
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1287–1291
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

1287

ZQM at SemEval-2019 Task9: A Single Layer CNN Based on Pre-trained
Model for Suggestion Mining

Qimin Zhou, Zhengxin Zhang, Hao Wu*, Linmao Wang
School of Information Science and Engineering, Yunnan University

Chenggong Campus, Kunming, P.R. China
{zqmynu,zzxynu}@gmail.com, haowu@ynu.edu.cn, wlmdyx@gmail.com

Abstract

This paper describes our system that competed
at SemEval 2019 Task 9 - SubTask A: ”Sug-
gestion Mining from Online Reviews and Fo-
rums”. Our system fuses the convolutional
neural network and the latest BERT model to
conduct suggestion mining. In our system,
the input of convolutional neural network is
the embedding vectors which are drawn from
the pre-trained BERT model. And to enhance
the effectiveness of the whole system, the pre-
trained BERT model is fine-tuned by provid-
ed datasets before the procedure of embedding
vectors extraction. Empirical results show the
effectiveness of our model which obtained 9th
position out of 34 teams with F1 score equals
to 0.715.

1 Introduction

Suggestion mining is defined as the extraction of
suggestions from unstructured text (Negi et al.,
2018). Suggestion mining is still a relatively y-
oung research area as compared to other natural
language processing issues like sentiment analy-
sis (Negi and Buitelaar, 2015). While suggestion
mining is of great commercial value for organi-
sations to improve the quality of their entities by
considering the positive and negative opinions col-
lected from platforms. The target of this task is
to automatically classify the sentences collected
from online reviews and forums into two classes
which are suggestion and non-suggestion respec-
tively (Negi et al., 2019).

BERT which stands for Bidirectional Encoder
Representation from Transformers is the latest
breakthrough in the field of NLP provided by
Google Research (Devlin et al., 2018). It has
substantially advanced the state-of-the-art in many
NLP tasks, especially in question answering (Al-
berti et al., 2019). More importantly, it provides a

widely applicable tool for representation learning
which can be generalized to many NLP tasks.

For this subtask, we firstly learn the word
or sentence embeddings utilizing the pre-trained
BERT model. Then the embedding vectors are
extracted from BERT as the input of the subse-
quent model. It is worth noting that we have fine-
tuned the pre-trained BERT model with provided
dataset before the embedding vectors are extract-
ed. In other words, this part is equivalent to the
conventional embedding layer. This strategy is a
little bit like ELMO (Peters et al., 2018). As for
the upper layer of this system, convolutional neu-
ral network (CNN) is adopted herein to process
the features. Although CNN is originally invent-
ed for tackling computer vision issues, while it has
subsequently been shown to be effective for many
NLP tasks (Kim, 2014; Zhang and Wallace, 2015;
Dong et al., 2015).

The remainder of the paper is organized as fol-
lows. Section 2 describes the detailed architecture
of our system. Section 3 reports the experimental
results on the given datasets. Finally, conclusions
are drawn in Section 4.

2 System Description

Figure 1 gives a high-level overview of our ap-
proach. And we elaborate the details of implemen-
tation which mainly consists of following steps:
(1) the preprocessing of raw data, (2) the word
embedding learning via BERT model, (3) feature
processing via CNN and sentences classification.

2.1 Data Preprocessing
The provided dataset is collected from feedback
posts on Universal Windows Platform and anno-
tated by (Negi et al., 2018). But the text is not
standard enough as there are some spelling mis-
takes and few duplicate samples. To boost the per-
formance of our system, we conduct some pre-



1288

Figure 1: The architecture of our proposed model.

processing steps on the raw data. At first, web
links are removed through regular expression as
it does not contribute to the accuracy of classifi-
cation. After that, we can take more meaningful
words into consideration under the condition of a
finite sentence length. And ekphrasis 1, a text pro-
cessing tool, is utilized to conduct spelling correc-
tion (Baziotis et al., 2017). Then, all character-
s are converted to lowercase. Finally, duplicated
samples would be excluded from the dataset.

2.2 Embedding Learning via BERT

Embedding layer usually encodes each word in-
to a fixed-length vector for subsequent study.
Word2vec, Glove and FastText are the most simple
and popular word embedding algorithms (Mikolov
et al., 2013; Pennington et al., 2014; Bojanows-
ki et al., 2017). While there continue to be some
drawbacks, such as they cannot encode the con-
textual information well. Recently, a few effec-
tive algorithms have been put forward such as EL-
MO and openAI GPT (Peters et al., 2018; Rad-
ford et al., 2018). These two pre-trained language
models can encode rich syntactic and semantic in-
formation and distinguish the different meanings
of a polysemy in diverse contexts, which tradi-
tional word embeddings methods cannot handle
well. ELMO leverages the concatenation of in-
dependently trained left-to-right and right-to-left
LSTM to generate features. Though LSTM can
capture contextual information, the performance

1github.com/cbaziotis/ekphrasis

can be limited by the long distance of sequences
to some extent. In order to deal with this problem,
openAI GPT substitute Transformer for LSTM.
Transformer rely entirely on attention mechanis-
m to capture global dependencies (Vaswani et al.,
2017).

BERT is the latest language representation mod-
el which also takes advantage of Transformer.
Besides that, it uses the masked language mod-
el (MLM) and the bidirectional Transformers to
capture the contextual information which has been
proved to be effective (Devlin et al., 2018). In our
system, we employ BERT as the embedding lay-
er, in other words, we use the output of the last
transformer layer from BERT as word embedding
vectors. The version of pre-trained BERT model
we used is BERT-BASE which has 12 layers of
transformer blocks and the hidden size is equal to
768. It implies that the dimension of the output
embedding vectors is equal to 768. We choose not
to cover too much details of BERT as it has been
elaborated on its website 2.

To boost the performance of our system by mak-
ing this model better fit our data, a fine-tuning step
is conducted before extracting the word embed-
ding vectors from pre-trained model. And the fine-
tuning parameters are given in Section 3.2.

2.3 Feature processing via CNN

CNN is originally invented for tackling the issues
in the field of computer vision, while various C-

2https://github.com/google-research/bert



1289

NN models have subsequently been proven to be
effective for many NLP tasks (Kalchbrenner et al.,
2014; dos Santos and Gatti, 2014). In our work,
we train a single layer CNN on the word em-
bedding vectors drawn from BERT model. Let
ei ∈ Rk be the k-dimensional word embedding
vector corresponding to the i-th word in the sen-
tence. Then the vector representation of a sentence
is denoted as Eq.1:

e1:n = [e1 ‖ e2 ‖ e3 ‖ ... ‖ en], (1)

where n represents the length of sentences, and ‖
denotes concat operation which can maintain the
order of words in text. After that a filter involved
in one-dimensional convolution operation is de-
fined as w ∈ Rm×k, then the convolution process
can be defined as a function as Eq.2 (Kim, 2014):

pi = f(w · ei:i+m−1 + b), (2)

where pi is a scalar which stands for the new lo-
cal feature generated by a filter from a window
of words ei:i+m−1, in other words, only i-th to
i+m− 1-th words have been taken into consider-
ation when generate i-th local feature. m is filter
size which denotes m words is taken into calcula-
tion when generating a local feature. b is a bias and
f is an activation function, it is tanh exactly in our
system. Finally, there are n−m+1 local features
generated by a filter totally. Those local features
can be concatenated as a global feature P :

P = [p1 ‖ p2 ‖ p3 ‖ ... ‖ pn−m+1], (3)

where P ∈ Rn−m+1 represents a feature map gen-
erated by a filter. Then a max-over-time maxpool-
ing operation (Collobert et al., 2011) is applied to
the feature maps which means that only the maxi-
mum value of P is reserved. If there are Nf filter-
s, then Nf maximum values is generated through
maxpooling operations. Those values can be orga-
nized as a new vector Q ∈ RNf as Eq.4:

Q = [max(P1) ‖ max(P2) ‖ ... ‖ max(PNf
)],
(4)

2.4 Dense layers
The pooling layer is followed by two dense layers
with different number of neurons. Dropout (Hin-
ton et al., 2012) is utilized to alleviate overfitting
problem before the first dense layer. And we have
tried different dropout rates to search the best con-
figuration. Firstly, the output of pooling layer Q is

fed into the first dense layer with 200 hidden neu-
rons. The activation function of this dense layer
is relu (Xu et al., 2015). Next is the second dense
layer with two neurons and the corresponding ac-
tivation function is softmax. Final output is the
probability of which class the sample belongs to.

3 Experiments

3.1 Dataset

Classes Train set Trial Test set Test set
0 (non-suggestions) 6415 296 746

1 (suggestions) 2085 296 87

Table 1: Data distribution

The available dataset released by organizer is s-
plit into three parts: train set, trial test set and test
set. The positive and negative sample distribution
of each part is described as Table 1. Apparently,
there is class imbalance that the number of neg-
ative samples overwhelms the number of positive
samples both in training set and test set. So for
experiments, we fuse the train set and trail test set
into a larger training set, and then split 10% sam-
ples as validation set randomly (8183 samples for
training and 909 samples for validation). We train
our model on the train set, tune the model param-
eters on the validation set, evaluate the model per-
formance on the test set.

Model Dropout Macro average F1
Baseline - 0.2676

Word2vec+CNN 0.4 0.3789

our model

0.1 0.7459
0.2 0.7236
0.3 0.7407
0.4 0.7309
0.5 0.7179
0.6 0.7368
0.7 0.7029

Table 2: The performance comparison.

Classes Precision Recall F1 score
0 (non-suggestions) 0.98 0.96 0.97

1 (suggestions) 0.70 0.79 0.75

Table 3: The classification accuracy of different class-
es.

3.2 Experiment Results
As mentioned in Section 2.2, we conduct fine-
tuning operation before extracting the word em-
bedding vector from BERT. For fine-tuning, most
hyperparameters are the same as the parameters



1290

Figure 2: The impact of the number of filters.

Figure 3: The impact of filter size.

of pre-trained model, with the exception of batch
size, learning rate and number of training epochs.
The mini-batch size is set at 32 and learning rate is
set at 5e-5, the number of training epochs is con-
figured as 5. The maximal length of sentences is
configured as 50 and if the length of a sentence
is less than 50, it will be padded with zero; oth-
erwise, it will be truncated from the tail. For the
CNN component, the filter size m is configured
as 5 and the number of filters Nf is 64. And the
dropout rates we have tried are ranged from 0.1 to
0.7 with a step of 0.1. The experimental results
are shown in Table 2. In order to prove the effec-
tiveness of word embeddings derived from BERT,
we also employ Word2vec as comparison and the
corresponding best dropout rate is 0.4. Obviously,
no matter what the dropout rate is, our model con-
sistently outperforms other models. And the best
dropout rate of our model is around 0.1 for above-
mentioned configuration. While the best dropout
rate may vary with other parameter configuration
like filter size and the number of filters.

Table 3 shows the Precision, Recall and F1 s-
core in term of different classes. Obviously, the

system performance on negative samples is better
than the performance on positive samples which
is consistent with our intuition for the reason that
the number of negative samples overwhelms the
number of positive samples. Therefore, our sys-
tem can learn more features of negative samples,
which can help it recognize those negative samples
accurately.

We also investigate the impact of the number of
filters Nf on the classification performance with
fixing the filter size m at 5 and the dropout rate at
0.1. The experimental result is shown as Figure 2.
This model yields the best performance when the
number of filters is equal to 64. Less filters cannot
capture enough information while too many filters
can result in information redundancy to some ex-
tent.

The impact of filter size on classification accu-
racy is shown as Figure 3. The most suitable fil-
ter size which means the window size of convolu-
tional operation is m = 5. It is difficult for this
system to catch the global semantic information if
the window size is too small. While some local
semantic information would be ignored if the win-
dow size of filter is too large. Hence, choosing a
filter with moderate size is helpful for the perfor-
mance improvement.

4 Conclusions

In this paper, we have proposed a neural model
based on the pre-trained BERT model to deal with
suggestion mining task. Our system can learn the
representation of sentences or words effectively
by leveraging BERT. Then the representations ex-
tracted from BERT is fed into a simple CNN layer.
Experimental results show that our system is effi-
cient on the given dataset.

As for future work, it is of necessity to tackle the
imbalance between positive samples and negative
samples through oversampling or undersampling.
And we intend to study some innovative ways to
incorporate BERT model like extracting not only
the output of the last transformer layer but also the
output of different transformer layers and integrat-
ing them with different weights.

Acknowledgments

This work is partially supported by the National
Natural Science Foundation of China (61562090).



1291

References
Chris Alberti, Kenton Lee, and Michael Collins. 2019.

A bert baseline for the natural questions. CoRR, ab-
s/1901.08634.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,
12(Aug):2493–2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu.
2015. Question answering over freebase with multi-
column convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), volume 1, pages
260–269.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arX-
iv:1207.0580.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In ACL.

Yoon Kim. 2014. Convolutional neural network-
s for sentence classification. arXiv preprint arX-
iv:1408.5882.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. arXiv preprint arX-
iv:1301.3781.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the

13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten de Rijke, and Paul Buitelaar.
2018. Open domain suggestion mining: Prob-
lem definition and datasets. arXiv preprint arX-
iv:1806.02179.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Cicero dos Santos and Maira Gatti. 2014. Deep con-
volutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014,
the 25th International Conference on Computation-
al Linguistics: Technical Papers, pages 69–78.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li.
2015. Empirical evaluation of rectified activation-
s in convolutional network. arXiv preprint arX-
iv:1505.00853.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.


