
COMPUTATIONAL UNDERSTANDING

Christopher K. Riesbeck

I. METHODOLOGICAL POSITION

The problem of computational
understanding has often been broken into two
sub-problems: how to syntactically analyze a
natural language sentence and how to
semantically interpret the results of the
syntactic analysis. There are many reasons
for this subdivision of the task, involving
historical influences from American
structural linguistics and the early
"knowledge-free" approaches to Artificial
Intelligence. The sub-division has remained
basic to much work in the area because
syntactic analysis seems to be much more
amenable to computational methods than
semantic interpretation does, and thus more
workers have been attracted developing
syntactic analyzers first.

It is my belief that this subdivision
has hindered rather than helped workers in
this area. It has led to much wasted effort
on syntactic parsers as ends in themselves.
It raises false issues, such as how much
semantics should be done by the syntactic
analyzer and how much syntactics should be
done by the semantic interpreter. It leads
researchers into all-or-none choices on
language processing when they are trying to
develop complete systems. Either the
researcher tries to build a syntactic
analyzer first, and usually gets no farther,
or he ignores language processing
altogether.

The point to realize is that these
problems arise from an overemphasis on the
syntax/semantics distinction. Certainly
both syntactic knowledge and semantic
knowledge are used in the process of
comprehension. The false problems arise
when the comprehension process itself is
sectioned off into weakly communicating
sub-processes, one of which does syntactic
analysis and the other of which does
semantic. Why should consideration of the
meaning of a sentence have to depend upon
the successful syntactic analysis of that
sentence? This is certainly not a
restriction that applies to people. Why
should computer programs be more limited?

A better model of comprehension
therefore is one that uses a coherent set of
processes operating upon information of
different varieties. When this is done it
becomes clearer that the real problems of
computational understanding involves
questions like: what information is
necessary for understanding a particular
text, how does the text cue in this
information, how is general information
"tuned" to the current context, how is
information removed from play, and so on.
These questions must be asked for all the
different kinds of information that are
used.

Notice that these questions are the
same ones that must be asked about ANY model

ii

of memory processes. The reason for this is
obvious: COMPREHENSION IS A MEMORY PROCESS.
This simple statement has several important
implications about what a comprehension
model should look like. Comprehension as a
memory process implies a set of concerns
very different from those that arose when
natural language processing was looked at by
linguistics. It implies that the answers
involve the generation of simple mechanisms
and large data bases. It implies that these
mechanisms should either be or at least look
like the mechanisms used for common-sense
reasoning. It implies that the information
in the data bases should be organized for
usefulness -- i.e., so that textual cues
lead to the RAPID retrieval of ALL the
RELEVANT information -- rather than for
uniformity -- e.g., syntax in one place,
semantics in another.

The next section of this paper is
concerned with a system of analysis
mechanisms that I have been developing.
While the discussion is limited primarily to
the problem of computational understanding,
I hope it will be clear that both the
mechanisms and the organization of the data
base given are part of a more general model
of human memory.

II. ANALYSIS MECHANISMS

It has been recognized for some time
now that understanding even apparently
simple texts can involve the application of
quite general world knowledge, that is, of
knowledge that would not normally be
considered part of one's knowledge of the
language in which the text is written. The
set of information that might be needed for
understanding a text is therefore
tremendous. Clearly an understanding system
cannot be applying all it knows 'to
everything it reads all the time. It must
have mechanisms for guessing what
information is likely to be needed in the
near future. As long as its guesses are
good, and the understander updates them in
the light of new input, understanding can
proceed at a reasonable rate.

In other words, the understander must
be good at PREDICTING what it is likely to
see. Further the data base must be
organized so that coherent clusters of
relevant information can be accessed quickly
with these predictions. But since no finite
static data base can have exactly the right
information for every input, the
understander must be able to prune and
modify the information that the data base
contains so that it applies more precisely
to the situation at hand.

The analyzer which I developed in my
thesis [Riesbeck, 1974] was based on the
concept of "expectation". The analyzer
program consisted of a fairly simple monitor
program and a lexicon. The lexicon was a
data base whose contents were organized
under words and their roots. The
information in the data base was in the form
of pairs of predicates and programs, which
were called EXPECTATIONS.

The analysis processconsisted of the
monitor reading sentences, one word at a
time, from left to right. As each word was
read, the monitor did two things. It looked
up the word (or word root if no entry was
found for the word) in the lexicon, and
added the associated expectations (if any)
to a master list of expectations. Then each
element of this master list was checked.
Those expectations with predicates that
evaluated to true were "triggered" -- i.e.,
their programs were executed and the
expectations were removed from the master
list. Those expectations that were not
triggered were left on the master list.
When the end of the sentence was reached,
the meaning of the sentence was that
structure (if any) which the triggerings of
the various expectations had built.

A general idea of the way the analyzer
worked can be obtained by following the flow
of analysis of the simple sentence "John
gave Mary a beating." The chart on the next
page gives an outline of the basic sequence
of events that takes place in the analyzer
as the sentence is read, one word at a time,
from left to right. The column headed "WORD
READ" indicates where the analyzer is in the
sentence when something occurs. The column
headed "EXPECTATIONS WAITING" gives the

12

predicate portion for all the activated but
not yet triggered expectations. The column
headed "EXPECTATIONS TRIGGERED" indicates,
when a number is placed in that column,
which expectation has just been triggered at
that point in the analysis. The column
headed "ACTIONS TAKEN" indicates what
effects the triggered expectations had.
INPUT refers to whatever has just been read
or constructed from the input stream.

Step 0 is the initial state of the
analyzer before the sentence is begun. The
analyzer sets up one expectation which
assumes that the first NP it sees is the
subject of a verb that will come later.

In Step I, the first
word -- "John" -- is read. Because "John"
is a proper name, it is treated as a noun
phrase and thus Expectation I is triggered.
The program for Expectation I chooses "John"
to be the subject of whatever verb will
follow. Expectation I is then removed from
the set of active expectations. There were
no expectations listed in the lexical entry
for "John".

In Step 2, "gave" is read. The lexical
entry for the root form "give" has three
expectations listed an~ these are added to
the set of active expectations. None of
them are triggered.

In Step 3, "Mary" is read. "Mary" is a
noun phrase referring to a human and so
Expectation 2 is triggered. The program for
Expectation 2 chooses "Mary" to be the
recipient of the verb "give". Then
Expectation 2 is removed. There were no
expectatons in the lexical entry for "Mary".

In Step 4, "a" is read. There is one
expectation in the lexicon for "a". This is
Expectation 5 which has a predicate that is
always true. That means that Expectation 5
is triggered immediately. The program for
Expectation 4 is a complex one. It sets
aside in a temporary storage area the
current list of active expectations. In its
place it puts Expectation 6, which will be
triggered when something in the input stream
indicates that the noun phrase begun by "a"
is complete.

In Step 5, "beating" is read. There
are no lexical entries and "beating" is not
a word that finishes a noun phrase, so
nothing happens.

In Step 6, the end of the sentence is
seen. This does finish a noun phrase and so
Expectation 6 is triggered. The program for
Expectation 5 builds a noun phrase from the
words that have been read since the "a" was
seen. It places this back in the input
stream and brings back the set of
expectations that Expectation 5 had set
aside.

In Step 7, the input "a beating,,
triggers Expectation 4. The program for
Expectation 4 builds a conceptual structure
representing the idea of someone hitting
someone else repeatedly. It uses the
subject "John" as the actor and the

I
I
I
!

I
I
I
i
I
I
I
I
I
1
I
1
I
II
I

recipient "Mary" as the Object being hit.
The final result therefore is a
representation that says that John hit Mary
repeatedly.

The program portions of the
expectations therefore produced the meaning
of a sentence. These programs were not
limited in power. Not only could they
build, modify and delete syntactic and
conceptual structures, but they could add,
modify and delete the list of expectations
as well. This is why the analysis monitor
was so simple. All the real work was done
by the program portions of the expectations.

The predicates were predictions about
likely situations that would be encountered
in the processing of the sentence. Some of
these predictions were about what words or

l word types would be seen. For example, one
of the expectation pairs in the lexical
entry for "a" contained a predicate that a
noun would be seen soon. Elsewhere in the

l lexicon, there were expectations whose
predicates were about the structures that
other expectations had built or would build.
There were also expectations with predicates
that were true in all situations. In this

l case the programs were supposed to be
executed whenever the word referencing them
in the lexicon was read.

The predictive power of the predicates
arose from the fact that the predicate did
not look at all the things that an input
might mean. Rather it asked if the input
COULD mean some particular thing. If so the
expectation was triggered. The predicate
portions of expectations were the
disambiguating component of the analyzer
because they chose only those word meanings
that the sentential context had use for.

To generalize this discription of the
analyzer a bit more, the basic memory
mechanism used was the expectation, which

l consisted of a prediction about a possible
future situation and instructions on what to
do if that situation occurred. The basic
organization of memory was to have clusters

i of these expectations attached to words and
word roots. The access to this memory was
through the words seen in a sentence being
understood.

I The thrust of the work of the analyzer
had been on the development of the
expectation mechanism as a viable analysis
tool. This meant defining what kinds of

I expectations were needed and how they could
be easily retrieved. One of the major
weaknesses of the analyzer was the lack of
any satisfactory control over the set of

,. currently active expectations. There was no
I real tuning of the set of expectations found

in the lexicon to fit the situation at hand.
The only interaction between expectations
occurred when expectations were triggered

l and produced concrete structures. The only
mechanism for removing untriggered
expectations was the wholesale clearing of
active memory at the end of a sentence.

I The extension of the concept of
expectations to make them more controllable

13

without destroying their generality has been
the core of the work that I have been doing
since the thesis. Programming is going on
right now to incorporate the extensions into
a second version of the analyzer.

The first basic extension to the
predicate-program format of the expectations
was the addition of explicit information
about the purposes of various expectations.
That is, an expectation was made and -- more
importantly -- kept around because there was
some need that the triggering of this
expectation would fulfill. For example, the
verb "give"had listed in its lexical entry
several expectations which could fill the
recipient slot for that verb if triggered.
There was one which looked for the next noun
phrase referring to a human. This
expectation, activated as soon as "give" was
seen, would fill the recipient slot in
sentences like "John gave Mary a book." A
separate expectation, activated at the same
time, looked for the preposition "to"
followed by a noun phrase referring to
something that was at least a physical
object. This expectation if triggered would
fill the recipient of "give" with the object
of the "to", as in sentences like "John gave
the book to Mary."

Both of these expectations have the
same purpose: to fill the recipient case of
the verb "give". As long as no recipient is
found there is a reason for keeping both
expectations active. And this implies that
when the recipient case is finally filled,
either by one of the expectations set up by
"give" or by some expectation set up by some
later word, then there is no longer any
reason for keeping any of these expectations
and they should all be removed.

If the monitoring program is to be
capable of both loading and removing the
various expectations, it must know what the
purposes of the expectations are.
Unfortunately, there are no constraints on
what sorts of functions can appear as
predicates and programs in an expectation,
which makes such a capability impossible.
However it is not necessary for the monitor
to recognize purposes for ALL expectations.
It is sufficient for it to know about just
those expectations that fill empty
conceptual or syntactic slots when they are
triggered. The two expectation examples
given above for filling the recipient case
of the verb "give" are of this type. We can
specify the purposes of such expectations by
simply specifying what slot they fill if
triggered. The monitor can tell with these
expectations when they should be kept and
when they should be removed. The monitor
leaves alone actions -- such as those that
manipulate other expectations -- which are
not linkable to simple purposes.

While this was the first important
extension to the expectation format it was
not the last. Almost immediately it was
realized that many expectations are
dependent upon others in the sense that they
cannot possibly be triggered until the other
ones are. For example, suppose we have an
expectation whose predicate looks at the

syntactic object slot of the verb "give" and
whose program builds some conceptual
structure using this information. Further
suppose we have another expectation active
at the same time whose predicate looks for a
noun phrase in the input stream and whose
program will fill in the syntactic object
slot for "give" with that noun phrase. Then
clearly the former expectation must wait for
the latter to be triggered first before it
has a chance of being triggered itself.

This kind of dependency relationship
between expectations is not just an
interesting observation. Remember that the
predicate portion of an expectation was a
PREDICTION about what might be seen. This
means that the first expectation -- the one
whose predicate looks at the syntactic
object of "give" when it is finally
filled -- is not only waiting for the second
expectation to be triggered but in fact is
making a prediction about what the second
expectation will produce. This has two
implication s •

First, if the second expectation cannot
produce a structure that will satisfy the
predicate of the first expectation, but
there is an expectation that can, then the
second expectation is less preferable to
this third one, which means that the third
one would be checked first when new input
arrives. A dynamic ordering has been
induced on the set of active expectations.

Second, structure building expectations
often build from pieces of structures that
other expectations build. If we have a
prediction about what an expectation should
produce, we can then make predictions about
the sub-structures that the expectation
builds with. These new predictions can then
influence the expectations producing those
sub-structures, and so on.

For example, consider the two
expectations for "give" that were given
above. Suppose the predicate of first
expectation looks for a syntactic object
referring to an action -- such as "a sock"
in one interpretation of the sentence "John
gave Mary a sock." Since the second
expectation is the one that fills in the
syntactic object slot of "give", there is
now a prediction that the second expectation
will produce a noun phrase referring to an
action. Since the second expectation fills
the syntactic object of "give" with a noun
phrase that it finds in the input stream,
the monitor can predict that a noun phrase
referring to an action will appear in the
input stream. The effect of this prediction
is that when words are seen in the input,
the first thing that is looked for is to see
if they can refer to an action. If so, then
that sense of the word is taken immediately.
Thus a word like "sock" is disambiguated
immediately as a result of an expectation
originally made about the syntactic object
of "give".

To pass the information from one
expectation to the next about what an
expectation would like to see, we need to
know where the expectation is looking. That

14

is we need to know what the predicate of the
expectation is applied to. This information
can be specified in the same way that the
purpose of the expectation was: by giving a
conceptual or syntactic slot. In this case,
instead of giving the slot that the
expectation fills if triggered, we specify
the slot that the predicate of the
expectation is applied to. Then by knowing
what slot an expectation looks at, we know
what expectaions this expectation depends
on. It depends on those expectations that
fill this slot -- i.e., that have a "purpose
slot" equal to the "lock at slot" of the
expectation.

Let me summarize this discussion by
giving the current format for specifying
expectations:

(NEED FOCUS TEST ACTION SIDE-EFFECTS)
where

NEED is the slot the expectation fills if
triggered,

FOCUS is the slot the expectation looks at,
TEST is the predicate portion of the

expectation,
ACTION is the structure building portion of

the expectation,
SIDE-EFFECTS are those programs that act

upon other expectations and are not -- at
the moment -- incorporated into the
network of dependencies and predictions.

The analysis monitor is fairly
content-independent. Its job is to take
input, use it to access clusters of
expectations, keep active those expectations
that might fill slots that are still empty
in partially-built structures, and keep
track of the predictions/preferences that
are induced by the dependency relationships
between expectations. The actual knowledge
about language and the world is still
contained in the expectations, as was true
in the original analyzer.

This encoding of knowledge into small
pieces of programs that have both procedural
and declarative aspects is of both practical
and theoretical importance. In terms of
implementing an AI model, I have found it
much easier to specify procedural knowledge
in small units of "in situation X do Y".
Further it is much easier, as a programmer,
to extend and modify procedures written in
this form. It is also easier for a program
to manipulate knowledge in this way.

Theoretically, the expectation format
seems to me to be a viable memory
representation for highly procedural
knowledge. With it we can design explicitly
a theory of computational understanding that
does not have the forced division between
syntactic and semantic analysis. Individual
expectations are usually concerned with
syntactic or conceptual structures, but all
of the expectations are maintained in one
large set. This allows for those important
expectations that convert information about
syntactic structures in semantic information
and vice-versa. Thus information that
originally started as an abstract conceptual

I
I
I
I
I
I
I
i
i
I
I
I
I
I
I
i
I
I
II

prediction can be quickly disseminated
throughout a dependency network of
expectations and lead eventually to
predictions about things like word senses.

For example, my thesis describes how
the interpretation of the text "John was mad
at Mary. He gave her a sock," uses a
conceptual prediction that "John wants
something bad to happen to Mary," which
follows from the first sentence, to choose
the appropriate sense of the word "sock" in
the second sentence the first time the'word
is seen. This can be done because the
general conceptual prediction in interaction
with the expectations in the lexical entry
for "give" led to predictions about the
nature of the syntactic object of "give",
which in turn led to predictions about the
words that would be seen in the input
stream.

In other words, the analysis
system -- both the original one and the new
version -- as an approach to the
computational understanding problem,
exemplifies the general points made in the
methodological portion of this paper. It
demonstrates the feasibility of doing
understanding using very simple mechanisms
for manipulating small but flexible units of
knowledge, without forcing the development
of independent syntactic analyzers or
semantic interpreters. These simple
mechansisms allow for a direct attack on
such problems as what information is
absolutely necessary for understanding, how
it is called for, and how a workably sized
set of active information can be maintained.

REFERENCE

Riesbeck, C. "Computational Understanding:
Analysis of Sentences and Context,"
Ph.D. Thesis, Computer Science Dept.,
Stanford University, Stanford, CA.
1974.

IS

STEP WORD READ EXPECTATIONS EXPECTATIONS ACTION TAKEN
ACTIVE TRIGGERED

0 none I - is INPUT a none none
NP?

I John I - is INPUT a I choose "John to be
NP? the subject of the

verb to come

2 gave 2 - does INPUT refer none none
to a human?

3 - does INPUT refer
to a physical
object?

4 - does INPUT refer
to an action?

3 Mary 2 - does INPUT refer 2 choose "Mary" to
to a human? be the recipient

3 - does INPUT refer of "give"
to a physical
object?

4 - does INPUT refer
to an action?

4 a 3 - does INPUT refer 5 save the current
to a physical set of
object? expectations and

4 - does INPUT refer replace it with:
to an action? 6 - does INPUT end

5 - true a NP?

5 beating 6 - does INPUT end none none
a NP?

6 period 6 - does INPUT end 6 set INPUT to the
a NP? NP "a beating" and

reset the
expectation set

7 none 4 set the main
action of the
interpretation
to the action
named by INPUT;
set the actor to
the subject (John)
and set the object
to the recipient
(Mary)

3 - does INPUT refer
to a physical
object?

4 - does INPUT refer
to an action?

1 6

II
I
I
l
l
.I
l

i
1
D.
D
I
I
I
1
!

I
I
I

