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Abstract

We present the Named Entity Recognition
(NER) and disambiguation model used by the
University of Arizona team (UArizona) for
SemEval 2019 task 12. We achieved fourth
place on tasks 1 and 3. We implemented a
deep-affix based LSTM-CRF NER model for
task 1, which utilizes only character, word, pre-
fix and suffix information for the identification
of geolocation entities. Despite using just the
training data provided by task organizers and
not using any lexicon features, we achieved
78.85% strict micro F-score on task 1. We
used the unsupervised population heuristics
for task 3 and achieved 52.99% strict micro-F1
score in this task.

1 Introduction

Geoparsing is the task of detecting geolocation
phrases in unstructured text and normalizing them
to a unique identifier, e.g. GeoNames1 IDs. Al-
though many automatic resolvers have been re-
leased in the past years, their performance fluc-
tuates when applied to different domains (Gritta
et al., 2018b). Most have also not been applied to
and evaluated on scientific publications. The Sem-
Eval 2019 Shared Task 12: Toponym Resolution in
Scientific Papers (Weissenbacher et al., 2019) aims
to boost the research on geoparsing for the scien-
tific domain by focusing on epidemiology journal
articles.

The task includes three sub-tasks: toponym de-
tection, toponym disambiguation, and end-to-end
toponym resolution. The first one requires par-
ticipants to detect the text boundaries of all to-
ponym mentions in articles. In toponym disam-
biguation, the toponym mentions are known, and
the resolver has to align them to their precise coor-
dinates through GeoNames IDs. For the last sub-

1http://www.geonames.org/

task, the resolver must perform both detection and
disambiguation.

In this paper, we present the description of our
system for SemEval 2019 Shared Task 12, in which
we focus mainly on toponym detection. For this
sub-task, we propose a recurrent neural network
that combines word, character and affix informa-
tion. By making use of the baseline provided by the
organizers for toponym disambiguation, we also
obtain results for the end-to-end sub-task.

2 Related Work

Toponym detection and resolution has been widely
studied, and various systems (Gritta et al., 2018b)
have been proposed for these tasks. Toponym de-
tection has been implemented on texts from various
sources like social media (Karagoz et al., 2016),
PubMed articles (Magge et al., 2018) etc. Various
named entity recognition (NER) systems including
rule-based (Gritta et al., 2018b), machine learning-
based (Karagoz et al., 2016), and deep learning-
based (Magge et al., 2018) have been implemented
for detecting toponyms.

The disambiguation step has been tackled pre-
viously using both supervised models and unsu-
pervised heuristic based approaches. For example,
Turton (2008) presented a rule based system for
disambiguating locations from PubMed abstracts.
Weissenbacher et al. (2015) presented results from
Population and Distance heuristics (discussed
in Section 4.3) for the disambiguation task on
PubMed articles. The authors also presented an
SVM model with population, distance and set of
meta-data as input which achieved higher perfor-
mance than both the individual heuristics. Gritta
et al. (2018a) used a feedforward neural network
approach for the disambiguation of geolocations.
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Figure 1: Word+character+affix neural network architecture from Yadav et al. (2018).

3 Data and Baseline

The corpus of the task is composed of 150 journal
articles downloaded from PubMed Central. After
removing the author names, acknowledgments and
references, titles and body text were fully annotated.
The annotators identified and labelled toponyms
with their corresponding coordinates according to
GeoNames. For cases not found in GeoNames,
they used Google Maps and Wikipedia. If the co-
ordinates of a toponym were not available in any
of these resources the special value N/A was used.
The data is provided in Brat format (Stenetorp et al.,
2012). The organizers also released a strong base-
line that combines the model by Magge et al. (2018)
for toponomy detection and the Population heuris-
tic described in (Weissenbacher et al., 2015) for
disambiguation.2

4 Approach

4.1 Preprocessing

We used the tokenizer included in the baseline pro-
vided by the organizers as we observed it provided
the best final results among other options (see Sec-
tion 5.3). Again using baseline system preprocess-
ing codes, we converted the data into CoNLL 2003
format (Tjong Kim Sang and De Meulder, 2003)
for task 1. Following our prior work (Yadav and
Bethard, 2018), we have used a BIO encoding in-
stead of the IO encoding provided by the baseline
system.

2https://github.com/amagge/

semeval-ffnn-baseline

4.2 Toponym Detection
We used the model proposed by Yadav et al. (2018)
for Named Entity Recognition (NER), shown in
figure 1, which uses character, word and affix infor-
mation. In this architecture, a word is represented
by concatenating its word embedding, an LSTM
representation over the characters of the word, and
learned embeddings for prefixes and suffixes of the
word3. Then another LSTM is used at the sentence
level to give a contextual representation of each
word. These representations of words in the sen-
tence are given to a CRF layer to finally predict the
NER label.

4.3 Toponym Resolution
Weissenbacher et al. (2015) presented two
heuristics for disambiguation of geolocation -
Population and Distance. These two heuristics
are often used as features with other meta-data such
as the user location meta-data in a Twitter account
(Zhang and Gelernter, 2014), GenBank meta-data
(Weissenbacher et al., 2015), etc.

In the Population heuristic, the system simply
assigns the geonameID of the most populous4 can-
didate for the current location. For the Distance
heuristic, the system selects the candidate which is
at the minimum distance from all candidates of all
other toponyms in the same document. Many previ-
ous works (Weissenbacher et al., 2015; Zhang and
Gelernter, 2014; Weissenbacher et al., 2019) have
shown that the most populous location is often ref-
erenced more in the text documents and performs

3The affix vocabulary consisted of all three-character af-
fixes that occurred at least 50 times in the training data.

4Population retrieved from the GeoNames database.

https://github.com/amagge/semeval-ffnn-baseline
https://github.com/amagge/semeval-ffnn-baseline
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better than the distance heuristics. Thus, we use
the Population heuristic as our disambiguation
model.

5 Experiments

Using the original fully annotated training set, we
achieved 77.3% strict micro-Fscore (mean perfor-
mance of 3 runs) on the validation set. However,
the organizers provided two additional large (but
weakly) annotated NER datasets: POS, which con-
tains sentences having at least 1 location phrase,
and NEG, which has sentences with no mention
of location entities. We experimented with both
these datasets in both joint and transfer learning.

5.1 Joint Learning

In the joint learning experiment, we trained the
model on a training set by concatenating the POS
data with the original training data. In this config-
uration, we achieved 81.4% strict micro-F score
(mean performance of 3 runs) on the validation
set, a 4 point improvement over the original experi-
ment.

5.2 Transfer Learning

In this experiment, we first trained our model on
just the POS set and further fine tuned it on the
original training data provided for the task. The
intuition here was to use the weakly annotated data
only to get a good initialization for the “real” train-
ing on the manually annotated data, rather than
training on both together and possibly getting mis-
led by the noise in the weakly annotated data. We
achieved 83.7% strict micro-F score (mean perfor-
mance of 3 runs) on the validation set. This is an
improvement of 2.3 F over the simple joint learning
experiment, and 6.4 F over the model using only
the original training data.

5.3 Effects of Tokenization

The effect of tokenization on NER performance
has been shown in the past (Akkasi et al., 2016;
Xu et al., 2018). For this reason, we evaluated our
model trained on the original training data, using
various custom tokenization functions, and saw the
strict micro-F1 score vary from 72% to 77% in the
validation set.

The NLTK regexp tokenizer resulted in 70%
strict F1-score. We wrote several rules to improve
this tokenizer which further improved the perfor-
mance by 4%.

Parameter value
Word embedding (GloVe) size 300
Character embedding size 50
Affix embedding size 30
Word LSTM hidden state size 50
Character LSTM hidden state size 25
Learning rate 0.15
Learning rate decay 0.99
Batch size 100
Optimizer SGD

Table 1: Hyperparameters for training the model.

However, the custom tokenization implemented
by the shared task organizers in the baseline model
performed the best, achieving 77% on the valida-
tion set when trained on just the original training
data. In this case, we also wrote a few additional
rules to improve the tokenization but achieved
marginal improvements in the overall performance.

5.4 Hyperparameters

We trained the Yadav et al. (2018) model using the
parameters in Table 1. For transfer learning from
POS data, we first trained the model for 40 epochs.
We then retrained this model on the original train-
ing data for 80 epochs with 20 as the early stopping
patience. After training on the original training
data, we retrained this model on train+development
data for another 40 epochs. For the final evaluation,
we submitted the models at epoch = 25, 35 and 40.
Epoch 35 achieved the best performance among
the three submissions.

The software is available at https://github.
com/vikas95/Pref_Suff_Span_NN.

6 Results

We achieved the 4th position in both task 1 (to-
ponym detection) and task 3 (end-to-end toponym
resolution) as shown in tables table 2 and table 3,
respectively. Although it has been shown previ-
ously that adding lexicon features improves the
overall performance of several NER models (Ya-
dav and Bethard, 2018; Gritta et al., 2018b), we
have focused on extraction of context information
using LSTMs over character, word and affixes of
the word. Hence, our resource-independent NER
model achieves competitive results, despite not us-
ing any dictionary information. Also, we have just
used the training data provided by the task orga-
nizers and did not use any external training data or

https://github.com/vikas95/Pref_Suff_Span_NN
https://github.com/vikas95/Pref_Suff_Span_NN
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Team strict Micro F strict Macro F
DM NLP 89.13 91.61
QWERTY 83.33 87.10
Newbee 80.92 87.11

Our model 78.75 84.52
THU NGN 74.96 83.23

UNH 73.12 81.93
RGCL-WLV 49.13 61.96
NLP IECAS 64.85 74.82

Table 2: Results of subtask 1 – toponym detection. We
include the best Micro F-score and best Macro F-score
of each team from their final 3 runs. Our model is
ranked fourth, despited the fact that it uses no external
knowledge.

Team strict Micro F strict Macro F
DM NLP 0.7291 0.7749
QWERTY 0.7128 0.7551
Newbee 0.6545 0.7355

Our model 0.5299 0.6487
THU NGN 0.5156 0.6131

NLP IECAS 0.5223 0.6019

Table 3: Results of subtask 3 - end-to-end toponym res-
olution. Our system is again ranked fourth.

lexicon resources.
We used the unsupervised Population heuristic

which is fast and simple to implement for disam-
biguating toponyms. As shown by Weissenbacher
et al. (2015), feeding features like population, dis-
tance, and other meta-data to machine learning
models often achieved higher performances. How-
ever, as shown here, the Population heuristic
serves as a strong baseline for this disambiguation
task.

7 Future Work

We plan to include the following features in our
current model:

• Part of Speech (POS) features – as per the an-
notations guidelines, locations that were used
as adjectives were not labelled in the anno-
tation process. We will explore the effect of
adding POS feature representation to the word,
character and affix representations.

• Inclusion of geoname dictionary – our current
approach is resource independent. We will
include dictionary features in the next version
of our model, to understand how much signal

can be inferred from local information, and
how much must come from world knowledge.

• Using domain-specific embeddings – we re-
lied on pretrained GloVe embeddings for our
submissions. In future versions of our soft-
ware, we will explore domain-specific embed-
dings, i.e., trained on scientific texts, as well
as contextualized embeddings such as FLAIR
(Akbik et al., 2018).
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