
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1292–1296
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

1292

ProblemSolver at SemEval-2019 Task 10: Sequence-to-Sequence Learning
and Expression Trees

Xuefeng Luo, Alina Baranova, Jonas Biegert
Linguistics Department, University of Tuebingen, Germany

firstname.lastname@student.uni-tuebingen.de

Abstract

This paper describes our participation in
SemEval-2019 shared task “Math Question
Answering”, where the aim is to create a pro-
gram that could solve the Math SAT ques-
tions automatically as accurately as possible.
We went with a dual-pronged approach, build-
ing a Sequence-to-Sequence Neural Network
pre-trained with augmented data that could an-
swer all categories of questions and a Tree sys-
tem, which can only answer a certain type of
questions. The systems did not perform well
on the entire test data given in the task, but
did decently on the questions they were actu-
ally capable of answering. The Sequence-to-
Sequence Neural Network model managed to
get slightly better than our baseline of guess-
ing “A” for every question, while the Tree sys-
tem additionally improved the results.

1 Introduction

The data set for the task (Hopkins et al., 2019)
includes questions used in the Math SAT. There
are three broad categories of questions: closed-
vocabulary and open-vocabulary algebra ques-
tions, and geometry questions. All types of
questions consist in large part of natural lan-
guage. Closed-vocabulary algebra questions typ-
ically contain math equations and many math-
specific words, while open-vocabulary algebra
questions include more everyday vocabulary and
quantities which are expressed in letters, numbers
or a combination of both. Geometry questions
are usually provided with diagrams the analysis
of which is necessary for solving the problems.
Most questions of all categories are multiple-
choice questions with five possible options, but
some questions have a numeric answer.

We present two systems to tackle these math
problems. One of them, a sequence-to-sequence
LSTM model pre-trained with augmented data, is

applied to all three types of questions, while the
other, a system based on expression trees produces
answers exclusively for open-vocabulary algebra
questions.

2 Related Work

In their work, Roy and Roth (2015) introduced bi-
nary expression trees that represent and solve math
word problems. To choose the best expression
tree out of all possible trees, the authors employed
two classifiers: a relevance classifier, which de-
termined if the quantity should be included into
the expression tree, and a Lowest Common Ances-
tor (LCA) classifier, which output the most proba-
ble mathematical operation for a pair of quantities.
Both classifiers were trained on gold annotations.

Subsequently, two other systems were devel-
oped based on Roy and Roth (2015). One of
the systems belongs to the same authors and uses
the concept of Unit Dependency Graphs (UDGs)
to capture the information between units of the
quantities (Roy and Roth, 2017). UDGs are then
united with expression trees, allowing the infor-
mation about dependencies between units improve
the math problem solver.

Another system (Wang et al., 2018) suggests a
method to improve Roy and Roth’s approach. By
applying deep reinforcement learning, which has
proved to be suitable for problems with big search
space, the authors achieve better accuracy and ef-
ficiency.

An earlier system introduced by Wang et al.
(2017) used gated recurrent units (GRU, Chung
et al., 2014) and long short-memory (LSTM,
Hochreiter and Schmidhuber, 1997) to automati-
cally solve simple math word problems by con-
verting words into math equations.



1293

3 Model Description

3.1 Sequence-to-Sequence Neural Network

Our model is based on a sample implementa-
tion provided by the Keras team (Chollet et al.,
2015). This model was able to calculate addition,
such as from “535+61” to “596” with a Sequence-
to-Sequence model using LSTM (Hochreiter and
Schmidhuber, 1997). Similar to this model, our
model also had 128 hidden units and started with
an embedding layer with an alphabet of 96 char-
acters. The longest question was 650 characters.
Then, we used a LSTM as encoder. For all dights
in the answers, we have seperate vectors repre-
senting them. Thus, we have repeated vectors
of outputs 5 time, in order to represent 5 dights.
Our decoder was another LSTM layer with re-
turing sequences, followed by a time distributed
layer of dense layers where activation function
was softmax. In addition to this, we added a
0.2-rate Dropout layer (Srivastava et al., 2014) af-
ter embeding layer, encoder LSTM and decoder
LSTM, to prevent over-fitting. On top of that, we
found that reversing and doubling the inputs can
greatly improve training performance, according
to Zaremba and Sutskever (2015). The seq2seq
model is shown by Figure 1. We did not encoded
answers along with questions. We only compared
the answers strings to the questions’ choices and
made our decisions.

Math Questions

Embed

LSTM

RepeatVector

LSTM

Dense

TimeDistributed

Answers

Dropout

Dropout

Dropout

Figure 1: Seq2seq Model

We padded all answers into same length with
extra space characters, but our model still was not
able to produce exact answers with sequence-to-
sequence. However, the sequences the model pro-
duced were good enough to predict the correct an-
swer for multiple choice questions. For instance,
for question “If x+345 = 111, what is the value of

x?”, the output of the system would be “-234444”,
which is very close to the correct answer “-234”.
Thus, we wrote a program which was able to com-
pare the initial characters (including “-”) regard-
less the extra characters at the end with answer
options and predict the correct answer.

3.2 Tree System

The system of Roy and Roth (2015) has a lot of
advantages: for instance, it can solve math prob-
lems that require multiple steps and different op-
erations, and it can handle problems even if it did
not see similar problems in the training set. That
is why we chose to implement this approach for
solving open-vocabulary algebra questions.

The expression trees the authors used in their
system have a special structure that allows to cal-
culate them in a simple and unambiguous way. In
such a tree, the leaves are quantities extracted from
the problem text, and the internal nodes are mathe-
matical operations between the quantities. By cal-
culating values of all internal nodes, one can ob-
tain the value of the tree route, which corresponds
to the answer of the problem.

Similarly to Roy and Roth (2015), we used the
relevance and the LCA classifiers to evaluate all
possible expression trees and choose the one that
answers the problem correctly. However, instead
of using gold annotations, we decided to train the
classifiers on all the trees that result in right an-
swers, partly because annotations were not avail-
able, and partly because we were curious how well
the system could perform with no manual effort
invested in annotating training data.

Tree evaluation was done by two simple multi-
layer perceptrons. As described earlier, the first
one returns the probability of a given quantity to
be relevant, as in a tree that answers the question
correctly contains that quantity, the second one re-
turns the probabilities for each of the possible op-
erations to be the lowest common ancestor of a
pair of given quantities in a tree that answers the
question correctly.

For every possible tree per question, the product
of the probabilities of each quantity to be relevant
was added to the product of the probabilities of
the lowest common ancestor of each quantity pair
being correct. These scores, as well as the result of
the tree were put in a list and ordered by score. The
results of the trees were then matched against the
answer options of each question and the answer



1294

option that was first matched in the list was given
as the answer to the question. If the question had
no answer options, the result of the highest rated
tree was given as the answer to the question.

4 Experimental Settings

4.1 Sequence-to-Sequence Neural Network

4.1.1 Data Augmentation

Initially, we tried to trained our model directly on
the questions, but it turned out that model could
not learn at all. In total, we had slightly more than
1000 SAT questions, which was insufficient for an
RNN model. Not to mention that the small train-
ing set contained questions with a variety of types
– open- and closed-vocabulary algebra questions
as well as geometry questions, leaving an even
smaller training set for each subtype. Thus, data
augmentation was a necessary step. In order to
strengthen the connection of numbers, we did not
provide original SAT data with numbers modified,
but more than 600,000 simple closed-vocabulary
algebra questions.

Among them, there were two types of ques-
tions augmented for our model. These included
two types of questions within 3 digits like “If
x + 345 = 111, what is the value of x?” and “If
x− 345 = 111, what is the value of x?”. Not only
numbers and variable names were randomized
but the positions of variables were switched. In
toal, there were 614,236 questions, where “plus“
had 330,620 and “minus“ had 283,616 questions.
Even though augmented data had large differ-
ences with SAT questions, results showed they still
prodigiously contributed to our training.

4.1.2 Training

Rather than training our model together with orig-
inal SAT data and augmented data, we chose to
trained with augmented data first, and then con-
tinued to train with original data. There were 40
iterations of 614,236 questions dealing with addi-
tion and subtraction. Fractions were also present
in the training set. After training with the aug-
mented questions set, our model was trained with
actual questions from the Math SAT. In total, there
were 200 iterations of 805 Math SAT Questions.
Nevertheless, since the training data was so small,
it is highly possible that our model was prone to
over-fitting to the training data.

Example 1
On a certain map, 100 miles is represented
by 1 inch. What is the number of miles rep-
resented by 2.4 inches on this map?

4.2 Tree System
4.2.1 Quantities
Quantities were extracted from questions and an-
swers using a rule-based approach. Before the
extraction, all mentions of quantities were nor-
malized to digits (e.g. one to 1). Then, num-
bers, number-word combinations (e.g. 13-inch),
small letters denoting quantities (all letters except
a) and LATEX expressions were retrieved. LATEX ex-
pressions that contained only numbers were trans-
formed into numbers (e.g. \frac{1}{10} into 0.1).
In general, all questions that contained quantities
other than numbers or the answer of which had
several quantities were filtered out, leaving us with
75% of open-vocabulary questions from the train-
ing set. In the next stage, while constructing trees
for the training data, we heuristically set the max-
imum number of quantities in a question to 7,
which led to using 59% of the training data.

4.2.2 Operations and Tree Enumeration
Once quantities from the question were extracted,
all their possible combinations were obtained,
with size from two to the total number of quanti-
ties. The order of quantities in these combinations,
however, stayed the same. Consider Example 1.
For this word problem, the combination [100 2.4]
would be possible, but the combination [2.4 100]
would not.

For every combination obtained in the previ-
ous step, all possible expression trees with quanti-
ties as leaves and empty inner nodes were gener-
ated. These inner nodes were filled with all possi-
ble combinations of operation signs. As in earlier
studies (Roy and Roth, 2017; Wang et al., 2018),
we used six operations: apart from the standard +,
−, × and ÷, we included reverse operators −rev
and ÷rev to account for the fact that the order of
quantities stays the same in their combinations.

Like Roy and Roth (2015), we implemented
constraints that define monotonic trees. These
constraints are concerned with the order of mul-
tiplication operator in regard to division operator,
and the order of addition operator in relation to
subtraction operator. However, unlike the authors,
we used these constraints to decrease the number



1295

System Accuracy

Baseline (always “A”) 14.3%
Baseline + seq2seq 15.0%
Baseline + trees 15.9%
Baseline + seq2seq + trees 16.7%

Table 1: Results

of trees resulting in right answers, not to guarantee
that any monotonic tree for the solution expression
has the same LCA operation for any pair of quan-
tities in it, as in Roy and Roth (2015).

4.2.3 Features

We used UDPipe (Straka and Straková, 2017) to
parse questions’ text and extract features for the
classifiers. The features are identical to the ones
that Roy and Roth (2015) describe.

5 Results

The results that our systems achieved are shown in
Table 1. Our official submission consists only of
the neural network, which achieved 15%, with the
accuracy on closed-vocabulary algebra questions
being 16% and the accuracy on the other two cate-
gories being 15% each. This result, however, was
achieved by guessing “A” whenever the question
could not be answer by the model. When guess-
ing is removed, the overall accuracy drops to 2%.
However, on the 109 questions the model could
actually answer, it achieved 21% accuracy.

In post-evaluation, after combining the results
of the neural network and the tree system, we were
able to achieve 17% accuracy overall by increas-
ing the accuracy on open-vocabulary algebra ques-
tions by 20%. If we remove the guessing, the tree
system achieves 3% accuracy overall, which stems
from its 13% accuracy on open-vocabulary alge-
bra questions. If we only count the questions that
could actually be answered by the system, its ac-
curacy would be equal to 26%. Without guess-
ing, the combination of both systems produces 4%
accuracy overall, with the distribution being 2%
on closed-vocabulary algebra questions, 13% on
open-vocabulary algebra questions and 0.4% on
geometry questions. On the 205 questions an-
swered by the combination of both systems, the
accuracy was 23%.

6 Discussion/Conclusion

The results of our systems on the full data set are,
frankly put, rather poor. Nevertheless, the tree
system shows promising results in solving open-
vocabulary questions, if it is refined and improved,
while the neural network seems not to perform
well on any specific type of questions, although
its overall performance is similar to that of the tree
system.

Concerning the neural network, it might be ben-
eficial to focuse on specific types of questions, in-
stead of trying to train a model that deals with
mixed types of questions. RNN best learnt on
closed- and open-vocabulary algebra questions,
therefore training separate models for these types
could be one way to improve the system. In addi-
tion to that, a much larger dataset is critical in en-
hancing the model, thus promoting the accuracy of
its predictions. Lastly, data augmentation would
further improve the model. If we were to train a
versatile model for mixed types of math questions,
we could perform data augmentation on each type.

The current problem of the tree system lies to
a large extent within the quality of the tree eval-
uation. It heavily relies on answer options to be
available, as the average index of the first tree
that produces an answer option in the score list
is 47 (for the test data). Therefore, the answer
of the highest-rated tree would most likely be
wrong. Other aspects that could be improved in-
clude choosing other features for the classifiers,
decreasing the scores of trees with low amounts
of quantities (those trees are currently overrated)
or using a different machine learning algorithm al-
together, such as deep reinforcement learning (e.g
Wang et al., 2018).

Apart from that, using no additional quantities
in constructing trees, and including every quan-
tity once made it difficult to obtain trees that not
only gave the right result for the questions from the
training set, but also answered them in a right way.
Moreover, expanding expression trees to problems
that involve letters to denote quantities would def-
initely contribute to improving the performance of
the tree system.

7 Acknowledgements

Part of the experiments reported on this paper was
run on a Titan Xp donated by the NVIDIA Corpo-
ration.



1296

References
François Chollet et al. 2015. Keras. https://
keras.io.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Mark Hopkins, Ronan Le Bras, Cristian Petrescu-
Prahova, Gabriel Stanovsky, Hannaneh Hajishirzi,
and Rik Koncel-Kedziorski. 2019. Semeval-2019
task 10: Math question answering. In Proceedings
of International Workshop on Semantic Evaluation
(SemEval-2019), Minneapolis, USA.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1743–1752. Associa-
tion for Computational Linguistics.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In AAAI.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018. Math-
dqn: Solving arithmetic word problems via deep re-
inforcement learning. In AAAI.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854.

Wojciech Zaremba and Ilya Sutskever. 2015. Learn-
ing to execute. Computing Research Repository,
arXiv:1410.4615. Version 3.

https://keras.io
https://keras.io
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://arxiv.org/pdf/1612.00969.pdf
https://arxiv.org/pdf/1612.00969.pdf
https://arxiv.org/pdf/1612.00969.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16749/16111
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16749/16111
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16749/16111
https://doi.org/10.18653/v1/D17-1088
https://arxiv.org/pdf/1410.4615.pdf
https://arxiv.org/pdf/1410.4615.pdf

