification
structure in which traces of individual
elements of complex concepts can intersect
to facilitate the discovery of
coincidences and connections that may not
be strongly inferable from constraining
expectations. The structure that I
propose to use is a version of Brachman's
structured inheritance networks, in which
descriptions of all potentially relevant
situations are stored with explicit
indications of general subsumption of one
situation by another, and explicit
indications of the inheritance of dattrs
and of advice by one concept from another.
This structure, which I have called a
taxonomic lattice, is characterized by a
mult~t6de of situation descriptions at
different levels of generality.

We say that a situation description
Sl subsumes a description $2 if any
situation satisfying $2 will also satisfy
SI. In this case, S1 is a more general
description than $2, and is placed higher
in the taxonomy. For example, [displaying
a portion of country] is a more specific
situation than [displaying a geographical
area], which is in turn more specific than
[displaying a displayable entity]. All of
these are subsumed by a general concept
[purposive activity], which in turn is
more specific than [activity]. Moreover,
a given description can subsume many
incomparable descriptions and can itself
be subsumed by many incomparable
descriptions. For example, an instance of
[displaying a geographical area] is also
an instance of [accessing a geographical
area], [displaying information], and
[using the display[, and may possibly also
be an instance of [responding to a user
command].

The space of possible situation
descriptions forms a lattice under the
relation of subsumption. At the top of
the lattice is a single, most general
situation we will call T, which is always
satisfied and can be thought of as the
disjunction of all possible situations.
Anything that is universally true can be
stored here. Conversely, at the bottom of
the lattice is a situation that is never

38

satisfied, which we call NIL. It can be
thought of as the conjunction of all
possible (including inconsistent)
situations. Assertions of negative
existence can be stored here.

At the "middle" level of the lattice
are a set of primitive perceptible
predicates -- descriptions whose truth in
the world are directly measurable by the
"sense organs" of the system. All classes
above this level are constructed by some
form of generalization operation, and all
classes below are formed by some form of
specialization. At some point
sufficiently low in the lattice, one can
begin to form inconsistent descriptions by
the conjunction of incompatible concepts,
the imposition of impossible restrictions,
etc. There is nothing to prevent such
concepts from being formed; indeed, it is
necessary in order for the organism to
contemplate, store, and remember their
inconsistency.

There are a number of specific
relationships that can cause one situation
description to subsume another. A given
situation description can be made more
general by relaxing a condition on a
dattr, by eliminating the requirement for
a dattr, by relaxing the constraints of
its structural description, or by
explicitly disjoining it (or'ing it) with
another description. A given description
can be made more specific by tightening
the conditions on a dattr, by adding a
dattr, by tightening the constraints of
its structural description, or by
explicitly conjoining (and'ing) it with
another description. These operations
applied to any finite set of situation
descriptions induce a lattice structure of
possible situation descriptions that can
be formed by combinations of the elements
of the initial set. We refer to this
structure as the virtual lattice induced
by a given set of situation descriptions.
Note that only a finite portion of this
lattice need be stored with explicit
connections from more specific to more
general concepts. By processing this
explicit lattice, one can test any given
description for membership in the virtual
lattice and assimilate any new situation
description into the explicit lattice in
the appropriate place corresponding to its
position in the virtual lattice.

In operation, any situation
description about which information is
explicitly stored will be entered into the
explicit lattice. Any situation that the
machine can understand is in some sense
already in the virtual lattice and needs
only be "looked up" in it. One task we
have set for ourselves to develop
efficient algorithms to tell whether a
given situation can be understood in terms
of the concepts of the lattice and if so,
to construct its corresponding description
and explicitly record its relations to
other concepts in the explicit lattice.

7. An Example

As an example of the situation
recognition process using marker
propagation in a taxonomic lattice, let us
consider a simple case of interpreting the
intent of a simple English sentence. The
example chosen is not complex enough to
require all of the machinery discussed,
but is presented here to illustrate the
mechanism. The major features of the
situation recognition mechanism only
become critical in interpreting commands
that require several sentences to build
up, or which depend on the current context
in complex ways, but such situations are
difficult to illustrate.

For our example, suppose that the
system contained a concept for requests to
display a geographical region, and the
user's input request were "Show me the
eastern end of the Mediterranean." The
concept [request] contains dattrs for the
requestor, the requestee, a description of
the state that the requestor desires, a
form of request (demand, order, polite
request, expression of preference, etc.),
and perhaps others. Requests can take
many forms. Assume that we have stored in
the system a rule that s@ys "Any sentence
of the form: 'show me NP' is a request to
display that NP." This rule could be
stored in the lattice as a piece of advice
associated with the concept "A sentence of
the form: 'show me NP'," in such a way
that when a sentence of the indicated form
was found, an instance of a display
request would be created. At that point,
this resulting display request would be
placed in the lattice in such a way that
all more general concepts of which it is
an instance would be activated, and in
particular, the concept of a request to
display a geographical region would be
activated.

The parsing of the original sentence
can either be done by an ATN grammar, or
by a version of the taxonomic lattice
itself (one that characterizes a taxonomy
of sentence types). Let us assume here
that it is done by an ATN grammar that is
closely coupled to a taxonomic lattice,
with the ATN representing the syntactic
information about sentence form and the
taxonomic lattice representing general
semantic information. As the ATN grammar
picks up constituents of the sentence, it
reaches states where it makes hypotheses
about the syntactic roles that those
constituents play in the sentence (e.g.
"this is the subject", "this is the verb",
etc.). Such hypotheses are then entered
into the lattice, where they begin to
activate the recognition conditions of
concepts in the network. For example, in
the taxonomic lattice there is a concept
of an imperative sentence whose subject is
the system, whose verb is "show", whose
indirect object is the user and whose
direct object is a displayable object.

39

As the parsing proceeds, the ATN will
make assertions about the sentence it is
building up, and it will not only be
building up syntactic representations of
constituents of the sentence, but will
also be building up representations of
possible meanings of those constituents.
In particular, it will be building up a
list of those concepts in the lattice of
which the current constituent may be a
restriction or instance and a list of the
dattr-value pairings that have been found
so far. If a parse path succeeds (i.e.
reaches a POP arc), then a node in the
taxonomic lattice corresponding to that
hypothesis will be found or constructed.
This node will have links to more general
and more specific concepts, and will have
its constituents linked to appropriate
dattrs of those concepts. At the point
when this concept node is
found/constructed, a process of activation
spreading will be launched in the lattice
to find any advice that may be inherited
by that concept. This process will also
leave "footprints" in the lattice that
will facilitate the detection of concepts
of which the current one may itself be a
dattr (or part of a structural condition).

In the example above, when the parser
has parsed the initial portion of the
sentence "show me", it has built up in its
internal registers the information
corresponding to the hypothesis that the
sentence is an imperative, with subject
"you" and indirect object "me". Moreover,
it knows that (in input sentences) "you"
refers to the system itself, while "me"
refers to the speaker. It also knows that
the main verb is the verb "show". Let us
suppose that at this point, the parser
decides to activate the corresponding
taxonomic lattice nodes for the concepts
[the system], [the user], and [the verb
show] (possibly with pointers to the
syntactic hypothesis being constructed
and/or the labels SUBJECT, OBJECT, VERB,
respectively). Ignoring for now whatever
information or advice may be found
associated with these concepts or their
generalizations, the footprints that they
leave in the network will intersect at a
node [display request] which has dattrs
for requestor, requestee, form of request,
and requested thing. They also intersect
at other concepts such as [imperative
sentence], [active sentence], [action],
and a more specific kind of display
request [region display request], whose
requested thing is a geographical region.
This latter concept was created and
inserted into the lattice precisely to
hold advice about how to display
geographical regions, and to serve as a
monitor for the occurrence of such
situations. Fig. 1 is a fragment of a
taxonomic lattice showing the concepts of
interest. (For details of the notation,
see Brachman [1978], Woods and Brachman
[1978].)

When the final noun phrase has been
parsed and given an interpretation, the
footprints that its activation leaves in
the network will awaken the [region
display request] node, which will then be
fully satisfied, and the parser will
create a corresponding instance node, with
appropriate bindings for its dattrs. In
processing the noun phrase, the parser
will discover the adjective "eastern" and
the noun "Mediterranean" and will activate
the corresponding nodes in the taxonomic
lattice. The concept [east] is an
instance of [direction], which, among
other things, is the restriction for a
dattr of a concept [directionally
determined subregion] that defines the
meaning of such concepts as "north eastern
Idaho". Another dattr of this same
concept has the restriction [geographical
region], which is on the superc chain from
Mediterranean. Hence, footprints from
"eastern" and "Mediterranean" will
intersect at the concept [directionally
determined subregion], causing an instance
of that concept to be constructed as a
possible meaning of the noun phrase. The
[directionally determined subregion]
concept itself has a superc connection to
[geographical region], which happens to be
the restriction for the "requested thing"
dattr of the concept [region display
request] which has already received marks
for its other dattrs. Thus, the
intersection of footprints from the
various constituents of the sentence at
this concept node has served to select
this node out of all the other nodes in
the network. Since the more general
concept [display request] is on a superc
chain from [region display request], it
will also be activated, and advice from
both places will be considered.

8 . C o n c l u s i o n

In situation recognition, the nodes
of a taxonomic lattice structure serve as
rendezvous points where footprints from
various constituent elements of a concept
can meet. This facilitates the detection
of coincidences of related events, which
in many cases will not be suggestive in
isolation. The implementation of the
kinds of operations described above
involves a system of marker passing
conventions for propagating the various
"footprints" around the network, detecting
coincidences, creating instance nodes, and
propagating further markers when
coincidences are found. A major portion
of our current research involves the
discovery of effective conventions for
such marker passing operations. Other
issues include working out conventions for
how far markers should propagate
(amounting to decisions as to where to
rendezvous), deciding how much information
a mark carries with it and to what extent
marks are inherited, developing ways to
allow a node to remember partial

40

intersections of marks in such a way that
it can incrementally extend them as
additional marks accumulate, identifying
implications of the marker passing
strategies on representational
conventions, etc.

9. References

Brachman, R.J. (1978)
"A Structural Paradigm for Representing
Knowledge," Technical Report No. 3605,
Bolt Beranek and Newman Inc., Cambridge,
MA.

Fahlman, S.E. (1977)
"A System for Representing and Using '
Real-World Knowledge," Ph.D. dissertation,
Dept. of Electrical Engineering and
Computer Science, M.I.T.

Lowerre, B.T. (1976)
"The HARPY Speech Recognition System,"
Technical Report, Department of Computer
Science, Carnegie-Mellon university,
Pittsburgh, Pa.

Quillian, M.R. (1966)
"Semantic Memory,"
No. AFCRL-66-189, Bolt Beranek and
Inc., Cambridge, Ma.

Report
Newman

Quillian, M.R. (1968)
"Semantic Memory," in Semantic Information
Processinq (M. Minsky, ed.). Cambridge,
Ma:M.I.T. Press., pp. 27-70.

Rieger, C. (1977)
"Spontaneous Computation in Cognitive
Models," Cognitive Science I, No. 3,
pp. 315-354.

Wolf, J.J. and W.A. Woods (1977)
"The HWIM Speech Understanding System,"
Conference Record, IEEE International
Conference o n_n Acoustics, Spe@ch L an ~
Signal Processing, Har£ford, Conn., May.

Woods, W.A (1970)
"Transition Network Grammars for Natural
Language Analysis," CACM, Vol. 13, No. 10,
October (reprints available).

Woods, W.A. (1973)
"Progress in Natural Language
Understanding: An Application to Lunar
Geology," AFIPS Conference Proceedinq,
Vol. 42, 1973 National Computer Conference
and Exposition (reprints available).

Woods, W.A., M. Bates, G. Brown, B. Bruce,
C. Cook, J. Klovstad, J. Makhoul,
B. Nash-Webber, R. Schwartz, J. Wolf,
V. Zue (1976)
Speech Understanding Systems - Final
Report, 30 October 1974 to 29 October
1976, BBN Report No. 3438, Vols. I-V, Bolt
Beranek and Newman Inc., Cambridge, Ma.

Woods, W.A. (1977)
"Semantics and Quantification in Natural
Language Question Answering," to appear in
Advances in Computers, Vol. 17, New York:
Academic Press. (Also Report No. 3687,
Bolt Beranek and Newman Inc., 1977).

Woods, W.A. and R.J. Brachman (1978)
"Research in Natural Language
Understanding" - Quarterly Technical
Progress Report No. 1 (BBN Report
No. 3742), Bolt Beranek and Newman Inc.,
Cambridge, MA

Fig. 1

41

