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Abstract

We present a neural network based approach
of transfer learning for offensive language de-
tection. For our system, we compare two types
of knowledge transfer: supervised and unsu-
pervised pre-training. Supervised pre-training
of our bidirectional GRU-3-CNN architecture
is performed as multi-task learning of parallel
training of five different tasks. The selected
tasks are supervised classification problems
from public NLP resources with some over-
lap to offensive language such as sentiment
detection, emoji classification, and aggressive
language classification. Unsupervised transfer
learning is performed with a thematic cluster-
ing of 40M unlabeled tweets via LDA. Based
on this dataset, pre-training is performed by
predicting the main topic of a tweet. Results
indicate that unsupervised transfer from large
datasets performs slightly better than super-
vised training on small ‘near target category’
datasets. In the SemEval Task, our system
ranks 14 out of 103 participants.

1 Introduction

The automatic detection of hate speech, cyberbul-
lying, abusive, aggressive or offensive language
has become a vital field of research in natural lan-
guage processing (NLP) during recent years. Es-
pecially in social media, the tone of conversations
escalates in a disturbing way that often threatens
a free, democratic and argumentative discourse of
users. Concerning the tremendous amount of digi-
tal texts posted on platforms such as Twitter, Face-
book or in comments sections of online newspa-
pers, automatic approaches to offensive language
detection are of high relevancy for moderation and
filtering of content as well as for studying the phe-
nomenon of offensive language use in social me-
dia at large scale.

To take account of this development, a shared
task on ”offensive language detection” was con-

ducted at the SemEval 2019 workshop. This paper
describes our approach to the shared task 6 (Of-
fensEval) as organized and described in detail by
Zampieri et al. (2019b). The task contains three hi-
erarchically ordered sub-tasks: Task A requires a
classification of tweets into either offensive (OFF)
or not offensive (NOT), Task B subdivides all of-
fensive tweets into either targeted insults (TIN) or
generally offensive expressions not targeted to any
specific entity (UNT), and Task C finally asks to
assign one out of three specific target labels to all
targeted insults: groups (GRP, e.g. ethnic groups),
individuals (IND, e.g. a politician or a specific
Twitter user), or other (OTH, e.g. the media in-
dustry). The dataset consisting of 14,100 exam-
ples (13,240 in the training set, 860 in the test set)
was annotated via crowdsourcing (Zampieri et al.,
2019a). Each tweet was labeled by at least two an-
notators who must reach an agreement of at least
66% for including the tweet in the dataset. The
dataset is characterized by a high imbalance of la-
bel distributions, especially for Tasks B and C.

There are several challenges for automatic of-
fensive language detection that render simple
dictionary-based approaches unusable. First, label
distribution in the dataset is highly skewed for all
sub-tasks. Although offensive language is a grow-
ing problem for social media communication, it
still accounts for only a small fraction of all con-
tent posted. Second, language characteristics in
social media pose a severe challenge to standard
NLP tools. Misspellings, slang vocabulary, emoti-
cons and emojis, as well as ungrammatical punc-
tuation must be taken into account for a success-
ful solution. Third, offensive language is highly
context-dependent. For instance, swear words are
often used to mark overly positive emotion (“This
is fucking great!!!”), and actually neutral and de-
scriptive sentences can be conceived as derogatory
if they refer to a specific individual (“@Barack-
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Obama he is a Muslim”).
Our approach to the OffensEval shared task is

based on two main contributions: First, we in-
troduce a BiGRU-3CNN neural network architec-
ture in combination with pre-trained sub-word em-
beddings that are able to handle social media lan-
guage robustly. Second, we investigate two types
of knowledge transfer: supervised and unsuper-
vised pre-training. Supervised pre-training of our
neural network architecture is performed as multi-
task learning of parallel training of five different
NLP tasks with some overlap to offensive lan-
guage detection. Unsupervised transfer learning
is performed with a thematic clustering of a large
dataset of unlabeled tweets via LDA. After shortly
referencing related work (Section 2), we introduce
both approaches in detail in Section 3 and present
the results in Section 4.

2 Related Work

Two recent survey papers, Schmidt and Wiegand
(2017) and Fortuna and Nunes (2018), summa-
rize the current state of the art in offensive lan-
guage detection and related tasks such as hate
speech or abusive language detection. Specifi-
cally for offensive language detection, the paper
by Davidson et al. (2017) introduced a publicly
available dataset which was reused in (Malmasi
and Zampieri, 2017, 2018; ElSherief et al., 2018;
Zhang et al., 2018) as well as in our approach of
supervised pre-training.

A predecessor of our transfer learning approach
has already successfully been applied at GermEval
2018 (Wiegand et al., 2018), a shared task on of-
fensive language detection in German language
tweets. In our paper (Wiedemann et al., 2018), we
tested different types of knowledge transfer and
transfer learning strategies. We further found that
latent semantic clusters of user handles in tweets
(e.g. user accounts run by media companies or
politicians) are a very helpful feature to predict of-
fensive language since they provide valuable con-
text information how to interpret otherwise am-
biguous tweets. Unfortunately, this feature can-
not be used for the SemEval 2019 Task 6 since
user mentions have all been unified to the token
‘@USER’ in the training data. Thus, we base our
approach on the best performing transfer learning
strategy from Wiedemann et al. (2018) but imple-
ment several minor improvements, which will be
described in detail in the following.
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Figure 1: BiGRU-3-CNN model architecture. We use
a combination of recurrent and convolutional cells for
learning. As input, we rely on (sub-)word embeddings.
Dashed lines indicate dropout with rate 0.5 between
layers. The last dense layer contains n units for pre-
diction of the probability of each of the n classification
labels per sub-task.

3 Methodology

We utilize a neural network architecture for text
classification with randomly initialized weights as
a baseline, and together with two types of pre-
training layer weights for transfer learning: super-
vised and unsupervised pre-training. Evaluation
for model selection is performed via 10-fold cross-
validation to determine submission candidates for
the SemEval shared task.

Preprocessing: Tweets are tokenized with an
extended version of the NLTK (Bird et al., 2009)
tweet tokenizer. In addition to correct tokenization
of emoticons and shortening of repeated character
sequences (e.g. ‘!!!!!!’) to a maximum length of
three, we separate # characters as individual token
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from hashtags. If hashtags contain camel casing,
we split them into separate tokens at each upper-
case letter occurrence (e.g. ’#DemocratsForPeace’
is tokenized into ’# democrats for peace’). Finally,
all tokens are reduced to lower case. In order to
account for atypical language, we use sub-word
embeddings to represent the input of token se-
quences to our model. FastText embeddings (Bo-
janowski et al., 2017) are derived from character
n-grams and, thus, provide meaningful word vec-
tors even for words unseen during training, mis-
spelled words and words specifically used in the
context of social media such as emojis. We uti-
lize a pre-trained model for the English language
published by Bojanowski et al. (2017).

Model architecture: We employ a neural net-
work architecture implemented with the Keras
framework for Python1 as shown in Fig. 1. It com-
bines a bi-directional Gated Recurrent Unit (GRU)
layer (Cho et al., 2014) with 100 units followed
by three parallel convolutional layers (CNN), each
with a different kernel size k ∈ 3, 4, 5, and a filter
size 200. The outputs of the three CNN blocks are
reduced by global max-pooling and concatenated
into a single vector. This vector is then fed into
a dense layer with LeakyReLU activation produc-
ing a final feature vector of length 100, which is
forwarded into the prediction layer (softmax acti-
vation). For regularization, dropout is applied to
the recurrent layer and to each CNN block after
global max-pooling (dropout rate 0.5). For train-
ing, we use categorical cross-entropy loss and the
Nesterov Adam optimization with a learning rate
of 0.002. To account for imbalance in the train-
ing set, we set class weights to pay more attention
to samples from the under-represented class in the
loss function.

Supervised Pre-training: Instead of end-to-end
text classification based on a random initialization
of the parameters weights of our model, we seek
to increase performance from knowledge trans-
fer. For the supervised approach, we pre-train
the model weights in a multi-task learning setup
with related semantic categories. Instead of one
prediction layer (see layer 4 in Fig. 1), we use
m prediction layers connected to layer 3 to train
m tasks in parallel. The following four publicly
available datasets were compiled into one train-
ing set: offensive language tweets by (Davidson

1https://keras.io

et al., 2017), flamewar comments from the Ya-
hoo news annotated corpus (Napoles et al., 2017),
sentiments of tweets from (Go et al., 2009), ag-
gressive tweets and Facebook comments from the
TRAC shared task (Kumar et al., 2018). A fifth
dataset was compiled from about 30,000 randomly
sampled tweets in our unsupervised background
collection (see next Section) containing either a
happy or an angry emoji. The merged dataset con-
tains ca. 115k partially labeled instances for pre-
training from which a sample of 5k was used as
validation set. Missing labels for the combined set
were filled by training a separate model for each
of the m individual tasks on the respective dataset
and predict a label for each instance in the other
four datasets. Multi-task pre-training is performed
with a batch-size of 256 for 15 epochs.

Unsupervised Pre-training: For the unsuper-
vised approach, we utilize a large background cor-
pus of tweets that were collected from the Twit-
ter streaming API in 2018. Since the API pro-
vides a random fraction of all tweets (1%), lan-
guage identification is performed to filter for En-
glish tweets only. From this tweet collection, we
sample 20 million non-duplicate tweets containing
at least two non-URL tokens as our background
corpus. As a pre-training task, we first compute
a Latent Dirichlet Allocation (LDA) model (Blei
et al., 2003) with K = 1, 000 topics to obtain se-
mantic clusters of our background corpus.2 From
the topic-document distribution of the resulting
LDA model, we determine the majority topic id
for each tweet as a target label for prediction dur-
ing pre-training our neural model. Pre-training of
the neural model is performed with a batch-size of
256 for 10 epochs.

Transfer learning: Once the neural model has
been pre-trained, we can apply it for learning our
actual target task. For this, we need to remove
the final prediction layer of the pre-trained model
(i.e. Layer 4 in Fig. 1) and add a new dense layer
for prediction of one of the actual label sets. To
prevent the effect of “catastrophic forgetting” of
pre-trained knowledge during task-specific model
training, we apply a specific layer weight freez-
ing strategy as suggested in Wiedemann et al.
(2018). First, the newly added final prediction
layer is trained while all other model weights re-

2For LDA, we used Mallet (http://mallet.cs.
umass.edu) with Gibbs Sampling for 1,000 iterations and
priors α = 10/K and β = 0.01.

https://keras.io
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
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Task No transfer Supervised Unsupervised
A 76.26 77.46 77.36
B 58.87 61.24 60.57
C 56.66 54.16 58.26

Table 1: Model selection (cross-validation, macro-F1)

main frozen. Training is conducted for 15 epochs.
After each epoch performance is tested on the vali-
dation set. The best performing model state is then
used in the next step of fine-tuning the pre-trained
model layers. Employing a bottom-up strategy,
we unfreeze the lowest layer (1) containing the
most general knowledge first, then we continue
optimization with the more specific layers (2 and
3) one after the other. During fine-tuning of ev-
ery single layer, all other layers remain frozen and
training is performed again for 15 epochs select-
ing the best performing model at the end of each
layer optimization. In a final round of fine-tuning,
all layers are unfrozen.

Ensemble: For each sub-task A, B and C, the
cross-validation results in 10 best performing
models from transfer learning per configuration.
For submission to the shared task, we select
the model with the highest average performance
across all folds. Moreover, as a simple ensem-
ble classification, predictions of these 10 models
on the test set instances are combined via majority
vote.

4 Results

Model selection: To compare different types of
pre-training for knowledge transfer, we use the of-
ficial shared task metric macro-averaged F1. Ta-
ble 1 displays the averaged results of 10-fold
cross-validation for all three tasks with no transfer
as baseline compared to supervised transfer from
multi-task learning and pre-training on unsuper-
vised LDA clustering. The results indicate that
transfer learning is able to improve performance
for offensive language detection for all tasks. With
the exception of supervised transfer for task C, the
relative improvements are larger the smaller the
training datasets get for each of the hierarchically
ordered tasks. In general, for the lower level tasks
B and C, a severe performance drop can be ob-
served compared to task A.

The comparison between unsupervised and su-
pervised pre-training delivers a mixed result.
While the performance of the supervised trans-

System F1 (macro) Accuracy
Task A

All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Supervised 0.7887 0.8372
Unsupervised 0.7722 0.8337

Task B
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
Unsupervised 0.6608 0.8917

Task C
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
Unsupervised 0.5752 0.6761

Table 2: Official test set performance results

fer approach slightly exceeds the unsupervised ap-
proach for task A and B, for task C, containing
only very small numbers of positive examples for
each class in the training dataset, the unsupervised
approach clearly beats the network pre-training by
supervised near-target category tasks. Supervised
transfer even fails to beat the baseline of no trans-
fer learning at all. We assume that this type of
pre-training tends to over-fit the model if there is
only little training data to learn from. Unsuper-
vised pre-training on very large datasets, in con-
trast, better captures generic language regularities
which is beneficial for arbitrary categories.

Shared task submissions: Table 2 displays our
best official results of ensemble classifications
submitted to the shared tasks A, B, and C. A sys-
tematic comparison between the two compared
approaches of pre-training would have required
submission of two classifications per sub-task,
one for supervised and one for unsupervised pre-
training. Unfortunately, the official shared task
website only allowed for three submissions per
sub-task3. This policy led to the decision to submit
only variations / repeated runs of the best classifier
we had until the task submission deadline.

Our supervised pre-training approach ranks 14
out of 103 for sub-task A. For sub-tasks B and
C, only classifiers pre-training with the unsuper-
vised approach have been submitted. They rank
21 out of 75 for B, and 13 out of 65 for C (see

3Also, the official test set was not released yet, so we can-
not report a systematic comparison at this point.
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Figure 4: Sub-task C, unsupervised

Zampieri et al. (2019b) for a detailed comparison
of all submissions). Fig. 2 to 4 show confusion
matrices for the three best runs. The ratio be-
tween false positives and false negatives for sub-
task A is fairly balanced. False positives mainly
comprise hard cases where, for instance, swear
words are used in a non-offensive manner. In
the highly unbalanced annotations for sub-task B,
more tweets were wrongly predicted as targeted
insults than true yet unpredicted targeted insults.
Here we observe many cases which contain offen-
sive language and some mentioning of individu-
als or groups but both are not directly linked. A
similar situation, where actually characteristics of
two categories are contained in a tweet, can be ob-
served for task C in which the classifier falsely
predicts a group target instead of ‘other’.

5 Conclusion

We systematically compared to types of knowl-
edge transfer for offensive language detection:
supervised and unsupervised pre-training of a
BiGRU-3-CNN neural network architecture. The
former uses a set of near-target category labeled
short texts while the latter relies on a very large
set of unlabeled tweets. On average, our system
performs among the top 20% of all submissions
of the OffensEval 2019 shared task. From our ex-
periments, we can draw the following three main
conclusions:

• Supervised pre-training with annotated near-
target category data is beneficial if the target
training data is fairly large.

• Unsupervised pre-training with unlabeled
data from LDA clustering processes im-
proves learning for arbitrary tasks even for
fairly small target training datasets.

• For unsupervised pre-training, the benefit of
transfer learning compared to the baseline
without transfer is larger the smaller the tar-
get training dataset gets.

In future work, we plan to further investigate
the differences between the two types of transfer
learning by systematically investigating the influ-
ence of different near-target category datasets, and
unsupervised topic clustering methods other than
LDA for pre-training deep neural network archi-
tectures.
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