
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 818–822
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

818

YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average
meta-embedding for identifying offensive language

Bin Wang, Xiaobing Zhou∗ ,Xuejie Zhang
School of Information Science and Engineering

Yunnan University, Yunnan, P.R. China
∗Corresponding authorzhouxb@ynu.edu.cn

Abstract

This paper describes the system submitted to
SemEval 2019 Task 6: OffensEval 2019. The
task aims to identify and categorize offen-
sive language in social media, we only par-
ticipate in Sub-task A, which aims to iden-
tify offensive language. In order to address
this task, we propose a system based on a
K-max pooling convolutional neural network
model, and use an argument for averaging as a
valid meta-embedding technique to get a meta-
embedding. Finally, we use a cyclic learn-
ing rate policy to improve model performance.
Our model achieves a Macro F1-score of 0.802
(ranked 9/103) in the Sub-task A.

1 Introduction

In the past ten years, with the popularity of the
Internet, social media platforms such as facebook
and twitter have gradually become important tools
for people’s daily communication, and users can
publish their own content on these platforms. As
the number of people interacting on social medi-
a platforms increases, online aggression language
behavior also grows, and now it has become a ma-
jor source of social conflict.

Semeval 2019 Task 6 is proposed for identify-
ing online offensive languages (Zampieri et al.,
2019b). Its goal is to use computational method-
s to identify offense, aggression and hate speech
in user-generated content on online social medi-
a platforms. We can prevent abuse of offensive
language by using this approach in social media
platforms. This task gives us some data from the
social media platform, and classifies the content
through computational analysis.

In this competition, we only participate in Sub-
task A: identification of offensive language. For
this task, we use a deep learning method to build
a K-max pooling convolutional neural network
model which uses convolutional neural networks

of different filters to extract features and preserves
k largest eigenvalues during the pooling phase.
We use two different pre-training vector model-
s (fastText and Glove) to obtain a more accurate
meta-embedding with a simple averaging tech-
nique (Coates and Bollegala, 2018). In addition,
we have adopted a Cyclic Learning Rate (CLR)
strategy (Smith, 2017), which avoids the process
to find the optimal learning rate, and the learning
rate varies within a reasonable interval rather than
monotonically. Unlike the Adative Learning Rate,
the CLR does not require additional calculations.

The rest of the paper is structured as follows:
In section 2, we describe some of the relevant
research work. In section 3, we describe the task
data and how to build the model. In section 4, we
describe the experimental results.

2 Related Work

In recent years, offensive language has prevailed
in social media, and people are increasingly inter-
ested in identifying offensive speech, especially on
social media platforms. This topic has attracted
the attention of a large number of researchers in
industry and academia. The field of Hate Speech
Automatic Detection in the text has unquestion-
able social impact potential, especially in online
communities and digital media platforms (Fortuna
and Nunes, 2018). In this section, we will review
some of the studies and briefly discuss their find-
ings.

Dinakar et al. decomposed the overall detec-
tion problem into detection of sensitive topics, in-
corporated itself into the text classification sub-
question, and solved the problem of text cyberbul-
lying detection by constructing a separate topic-
sensitive classifier(Dinakar et al., 2011). Burnap
et al. used probabilities, based on the combina-



819

tion of rules and space-based classifiers and voting
element classifiers to predict the possible spread
of network hatred in Twitter data samples (Bur-
nap and Williams, 2015). Kwok et al. used super-
vised machine learning methods to obtain tagged
data from different Twitter accounts in an inex-
pensive way, and to learn the binary classifier-
s of the “racist” and “nonracist” tags (Kwok and
Wang, 2013). Gambäck et al. built a convolution-
al neural network model based on word2vec em-
bedding(Gambäck and Sikdar, 2017). And a new
method for deep neural networks based on convo-
lution and gated recursive networks was proposed
by Zhang et al. (Zhang et al., 2018). In the field
of research on hate speech, originally Xu et al. in-
troduced the social study of bullying and formu-
lated it as NLP tasks(Xu et al., 2012), then Ross
et al. suggested that the existence of hate speech
should not be considered as a binary yes or no
decision, and the evaluator needs a more detailed
commentary(Ross et al., 2016), and now ElSherief
et al. believed that it is necessary to further deepen
the understanding of online hate language to de-
termine whether the target is individual or group
(ElSherief et al., 2018).

3 Methodology and Data

3.1 Data description

In this task, we only use the official training data
set for training and trial data set to verify. The of-
ficial data provided by OLID is mainly from Twit-
ter (Zampieri et al., 2019a). In Sub-task A, the
purpose is to distinguish whether the tweet is of-
fensive, so the data is divided into two categories:
Not Offensive (NOT): Posts that do not contain of-
fensive or defamatory; and Offensive (OFF): This
category includes insults, threats, and posts that
contain defamatory or cursed words. The training
data set has a total of 13240 tweets, in which there
are 8840 of NOT and 4400 of OFF, the ratio is
about 2:1. The data is slightly unbalanced, but we
have not dealt with the data imbalance problem.

3.2 K-max pooling CNN model

Our network architecture is shown in Figure 1. It
is a variant of the CNN model structure proposed
by Yoon Kim (Kim, 2014). Next we explain the
details of our system.

• Input layer: This layer mainly inputs all the
preprocessed text data into the model.

• Embedding layer: Converting text into word
embeddings represents each word of the text
with a d dimensional vector by using a pre-
trained word vector model.

• Convolutional layer: In this layer, the ob-
tained word vectors are subjected to convo-
lution operations to obtain multiple feature
maps. The specific operation is: a sentence
contains L words, each of which has a dimen-
sion of d after the embedding layer, and form-
s a L ∗D sentence representation by splicing
L words. There are several convolution k-
ernels in the convolutional layer, the size of
which is N ∗ d, and N is the filter window
size. The convolution operation is to apply a
convolution kernel to create a new feature in
a matrix that is spliced by words. Its formula
is as follows:

Cl = f(w ∗ x(l:l+N−1) + b) (1)

where l represents the lth word, cl is the fea-
ture, w is the convolution kernel, b is the bias
term, and f is a nonlinear function. After the
convolution operation of the whole sentence,
a feature map is obtained, which is a vector
of size L+N − 1.

• Pooling layer: The main function of this lay-
er is to perform dimensionality reduction on
the features of filter to form the final feature
with a K-max pooling operation, which takes
the value of the scores in Top K among al-
l the feature values, and retains the original
order of these feature values. Obviously, K-
max Pooling can express the same type of
feature multiple times, that is, it can express
the intensity of a certain type of feature; In
addition, because the relative order of these
Top K eigenvalues is preserved, it should be
said that it retains part of the position infor-
mation. However, this location information is
only the relative order between features, not
absolute location information. For example:
“I think the scenery in this place is not bad,
but there are too many people.” Although the
first half reflects the positive emotions, the
global text expresses the negative emotions,
and K-max pooling can capture such infor-
mation.



820

Figure 1: The architecture of K-max pooling CNN model

• Fully connected layer: In this model archi-
tecture, there are two layers of fully connect-
ed layers. The first layer receives the feature
vectors obtained by the pooling layer, and the
last layer is used for classification and predic-
tion.

3.3 Word embedding

We use two different pre-trained word embed-
dings, fastText and Glove. FastText is provided
by Mikolov et al. (Mikolov et al., 2018), it is a 2
million word vector trained using subword infor-
mation on Common Crawl with 600B tokens, and
its dimension is 300. Glove is provided by Jeffrey
Pennington et al. (Pennington et al., 2014), it is
a 2.2 million word vector trained using subword
information on Common Crawl with 840B tokens,
and its dimension is also 300.

We use a mathematical mean of the word vec-
tors by fastText and Glove to produce a high per-
formance word vector. Since the principles be-
tween fastText and Glove are different, the word
vector representation of the same word is also s-
lightly different, and the average embedding set
retains semantic information through preservation
of the relative distances between words (Coates
and Bollegala, 2018).

3.4 CLR

In this article, we use the cyclic learning rate strat-
egy provided by Leslie N . Smith (Smith, 2017),
which is a new method of setting the global learn-
ing rate. The advantage is that it avoids a lot of
experiments to find the optimal learning rate and
can be faster. We set the base learning rate and the
maximum learning rate so that the learning rate
fluctuates cyclically within this interval. The wave
method we use is exp range, which is a triangle

loop that scales the loop magnitude by a factor
while keeping the initial learning rate constant.

4 Experiment and results

4.1 Data preprocessing
Text from tweets are inherently noisy. Tweets are
processed using tweettokenize tool. Cleaning the
text before further processing helps to generate
better features and semantics. We perform the fol-
lowing preprocessing steps.

• The “#” symbol is removed and the word it-
self is retained for hashtags.

• All of “@user” is replaced with username.
Username mentions, i.e. words starting with
“@”, generally provide no information in
terms of sentiment. Hence such terms are re-
moved completely from the tweet.

• Repeated full stops, question marks and ex-
clamation marks are replaced with a single
instance with a special token ”repeat” added.

• All contractions are split into two tokens(e.g.:
“it’s” is changed to “it” and “is”).

• Emoticons (for example, ‘:(’, ‘:)’, ‘:P’ and e-
moji etc) are replaced with their own mean-
ings by emotion lexicons.

• Lemmatization, restoring language vocabu-
lary to general form (can express complete
semantics) by WordNetLemmatizer.

• Tokens are converted to lower case.

4.2 Experiment setting
We use 4-fold cross validation on the training data,
because in this experiment we experimented with



821

cross-validation of different k values, and found
that the 4-fold cross-validation effect is the best.
In addition the batch size is to 512 and the epoch
to 20. In our model, the dimension of embeding
is 300. Between the embedding layer and the con-
volution layer we add the SpatialDropout1D layer
with a value of 0.2. In the convolution layer, we
set up four convolution kernels of different win-
dow sizes, which are 1, 2, 3 and 4, the number of
filters is 180, the kernel initializer is normal, the
activation function is relu; in the pooling layer we
set the k value to 3. Before the fully connected
layer, we add a dropout layer, and the rate is 0.6.
The activation function of the final output layer is
sigmoid for binary classification. The loss func-
tion of this model is binary crossentropy, and
the optimizer is adam.

For the cyclical learning rate, we set the base
learning rate to 0.001, the maximum learning rate
to 0.002, the step size to 300, and the scaling factor
gamma to 0.99994.

4.3 Result analysis

This Sub-task A is to evaluate the classification
system by calculating the marco F1 score. Ac-
cording to the official ranking of Sub-task A, our
model has a marco F1 score of 0.8024, ranked
9th, and our result is much higher than the offi-
cial baseline. The results of the official baseline
and our model are shown in Table 1.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Our model 0.8024 0.8453

Table 1: Results for Sub-task A

The confusion matrix of our model prediction
results in Sub-task A is shown in Figure 2. There
are 620 NOT tags in the test dataset, and 240 OFF
tags. As can be seen from the confusion matrix,
our model has a lot of OFF prediction errors into
NOT, about 32% of OFF are predicted to be NOT,
while only about 9% of NOT are predicted to be
OFF.

4.4 Influence of Word Embedding

The effect of the average meta-embedding tech-
nique is shown in Table 2. In this table, the results
of fastText, Glove, the word vector generated by
concatenating fastText and Glove and the vector

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

564 56

77 163

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Confusion matrix of K-max pooling CNN
model for Sub-task A

generated by the average meta-embedding tech-
nique are compared, and the result is obtained in
the trial data set. The results show that this av-
erage meta-embedding technique can improve the
performance of the model.

word vector F1 (macro)
fastText 0.8138
Glove 0.7895
concatenated 0.8165
average meta-embedding 0.8242

Table 2: Influence of word embedding in trial data set
for Sub-task A

As can be seen from Table 2, the concatenated
can also improve the performance of the model,
but increases the dimension of word embeddings
to 600. While the meta-embedded dimension will
not exceed the maximum dimension existing in the
source embedding.

5 Conclusion

In this paper, we present a K-max pooling con-
volutional neural network model based on aver-
age meta-embedding technology for offensive lan-
guage detection, which relies solely on the da-
ta sets provided to generate competitive result-
s. However, the data imbalance problem will af-
fect the performance of the model, which makes
the model prediction tend to be biased towards a
high amount of data. In the future work, we will
strengthen the processing of data imbalance prob-
lems, and try to extract some NER features from
the data to further improve the performance of the
model.



822

Acknowledgments

This work was supported by the Natural Sci-
ence Foundations of China under Grant Nos.
61463050, 61702443 and 61762091, and the
Project of Innovative Research Team of Yunnan
Province under Grant No. 2018HC019.

References
Pete Burnap and Matthew L Williams. 2015. Cyber

hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Joshua Coates and Danushka Bollegala. 2018. Frus-
tratingly easy meta-embedding computing meta-
embeddings by averaging source word embeddings.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers).

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbully-
ing. In The Social Mobile Web, pages 11–17.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis of
Hate Speech in Social Media. arXiv preprint arX-
iv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Yoon Kim. 2014. Convolutional neural network-
s for sentence classification. arXiv preprint arX-
iv:1408.5882.

Irene Kwok and Yuzhou Wang. 2013. Locate the
hate: Detecting Tweets Against Blacks. In Twenty-
Seventh AAAI Conference on Artificial Intelligence.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wojatz-
ki. 2016. Measuring the Reliability of Hate Speech
Annotations: The Case of the European Refugee
Crisis. In Proceedings of the Workshop on Natural
Language Processing for Computer-Mediated Com-
munication (NLP4CMC), Bochum, Germany.

Leslie N Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 464–472. IEEE.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the 2012 confer-
ence of the North American chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 656–666. Association for Com-
putational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.


