
!

!

Formal Reasoning
~nd

Language Understanding Systems

Raymond Reiter
Department of Computer Science
University of British Columbia

I. Introduction

Computational studies in linguistics
have led to a variety of proposals~ for
semantic representations of natural
language. To a first approximation these
all have a number of features in common.
First, there is some formal language onto
which, with the aid of a grammar, surface
forms are mapped. Secondly, there is a
formal language (usually, but not
necessarily, the same as the first) for the
representation of world knowledge and which
is used to perform inferences necessary for
integrating the surface form into the
knowledge structure, and/or for answering
questions. Finally, there is, or should be
[5,18] a specification of the semantics of
these formal languages.

There seem to be three dominant
proposals for semantic representations:

(I) Procedural semantics [16,17] where
the underlying representation consists of
procedures in some executable language.

(2) Network structures [11,13,14] which
represent knowledge by appropriate graphical
data structures.

(3) Logical representation [3,7,12] which
express world knowledge by formulae in some
formal calculus.

These distinctions are not nearly as
clear as one might like. Both logical and
network representations often appeal to
procedural components, networks appear to be
representable as logical formlae via fairly
direct mappings [15], while logical formulae
have straight-forward procedural
representations [6].

In this paper I shall discuss
mechanisms for formal reasoning within
logical representations. I shall make the
(gross) assumption that surface forms have
aleady been mapped onto some form of
predicate calculus representation. In
particular, I make no claims about the role
or nature of the inferences required in
mapping from surface structures to a logical
deep structure. Neither do I take any
position on the primitives of this deep
structure. They may derive from a case
oriented grammar, conceptual dependency
theory etc. Ultimately, of course, the
extent to which the choice of these
primitives facilitates inference will be a
factor affecting this choice. I take it as
self evident that no semantic representation
can explicitly contain all of the
information required by a language
understanding system so there is a need for
inferring new knowledge from that explicitly
represented. In this connection it is worth
observing that, contrary to some prevailing
opinions, formal reasoning does not preclude
fuzzy or imprecise reasoning. There are no

175

a priori reasons why notions like
"probably", "possibly", etc. cannot be
formalized within a logical calculus and new
imprecise knowledge deduced from old by
means of prefectly definite and precise
rules of inference.

In the remainder of this paper I
discuss two paradigms for formal reasoning
with which I have worked - resolution and
natural deduction - and argue in favour of
the latter approach. I also indicate how
other semantic representations - procedures
and networks - might fit into this paradigm.
Finally, I discuss some problems deriving
from computational linguistics which have
not been seriously considered by researchers
in formal inference but which I think might
fruitfully be explored within a logical
framework.

2. Paradigms for Formal Reasoning
A. Resolution [10]

The resolution principle is based on
five key concepts, two of which (the
elimination of quanifiers through the
introduction of Skolem functions,
unification) are of particular relevance to
problems in the representation of linguistic
deep structures.

I) The elimination of quantifiers

One miht choose to assign to the
statement "Every animal has a nose" a
logical representation of the form

(x)(3y)[ANIMAL(x)~HAS-AS-PART(x,y)
NOSE(y)] (I)

As is well known, the sequence of
quantifiers at the head of this formula is
critical to its interpretation -
interchanging them assigns a totally
different meanng to the formula. Hence each
quantifier is assigned a scope which,
roughly speaking, is the maximal part of the
formula governed by that quantifier.
Unfortunately, the representation of
quantifiers and their scope leads to some
complexity in processing this information.
(Anyone who has faced this problem in
semanic net representations is well aware of
the difficulties.) An elegant solution is to
replace each existentially quantified
variable (y in (I)) by a new Skolem function
(which in (I) we can call "nose") whose
arguments are all of the universally
quantified variables (x in (I)) in whose
scope the existential variable lies. (Thus
y is replaced by nose(x) in (I)). Next, all
of the quantifiers are deleted. The
resulting formula is logically equivalent to
the original. The quantifier-free formula
of (I) is

ANIMAL(x)~HAS-AS-PART(x,nose(x))
NOSE(nose(x)) (2)

The reduction of formulae to
quanifier-free form also admits a primitive
form of inference by pattern matching
(unification).

(ii) Unification

In effect the unification algorithm
answers questions like "Is formula A an

instance (special case) of formula B?" or
"Is there a special case common to both A
and B?" Unification is simply consistent
pattern matching i.e. if a variable in one
position matches an expression, it must
match the identical expression in some other
position. Thus ANIMAL(x) unifies with
ANIMAL(fritz) under the substitution
fritzlx. HAS-AS-PART(fritz,nose(fritz))
unifies with HAS-AS-PART(x,nose(x)) again
with fritzlx. P(x,f(x),y) unifies with
P(z,f(a),b) under the substitution
alz,alx,bly, but fails to unify with
P(b,f(a),b).

(iii) Canonical form for formulae

The resolution paradigm requires that a
quantifier-free formula be converted to
clausal form, i.e. a conjunct of disjuncts
called clauses. The conversion algorithm is
quite straightforward involving Boolean
transformatons of the form A~B~AV B,
AB~AW B, AW BC~(A~ B)(AV C) etc. The
formula (2) has two clauses in its canonical
form:

AN'IMAL(x) ~ HAS-AS-PART(x, nose(x))
~ x ~ V NOSE(nose(x)) (3)

(iv) The resolution rule of inference

There is but one rule of inference in
resolution theory: If LIV~and L2~are two
clauses such that (a) LI and L2 are
complementary literals. (A literal is a
predicate symbol together with its
arguments, or the negation of same. Two
literals are complementary if they have the
same predicate symbol, and one is unnegated
while the other is negated.)
(b) The argument list of LI is unifiab~ with
that of L2 under a substitution , then one
can infer the new clause (gV~)~. For
example, if we know tha cats are animals, or
in clausal form

~'~(y) V ANIMAL(y)
then by unifying ANIMAL(y) on its
complementary literal ANIMAL(x) in (3), we
can infer

~T(F) V HAS-AS-PART(y,nose(F))
CAT(y) NOSE(nose(y)) (4)

i.e. cats have noses. If in addition it is
known that CAT(fritz), then by unifying this
on CAT(y) in (4), we can deduce the two
clauses

HAS-AS-PART(fritz,nose(fritz)) (5.1)
NOSE(nose(fritz)) (5.2)

(v) Completeness

Resolution is a refutation loJ~ic i.e.
if T is some statement to be proved, the
clausal form of its negation is added to the
clauses representing the knowledge base, and
an attempt is made to derive a contradiction
by means of the single resolution inference
rule. For exmple, to prove that Fritz has a
nose i.e.
(~z)[NOSE(x) A HAS-AS-PART(fritz,z)]
first negate, yielding__
(z)[N--6-~E(z) ~ HAS-AS-PART(fritz,z)],
then remove the universal quantifier which
i~ds the clause
NOSE(z)v HAS-AS-PART(fritz,z). Resolving
with (5.1) yields NOSE(nose(fritz)) which
contradicts (5.2).

176

Resolution is also complete. This
means that if T is indeed logically valid (T
is true under all possible interpretations
in which the knowledge base is true) then
there is a refutation proof of T with
resolution as the sole rule of inference.
There are two observations one can make
here. The first is that resolutin is very
much a competence model for formal
inference. By no stretch of the imagination
can it be construed as a performance model,
in part because of its canonical
representatin for formulae, in part because
of its "unnatural" rule of inference.
Secondly, by virtue of its completeness
resolution is provably adequate as a
competence model, in contrast with
linguistic competence models for which the
adequacy of any proposed theory is largely
an empirical question.

It is the combination of
representational security deriving from
completeness and theoretical elegance
deriving from the simplicity of the
underlying logic that has led to so much
intensive research into resolution. In
particular, attempts to deal with the gross
inefficiency of the theory have been largely
syntactic, designed to constrain the
possible inferences that can be made, but
without sacrificing the completeness
security blanket. Very little research has
been devoted to the representation and use
of domain knowledge, primarily, I think,
because the ways in which humans use such
knowledge have no correspondents within the
resolution paradigm.

B. Natural Deduction Systems[l,8,9]

These can best be characterized as
attempts to define a performance model for
logical reasoning, in contrast to resolution
as a competence model. In particular, any
such model must make use of all of the
domain specific "non-logical" knowledge
available to a human, and make use of it in
corresponding ways. Among the features of
such systems are the following:

(i) Formulae are quantifier-free, but remain
in their "natural" form. Thus, (I) is
represented in the form (2), not as (3).

(ii) There are many (not just one) rules of
inference~ each corresponding to some
observable inference mechanism used in human
reasoning. Some examples: (grossly
simplified. In particular the role of
unification is suppressed.)

(a) Generalized modus ponens. If
AAB~C~D is a known fact, and if A,B and C
are all known facts, then D may be deduced
as a new known fact. If one of A,B or C is
not known, no deduction is made.

(b) Back-chaining. If the current subgoal
is to prove D, and if W~D is known, then a
possible next subgoal is to prove W.

(c) Case analysis. If AV B is known,
generate two cases, one a context in which A
is assumed true, the other a context in
which B is true, and proceed with the proof
for each context.

(d) Splitting conjunctive subgoals. If

I
I
I
I
!

I
!
I
I
!
!

i
a

l
l
I
i
I

I

1
I
I
I
I
!
l
I
I
.I

I
I
i
i
i
I
I
I

I

the current subgoal is to prove AAB, first
prove A, then prove B.

(e) Implicative subgoals. If the current
subgoal is to prove A~B, update the current
context with A, and prove B.

Quite a number of additional inference
rules are possible. I have given a few
examples only to indicate the flavour of the
approach, and its naturalness. Some
observations. First, the logic yields
direct proofs, each of which must be
provable assuming that its ancestor 'is
Drovable. This property turns out to be
critical for the application of domain
specific knowledge for reducing search.
(See (iii) below.) I know of no resolution
logic with this property. Thirdly, the
search for a proof proceeds by decomposing a
problem into simpler problems as in rules
(c), (d) and (e). Finally, there is an
explicit representation of local contexts
which prevents irrelevant formulae in
adjacent contexts from polluting the local
search. By way of contrast, resolution
systems operate in a single global context.

(iii) Central to the natural deduction
approach is it emphasis on the
representation and appropriate use by the
logic of domain specific knowledge.
Examples of such knowledge are models,
counterexamples, special cases etc. The
fact that, as noted in (ii), each subgoal W
must be provable provides the logic with a
handle on how to use such knowledge. For if
W or some special case of W is false in a
model, or if there is a known counterexample
to W, then there is no point in trying to
prove it. If W is true in some model, or if
it is possible to derive consequences of W
which are known to be true, then there is
additional evidence to warrant trying to
prove it.

In some approaches [9] formulae in the
knowledge base may have associated with them
domain specific knowledge indicating how
best to use that formula in the search for a
proof. For example, in view of the enormous
number of possible animals, there would be
associated with CAT(y)~ANIMAL(y) the
advice: If you are trying to prove that
something is an animal and you don't
currently know it to be a cat, don't try to
prove it is a cat. The representation of
this kind of knowledge clearly derives from
the exhortations of the proceduralist [6].

(iv) Natural deduction systems are
incomplete. This seems to be a necessary
consequence of their emphasis on generating
subgoals each of which must be provable.
There are serious questions as to whether
this is a satisfactory state of affairs. A
facile argument has it that humans are
necessarily incomplete (because of natural
time and space bounds) so there is no need
for computational logic to concern itself
with this issue. However, for a logic to
qualify as a performance model, it must be
incomplete in precisely the ways that we
are. The fact is that we overcome some of
the limitations to time and space bounds by
appealing to a variety of "non-logical"
processes. Typical of these processes is

177

the inspired guess which one encounters in
mathematics whenever an induction hypothesis
is proposed, or some obscure expressin is
somehow pulled out of a hat to make a proof
go through. One thing is certain. Neither
the induction hypothesis, nor the expression
was discovered by any process of pattern
directed (via unification) search using the
rules of inference of a logic, despite the
fact that completeness guarantees the
ultimate success of such a search. The
difficulty with formulating an appropriate
notion of completeness for a performance
model is precisely in characterizing these
non-logical processes and how they function
in "completing" the underlying logically
incomplete rules of inference. One of the
virtues of natural deduction systems is that
this distinction between logical and
non-logical processes is made, and that it
is possible in some fairly general
situations for the logic to recognize when
to invoke appropriate external routines [9].

3. The Two Cultures - Future Prospects

It is safe to say that there has been
little communication between researchers in
computational linguistics and formal
inference. The Justification seems to be
that the former are concerned with
performing shallow inference on large
knowledge bases, whereas the latter focus on
deep inference over relatively small
domains. I believe this distinction is a
superficial one, and that each discipline
has much to gain from the problems and
proposed solutions of the other. As an
example of how a logical paradigm can be
relevant to current ideas in computational
linguistics, consider the relationship
between semantic nets and logical
representations.

Almost all of the question-answering
systems that I know of use semantic nets for
their inferencing component despite the fact
that

(a) their semantics is by no means
clear [18]

(b) there are serious difficulties in
representing and processing quantifiers and
their scopes

(c) no methods have been proposed for
computing on a net which yield inferencing
capabilities even remotely approximating
those of a natural deduction system -
capabilities which we know humans possess.

These are all non-problems for an
appropriate logical system. Nevertheless,
there are definite virtues to semantic nets
as knowledge representations, especially
their use in forming associations among
concepts and their explicit representaion of
superset links. It seems to me that there
would be definite advantages to interfacing
a natural deductive system with a semantic
net, each component doing what it does best.
In its simplest realization, imagine a net
all of whose nodes denote nominal concepts
and all of whose links denote "subset" or
"superset". Within the logic, each variable
and function symbol occurring in a formula
is assigned a type which is the domain over

which the varible is meant to range or the
range of the function Symbol. Each such
type has a corresponding node in the net.
For example, (2) would be represented as

HAS-AS-PART(x{ANIMAL},nose{NOSE}(x{ANIMAL}
)) (6)

The general fact that cats are animals
has no representation in the logical
component, but is represented in the net by
appropriately linked CAT and ANIMAL nodes.
Now the question "Does Fritz have a nose?"
translates to an attempt to prove
HAS-AS-PART(fritz{CAT}, y{NOSE}). If we
could unify this with (6) the question would
be answered. However, a term (in this case
x) cannot unify with another term (fritz)
unless their types are compatible. To
determine compatibilitythe unifier calls on
the semantic net processor to check whether
a path of superset links connects node CAT
to node ANIMAL. In this case there is such
a path, so the unificaton succeeds.

Notice how each component benefits from
the presence of the other. The logic
benefits by processing fewer, and
considerably more compact formulae than
would otherwise be necessary. (Compare (6)
with (2)). In particular, compactification
eliminates many logical connectives, which
has the effect of reducing the number of
applications of rules of inference in
deriving a result. This is so because these
rules are "connective driven". Since search
is largely a matter of the nondeterministic
application of rules of inference, the
search space is reduced. Notice also that
the unifier is now responsible for some
inference beyond that of simple pattern
matching. From a search strategic point of
view there are sound reasons for encouraging
this transfer of logical power from the
rules of inference to the unifier. Thus,
the unifier should also be responsible for
dealing generally with transitive and
reflexive relations by appealing to
computations on appropriate data structures
which represent these relations. The
general point of view here is that as much
of the inferencing as possible should be
effected computationally rather than
logically, leaving the logic to deal with
"difficult" problems. Given this view, a
semantic net is just one of a whole class of
possible data structures which facilitate
computation as a substitute for certain
kinds of deduction. Assuming that it is
possible to isolate "what nets do best" the
designer of a net is free to tune its
representation and procedures with respect
to a few well defined tasks without concern
for its general inferencing abilities (or
lack thereof).

Finally, it must be admitted that there
are a host of problems deriving from
linguistic considerations which have not
even been considered by researchers in
formal inference. Many of these problems,
in particular most of the "fuzzy" kinds of
reasoning described in [2], probably cannot
be nicely incorporated in any paradigm for
formal inference. Nevertheless, there
remain many interesting questions worth

178

exploring within a logical framework.

(i) Other quantifiers. Logic has been
content to deal with just two quantifiers -
"there exists" and "for all". Natural
language invokes a whole spectrum of
quantifiers - "most of", "many of", "seven
of", "a few of", etc. There is no
difficulty in augmenting the syntax of a
logical formalism with new quantifiers
corresponding to these. The difficulty is
in defining their semantics, and in
specifying appropriate new rules of
inference. It is possible, for example, to
define "most-of" in some set theoretic
formalism which effectively says "more than
80%", but I find this approach unsatisfying.
A differenct approach, borrowing on the
successful treatment of "there exists" in
logic, might define "most-of" as a Skolem
function with certain properties peculiar to
our understanding of the meaning of "most
of". Thus, one property of the "Skolem
function" most-of is that it unifies with
any term of the same type as the argument to
most-of; the unifier returns the atom
"probably". Thus, "Most dogs bark" becomes
something like BARK(most-of(x{DOG})), and
"Does Fido bark?" translates to
BARK(fido{DOG}). Unification succeeds and
we conclude something like
PROBABLY(BARK(fido{DOG})). Clearly there
are plenty of problems here not least what
we mean by "probably", but the example gives
the flavour of a possible logical approach,
as well as an indication how certain kinds
of "fuzzy" reasoning might be modeled in an
extended logic.

(ii) Different levels of memory - contexts
for wanting, needing etc. Consider
representing "x wants P" in some logical
formalism, where P is an arbitrary
proposition. In specifying the properties
of "WANT" we shall need (among other things)
some kind of schema of the form

WANTS(x,P) A Q
WANTS(x, anything derivable from P and

Q) (7)
where Q is an arbitrary proposition. This
is unlike anything that researchers in
formal inference have had to deal with. One
possible approach, deriving from the context
mechanism in natural deduction systems, is
to maintain a variety of contexts, one
containing formulae assumed universally true
(the knowledge base), and for each
individual x who wants something a context
of all the formulae representing what x
wants. Notice that within a want-context
there is no commitment to the truth value of
a formula - x may want a unicorn. The role
of the schema (7) is assumed by the logic
which knows which intercontextual inferences
are legal.

(iii) Computation vs. deduction. This is a
general problem involving the trade-off
between the generality of deduction with its
attendant inefficiency, and the use of
highly tuned procedural specialists. My
particular bias is that one cannot entirely
do away with deduction, but that the logic
saould recognize if and when a deduction is
best done procedurally, call the right
specialist, and know what to do with the

I
I
I
I
I
I
I
I

i
!

results returned. This point of view is
reflected in my earlier suggestion that one
possible role for a semantic net is as a
specialist for checking compatibility of
types. Similarly, work in procedural
semantics (e.g.[17]) can be viewed as
complementary to deduction, not as an
antithetical paradigm.

Ideally, what we want is "search-free"
inference i.e. an appropriate collection of
procedural specialists together with some
supervisory system which knows which
specialist to call, and when. If the
specialists are "factored out" there is no
logic left. The possibility of realizing
this ideal seems to me remote, if only
because mathematics is a human activity
which does require formal inference and
hence search. Consequently, it is important
to better understand this trade-off between
computation and deduction (or the particular
and the general) and we can hope that in the
future researchers in formal reasoning will
clarify some of the issues. In this
connection it is worth remarking that the
distinction between computation and
deduction is by no means clear [4].

REFERENCES

[I] Bledsoe, W.W., Boyer, R.S. and
Henneman, W.H., Computer proofs of limit
theorems, Artificial Intelligence, 3
(1972), pp. 27-60.

[2] Carbonell, J.R. and Collins, A.M.,
Natural semantics in artificial
intelligence, Proc. Third IJCAI,
Stanford University, Stanford, CA
(1973), pp.344-351.

[3] Coles, L.S., An on-line
question-answering system with natural
language and pictorial input, Proc. ACM
23rd Natl. Conf. (1968), pp.157-167.

[4] Hayes, P.J., Computation and deduction,
Proc. Symposium on the Mathematical
Basis of Computation, Czech. Academy of
Sciences (1973).

[5] Hayes, P.J., Some problems and
non-problems in representation theory,
Proc. AISB Summer Conf., University of
Sussex,Brighton, U.K. (1974), pp.63-79.

[6] Hewitt, C., Description and theoretical
analysis (using schemata) of PLANNER: A
language for proving theorems and
manipulating models in a robot, AI
TR-258 (1972), AI Lab., M.I.T.

[7] McCarthy, J. and Hayes, P., Some
philosophical problems from the
standpoint of artificial intelligence,
Machine Intelligence ~, Meltzer and
Michie (eds), pp.463-502 (American
Elsevier, NYC 1969).

[8] Reiter, R., A semantically guided
deductive system for automatic
theorem-proving, Proc. Third IJCAI,
Stanford University, Stanford CA (1973),
pp.41-46.

[9] Reiter, R., A paradigm for formal
reasoning, Dept. of Computer Science,
Univ. of British Columbia
(forthcoming).

[10] Robinson, J.A., A machine oriented
logic based on the resolution principle,
J_=. ACM, 12 (1965), pp.23-41.

179

[11] Rumelhart, D.E. and Norman, D.A.,
Active semantic networks as a model of
human memory, Proc. Third IJCAI,
Stanford University, Stanford CA (1973),
pp.450-457.

[12] Sandewall, E.J., Representing natural
language information in predicate
calculus, Machine Intelligence 6,
Meltzer and Michie (eds), pp. 255-277.

[13] Schank, R.C., Identification of
conceptualizations underlying natural
language, Computer Models of Thought and
Language, Schank and Colby (eds),
pp.187-247, (W.H. Freeman and Company,
San Francisco CA, 1973).

[14] Simmons, R.F., Semantic networks: their
computation and use for understanding
English sentences, Computer Models of
Thought and Language, Schank and Colby
(eds), pp.63-113.

[15] Simmons, R.F. and Bruce, B.C., Some
relations between predicate calculus and
semantic net representations of
discourse, Proc. Second IJCAI, The
British Computer Society, London (1971),
pp.524-530.

[16] Winograd, T., Understanding Natural
Language, Cognitive Psychology, 3,
(1972).

[17] Woods, W.A., Procedural semantics for a
question-answering machine, AFIPS Conf.
Proc., FJCC, 33 (Part I), (1968),
pp.457-471.

[18] Woods, W.A., What's in a link:
Foundations for semantic networks,
ReDresentation and Understanding, Bobrow
and Collins (eds), Academic Press
(forthcoming).

