
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 302–306
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

302

Sentim at SemEval-2019 Task 3: Convolutional Neural Networks For
Sentiment in Conversations

Jacob Anderson
Sentim LLC, USA

papers@sentimllc.com

Abstract
In this work convolutional neural networks
were used in order to determine the sentiment
in a conversational setting. This paper’s con-
tributions include a method for handling any
sized input and a method for breaking down
the conversation into separate parts for easier
processing. Finally, clustering was shown to
improve results and that such a model for han-
dling sentiment in conversations is both fast
and accurate.

1 Introduction

The model for this paper was created for Task 3
of SemEval 2019, EmoContext (Chatterjee et al.,
2019). The basic idea of the task is to classify
the emotion (as “angry”, “sad”, “happy”, or “oth-
ers”) that someone is expressing in the third turn
of a three part conversation, given the previous two
turns as context.

The dominant approach in many natural lan-
guage tasks is to use recurrent neural networks or
convolutional neural networks (CNN) (Conneau
et al., 2016). For classification tasks, recurrent
neural networks have a natural advantage because
of their ability to take in any size input and out-
put a fixed size output. This ability allows for
greater generalization as no data is removed nor
added in order for the inputs to match in length.
While CNN’s can also support input of any size,
they lack the ability to generate a fixed size output
from any sized input. In text classification tasks,
this often means that the input is fixed in size in
order for the output to also have a fixed size.

This work expands upon a previous work (An-
derson, 2018), a way of using CNN’s for classifi-
cation to allow for any sized input length without
adding or removing data. That work was expanded
upon in this paper by making it simpler, using it in
a different setting, and applying a new method to
compensate for the previous model’s deficiencies.

2 Model Description

The overall architecture of this model can be bro-
ken into two parts: the language understanding
model and the emotion prediction model. The lan-
guage understanding model takes in each part of
the conversation and processes it separately in or-
der to produce a latent vector representing the net-
work’s understanding of that part of the conversa-
tion. Then, the emotion prediction model takes all
of the latent vectors from the language understand-
ing model and combines them in order to make a
prediction for what the emotion is.

More specifically, the language understanding
model takes in the first and third turns of each con-
versation1, processes them separately, and returns
a respective understanding vector of size 128 for
each input. The emotion model then concatenates
those vectors to make one vector of size 256 and
then processes that output through a small fully
connected network in order to predict the emo-
tional content.

The model was designed using Tensorflow
(Abadi et al., 2015) and Keras (Chollet et al.,
2015) and was trained using a Google Colab GPU.

2.1 Language Understanding Model

The idea behind the language understanding
model (Figure 1) is to take in each part of the con-
versation separately and process them into a fixed
size vector representing a machine understanding
of the input text. In order to accomplish this, the
input conversation was first embedded into a sub-
word embedding using the byte-paired encoding
provided by Heinzerling and Strube (2018) and
SentencePiece (Kudo and Richardson, 2018). The
subword embedding used a base vocabulary size
of 10,000 with a vector size of 100. This em-

1The second turn was not used during my training because
it was found empirically to make the results worse.



303

bedding was further extended with random vectors
during data preprocessing to include emojis and
other unique characters not found in the original
vocabulary.

Subword Embedding

Output

Convolution 1D

Residual Dilated 
Convolution1D

Residual Dilated 
Convolution1D

Residual Dilated 
Convolution1D

Residual Dilated 
Convolution1D

Residual Dilated 
Convolution1D

Residual Dilated 
Convolution1D

Residual Dilated 
Convolution1D

Convolution 1D

Global Max Pooling

Input

FC (128)

Figure 1: The language understanding model.

A specialized convolutional stack was used in
order to process the embeddings. The first layer of
the stack was a convolutional layer with linear ac-
tivation in order to set up the initial size of the in-
put. This was followed by a stack of seven residual
dilated convolutional layers (Figure 2) with relu

activation. The number of layers was chosen so
that the final layer would have a receptive field
large enough to be able to see the whole input.

Dilated Convolution1D Linear

Output

Input

Figure 2: A residual dilated convolution, without skip
connections.

One more convolutional layer was used with a
linear activation function and the “same” padding
method. This layer was originally added to in-
crease the number of filters, but after a grid search
was performed to determine the optimal hyperpa-
rameters, this layer was left in as a way to do any
necessary linear transformations on the latent vec-
tor. Note that all convolutional layers in the final
version had a kernel size of 2 and 300 filters. Ad-
ditionally, the padding method varied depending
on the experiment. See the “Experiments and Re-
sults” section for more information on that topic.

The convolutional stack was followed by a
global max pool layer to bring the network down
to a constant size, and then an FC Layer. The idea
of this last FC layer is to allow for any fine tuning
of the language understanding model as necessary
and to compensate for the max pool layer’s inabil-
ity to provide perfect information.

2.2 Emotion Prediction Model

The purpose of the emotion prediction model (Fig-
ure 3) is to predict the emotion given the latent
vectors representing the conversation. The emo-
tion prediction model starts off with the concate-
nation all of the language understanding outputs.
This is then fed through one fully connected layer
of size 256 with sigmoid activation, followed by
the final prediction fully connected layer of size 4,
also with sigmoid activation.



304

First Turn Vector Third Turn Vector

First Turn Vector, Third Turn Vector

Concat

FC (256)

Output (4)

Figure 3: The layout of the emotion prediction model.

2.3 Training and Loss Functions

The network is end to end trainable without hav-
ing to train the networks separately. Triplet loss
was used (with triplets chosen via the all anchor-
positive method) from Schroff et al. (2015) to clus-
ter similarly labeled data together for the language
understanding model, and softmax cross entropy
loss was used for the emotion prediction model.
The models were trained using the Adam (Kingma
and Ba, 2014) optimization method with a learn-
ing rate of .001.

The loss function can be written as

L = T (as, ps, ns)+T (ae, pe, ne)+S(labels, logits)

Where T (anchor, positive, negative) is the
triplet loss and S(labels, logits) is the softmax
cross entropy loss given the true labels and logit
predictions from the emotion prediction model.
Additionally, as, ps, ns are the anchor, positive,
and negative examples corresponding to the first
turn and ae, pe, ne are the anchor, positive, and
negative examples corresponding to the last turn
respectively.

To further clarify, each first turn text in the batch
was matched against every other first turn text so
that they (the anchor) would be closer to similarly
labeled data (positive examples) and farther away
from every other category of data (the negative ex-
amples). The same thing was done for the last turn
of the conversation. The first turn was specifically
not clustered to be close to both first turn and last

turn labels in order to preserve any contextual in-
formation that could be available in the first turn
of a conversation versus the last turn.

An interesting thing to note is the time taken to
train the model. Perhaps due to using the clus-
tering loss and the softmax cross entropy loss si-
multaneously, the fast speed of training residual
convolutions, or the small size of the dataset, the
model always finished training within 7 minutes
(or 9 epochs). Any more than that would never
improve the micro f1 score and would start over-
fitting. Furthermore, roughly twenty percent of the
time the model would show the best results within
1.5 minutes (or 2 epochs).

In one experiment, the networks were trained
using just softmax cross entropy loss, but the net-
works never improved beyond the initial predic-
tion of always pick the “others” class. This could
be because of wrong hyperparameters (the same
model was used as the one with the clustering
loss), didn’t train for long enough (one model was
trained for 24 hours (or 1755 epochs over the train-
ing data)), or didn’t try enough random restarts (10
restarts were attempted in this paper). Regardless
of the case, this shows that using the clustering
loss helped the network find the right solutions
faster and with less hyperparameter tuning than
just using the softmax cross entropy loss.

3 Experiments and Results

The experiments for this paper were all run on the
dataset provided by the EmoContext organizers.
The main dataset contains roughly 30,000 con-
versations, while the test dataset contains roughly
2,750, and the final evaluation dataset contains
about 5,500. The order of each conversation goes
Person A, Person B, then Person A again for all of
the datasets.

Model Type Micro F1 Score
118 network ensemble .7295
Same padding ensemble .7262
Causal padding ensemble .7357
Best single model .7255
2nd best single model .707
Ensemble of micro f1 >.7 .7366
Ensemble of micro f1 >.71 .7386
Emoji replacement model .7386

Table 1: Micro f1 score on the final evaluation set for
each of my submissions.



305

The first submission on the evaluation dataset
was an ensemble of 118 networks. In total, the
118 networks came from 100 different training cy-
cles: 50 runs using causal padding as the padding
method in the dilated residual convolutional stack,
and 50 runs using the “same” padding method.
Each run was trained against the full dataset for
nine epochs and tested against the test dataset, so
the checkpoints chosen were the ones that per-
formed the best on the test dataset. The remaining
18 networks came from checkpoints that were not
the best checkpoint of the training run but still had
a micro f1 score above 0.7 on the test set.

To compare two different convolutional padding
methods, an ensemble of all networks using
“same” padding (56 in total), and an ensemble of
all causal padding runs (62 in total) was submitted.
While the causal padding models performed bet-
ter on average, the difference was not significant.
Two non-ensemble runs were submitted - one of
which was the best run of all 100 runs (which hap-
pened to be a causal padding model) and the other
of which was the second best run of all 100 runs
(which happened to be a “same” padding model).

The sixth submission was an ensemble where
every network in the ensemble had to have a micro
f1 score of .7 or higher and the seventh submission
was an ensemble where every network had to have
a micro f1 score of .71 or higher respectively.

Unsurprisingly, the ensemble methods ourper-
form the best single model runs on micro f1 score.
Interestingly though, the 118 network ensemble
performed worse than the causal padding ensem-
ble. This could represent opposing learning bi-
ases present in “casual” versus “same” padding
types. That is, instead of the two different types
of models agreeing with each other and remov-
ing bad predictions, the two models instead mostly
disagree over certain portions of the data, leading
to larger uncertainty and therefore lower overall
performance.

A rule based model was also tested where ev-
ery conversation was labeled based on whether
or not it contained an emoji. More specifically,
for every conversation the first and third turns of
the text were concatenated and then if that had a
happy emoji it was labeled happy, if it had a sad
emoji it was labeled sad, if it had an angry emoji
it was labeled angry, and if it didn’t have any of
those emojis then it was labeled using the output
of the seventh submission. This model is interest-

ing because applying the algorithm changed zero
labels from the seventh submission. This means
that the network learned the different emojis and
used them in order to predict the emotion. This
also agrees with the intuition that emojis should
represent how a user is feeling (or perhaps that the
dataset was created or biased by this idea). To see
all of the results, view Table 1.

Submitter F1 Score
1st Place .7959
2nd Place .7947
3rd Place .7765
My Best .7386
Median .6947
Average .6605

Table 2: Micro f1 score of the first, second, and third
place submissions as well as the average and median
scores of all submissions as compared to my best sub-
mission.

To see a comparison to other people’s submis-
sions in the competition, view Table 2. Addition-
ally, I show the micro f1 score as well as the f1
score for the happy, angry, and sad labels for a few
of my models in Table 3.

Model F1 Angry Happy Sad
BSM .7255 .7382 .6718 .7653
f1 >.7 .7366 .7481 .6812 .7803
f1 >.71 .7386 .7536 .6790 .7818

Table 3: Micro f1 score as well as the f1 score for
the angry, happy, and sad labels. Best single model
is abbreviated as BSM, as well as the ensemble of all
models that scored higher than a certain f1 score as f1
>score.

4 Conclusion

A language understanding model and an emotion
prediction model was trained in an end to end
fashion for understanding and predicting the emo-
tions of conversations. The previous work was
adapted in order to leverage the ability to use any
sized inputs with convolutional neural networks,
and showed that such a model can be fast and ac-
curate. Finally, it was shown that augmenting lan-
guage learning using clustering loss can help aug-
ment training and improve results.



306

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Jacob Anderson. 2018. Fully convolutional net-
works for text classification. arXiv preprint
arXiv:1902.05575.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

François Chollet et al. 2015. Keras.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
CoRR, abs/1808.06226.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embed-
ding for face recognition and clustering. CoRR,
abs/1503.03832.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832

