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Abstract

We describe our system (TüKaSt) submitted
for Task 6: Offensive Language Classifica-
tion, at SemEval 2019. We developed multi-
ple SVM classifier models that used sentence-
level dense vector representations of tweets
enriched with sentiment information and term
weighting. Our best results achieved F1 scores
of 0.734, 0.660 and 0.465 in the first, second
and third sub-tasks respectively. We also de-
scribe a neural network model that was devel-
oped in parallel but not used during evaluation
due to time constraints.

1 Introduction

We live in a day and age where social media
pervades through every aspect of lives. Constant
growth of social media platforms and rapid
exposure to them are changing how human
communication is perceived and working (Sticca
and Perren, 2013). As much as social media and
the general web help its users stay connected and
informed, misuse of these channels grows with
them. As long as anonymity continues to play
a central role in online interactions, one must
contend with individuals and entities who feel
empowered to behave aggressively for that very
reason (Burnap and Williams, 2015). Recent
events have forced social media platforms to
take a renewed interest in limiting the negative
influence of such users for commercial and
practical reasons. However, the sheer size of data
on social media makes it impossible to manually
observe, thereby calling the creation of systems
that automatically detect potentially offensive
content.

The SemEval 2019 - OffensEval Shared Task
(Zampieri et al., 2019b) is aiming exactly at that
need, calling for system able to detect offensive

language in social media data. The task is split into
three sub-tasks: Detecting offensive language, de-
termining whether it is offensive directly towards
a target, and target specification. This paper fol-
lows our approach of applying both traditional and
more sophisticated neural models to the task of of-
fensive text classification.

2 Preprocessing

All tweets were converted to lowercase and to-
kenised. Stop-words were removed uncondition-
ally, but hashtags and user mentions were removed
during the training of certain model variants.

3 Training Data

The SVM models were trained and evaluated
exclusively on the training data provided by
Zampieri et al. (2019a) with ten-fold cross-
validation. For the RNN models, we also used the
trail data that was provided before the start of the
training phase. The samples were shuffled before
each training run, and a 80-20 split was performed
to generate training and validation sets.

300-dimensional, pre-trained FastText embed-
dings (Mikolov et al., 2018) were used to train
the SVM models. The FastText embeddings
were chosen due to their subword-information
(Bojanowski et al., 2017), making it easier to
deal with social media data, which is prone
to contain spelling errors and abbreviations.
100-dimensional Glove vectors trained on the
Twitter corpus (Pennington et al., 2014) were used
to initialise the word embeddings in the RNN
models.

For sentiment data, we used the Vader senti-
ment lexicon (Gilbert, 2014) to retrieve polarity
scores for each word in the vocabulary. Scores
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range from -4 (extremely negative) to +4 (ex-
tremely positive). A neutral score of zero was
assigned to out-of-vocabulary words.

4 Models

4.1 Support Vector Machines Classifier

Support Vector Machines (SVMs) have been
used successfully in many classification problems
concerning natural language (Aggarwal and Zhai,
2012). In the proceedings of the First Workshop
on Trolling, Aggression and Cyberbullying,
Kumar et al. (2018) report on several teams using
SVMs to identify aggressive texts. Moreover,
SVMs with traditional features can still outper-
form neural networks in natural language tasks
(Medvedeva et al., 2017; Çöltekin and Rama,
2017, 2018). However, traditional features like
TF-IDF, character and word n-grams, bag of
words/n-grams, and sentiment lookups dominate
the majority of models used for identifying
aggressive language.

Contrasting the use of traditional features used
in natural language processing is the prominent
research on neural networks using dense vector
representations (word embeddings) as input.
Since embeddings are able to capture syntactic
and semantic features and represent them in a
distributed manner, it makes them perfect for
language modelling (Bojanowski et al., 2017).
We chose to experiment with embeddings in
SVMs for this classification task in order to keep
pre-processing and feature-engineering to a mini-
mum. Moreover, we wanted to see how the SVM
could improve with the dense representations
over sparse representations. However, we also
experimented with combinations of continuous
features and traditional features in some of our
models.

The SVM models’ dense sentence representa-
tion was composed by summing the respective
embeddings of every word in the tweet and
normalising over the length of the tweet. We
chose not to weight them by their TF-IDF scores
to achieve an even combination of all constituents.
Mikolov et al. (2013) report that adding vectors
in a linear fashion yields meaningful phrase
representations.

For the first of three SVM models
(combined fixed), we created vectors for the
TF-IDF and the retrieved sentiment values in
the following manner: The TF-IDF vectors
were constructed with length |V |, where V is
the vocabulary constructed from the corpus and
each dimension is corresponding to a specific
word in the model’s vocabulary. The sentiment
vector was constructed with length |V ′|, where
V ′ corresponds to the Vader lexicon (Gilbert,
2014) and each dimension corresponds to a
specific word in the lexicon. Both vectors were
initialised with zeros and respective dimensions
were replaced with the retrieved/computed values.
Both vectors were then appended to the dense
sentence representation.

The second model (combined positioned) was
trained with a word-order sensitive representation
of the aforementioned features. Both the TF-
IDF vector and the sentiment vectors were con-
structed with length |word count(t)|, where t is
the longest tweet in the trainings set and where
each the dimension corresponds to the word en-
countered at the respective index in the tweet. The
third and final SVM model was only trained on the
composed sentence embeddings (emb only).

4.2 Recurrent Neural Classifier

In addition to the SVM classifier, we paral-
lelly trained a recurrent neural classifier using
both Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Unit
(Cho et al., 2014) cells.

Figure 1: RNN Classifier Architecture.

The architecture of our model is illustrated in
figure 1. It accepts token and character n-gram
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sequences as inputs. The embedding layer
consists of individual embedding matrices for
each input type. The word embedding matrix
is initialised with pre-trained word embeddings
while the character embedding matrix is randomly
initialised, both of which are subsequently learned
as parameters of the model during the training
phase.

The embedding sequence is used as the input
to a stacked bi-directional RNN layer. We used
both LSTM (with peepholes) and GRU cells for
the individual units in each RNN layer (trained
as separate models). Dropout is additionally
added to each layer during the training phase. The
hidden states of the forward and backward RNNs
of the top-most layer are concatenated to produce
the sentential representation of the sequence. This
is performed for both types of input sequences.

In addition to the output of the biRNN layers,
we calculate TF-IDF (Term Frequency - Inverse
Document Frequency) scores for all words in
the corpus. This lets us construct a fixed-length
dense vector of normalised TF-IDF values for
each tweet. Similarly, we use a sentiment lexicon
to lookup human-assigned polarity scores of indi-
vidual words and construct a second fixed-length
vector with sentiment information for each tweet.

The outputs of the above components are con-
catenated into a single, final representation. We
expect the TF-IDF and sentiment vectors to en-
code relevant information about the importance of
discriminating words in the input sequence. This
final representation is used as the logits for a Soft-
Max layer that outputs the predicted label of the
tweet.

5 Parameters & Training

We used sklearn-kittext (Pedregosa et al., 2011) to
build our SVM models. For both Sub-task A and
B, a binary classifier was trained and for Sub-task
C a one-versus-one, multi-class classifier was
trained on the three different labels. All three
models use sklearn’s default RBF-kernel with
C=2 and gamma=0. The final hyper-parameters
used by the neural classifier are listed in table 7.
Training was performed with early stopping.

During our initial tests, the neural network clas-

sifier particularly had trouble generalising to the
training data. We found that the class imbalance in
the data caused the classifier to be biased towards
the majority class and to over-fit the training data.
To mitigate this, we weighted the output of the loss
function with the ratios of the different classes in
each dataset and performed L2 regularisation on
the losses of each mini-batch.

6 Results

The results that follow are those only those of
the SVM models evaluated during the evaluation
phase of the OffenEval task (Zampieri et al.,
2019b). Since we were unable to train the RNN
classifier in time for the official evaluation phase,
we will instead be reporting the scores of the
classifier on the validation set (mean and best
macro-F1 scores and their corresponding accura-
cies) in section A.

The model using the sentence embedding on
its own is denoted by emb only, the combination
of sentence embedding and multiple-hot TF-IDF
and sentiment vectors by combined fixed and the
position sensitive combination of the vectors by
combined positioned.

For Sub-task B and C, all three models were
submitted and for sub-task A, only the emb only
and the combined fixed were submitted.

System F1 (macro) Accuracy

All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790

combined fixed 0.7340 0.7942
emb only 0.7127 0.7849

Table 1: Results for Sub-task A.

The results for Sub-task A (Table 1) reveal
a slight improvement for adding traditional
features to the dense sentence representation.
This improvement is likely to be due to the
sentiment vector, whose values should be very
discriminative for tweets containing offensive
language. Nevertheless, this information should
be encoded in the embeddings as well.

For Sub-task B (Table 2) and Sub-task C, the
emb only model actually outperforms the com-
bined vectors. This might be due to the fact that
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tasks are more fine-grained than Task A and these
nuances are captured by the word embeddings,
while the sentiment and TF-IDF vectors end up
contributing more to the noise than information
in the signal. Nevertheless, the SVM seems to
be able to handle the data from the composed
sentence embeddings quite well.

System F1 (macro) Accuracy

All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125

combined positioned 0.6470 0.8
combined fixed 0.4702 0.8875
emb only 0.6602 0.8208

Table 2: Results for Sub-task B.

System F1 (macro) Accuracy

All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643

combined positioned 0.4421 0.5305
combined fixed 0.4213 0.4695
emb only 0.4652 0.5164

Table 3: Results for Sub-task C.

The results obtained for Sub-task B reveal that
the model trained on combined fixed performs
remarkably badly when evaluated on the F1
score. Moreover, the accordance on Accuracy
with the All-TIN-Baseline indicates that our
model over-fits the training data and classifies
all samples as being targeted, which is actually
the case. This problem and general performance
could probably be improved by spending more
time on hyper-parameter training.

The per-class scores of the best performing
model in each sub-task are listed in tables 4-6.

Precision Recall F1-score Samples

NOT 0.8413 0.8806 0.8605 620
OFF 0.6493 0.5708 0.6075 240

Table 4: Per-class performance in Sub-task A, SVM
model combined fixed

Precision Recall F1-score Samples

TIN 0.9427 0.8498 0.8938 213
UNT 0.3333 0.5926 0.4267 27

Table 5: Per-class performance in Sub-task B, SVM
model emb only

Precision Recall F1-score Samples

GRP 0.5306 0.6667 0.5909 78
IND 0.7424 0.4900 0.5904 100
OTH 0.1837 0.2571 0.2143 35

Table 6: Per-class performance in Sub-task C, SVM
model emb only

7 Conclusion

In this paper, we demonstrate the use of both Sup-
port Vector Machine models and Recurrent Neu-
ral models to classify offensive tweets. We show
how sentential representations derived from word
and character n-gram embeddings can be enriched
by including term salience and sentiment infor-
mation for certain tasks. For more fine-grained
tasks, dense vector representations of sentences
work well with SVM classifiers. While our results
show that traditional methods still outperform neu-
ral network models, there is much room for im-
provement. Future work could investigate the use
of more sophisticated mechanisms like attention to
potentially increase performance even further.
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A Appendix

Epochs 50
Batch size 512
L2 Beta 0.001
RNN per-layer dropout 0.15
Character n-gram size 3
RNN output dimension 100
Auxiliary vector dimension 30

Table 7: RNN Model Hyper-parameters

A.1 Recurrent Neural Classifier Validation
Results

The -hm suffix denotes the models that were
trained on tweets from which hash tags and user
mentions were removed. -aux denotes the models
that did not use the fixed-length TF-IDF and
sentiment vectors in the final representation. In
all other models, both of the aforementioned
features were preserved. We also report the val-
idation results of the SVM models for comparison.

In Sub-task A (Table 8), the full-LSTM model
with TF-IDF and sentiment vectors scored best,
followed very closely by the model without hash-
tags or user mentions. Removing the auxiliary
vectors resulted in a net decrease in perfor-
mance, which shows that sentiment and [term]
salience-related information do indeed help the
model learn and generalise better. Interestingly,
removing hash tags/mentions along with the
auxiliary vectors increased performance relative
to the previous case. The GRU scored the lowest;
this could potentially be attributed to its weakness
with long-distance dependencies.

The full-LSTM model continued to outperform
the other models in Sub-task B (Table 9) as well.
Removing hash tags and user mentions caused a
more substantial drop in performance compared
to the first sub-task. This follows logically as
the given task is to identify targetted tweets;
removing information that is intrinsically indica-
tive of the same results in a worse-performing
model. Removing the auxiliary vectors causes
performance to drop further, further corroborating
their informativity. And as before, the GRU
finished in the last place.

Sub-Task C (Table 10) saw a reversal of roles
between the GRU and full-LSTM models. Be-
tween the different variants of the LSTM-based
models, the general trend seen in Sub-task A
re-emerged. It must, however, be noted that all
models performed poorly at this sub-task. We
conjecture that this is partly due to the limited
amount of training data available for this sub-task.
It is also likely that the chosen architecture of the
classifier is not sophisticated enough to model the
non-linearities in the training data.



769

Mean Best

System F1 (macro) Accuracy F1 (macro) Accuracy

SVM combined positioned 0.7215 0.7540 0.7441 0.7751
SVM combined fixed 0.6171 0.7045 0.6321 0.7177
SVM emb only 0.7160 0.7483 0.7373 0.7691

GRU 0.6240 0.6584 0.6442 0.6941
LSTM 0.6958 0.7332 0.7121 0.7629
LSTM -hm 0.6941 0.7360 0.7126 0.7488
LSTM -aux 0.6830 0.7361 0.6873 0.7559
LSTM -hm -aux 0.6852 0.7166 0.6997 0.7309

Table 8: Validation results for Sub-task A.

Mean Best

System F1 (macro) Accuracy F1 (macro) Accuracy

SVM combined positioned 0.5877 0.8117 0.6341 0.8616
SVM combined fixed 0.4677 0.8791 0.4737 0.9002
SVM emb only 0.6128 0.8129 0.6676 0.8594

GRU 0.5949 0.6350 0.6129 0.6578
LSTM 0.6527 0.7065 0.6642 0.7039
LSTM -hm 0.6322 0.6880 0.6372 0.6859
LSTM -aux 0.6267 0.6696 0.6527 0.6809
LSTM -hm -aux 0.6258 0.6528 0.6655 0.6973

Table 9: Validation results for Sub-task B.

Mean Best

System F1 (macro) Accuracy F1 (macro) Accuracy

SVM combined positioned 0.4003 0.5788 0.4934 0.6340
SVM combined fixed 0.4919 0.6129 0.5163 0.6417
SVM emb only 0.5086 0.6273 0.5672 0.6494

GRU 0.2953 0.5748 0.3109 0.5746
LSTM 0.2878 0.6045 0.2961 0.6164
LSTM -hm 0.2868 0.6365 0.3390 0.6152
LSTM -aux 0.2586 0.6432 0.2637 0.6762
LSTM -hm -aux 0.2617 0.5370 0.2896 0.4605

Table 10: Validation results for Sub-task C.


