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Abstract

Toponym resolution is an important and chal-
lenging task in the neural language processing
field, and has wide applications such as emer-
gency response and social media geographi-
cal event analysis. Toponym resolution can
be roughly divided into two independent steps,
i.e., toponym detection and toponym disam-
biguation. In order to facilitate the study on
toponym resolution, the SemEval 2019 task
12 is proposed, which contains three subtasks,
i.e., toponym detection, toponym disambigua-
tion and toponym resolution. In this paper, we
introduce our system that participated in the
SemEval 2019 task 12. For toponym detec-
tion, in our approach we use TagLM as the ba-
sic model, and explore the use of various fea-
tures in this task, such as word embeddings
extracted from pre-trained language models,
POS tags and lexical features extracted from
dictionaries. For toponym disambiguation, we
propose a heuristics rule-based method using
toponym frequency and population. Our sys-
tems achieved 83.03% strict macro F1, 74.50
strict micro F1, 85.92 overlap macro F1 and
78.47 overlap micro F1 in toponym detection
subtask.

1 Introduction

Toponym resolution is an important task in the nat-
ural language processing field and has many ap-
plications such as emergency response and social
media geographical event analysis(Gritta et al.,
2018). Toponym resolution is usually modelled as
a two-step task. The first step is toponym detec-
tion, which is a typical named entity recognition
(NER) task. The second step is toponym disam-
biguation, which aims to map locations to its co-
ordinates in the real world.

NER is a widely explored task and most NER
methods can be applied to toponym detection. For
example, Ratinov and Roth (2009) used n-grams,

history predictions as the input features of con-
ditional random fields (CRF) for toponym detec-
tion. Usually the performance of these methods
heavily relies on the quality of hand-crafted fea-
tures. However, manually selected features may
be sub-optimal. Also, these methods cannot ef-
fectively exploit contextual information due to the
dependency on bag-of-word features. In recent
years, many neural network based methods have
been proposed for NER. For example, Ma and
Hovy (2016) proposed a CNN-LSTM-CRF model
for NER. They use CNN layer to learn character
features of each word, LSTM layer to learn the
contextual word representations and CRF layer to
predict the label jointly. Gregoric et al. (2018)
proposed Parallel RNN architecture. They split a
single LSTM into multiple equally-size ones with
a penalty to promote diversity. However, these
methods cannot utilize external knowledge to rec-
ognize entities, which is usually important to to-
ponym detection. Usually, linguistic knowledge
such as part-of-speech and dictionary knowledge
may be useful for toponym detection, and they are
easy to obtain. Therefore, in this paper, we aim
to incorporate these external knowledge sources to
enhance our neural model for toponym detection.

Similarly, there are many works on toponym
disambiguation. Most of them are rule-based
methods. They use some heuristics to rank the
candidates and choose the highest one(Gritta et al.,
2018). For example, Karimzadeh et al. (2013)
used the geographical level(e.g. country, province
and city), the Levenshtein Distance and the pop-
ulation of potential candidates to rank the candi-
date toponym and choose the highest one. How-
ever, the result of toponym disambiguation relied
on corpus domain and the rule should be reconsid-
ered when applied to different corpus.

For the toponym detection task, we use
TagLM(Peters et al., 2017) as the basic model.
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In our model, we first learn word representations
from original characters, then learn contextual
word representations by a stacked Bi-LSTM net-
work, and finally use a CRF layer to jointly decode
the label sequence. To enrich the representations
of words, we incorporate various features such as
pre-trained word embeddings, POS tags and lex-
icon features. For the toponym disambiguation
task, we design a rule-based heuristics method
by using toponym frequency and population to
rank candidate toponyms. Our systems achieved
83.03% strict macro F1 in the toponym detection
task, 67.21% in the toponym disambiguation task
and 61.31% strict macro F1 in toponym resolution.

2 Our Approach

2.1 Toponym Detection

Our model is based on TagLm (Peters et al., 2017).
As shown in Fig. 1, our model have three major
components, i.e., character encoder, feature con-
catenation and toponym detector.

Usually, character patterns are important clues
for toponym detection. For example, starting
with a capital letter (e.g. Eastern Europe), all
cased word (e.g. UK) and mixed cased word
(e.g. HongKong) are very common in toponym
names. Thus, we use a character encoder module
to learn word representations from original char-
acters. There are two layers in the character en-
coder. The first one is a character embedding
layer. It converts each character in a word into a
low-dimensional dense vector. The second one is
a character-level CNN layer. It was used to cap-
ture local contextual information. We also apply
a max pooling layer to build word representations
by selecting the most salient features.

The feature concatenation module is used to
concatenate different types of features. There are
four types of additional features in our model,
i.e., pre-trained word embeddings, pre-trained lan-
guage model word representations, POS tag rep-
resentations and lexicon representations. Usually,
word embeddings are pre-trained on a large cor-
pus and can provide rich semantic information.
Thus, we use pre-trained word embeddings to en-
rich word representations by incorporating seman-
tic information . However, word embeddings usu-
ally do not contain contextual information. Thus,
we also incorporate word representations gener-
ated by pre-trained language models. Usually, to-
ponyms have specific POS tags such as nouns.

Following Wu et al. (2018), we also incorporate
POS tag information to guide our model. There
are two layers in our model to learn POS tag rep-
resentations. The first one is a POS tag embed-
ding layer, which learns low-dimensional embed-
ding vectors for POS tags. The second one is a Bi-
GRU layer. It was used to learn the syntax struc-
ture of sentences and output the hidden POS tag
representations. In addition, since many toponyms
can be found in toponym databases, lexical fea-
tures may be useful for toponym detection. Due to
our observations, toponym names are more likely
to have low occurrence frequency in documents
and less number of matched toponyms in the to-
ponym database. Thus we constructed three one-
hot vectors as lexical features. First, we counted
the number of matched toponyms in the database
for every word. They were quantified to different
levels and represented by the first one-hot vectors.
The second one-hot vectors were used to repre-
sent whether the first matched toponym ’s names
returned from the database were perfect matches.
The third one-hot vectors were used to represent
quantified occurrence frequency in the training set
of every word. Besides, a three-layer feed-forward
neural network (FFNN) was used to learn lexical
representations for every word as a lexical repre-
sentation.

The toponym detector module aims to predict
the label of each word from its representations.
There are two submodule in the toponym detector.
The first one is a stacked Bi-LSTM network. Usu-
ally, global contexts are important for toponym
detection. For example, in the sentence “Beijing
is the capital of China”, the words “capital” and
“China” are all informative for toponym detection.
Thus, we use a stacked Bi-LSTM network to learn
hidden word representations based on global con-
texts. The second one is a CRF layer, which is
used to decode the label sequence jointly (Lafferty
et al., 2001). Usually, there is relatedness between
the labels of neighbor words. For example, the
label “I” (inside) can only appears after “B” (be-
ginning). Thus, we use CRF to do joint label de-
coding.

2.2 Toponym Disambiguation

Toponym disambiguation is a down-stream task
of toponym detection. Due to the lack of dictio-
nary knowledge, it’s difficult for a neural network
to do toponym disambiguation. Thus, we propose
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Figure 1: The architecture of our model for toponym
detection.

a rule-based heuristic method for toponym disam-
biguation. An observation is that among the to-
ponym candidates returned by the database, the to-
ponym with higher frequency is more likely to be
mentioned. In addition, the toponym with higher
population may also have a higher probability to
be mentioned. Therefore, we propose a heuristic
algorithm named Most Frequency - Most Popula-
tion (mFmP). If a toponym appears in the train set,
we will select the highest frequency id as the out-
put. Otherwise, we will select the toponym with
the most population as output.

3 Experiment

3.1 Experimental Settings

We conduct experiments on science reports pro-
vided the SemEval-2019 task 12. The data set is
composed of 72 full-text journal articles in open
access. There are four different metrics to eval-
uate the prediction performance, i.e., strict macro
F1, strict micro F1, overlap macro F1 and overlap
micro F1.

In the toponym detection task, we used NLTK1

for sentence segmentation, word tokenization and
POS tagging. We used ELMo(Reimers and
Gurevych, 2017) and BERT(Devlin et al., 2018)
model to generate 1024-dimensional contextual-
ized word embeddings. We used GeoNames2

1https://www.nltk.org
2http://www.geonames.org

to construct lexical feature. The BIO tagging
scheme(Sang and Veenstra, 1999) was used in the
toponym detection task. In the toponym disam-
biguation task, we use GeoNames database to re-
trieve candidate toponyms.

In our approach, the three word embed-
ding vectors we used (Glove(Pennington et al.,
2014), word2vec(Mikolov et al., 2013), fast-
text(Bojanowski et al., 2017)) were all 300-
dimensional. The dimension of the character em-
bedding was set to 100. The character CNN had
100 filters, and their window size was set to 3.
The sizes of the 3-layer FFNN were respectively
set to 256, 256, and 128. We set the dimension
of POS tag embeddings to 128. The Bi-GRU
layer for POS tag representation learning was 64-
dimensional. The two Bi-LSTM layers for cap-
turing long-distance and short-distance informa-
tion were 128-dimensional and 64-dimensional.
To mitigate overfitting, we added 20% dropout to
each layer. We used Adam as the optimizer for
model training.

In our approach, we used transductive learn-
ing techniques to further improve the performance
of our approach. We first trained our model on
the train set, and then applied our model to the
test set to generate pseudo labeled data. Finally,
we jointly trained our model on the combination
of the training and test sets. In addition, we use
model ensemble strategy to reduce the uncertainty
of our model(Wu et al., 2017). We trained our
model for 10 times independently and the final
predictions are made by voting.

3.2 Performance Evaluation

In this section, we compare our approach with
several baseline methods to evaluate the perfor-
mance of our approach. The baseline methods
are listed as follows. (1) Baseline: a baseline
system provided by SemEval 2019 task 12(Davy
et al., 2019). It uses n-grams as input and a FFNN
network to predict label. The input features in-
cludes word embedding and character features. (2)
CNN-CRF: a two-layer CNN and a CRF layer
with word embedding for toponym detection. (3)
LSTM-CRF: a two layer LSTM and a CRF layer
with word embedding for toponym detection.

The comparative results are listed in Table 1.
According to these experimental results, we have
several observations. First, LSTM-CRF outper-
forms CNN-CRF. This may be because CNN can
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method SMA SMI OMA OMI
baseline 75.56 69.84 80.55 82.60
CNN-CRF 51.28 42.20 61.23 52.51
LSTM-CRF 61.26 47.73 73.26 61.56
Our approach 84.10 82.36 91.36 90.72

Table 1: Performance of different toponym detection
methods. SMA, SMI, OMA, and OMI respectively de-
note the strict macro F1, strict micro F1, overlap macro
F1 and overlap micro F1.

method strict macro F1 strict micro F1
baseline 84.00 77.59
mFmP 83.58 78.14

Table 2: Performance evaluation of toponym disam-
biguation.

only capture local information, instead, LSTM can
utilize global information. This indicates that cap-
turing global contextual information have the po-
tential to improve the performance of toponym de-
tection. Second, the baseline method outperforms
LSTM-CRF and CNN-CRF. This may because
LSTM-CRF and CNN-CRF did not use character-
level features, which shows the effect of character-
level information on the performance of toponym
detection. In addition, the performances of CNN-
CRF and LSTM-CRF are very poor. This may be-
cause these two models only use word embedding
to enhance the model’s semantic information. And
this word embedding is not trained on science re-
ports dataset, which may make these two methods
lack of semantic information. Third, our approach
outperformed all these baseline methods. This is
because our approach use pre-trained word em-
beddings and language model to enhance the se-
mantic information of model, use character-level
word representations to capture character patterns
of toponym names, and features, i.e., lexicon fea-
tures and POStag features, to add extract informa-
tion. This result validates the effectiveness of our
model.

The results for toponym disambiguation are
listed in Table 2. Baseline method selected to-
ponym with highest population among candidate
toponyms. The performance of our method is sim-
ilar to baseline method. This may be because high
frequency toponyms are often with large popula-
tion.

Method SMA SMI OMA OMI
WE 77.50 62.61 83.82 69.33
WE+CE 81.75 66.16 85.78 70.16
TagLM 85.04 81.78 90.39 89.61
TagLM+POS 83.64 78.35 90.03 88.87
TagLM+LEX 85.37 77.77 90.91 86.57
TagLM+POS+LEX 84.10 82.36 91.36 90.72

Table 3: Influence of different features on the perfor-
mance of our model. WE, CE, POS, LEX respectively
denote toponym detector using word embedding, char-
acter encoder, POS tag representations and lexicon rep-
resentations as input.

3.3 Influence of Different Features

In this section, we conduct several experiments
to evaluate the effect of each type of features we
used. We added different types of features to our
toponym detector gradually to conduct our exper-
iments. The experimental results are listed in Ta-
ble. 3. According to Table. 3, we have several ob-
servations.

First, the WE+CE method consistently out-
performs WE. This indicates that character-level
word representations can make our model detect
toponym names effectively. Second, the perfor-
mance of TagLM is much better than the perfor-
mances of WE and WE+CE. This may because
WE and WE+CE method can only obtain seman-
tic information from word embedding and train-
ing data, which is not enough. Incorporating word
embedding vectors generated by pre-trained lan-
guage models could enhance the semantic infor-
mation of our model. Third, after incorporating
POS tag embedding or lexical feature into our
model separately, the performances of these two
models declined. This may be because the POS
tag and lexical features of several samples are in-
accurate, which incorporate misleading informa-
tion into our model. Forth, incorporating these two
features into our model together improve the per-
formance of our model. This may be because both
features have inherent relatedness and our model
is more easily to exploit useful information from
the combination of both features.

3.4 Influence of Transductive Learning and
Model Ensemble

In this section, we conduct several experiments to
evaluate the influence of transductive learning and
model ensemble on the performance of our model.
The experimental results are shown in Figure. 2.
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Figure 2: Influence of transductive learning and model
ensemble.

According to Figure. 2, we can find both transduc-
tive learning and ensemble strategy can improve
the performance of our model. This indicates that
our model could be more robust by incorporating
more training samples and voting scheme.

4 Conclusion

In this paper, we introduce our system participat-
ing in the SemEval-2019 task 12. For the toponym
detection, we use a TagLM model with various
features to enrich word representations. In addi-
tion, we use a transductive learning method and
ensemble strategy to further improve the perfor-
mance of our model. For toponym disambigua-
tion, we propose a heuristics rule-based method
based on toponym frequency and population. Our
systems achieve 83.03% strict macro F1 in to-
ponym detection, 67.21% strict macro F1 in to-
ponym disambiguation and 61.31% strict macro
F1 in toponym resolution.
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